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Domain A’: Learning involves identifying a collection of features of an object which we encode in a space X.

Labels ): Each object has a class label, here )V = {1, —1} with 1: Apple and —1 Orange.

Training Data S: We are given finite number of examples S = {(x1, 1), .- - (Xm, ¥m)} from which to try to
learn a model h = A(S) to classify previously unseen objects x as y = h(x).

Learning Output h = A(S): The learning algorithm A produces a prediction rule h = A(S) with h: X — .
The h also referred to as a predictor, hypothesis, classifier.

Data Generation Process D: The sample S we see in practice comes from some generating process (i.e. users

posting photos online). We model this as a probability distribution D over X'. We also assume for the labels y
there is some " correct rule” f : X — ), which we use for labels y = f(x), x ~ D.

Measuring Level of Success Lp ¢: The loss function Lp ¢(h) measures the accuracy of h in assigning the
correct labels. Here, Lp r(h) = Pry.p{h(x) # f(x)}. Also, referred to as generalization error, true risk.



Statistical Learning Theory

Framework for characterizing learning problems and algorithms.
Goal: Assess how well a model predicts future input-output relations.

Mathematical Definitions: Consider c: X —» Y, X-input, Y-output.

Let c = concept, € = {concept class}, F = {hypothesis function space},
Daqy ~ X X Y be unknown probability distribution on X x Y, and
V(h(x),y;) = Lp(h) =loss function.

Learning Problem: Find the best h €€ so that Ep[V (h(x),y)] is minimized
whence C,y = c(x).

Loss Functions: common examples:
Classification: V(h(x),y) = Ihx)zys (zero-one loss).
Regression: V(h(x),y) = (h(x) - y)?, (least-squares L? -loss).

Important to learning, the choice of hypothesis class # and loss used!

Practical Challenges: Distribution D usually unknown, optimization is often
non-convex and in high-dimensional spaces and approximate.

“There is nothing more practical
than a good theory.”
-- James C. Maxwell.

Vladimir Vapnik Alexey Chervonenkis
Classification
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Statistical Learning Theory

Notation and definitions:
X input space [
94 output space [ ;
c(X): L = Y concept
€ concept class
J€ hypothesis class
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We receive samples § = (X1,Xy,...,Xy,) and labels 3 = (y1, Yo, ... Ym), Where vy, = c(x).
Task: Determine from § and J a hypothesis function hge %

Goal: We want hg(x) that
(i) fits to explain the training data S,5 well.
(i) generalizes to give correct results for new unseen data points drawn from D 4.

Definition: The generalization error (risk) for 0-1 classification Y={0,1} is
R(h) - Pl‘{hS(i") 3& C(j—")} - E:er [1]15(:}:)#0{;3}]

However, in practice this is NOT directly computable since we do not know c(x) and D.



Statistical Learning Theory

Notation and definitions:
X input space
Y output space
c(X): L = Y concept
€ concept class
J€ hypothesis class

We receive samples S = (X{,Xy,...,Xy) and labels T = (y;=c(X;), ¥>=C(X5), ... Ym=C(Xm))-

Definition: The empirical generalization error (empirical risk) for 0-1 classification Y={0,1} is
|
R(h ) = E Z lh_._-l:.r', JFEe(x;)

This gives an unbiased estimator of the generalization error (true risk).

Lemma: Ex.pm [ﬁ(h)} = R(h)
Proof:

T 1L Fit
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PAC-Learning

Probability Approximately Correct (PAC) Learning Framework.
Introduced by Leslie Valiantin 1984 to assess computational
complexity of learning tasks.

Leslie Valiant

PAC-learning
We say a concept class € is PAC-learnable if there exists an algorithm 4 and polynomial

bound so that given € >0 and & > 0, the following holds for any distribution D € D on X, target
concept c in €, and sample size m > m (e, ), with mg, = 0 (poly(1/¢,1/5,n,size(c))).

Pr{R(hs) <e}>=1-9
mg (€, 6) is the sampling complexity.

Efficient PAC-learnable
We say a problem is efficiently PAC-learnable if the algorithm < runs in at

most a time 1 = poly(1/¢,1/8,n,size(x)).

We call 4 the PAC-learning algorithm for €.



PAC-Learning

Example: Learning intervals on R-line.
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We need to show: Given € > 0, § > 0 there exists a polynomial bound in samples m with

Pr

% o I

{R(Is) <e}>1-—04.

Since s C I, we only need to worry about false negatives. This has

R(Is)= Pr {rélsnrel}l=F,.p []h_.,-¢_;~'.;:r~1_;-|] .

X~ [m

We use that if A = B then Pr{A} < Pr{B} and we use | — = < exp[—uz]
If Isn I # O.%i = 1.2 then R(ls) < ¢ . By contrapositive F7(/s)
This gives the bound

Pr{R(Is)

) )
= m > < In (ﬁ) B Shows is efficient PAC-learnable.
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Building Identification

PAC-Learning

Example: Learning axis-aligned rectangles.

( Algorithm 1 [ (i) Overlaps All (i) Not Full Overlap )
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We need to show

Pr{R(hs) < ¢} >1-0
This implies

R(hs) > ¢ = Jist. hsnIV =0

4 4
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Picture Annotation, Facial Recoanition

<4(1—€/4)" < dexp[—em/4] < 6.
Bound on samples m Bound on risk R

) 4 4 4 4 N 4 4
_ - — - = In|-= —1—4. < _nl=
em/4 < In (4):> m > — In (O) € mIn (6) = Pr=1-90. |R(hs) < mln (O)




Data Sampling Complexity

Guarantees on Sampling Complexity mg(e, ) ;
How many samples do we need to guarantee a given level of precision €, 6 in PAC-learning? [ ¥ T
What is bound M = m g(e,8) so form = M we have PriR(hs) <e}>1-0 7
This will depend on the hypothesis space % and concept class €.
Two important cases:

(i) consistent case: € c J¢, hypotheses include all concepts.

(i) inconsistent case: C ¢ J€, hypotheses can not capture all concepts.

Distinguish also case of finite vs infinite hypothesis spaces € and concept spaces €.

Theorem: Consistent-Finite Hypothesis Spaces . Let s be any learnina alaorithm that has
zero Empirical Generalization Error F2(hs) = 0 then PAC-learning bound Pr{f(hs) < e} =>1—4

is guaranteed to hold for m samples satisfying Empirical Generalization Error

1 1 a“
pa— - I = » 1
m > ; (lng|H| + log r’i) R(h) = - E Lhs(@i)#e(zi)
=1




Data Sampling Complexity

Finite Consistent-Case: Guarantees on Sampling Complexity

Theorem: Consistent-Finite Hypothesis Spaces J€. Let A be any learning algorithm that has
zero empirical generalization error R(hs) = 0 then PAC-learning bound Pr{R(hs) < e} >1—4 is

guaranteed to hold for m samples satisfying

1 1
m > E(]0g|H| + log 3)

Proof: Let < be any algorithm that returns for m samples S a hypothesis hg s.t. R(hs) =0,

S~ D
| H |
< Y Pr{h. € HAR(h:) = 0A R(h;) > ¢}
1=1
| H |
< > Pr{hi € HAR(hi) = 0|R(hi) > €}

i=1]

< [H| (1 - &)™ < |H|exp (—em) <

= log(|H|) — em < log(d)
=m > ! (lag“Hl} + log (l))
€ 0 n

Pr {he HARMh) =0AR(h) > ¢} = .;Pg...{"” EHARMM)=0AR(h) >eV - Vh €HARhy) =0AR(hjy) > €}

Vs

We use that
Pr{iAA BAC}=Pr{AA B|C}Pr{C}
< Pr{AA B}

l-r<e™™

Paul J. Atzberger Machine Learning: Foundations and Applications
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Generalization Bounds

Finite-Consistent Case: Guarantees on Sampling Complexity

-+
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Corollary: Consistent-Finite Hypothesis Spaces €. Let & be any learning algorithm that has [
zero empirical generalization error (hg) = 0 then the generalization error is bounded by

1 1
R(hs) < — (log|H| +log 5 )

1 1
Proof: Follows setting €= — (log(lHl) + log (3)) —> m>

| =

(10g(|H|)+10g (%)) — + R(hs)<e g

m

Consistent-Finite Hypothesis Case
« 1/m —error decay rate is in fact very good relative to other cases we shall investigate.

« Sample complexity bounds are logarithmic in the hypothesis space size | #|.
* log(| %) ~ number of bits needed to distinguish a hypothesis function.
« This indicates smaller hypothesis space - easier to learn concepts.

 However, consistency € c € requires “big enough” hypothesis space %€ to capture target concepts.



Data Sampling Complexity

Example: Boolean Conjunctions.
Let z; be Boolean variable, a conjunction is: c = Z; Az, A Zg A Z.

Learning algorithm < : Use only the positive examples.
o if z; = 1 then include z;.
o if z; = 0 then include z;.

The concept class |G| = 3", since in n-conjunction either z;, z;, or ¢.
Note could learn directly with as few as 2n examples if special ones chosen.

Let ¥ = €, then we have consistent-finite hypothesis space and R(hg)=0.
Sample complexity:

o (otox(0 1 (1))

This shows €, is PAC-learnable.

Note statistical learning might not be as efficientas direct methods when available.

C=Zl/\22/\23

21 ~ 7it is raining”
2z ~ "have umbrella”

z3 ~ "getting wet”

Confidence desired:
e =0.01 — 99%

4 =0.05 = 95%

Bound on number samples:

m = 630

(larger than direct testing 2n)

ofryrjopt1rj1j|+
ofryrjrprjpnry+
oot frjofju1yj-
ofryrjrprjpnry+
Ffojof(1 1|0} -
O(rjojo1 |1 |+
ofryp?2(21111
Mohri 2012
4 )

Example 2:




Data Sampling Complexity

Example: Universality Class U, = {c: {0,1}" — {0,1}}. All functions c¢(z,,2,,...,z,) = {0,1}. t }

R S R &y

A consistent-finite hypothesis class # must contain U, giving | %] > |U,| = 22".
This suggests a sample complexity (if bounds tight) of
m > % (2” log (2) + log (%))
This suggests learning problem requires exponential number of samples in the input size n.
Not hard to show this concept class is in fact not PAC-Learnable.
Efficient learnability requires our concept class not be too broad.

Task specific mathematical structure needed to develop efficient algorithms for representing
concepts and distinguishing hypotheses.

Completely generic functions can not be learned efficiently (too many possibilities / complexity).



Agnostic PAC-Learning

Inconsistent case when € ¢ %. 1] I v

For all h we may have R (h) # 0. Our aim is to achieve as small a generalization error as (] t

possible. 4
Saes

Agnostic PAC-Learning:
We say a concept class € is Agnostic PAC-Learnable if there exists an algorithm <+ and

polynomial bound so that given € >0 and & > 0, the following holds for any distribution D on & x
Y, target concept c in €, and sample size m > poly(1/g,1/5,n,size(X))

Pr{R(hs) i Rh)<e}>1-96

Note, generalization erroris now R(h) = Pr [h(z) Zy]l= E [lh@)2yl-
(Iry)ND (I'y)ND

If computational complexity of algorithm is poly(1/e,1/0,n,size(x)) we say the concept class is
Efficiently Agnostic PAC-Learnable.

Stochastic vs Deterministic Learning: Above applies also when label y for feature vector x is
not unique, as in many real-world data sets. Uncertainty captured by D ~ L x Y, allowing for a
type of stochastic learning. h() _{ 1, if Pri{h(z) =y} >1/2 }

0, otherwise

Goal: Find best assignment y = h(x) minimizing generalization error (i.e. 0-1, Bayes classifier).



Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces Jt. Let 4 be any learning algorithm that has
empirical generalization error R(hs) then for any h € % we have

log | H| +lng;:;

R(h) < R(h) + \/

2m ]

This shows training error is indicative of the generalization error with enough samples

> loe( | H log :;t
R(h) — H{h.]‘ < \/Un“ |;+ og($)
m

This means if we have small training set error f?{h,q} then “with enough” samples we can obtain
small gap in generalization errors.

For Agnostic PAC-Learnable concepts we have Pr{R(hs) — 1}[111173 R(h)<e}>1-0
€

These results show even in the inconsistent case for enough samples m a small training set error
Is still indicative for obtaining an hypothesis h with best generalization error.

Note, only m~%/2 scaling in the bound (compare to the finite-consistent case ~ m?).

e e .

11 X5

—————



Concentration Inequalities
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Probahility Theory and Inequalities

Concentration Inequalities
Lemma: Markov Inequality Pr[X > €] = Pr[e!® > '] < e *“E[e!*] fort = 0.

Proof: Pr{e™ > e™} < / levesere(x)dDy < /e‘“etx dD, = e tE [etx] .
Q

Lemma: (Hoeffding’s Lemma) Let X be a random variable with E[X] = 0,a< X < b, and

b > a, then we have the bound
t2(b=a)?

Ele*] <e s

fro b = e a = . . .
Proof: We have that ¢ < - ;ct ”;) — zv“’ using a < x < b, x — e™ is a convex function.
From E[X] =0, we have E [e‘x] < ie“‘ 2 eth = 0t o(t) = log b gta_ _a et
b—a b—a bh—a b—a
For any t >0, we have for g’{t].o”{t] | " b & tb)
E.J'rf =a— My = 1— b — 2 =log | € T T €
7(t) b/(b— a)e—t(b=2) —3/(b—a)’ o (1) u(l - u)(b— a) b—a b-a
u=a/(1-a)e™ ™ +a) a=—a/(b-a), uc(0.1]. — ta + log ( R f‘“"‘”)

f " —a . — ) —

This gives ¢(0) = ¢'(0) =0, ¢"(1) < =~ since u- (1 —u) < 1/4, T ‘
t? t2(b — a)?

By the Taylor Remainder Theorem 3¢ € [a,b] s.t. (1) = ¢(0) + t&'(0) + 5&"(5) <
!2!5—-“}2

= Ele'*] <e®™ <e 3

8
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Probahility Theory and Inequalities

Concentration Inequalities

Lemma: (Hoeffding's Inequality) Let X;, X5, ..., X,, be random variables with a; < X; < b;,
b; > a;and S,, = X", X; then we have the bounds

Pr[Sm — E[Sp] > ] < e72¢/ Zima(bima)”
Pr[Spm — E[Sm] < —¢] < e72¢/ Zimabima)”
Proof:
Let Zm = Sm — E[Sm] and Q =311, (b — a:)” .
—te tZ —tepym t(X; —E[X; —te 12 S (b — — a;)?
Pr{Sm — E[Sp] > €} = Pr{Zn > e} < e "E [e m] — et B [e< sy m] <e eXp( (b ) — e (8]
t t

Markov Inequality Hoeffding Lemma

-ﬁ¢~6#—.
E——¢——wl SN

We minimize () in t to obtain optimal upper bound.

_ —Bte +1°Q 1y —8e+26.Q B _ e
qz;(t)_T — Y (ts) = 3 =0= 86+2t*Q—0:t*—Q.
2 2
B R v

Similarly, we obtain the other case using Z,,, = —Z,,,. =



Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Lemma: Let samples S={(x1,y1),(X2,¥2),---,(Xm,Ym)} be choseni.id. on {0,1} from D ~ &L x Y then
Pr [|R(h) — R(h)| > €] < 2exp(—2me?)

S~Dm
Proof:
. 1 I e l l
R(h) = — D lh@osgen = ) Xi = Sm  Xi= Lh@)#e) € [U- E]
Ci=1 i=1 '

By Hoeffding’s Inequality

noo
—2e<m 2

Pl‘{|f?{.-"r) — R(h)| > €} < e~ 2¢" /X1 (bi—ai)® _ o, T 2exp (—2€°m) u

Paul J. Atzberger Machine Learning: Foundations and Applications http://atzberger.org/



Generalization Bounds

Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces €. Let 4 be any learning algorithm that has
empirical generalization error R(hs) then for any h € € we have with probability at least 1 — &

) — .\_

———y -f—
e

. log [H| + log 2
R <R
(h) < R(h) + \/ o

Proof:

Pr{h € H, |Ifi’(h,) —R(h)| > €} = Pr{hy € HA|R(h1) — R(hy)| > €V -V b€ HA|R(hjy) — R(hyyy))| > €}
[H|

< ZPr{h@ € HA|R(h;) — R(hi)| > €} < |H[2exp(—2me?) <6

i=1

= log(|H|) — 2me* < log (%) = 2me> > log (|H|) + log (%)

1 2
= m> 503 (log(|7—[|) + log (E))

o e> \/10g(|?—[|) + log (%)

2m



Deep Neural Network

(ieneralization Behaviors Al il

Generalization Error and Model Capacity

°
60000

scssnoe

e oo b 0D
ecaoe0BD
e

Classic Bias-Variance Trade-off Fitting Data Double Descent and Deep Learning
error & || bound on generalization error
1 o
\ Iy large capacity

under-fitting - over-fitbing yrd e par s tor i sed

,,-r”'”_r complexity term
- Test risk

Test risk

Risk

Risk

training error small capacity

Training risk Training risk:

- o . e
Capacity of H Capacity of H Belkin 2013
ResNet-18

# Mori 2018
measure of capacity

Larger model capacity often allows for smaller training error (model capacity ~ | 7).

image 32732

Complexity of #tends to hinder generalization to newinputs.

Smallest generalization error arises intermediate trading-offin model complexity and training error He 2016
(bias-variance trade-off). - =
go3 \ Image Classification
ituati ; . i sowe  SARNPEPY - EENEIES

Recent results showsituation can be more subtle. Deep learning methods (neural networks) exhibit Foa \© =
“double-descent.” o P —

_ _ _ _ _ _ _ . -~ Eei=ssEpes
Central challenge in machine learning beento find appropriate hypothesis classes for given learning tasks. | ~ §=E§;EEEEE

. N . . . o 22 o AR ESES N
Central challenge in deep learning is to design appropriate neural network architectures, regularizations,  # At nsic

initialization, training protocols.

i 0 20 30 %0 50 60 64
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Minimax Rates and PAC-Learning

Minimax Rate

Vu(C)= inf sup Fg.g—m|R(hs

(©) hs=A(‘) Dx,ceC 151 [B(hs)

X input space, Y output space, c(x): L = Y concept
€ concept class, € hypothesis class.

PAC-learning Classification:
V;{::AC C)= inf sup Fgq.q— [Pr helz clx }
7 (C) hs=A{-:lux.{l_-ec S:|S|=m ;!_ND{ s(x) # c(x)}

A concept class € is PAC-learnable if VLA (C) =0 .
More precisely, given € > 0, 3M = poly(1/¢) such that m > M, we have

VEAC(C) <e.

Theorem (PAC Learning €-> Minimax): For a concept class €
the minimax rate converges to zero with polynomial sampling complexity
if and only if the concept class € is PAC-learnable.

P

11 X5

—————



Minimax Rates and PAC-Learning

Minimax Rate and PAC-Learning Classification V749(c) = iﬁfpsuchS"3'=m [R(hs = A(S)]
X CE

Theorem (PAC Learning €= Minimax):
Given € > 0, vPA9(¢) < ¢ with m > poly(1/¢) holds if and only if there is an algorithm < so that

given e > 0, § > 0, Pr {R(hs) <€} >1—4d for m = poly(1/e,1/5) holds.

Proof: (i) = (ii) follows readily.

We show (ii) = (i)

R(hs) = Pr {hs(X) # c(X)}

Given (i) we have 3As.t. given € > 0, § = ¢/2, 3M = poly (1,1) s.t. forDy € W, c € C,
Prs.pm {R(A(S)) < €} > 1 - § = Prs.pm {R(A(S)) > €} < 8, m > M.

We obtain the bound

Esisi=m [RA(S)] € _Pr {R(A(S) < e} e+ Pr {RA(S) > e} 1<e+d< e+ se=
~ {UP’AC[C) <@
m = poly(1/€)

#V,ﬂﬁc—}ﬂ,as m— 00 m

b | L

™
I
it
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Minimax Rates and Learning Tasks

PAC-Learning Classification

vEA(c f E Pr {h
WO = il s Esisiem | P {hs(e) # (o)}

Non-parameteric Regression

VARE) =, it s Esisien |(hs(e) = c(2))’]

Agnostic PAC-Learning

pA-PAC () = hsl_nfl() sup:ECES S|=m [R(hs)— inf R(h’)}

Comparison of learning problems:
Case: C C {£+1}*
WA9(C) < VR (Ee) < v ()
Case:C C R*
Va H(C) < Vi, ()

Paul J. Atzberger Machine Learning: Foundations and Applications
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Image Classification

Statistical Learning Theory

automobile
bird
cat

deer

Machine Learning Algorithms and Tasks -
 Guaranteed performance for unknown distributions D4 requires we have hip
some restriction on the hypothesis class %€ and concept class C. i 201

. . . _ Robotics and Control
« There is no general learning algorithm that works for all possible tasks.

« These assertions correspond to so-called “No Free Lunch Theorems.”

« Toachieve good performance learning algorithms must make some use of
knowledge / mathematical structure of the specific task.

MIT and Boston Dynamics

Forecasting

-

washingtonpost.com



Statistical Learning Theory
No Free Lunch Theorem
Theorem: Let concept class be all binary functions, € = U = {all functions f(z): X — {0,1}},
where & is discrete space of finite binary sequences {{0,1}N, N € N} ={(z;,2,,...,Zy), z; € {0,1}}.
For the universal concept class U we have V:2(C)A0 .

Therefore, U is not PAC-Learnable.

) —

———y -f—
4 44

Proof:
For a given sample size, let A’ € ) of binary sequences s.t. |X'| = 2n.
Let D, ~ uniform distribution over all functions f : X — {0.1}. Note |V¥| = 2*" when X € {0.1}*".

Consider @ = Ep, [Es.|s|=m [R(A(S))]], R(A(S)) = R(hs) =E [lno)2sx)] = Pr{hs(X) # f(X)}.
We will show that ¢ = 1/4 for C = i/, which will prevent V,.(C) # 0.

By Fubini’'s Theorem

Q = Es:s1=m |Ep, [R(A(S))]] = Es:isi=m |ED; [Ex~D [lns(x)2£(x)]]] = Es:sj=m |[Ex~p [Ep; [Insx)2r0)]]]
= Es.x~p [Ep; [lnsx)2rx)|X €S]] - Pr{X € S} + Es.x~p [Ep; [lnsx)2rx)|X € S]] - Pr{X & S}

> Es.x~p [Ep, [lnsx)zr)|X € S]] - Pr{X ¢ S}

D ~ uniform on X, |X| = 2n

] . I 1
> 2. Pr{_\ & S} > _J. . -} = 4 . Sl=n= r’l'{."f 515} =

It | 1=




Challenges in Machine Learning

Guarantees for performance. Typically, unknown distributions D4, may shift in
time, good choices needed for hypothesis class #, types and amount of data.

No Free Lunch Theorems: If the hypothesis class %, target concept class € are
too general and the distribution D4 is unknown then there is no guarantees on

algorithmic performance on the tasks.
This means no generic all purpose learning algorithms exist.
Must utilize prior knowledge or structure of the tasks to be solved.

Central goal of this course is to consider wide variety of specific tasks and
develop associated theory and well-suited learning algorithms.

Support Vector Machines  Neural Networks and Deep Learning Generative Methods Manifold Learning

GANs - Clustering Methods

Image Classification
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Robotics and Control

MIT and Boston Dynamics

Forecasting
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