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Apple Images Orange Images Item Features

Example Task

𝒙 = 0.8, 0.9, 0.1,0 .3

Feature Value

Roundness 0.8

Sweetness 0.9

Redness 0.1

Greenness 0.3
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Framework for characterizing learning problems and algorithms.

Goal: Assess how well a model predicts future input-output relations.

Mathematical Definitions: Consider c: 𝑋 → 𝑌, X-input, Y-output.
Let c = concept, C = {concept class}, H = {hypothesis function space},
DX,Y ~ 𝑋 × 𝑌 be unknown probability distribution on 𝑋 × 𝑌 , and 

𝑉 ℎ 𝑥𝑗 , 𝑦𝑗 = 𝐿𝐷,𝑐(ℎ) = loss function.

Learning Problem: Find the best ℎ ∈H so that 𝐸𝐷 𝑉(h(𝑥), 𝑦) is minimized 

when c ∈ 𝐶, y = 𝑐 𝑥 .

Loss Functions: common examples:

Classification: 𝑉(h(𝑥), 𝑦) = 𝐼h(𝑥)≠𝑦,  (zero-one loss). 

Regression: 𝑉(h(𝑥), 𝑦) = (h(𝑥) – 𝑦)2, (least-squares 𝐿2 -loss).

Important to learning, the choice of hypothesis class H and loss used! 

Practical Challenges: Distribution D usually unknown, optimization is often 
non-convex and in high-dimensional spaces and approximate.   

Vladimir Vapnik Alexey Chervonenkis

Leslie Valiant

“There is nothing more practical   

than a good theory.”                        

-- James C. Maxwell.
Statistical Learning Theory

class -1
class +1

ℎ 𝑥 = +1

Classif ication

Regression

h(x)
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Statistical Learning Theory
Notation and definitions:

X input space

Y output space

c(x): X → Y concept

C concept class

H hypothesis class

We receive samples S = (x1,x2,…,xm) and labels T = (y1, y2, … ym), where yi = c(xi).

Task: Determine from S and T a hypothesis function ℎS 𝜖 H

Goal: We want hS(x) that 

(i) fits to explain the training data S,T well.

(ii) generalizes to give correct results for new unseen data points drawn from DX.

Definition: The generalization error (risk) for 0-1 classification Y={0,1} is

However, in practice this is NOT directly computable since we do not know c(x) and D.  
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Statistical Learning Theory
Notation and definitions:

X input space

Y output space

c(x): X → Y concept

C concept class

H hypothesis class

We receive samples S = (x1,x2,…,xm) and labels T = (y1=c(x1), y2=c(x2), … ym=c(xm)).

Definition: The empirical generalization error (empirical risk) for 0-1 classification Y={0,1} is

This gives an unbiased estimator of the generalization error (true risk).

Lemma:

Proof:
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PAC-Learning 

PAC-learning
We say a concept class C is PAC-learnable if there exists an algorithm A and polynomial 

bound so that given ε > 0 and δ > 0, the following holds for any distribution 𝐷 ∈ D on X, target 

concept c in C, and sample size m ≥ 𝑚H 𝜖, 𝛿 , with 𝑚H = 𝑂(poly(1/ε,1/δ,n,size(c))).

Efficient PAC-learnable
We say a problem is efficiently PAC-learnable if the algorithm A runs in at 

most a time τ = poly(1/ε,1/δ,n,size(x)).  

We call A the PAC-learning algorithm for C.

Probability Approximately Correct (PAC) Learning Framework.

Introduced by Leslie Valiant in 1984 to assess computational 

complexity of learning tasks.
Leslie Valiant

𝑚H 𝜖, 𝛿 is the sampling complexity.
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PAC-Learning

We need to show: Given ϵ > 0, δ > 0 there exists a polynomial bound in samples m with

Since             , we only need to worry about false negatives.  This has

We use that if               then                              and we use  

If                                        then                  .  By contrapositive                           s.t   

This gives the bound

Example: Learning intervals on ℝ-line.  

Algorithm:

A: 𝐼𝑆 = {smallest interval of in-class}.   

,
.

General Case Algorithm

Obstacle Navigation

robot

wall wall

(i)

(ii)

Overlaps

.

Shows is efficient PAC-learnable.
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PAC-Learning
Example: Learning axis-aligned rectangles.

Building Identification

Google Maps: UCSB South HallWe need to show 

Bound on risk RBound on samples m

This implies

𝜀/4

𝜀/4

𝜀/4

𝜀/4

(i) Overlaps All (ii) Not Full Overlap

𝑐

𝜀/4, 𝐼(𝑖)

ℎ𝑆

Algorithm

Picture Annotation, Facial Recognition

usplash
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Data Sampling Complexity
Guarantees on Sampling Complexity 𝑚H 𝜖, 𝛿

How many samples do we need to guarantee a given level of precision ϵ, δ in PAC-learning?

What is bound M = 𝑚H 𝜖, 𝛿 so for 𝑚 ≥ 𝑀 we have                                      ?

This will depend on the hypothesis space H and concept class C.

Two important cases:

(i) consistent case: C ⊂ H, hypotheses include all concepts.

(ii) inconsistent case: C ⊂ H, hypotheses can not capture all concepts.

Distinguish also case of finite vs infinite hypothesis spaces H and concept spaces C.

Theorem: Consistent-Finite Hypothesis Spaces H. Let A be any learning algorithm that has 

zero Empirical Generalization Error                  then PAC-learning bound                                      

is guaranteed to hold for m samples satisfying
Empirical Generalization Error
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Data Sampling Complexity
Finite Consistent-Case: Guarantees on Sampling Complexity

Theorem: Consistent-Finite Hypothesis Spaces H. Let A be any learning algorithm that has 

zero empirical generalization error                  then PAC-learning bound                                      is 

guaranteed to hold for m samples satisfying

Proof: Let A be any algorithm that returns for m samples S a hypothesis ℎ𝑆 s.t. . 

We use that
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Generalization Bounds
Finite-Consistent Case: Guarantees on Sampling Complexity

Corollary: Consistent-Finite Hypothesis Spaces H. Let A be any learning algorithm that has 

zero empirical generalization error                  then the generalization error is bounded by

Proof: Follows setting

Consistent-Finite Hypothesis Case

• 1/m – error decay rate is in fact very good relative to other cases we shall investigate.

• Sample complexity bounds are logarithmic in the hypothesis space size |H|.

• log(|H|) ~ number of bits needed to distinguish a hypothesis function. 

• This indicates smaller hypothesis space → easier to learn concepts.

• However, consistency C ⊂ H requires “big enough” hypothesis space H  to capture target concepts.
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Data Sampling Complexity
Example: Boolean Conjunctions.

Let 𝑧𝑖 be Boolean variable, a conjunction is: c = ഥ𝑧1 ∧ 𝑧2 ∧ 𝑧5 ∧ 𝑧6.

Learning algorithm A: Use only the positive examples.

▫ if 𝑧𝑖 = 1 then include 𝑧𝑖 .

▫ if 𝑧𝑖 = 0 then include ഥ𝑧𝑖 .

The concept class |Cn| = 3n, since in n-conjunction either 𝑧𝑖, ഥ𝑧𝑖, or ϕ.

Note could learn directly with as few as 2n examples if special ones chosen.

Let H = Cn then we have consistent-finite hypothesis space and                   .

Sample complexity:

This shows Cn is PAC-learnable.

Note statistical learning might not be as efficient as direct methods when available.

Mohri 2012

Example 2:

Confidence desired:

Bound on number samples:

(larger than direct testing 2n)
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Data Sampling Complexity

Example: Universality Class Un = ሼ𝑐: {0,1}n ሽ→ {0,1} .   All functions c(z1,z2,…,zn) → {0,1}.

A consistent-finite hypothesis class H must contain Un giving |H| ≥ |Un| = 22
𝑛
.

This suggests a sample complexity (if bounds tight) of

This suggests learning problem requires exponential number of samples in the input size n.

Not hard to show this concept class is in fact not PAC-Learnable.

Efficient learnability requires our concept class not be too broad.

Task specific mathematical structure needed to develop efficient algorithms for representing 

concepts and distinguishing hypotheses.  

Completely generic functions can not be learned efficiently (too many possibilities / complexity).
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Inconsistent case when C ⊂ H.

For all h we may have                 .  Our aim is to achieve as small a generalization error as 

possible.  

Agnostic PAC-Learning: 
We say a concept class C is Agnostic PAC-Learnable if there exists an algorithm A and 

polynomial bound so that given ε > 0 and δ > 0, the following holds for any distribution D on X x

Y, target concept c in C, and sample size m ≥ poly(1/ε,1/δ,n,size(x)) 

Note, generalization error is now                                                                     . 

If computational complexity of algorithm is poly(1/ε,1/δ,n,size(x)) we say the concept class is 

Efficiently Agnostic PAC-Learnable.

Stochastic vs Deterministic Learning: Above applies also when label y for feature vector x is 

not unique, as in many real-world data sets.  Uncertainty captured by D ~ X x Y, allowing for a 

type of stochastic learning. 

Goal: Find best assignment y = h(x) minimizing generalization error (i.e. 0-1, Bayes classifier).

Agnostic PAC-Learning 
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Generalization Bounds
Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces H. Let A be any learning algorithm that has 

empirical generalization error            then for any h ∈ H we have

This shows training error is indicative of the generalization error with enough samples 

This means if we have small training set error             then “with enough” samples we can obtain 

small gap in generalization errors.    

For Agnostic PAC-Learnable concepts we have 

These results show even in the inconsistent case for enough samples m a small training set error 

is still indicative for obtaining an hypothesis h with best generalization error.

Note, only m−1/2 scaling in the bound (compare to the finite-consistent case ~ m-1).
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Concentration Inequalities
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From                , we have 

Probability Theory and Inequalities
Concentration Inequalities

Lemma: Markov Inequality

Lemma: (Hoeffding’s Lemma) Let X be a random variable with 𝐸[𝑋] = 0, 𝑎 ≤ 𝑋 ≤ 𝑏, and                     

𝑏 > 𝑎, then we have the bound

Proof: We have that                                                  using                   ,                is a convex function.

Proof:

For any t > 0, we have for 

This gives                                                  , since                           . 

By the Taylor Remainder Theorem                 s.t.

,

,

,

,

.

for 𝑡 ≥ 0.
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Let                               and                               .

Probability Theory and Inequalities
Concentration Inequalities

Lemma: (Hoeffding’s Inequality) Let 𝑋1, 𝑋2, … , 𝑋𝑚 be random variables with 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖 ,           
𝑏𝑖 > 𝑎𝑖 and 𝑆𝑚 = σ𝑖=1

𝑚 𝑋𝑖 then we have the bounds

Proof:

We minimize        in 𝑡 to obtain optimal upper bound.

Markov Inequality Hoeffding Lemma

Similarly, we obtain the other case using ሚ𝑍𝑚 = −𝑍𝑚.

.
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Generalization Bounds

Lemma: Let samples S={(x1,y1),(x2,y2),…,(xm,ym)} be chosen i.i.d. on {0,1} from D ~ X x Y then

Proof:

By Hoeffding’s Inequality

,

Finite-Inconsistent Case: Guarantees on Sampling Complexity
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Generalization Bounds
Finite-Inconsistent Case: Guarantees on Sampling Complexity

Theorem: Inconsistent-Finite Hypothesis Spaces H. Let A be any learning algorithm that has 

empirical generalization error            then for any h ∈ H we have with probability at least 1 − 𝛿

Proof:



Paul J. Atzberger                                                                      Machine Learning: Foundations and Appl ications http://atzberger.org/

Generalization Behaviors
Generalization Error and Model Capacity

Larger model capacity often allows for smaller training error (model capacity ~ |H|).

Complexity of H tends to hinder generalization to new inputs. 

Smallest generalization error arises intermediate trading-off in model complexity and training error           

(bias-variance trade-off).

Recent results show situation can be more subtle.  Deep learning methods (neural networks) exhibit      

“double-descent.”

Central challenge in machine learning been to find appropriate hypothesis classes for given learning tasks.

Central challenge in deep learning is to design appropriate neural network architectures, regularizations, 
initialization, training protocols.  

Double Descent and Deep Learning

Belkin 2018

ResNet-18

He 2016

Fitting Data

small capacity

large capacity

Classic Bias-Variance Trade-off

Mori 2018

Deep Neural Network
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Minimax Rates and PAC-Learning 
Minimax Rate

PAC-learning Classification:

A concept class C is PAC-learnable if .

More precisely, given 𝜖 > 0,                            such that 𝑚 ≥ 𝑀, we have 

X input space, Y output space, c(x): X → Y concept

C concept class, H hypothesis class.

Theorem (PAC Learning → Minimax): For a concept class C

the minimax rate converges to zero with polynomial sampling complexity 

if and only if the concept class C is PAC-learnable. 
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given ϵ > 0, δ > 0, for                                holds.

Given (ii) we have       s.t. given                                                        s.t. for 𝐷𝑋 ∈ D, c ∈ C,

Minimax Rates and PAC-Learning 
Minimax Rate and PAC-Learning Classification

Theorem (PAC Learning → Minimax):
Given ϵ > 0, with                         holds if and only if there is an algorithm A so that

as, .

Proof: follows readily.

We obtain the bound

We show
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Minimax Rates and Learning Tasks
PAC-Learning Classification

Non-parameteric Regression

Agnostic PAC-Learning

Comparison of learning problems: 

Case:

Case:               
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Statistical Learning Theory

Machine Learning Algorithms and Tasks

• Guaranteed performance for unknown distributions DX requires we have 

some restriction on the hypothesis class H and concept class C.

• There is no general learning algorithm that works for all possible tasks.

• These assertions correspond to so-called “No Free Lunch Theorems.”

• To achieve good performance learning algorithms must make some use of 

knowledge / mathematical structure of the specific task.

Forecasting

washingtonpost.com

Image Classification

Abdelfattah 2018

MIT and Boston Dynamics

Robotics and Control
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For a given sample size, let              of binary sequences s.t.

Let        ~ uniform distribution over all functions                          .  Note                   when                 .  

Consider                                                       ,  

Statistical Learning Theory
No Free Lunch Theorem

Theorem: Let concept class be all binary functions, C = U = {all functions  𝑓 𝑧 :X → ሼ0,1ሽ}, 

where X is discrete space of finite binary sequences {{0,1}N, 𝑁 ∈ N} = {(z1,z2,…,zN), 𝑧𝑖 ∈ ሼ0,1ሽ}.  
For the universal concept class U we have                    . 

Therefore, U is not PAC-Learnable.

Proof:

We will show that               for           , which will prevent                

By Fubini’s Theorem 

.
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Challenges in Machine Learning
Guarantees for performance. Typically, unknown distributions DX, may shift in 

time, good choices needed for hypothesis class H, types and amount of data.

No Free Lunch Theorems: If the hypothesis class H, target concept class C are 

too general and the distribution DX is unknown then there is no guarantees on 

algorithmic performance on the tasks.

This means no generic all purpose learning algorithms exist.

Must utilize prior knowledge or structure of the tasks to be solved.

Central goal of this course is to consider wide variety of specific tasks and 

develop associated theory and well-suited learning algorithms.

Image Classification

Abdelfattah 2018

Forecasting

washingtonpost.com

Support Vector Machines

Clustering Methods

Neural Networks and Deep Learning Generative Methods

GANs

MIT and Boston Dynamics

Robotics and Control
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