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Elasticity of Plate Bending

f(x)

Biharmonic PDE: Mechanics of plate bending

EgA’u= —f(x), x€Q \
n.Vu:O,xeaﬂ X1
u=20, x¢& ol X2 X3

- u(x) deflection in the z-direction.
- f(x) load force in the z-direction.
- Eg bending modulus of the plate.

Finite Element Methods:

Fourth-order PDE — weak formulation has two derivatives.

Conforming elements suggests we need C*-regularity.

Developing effective C'-elements poses challenges.
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Elements: Hermite Cubic and Hermite Quintic

Finite Element Approximation Candidate Elements
Hermite Cubic CO Hermite Quintic C1
f(x) (4 nodes , 10 DOF) (6 nodes , 21 DOF)
f(x) ,
A ’ = o
- / Xl ' 1
X5 X5 o
Hermite Cubic Hermite Quintic
Continuous first derivatives at nodes, but NOT along edges! Uses first and second derivatives at nodes.
Non-conforming first derivatives along edges, only — CO. Uses normal derivatives at midpoints.
Poor accuracy in practice for elasticity problems. Conforming first derivatives along edges — C1.

Considerations
Hermite Quintic elements yield accurate approximations for elasticity problems.

However, expensive with 21 DOF.

Can accurate elements be developed with fewer DOF?
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Elements: Morley and Hsieh-Clough-Tocher (HCT)

Candidate Elements

Hermite Cubic CO Hermite Quintic C1 Morley Quadratic CO Hsieh-Clough-Tocher C1
(4 nodes, 10 DOF) (6 nodes , 21 DOF) (6 nodes , 6 DOF) (7 nodes , 12 DOF, macroelement 3-cubics)

y 3 y

Morley Quadratic

Only 6 DOF — uses values at nodes and normal derivatives at midpoint edges.
However, non-conforming — CO.
Still yields accurate results for many elasticity problems.

Hsieh-Clough-Tocher (HCT)

Macroelement divided into three parts with each using a cubic.
Cubics on each part coupled with C1 continuity imposed along interior edges.
Uses first derivatives at triangle vertices and normal derivatives at edge midpoints.

Conforming — C1 — well-founded convergence theory.
12 DOF — provides good trade-off for many elasticity problems. P
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Hsieh-Clough-Tocher (HCT) Elements

Hsieh-Clough-Tocher (HCT): Nodal Basis Functions
Node 1 Node 2 Node 3

HCT Element

Yy

Node 10 Node 11 Node 12

y . (see movies)

Remarks
Nodes 1-3, 4-9 similar to the hermite elements. Cubics facilitate quadratures using standard methods over parts.
Nodes 10-12 similar to bubble nodes. HCT is widely-used element for elasticity.
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Numerical Approximation

Biharmonic PDE: Mechanics of plate bending f(x)
EgA’u= —f(x), x€Q
n-Vu=0, xe€ o

u=0, x¢& .

- u(x) deflection in the z-direction.
- f(x) load force in the z-direction.
- Eg bending modulus of the plate.

Numerical Solution

() variational formulation, (ii) meshing, (iii) assembly,
(iv) linear solver.

HCT Elements — Ritz-Galerkin Approximation.

Example
Consider case with f(x) = 1,EB = 1 on disk.

By rotational symmetry becomes PDE

10 o (10 0
v2 — o (f‘g (;5 (rg))) = —f(x) —> quintic polynomial inr.
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Numerical Results: Hsieh-Clough-Tocher (HCT) Elements

Biharmonic PDE: Level O Level 3 Level 5 )

EgA’u= —f(x), x€Q

n-Vu=0, xed
u=0, xe .
f(x)=1Ez=1 Solution Solution Solution Convergence
. . ":’ Sl ibinis . 0
_Analytic Solution a 10 | N 1
x10 ’ ) 2 '\.\
. . 25 15 ‘\\
s N
20 | - »
! “‘.; ‘ e \\
. N 4§, -2 AN
y , 10 | \Y= -1.99
w
\\
N Error: 9.2e-04 >

Ao.s ‘ 15 . -IO_ . ) e . N
: e, s -1 0 1 2
R o ' : AT ‘ 10 10 10 10

‘:::::Ai 202‘ % ’,/?zl‘(‘:;" A %A 1/h
PN = 5 - HCT elements yield converge
LR T 3 = ° L with second-order accuracy.
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