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A bilinear form b(-,-) is a mapping b:V XV — R on a linear space V so that the following holds:
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i b is linear in both components, so L,[w] = b(v, w) and L,[v] = b(v, w) are both linear maps.
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A bilinear form b(-,-) is a mapping b:V XV — R on a linear space V so that the following holds:

i b is linear in both components, so L,[w] = b(v, w) and L,[v] = b(v, w) are both linear maps.
ii b is symmetric so b(v, w) = b(w, v)
An inner-product is a symmetric bilinear form with the additional properties
i b(v,v)>0,Vvey
iv b(v,v)=0, < v=0.
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Definition
A bilinear form b(-,-) is a mapping b:V XV — R on a linear space V so that the following holds:
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A bilinear form b(-,-) is a mapping b:V XV — R on a linear space V so that the following holds:

i b is linear in both components, so L,[w] = b(v, w) and L,[v] = b(v, w) are both linear maps.

ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties
i b(v,v)>0,Vvey
iv b(v,v)=0, < v=0.

Examples:

PV =A{wlw(x) = 2ok ade(x)}
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Definition
A bilinear form b(-,-) is a mapping b:V XV — R on a linear space V so that the following holds:

i b is linear in both components, so L,[w] = b(v, w) and L,[v] = b(v, w) are both linear maps.

ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties
i b(v,v)>0,Vvey
iv b(v,v)=0, < v=0.

Examples:

i V={wlw(x) = ZZ:I ck¢(x)} where u = ZZ:I Pk, v = 22:1 brpk
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Definition
A bilinear form b(-,-) is a mapping b:V XV — R on a linear space V so that the following holds:

i b is linear in both components, so L,[w] = b(v, w) and L,[v] = b(v, w) are both linear maps.

ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties
i b(v,v)>0,Vvey
iv b(v,v)=0, < v=0.

Examples:

iV ={w|w(x)=31_; cdr(x)} where u=>"/_, axdi, v =>]_, bk we define b(u,v) = >, wiarbx.
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Definition
A bilinear form b(-,-) is a mapping b:V XV — R on a linear space V so that the following holds:

i b is linear in both components, so L,[w] = b(v, w) and L,[v] = b(v, w) are both linear maps.

ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties
i b(v,v)>0,Vvey
iv b(v,v)=0, < v=0.

Examples:

iV ={w|w(x)=31_; cdr(x)} where u=>"/_, axdi, v =>]_, bk we define b(u,v) = >, wiarbx.
When wy > 0 and ¢y are linearly independent this is an inner-product.
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A bilinear form b(-,-) is a mapping b:V XV — R on a linear space V so that the following holds:

i b is linear in both components, so L,[w] = b(v, w) and L,[v] = b(v, w) are both linear maps.
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An inner-product is a symmetric bilinear form with the additional properties
i b(v,v)>0,Vvey
iv b(v,v)=0, < v=0.

Examples:

iV ={w|w(x)=31_; cdr(x)} where u=>"/_, axdi, v =>]_, bk we define b(u,v) = >, wiarbx.
When wy > 0 and ¢y are linearly independent this is an inner-product.
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Definition
A bilinear form b(-,-) is a mapping b:V XV — R on a linear space V so that the following holds:

i b is linear in both components, so L,[w] = b(v, w) and L,[v] = b(v, w) are both linear maps.
ii b is symmetric so b(v, w) = b(w, v)
An inner-product is a symmetric bilinear form with the additional properties
i b(v,v)>0,Vvey
iv b(v,v)=0, < v=0.

Examples:
iV ={w|w(x)=31_; cdr(x)} where u=>"/_, axdi, v =>]_, bk we define b(u,v) = >, wiarbx.
When wy > 0 and ¢y are linearly independent this is an inner-product.
i V=R"and b(x,y) =x-y for x,y € R".
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Definition
A bilinear form b(-,-) is a mapping b:V XV — R on a linear space V so that the following holds:

i b is linear in both components, so L,[w] = b(v, w) and L,[v] = b(v, w) are both linear maps.

ii b is symmetric so b(v, w) = b(w, v)

An inner-product is a symmetric bilinear form with the additional properties
i b(v,v)>0,Vvey
iv b(v,v)=0, < v=0.

Examples:

iV ={w|w(x)=31_; cdr(x)} where u=>"/_, axdi, v =>]_, bk we define b(u,v) = >, wiarbx.
When wy > 0 and ¢y are linearly independent this is an inner-product.

i V=R"and b(x,y) =x-y for x,y € R".
i V= Wy(Q) with Q C R" with (0, v)m = 3 < (01, 0%1) 12(q).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Variational Formulation

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Variational Formulation

A bilinear form a(-, -) is bounded if there exists C < oo so that

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Variational Formulation

A bilinear form a(-, -) is bounded if there exists C < oo so that

la(v, w)| < Cl|v]]v]|wllv, Yv,w € V.
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A bilinear form a(-, -) is bounded if there exists C < oo so that

la(v, w)| < Cl|v]]v]|wllv, Yv,w € V.

Since a is linear this is equivalent to being continuous.
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A bilinear form a(-, -) is bounded if there exists C < oo so that
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Since a is linear this is equivalent to being continuous.
A bilinear form a(-, ) is coercive on V C H if there exists an « so that
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Consider V C H a linear subspace of a Hilbert space H.
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Definition
A bilinear form a(-, -) is bounded if there exists C < oo so that

la(v, w)| < Cl|v]]v]|wllv, Yv,w € V.

Since a is linear this is equivalent to being continuous.
A bilinear form a(-, ) is coercive on V C H if there exists an « so that

a(v,v) > allv|3

Consider V C H a linear subspace of a Hilbert space H. If a is continuous on H and coercive on V then the
space (V/,a(,-)) is a Hilbert space.
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Definition
A bilinear form a(-, -) is bounded if there exists C < oo so that

la(v, w)| < Cl|v]]v]|wllv, Yv,w € V.

Since a is linear this is equivalent to being continuous.
A bilinear form a(-, ) is coercive on V C H if there exists an « so that

a(v,v) > allv|3

Consider V C H a linear subspace of a Hilbert space H. If a is continuous on H and coercive on V then the
space (V/,a(,-)) is a Hilbert space.

Proof:
Since a(+, ) is coercive we have a(v,v) =0 — v =0, so a is an inner-product and ||v||[e = \/a(v, v) is a norm.
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Definition
A bilinear form a(-, -) is bounded if there exists C < oo so that

la(v, w)| < Cl|v]]v]|wllv, Yv,w € V.

Since a is linear this is equivalent to being continuous.
A bilinear form a(-, ) is coercive on V C H if there exists an « so that

a(v,v) > allv|3

Consider V C H a linear subspace of a Hilbert space H. If a is continuous on H and coercive on V then the
space (V/,a(,-)) is a Hilbert space.

Proof:
Since a(+, ) is coercive we have a(v,v) =0 — v =0, so a is an inner-product and ||v||[e = \/a(v, v) is a norm.
We just need to show completeness.
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A bilinear form a(-, -) is bounded if there exists C < co so that

la(v, w)| < Cllviivllwllv, Yv,w € V.

Since a is linear this is equivalent to being continuous.
A bilinear form a(-,-) is coercive on V C H if there exists an « so that

a(v,v) = allvll3

Lemma

Consider V C H a linear subspace of a Hilbert space . If a is continuous on H and coercive on V then the
space (V,a(-,+)) is a Hilbert space.

Proof (continued):
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Lemma

Consider V C H a linear subspace of a Hilbert space . If a is continuous on H and coercive on V then the
space (V,a(-,+)) is a Hilbert space.
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Suppose {vi} is a Cauchy sequence in (V, || - ||g),
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A bilinear form a(-, -) is bounded if there exists C < co so that

la(v, w)| < Cllviivllwllv, Yv,w € V.

Since a is linear this is equivalent to being continuous.
A bilinear form a(-,-) is coercive on V C H if there exists an « so that

a(v,v) = allvll3

Lemma

Consider V C H a linear subspace of a Hilbert space . If a is continuous on H and coercive on V then the
space (V,a(-,+)) is a Hilbert space.

Proof (continued):
Suppose {v} is a Cauchy sequence in (V|| - ||g), then by coercivity {vi} is also Cauchy in (H,] - ||). By
completeness of H there exists a v € H so v, — v in || - || 4.
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A bilinear form a(-, -) is bounded if there exists C < co so that

la(v, w)| < Cllviivllwllv, Yv,w € V.

Since a is linear this is equivalent to being continuous.
A bilinear form a(-,-) is coercive on V C H if there exists an « so that

a(v,v) = allvll3

Lemma

Consider V C H a linear subspace of a Hilbert space . If a is continuous on H and coercive on V then the
space (V,a(-,+)) is a Hilbert space.

Proof (continued):

Suppose {v} is a Cauchy sequence in (V|| - ||g), then by coercivity {vi} is also Cauchy in (H,] - ||). By
completeness of H there exists a v € H so v, = v in || - ||#. Since V is closed in H by def. of a subspace we
have v € V.
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A bilinear form a(-, -) is bounded if there exists C < co so that

la(v, w)| < Cllviivllwllv, Yv,w € V.

Since a is linear this is equivalent to being continuous.
A bilinear form a(-,-) is coercive on V C H if there exists an « so that

a(v,v) = allvll3

Lemma

Consider V C H a linear subspace of a Hilbert space . If a is continuous on H and coercive on V then the
space (V/,a(,-)) is a Hilbert space.

Proof (continued):

Suppose {vk} is a Cauchy sequence in (V, || - ||g), then by coercivity {v«} is also Cauchy in (#,] -]|). By
completeness of H there exists a v € H so v, = v in || - ||#. Since V is closed in H by def. of a subspace we
have v € V. Now ||v — w|e < c||v — vk||w since a is bounded,
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Variational Formulation

Definition

A bilinear form a(-, -) is bounded if there exists C < co so that

la(v, w)| < Cllviivllwllv, Yv,w € V.

Since a is linear this is equivalent to being continuous.
A bilinear form a(-,-) is coercive on V C H if there exists an « so that

a(v,v) = allvll3

| A

Lemma

Consider V C H a linear subspace of a Hilbert space . If a is continuous on H and coercive on V then the
space (V/,a(,-)) is a Hilbert space.

Proof (continued):
Suppose {vk} is a Cauchy sequence in (V, || - ||g), then by coercivity {v«} is also Cauchy in (#,] -]|). By

completeness of H there exists a v € H so v, = v in || - ||#. Since V is closed in H by def. of a subspace we
have v € V. Now ||v — vk||le < ¢l|v — vk||n since a is bounded, so vk converges to v in || - ||g showing V is
complete.
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A bilinear form a(-, -) is bounded if there exists C < co so that

la(v, w)| < Cllviivllwllv, Yv,w € V.

Since a is linear this is equivalent to being continuous.
A bilinear form a(-,-) is coercive on V C H if there exists an « so that
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Lemma

Consider V C H a linear subspace of a Hilbert space . If a is continuous on H and coercive on V then the
space (V/,a(,-)) is a Hilbert space.

Proof (continued):

Suppose {vk} is a Cauchy sequence in (V, || - ||g), then by coercivity {v«} is also Cauchy in (#,] -]|). By
completeness of H there exists a v € H so v, = v in || - ||#. Since V is closed in H by def. of a subspace we
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Variational Formulation

A symmetric variational problem satifies the following
i Given F €V, find u satisfying
a(u,v) =Flv], VveV, (x)

where
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Variational Formulation

A symmetric variational problem satifies the following
i Given F €V, find u satisfying
a(u,v) =Flv], VveV, (x)
where

i (H,(:,-)) is a Hilbert space,
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A symmetric variational problem satifies the following
i Given F €V, find u satisfying
a(u,v) = Flv], Vv eV, (%)
where
i (H,(:,-)) is a Hilbert space,
iii )V is a subspace of H,

iv a(-,-) is a symmetric bilinear form that is bounded on H and coercive on V.
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Variational Formulation

A symmetric variational problem satifies the following
i Given F €V, find u satisfying
a(u,v) = Flv], Yv eV, (x)
where
i (H,(:,-)) is a Hilbert space,
iii )V is a subspace of H,

iv a(-,-) is a symmetric bilinear form that is bounded on # and coercive on V.

Theorem
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Variational Formulation

A symmetric variational problem satifies the following
i Given F €V, find u satisfying
a(u,v) = Flv], Vv eV, (x)
where
i (H,(:,-)) is a Hilbert space,
iii )V is a subspace of H,

iv a(-,-) is a symmetric bilinear form that is bounded on # and coercive on V.

Theorem

For the variational problem (%), if the conditions ii-iv hold then there exists a unique solution u € V
solving ().
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Variational Formulation

Symmetric Variational Problem

Given F € V', find u satisfying

a(u,v) = Flv], YW eV (x)
ii. (H,(-,-)) Hilbert space, iii. V is a subspace of H,
iv. a symmetric, bounded on H, coercive on V.

Theorem

For the variational problem (x), if the conditions ii-iv hold then there exists a unique solution u € V
solving ().

Proof:
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Given F € V', find u satisfying

a(u,v) = Flv], YW eV (x)
ii. (H,(-,-)) Hilbert space, iii. V is a subspace of H,
iv. a symmetric, bounded on H, coercive on V.

Theorem

For the variational problem (x), if the conditions ii-iv hold then there exists a unique solution u € V
solving ().

Proof:
The conditions ensure that a(-,-) is an inner-product on V and that (V, a(+,-)) is a Hilbert space.
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Symmetric Variational Problem

Given F € V', find u satisfying

a(u,v) = Flv], YW eV (x)
ii. (H,(-,-)) Hilbert space, iii. V is a subspace of H,
iv. a symmetric, bounded on H, coercive on V.

Theorem

For the variational problem (x), if the conditions ii-iv hold then there exists a unique solution u € V
solving ().

Proof:

The conditions ensure that a(-,-) is an inner-product on V and that (V, a(+,-)) is a Hilbert space.
By Riesz Representation Theorem, all bounded linear functionals have representative u in the
inner-product.
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Variational Formulation

Symmetric Variational Problem

Given F € V', find u satisfying

a(u,v) = Flv], YW eV (x)
ii. (H,(-,-)) Hilbert space, iii. V is a subspace of H,
iv. a symmetric, bounded on H, coercive on V.

Theorem

For the variational problem (x), if the conditions ii-iv hold then there exists a unique solution u € V
solving ().

Proof:

The conditions ensure that a(-,-) is an inner-product on V and that (V, a(+,-)) is a Hilbert space.
By Riesz Representation Theorem, all bounded linear functionals have representative u in the
inner-product.

This implies there exists u satisfying ().
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iv. a symmetric, bounded on H, coercive on V.

Theorem

For the variational problem (x), if the conditions ii-iv hold then there exists a unique solution u € V
solving ().

Proof:

The conditions ensure that a(-,-) is an inner-product on V and that (V, a(+,-)) is a Hilbert space.
By Riesz Representation Theorem, all bounded linear functionals have representative u in the
inner-product.

This implies there exists u satisfying (x). B
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The Ritz-Galerkin Approximation is based on a finite-dimensional subspace V, C V and F € V’'. The
problem is to find up € Vp so that
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The Ritz-Galerkin Approximation is based on a finite-dimensional subspace V, C V and F € V’'. The
problem is to find up € Vp so that

a(up,v) = Flv], Vv €Vy, (xx)

For the Ritz-Galerkin approximation problem (), if the conditions ii-iv hold then there exists a unique
solution up € Vy, solving ().
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The Ritz-Galerkin Approximation is based on a finite-dimensional subspace V, C V and F € V’'. The
problem is to find up € Vp so that

a(up,v) = Flv], Vv €Vy, (xx)

For the Ritz-Galerkin approximation problem (), if the conditions ii-iv hold then there exists a unique
solution up € Vy, solving ().

Proof:
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Variational Formulation

Definition
The Ritz-Galerkin Approximation is based on a finite-dimensional subspace V, C V and F € V’'. The
problem is to find up € Vp so that

a(un,v) = Flv], Vv € Vs, (*x)

For the Ritz-Galerkin approximation problem (), if the conditions ii-iv hold then there exists a unique
solution up € Vy, solving ().

Proof:
This follows since (Vp, a(+,-)) is also a Hilbert space and we can again invoke the Riesz Representation

Theorem to obtain representative uy, that satisfies (xx).
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Definition
The Ritz-Galerkin Approximation is based on a finite-dimensional subspace V, C V and F € V’'. The
problem is to find up € Vp so that

a(un,v) = Flv], Vv € Vs, (*x)

For the Ritz-Galerkin approximation problem (), if the conditions ii-iv hold then there exists a unique
solution up € Vy, solving ().

Proof:
This follows since (Vp, a(+,-)) is also a Hilbert space and we can again invoke the Riesz Representation

Theorem to obtain representative vy that satisfies (xx). W

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Variational Formulation

Lemma (Galerkin Orthogonality):

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Variational Formulation

Lemma (Galerkin Orthogonality):

Let u be solution of (x) and uj the solution of (xx), then the following orthogonality condition holds
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Lemma (Galerkin Orthogonality):

Let u be solution of (x) and uj the solution of (xx), then the following orthogonality condition holds

a(u—up,v) =0, Vv E V.
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Lemma (Galerkin Orthogonality):

Let u be solution of (x) and uj the solution of (xx), then the following orthogonality condition holds

a(u—up,v) =0, Vv E V.

Proof:
Consider
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Lemma (Galerkin Orthogonality):

Let u be solution of (x) and uj the solution of (xx), then the following orthogonality condition holds

a(u—up,v) =0, Vv E V.

Proof:

Consider
a(u,v)=F[v], veV a(up,v) = Flv], v EVy
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Let u be solution of (x) and uj the solution of (xx), then the following orthogonality condition holds

a(u—up,v) =0, Vv E V.

Proof:

Consider
a(u,v)=F[v], veV a(up,v) = Flv], v EVy

Subtracting the equations we have
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Let u be solution of (x) and uj the solution of (xx), then the following orthogonality condition holds

a(u—up,v) =0, Vv E V.

Proof:

Consider
a(u,v)=F[v], veV a(up,v) = Flv], v EVy

Subtracting the equations we have
a(u—up,v) =0, vEVh
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a(u,v)=F[v], veV a(up,v) = Flv], v EVy
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Variational Formulation

The solution of (xx) for up € V}, satisfies ||u — up|lg = minyey, ||u — v]Ee.
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Lemma (Rayleigh-Ritz Method):
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The solution of (xx) for up € V}, satisfies ||u — up|lg = minyey, ||u — v]Ee.

Lemma (Rayleigh-Ritz Method):

For the symmetric variational problem () the u, minimizes the quadratic energy functional over all
v € V) given by
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Variational Formulation

The solution of (xx) for up € V}, satisfies ||u — up|lg = minyey, ||u — v]Ee.

Lemma (Rayleigh-Ritz Method):

For the symmetric variational problem () the u, minimizes the quadratic energy functional over all
v € V) given by

E[v] = a(v, v) — 2F][v].
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A non-symmetric variational problem satifies the following

i Given F € V', find u satisfying
a(u,v) = Flv], Yv €V, (xxx)

where
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A non-symmetric variational problem satifies the following

i Given F € V', find u satisfying
a(u,v) = Flv], Yv €V, (xxx)

where
i (H,(,-)) is a Hilbert space,
iii )V is a subspace of H,

iv a(-,-) is a bilinear form (not-necessarily symmetric)
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A non-symmetric variational problem satifies the following

i Given F € V', find u satisfying
a(u,v) = Flv], Yv €V, (xxx)
where

i (H,(,-)) is a Hilbert space,
iii )V is a subspace of H,
iv a(-,-) is a bilinear form (not-necessarily symmetric)

v ais bounded on H and coercive on V.
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The Galerkin Approximation is based on a finite-dimensional subspace V, C V and F € V'. The
problem is to find up € V), so that
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The Galerkin Approximation is based on a finite-dimensional subspace V, C V and F € V'. The
problem is to find up € V), so that

a(up,v) = Flv], Vv €Vp, (x%x)
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Definition
The Galerkin Approximation is based on a finite-dimensional subspace V, C V and F € V'. The
problem is to find up € V), so that

a(up, v) = Flv], Vv €Vp, (xxx)

We ideally would like to know the following
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The Galerkin Approximation is based on a finite-dimensional subspace V, C V and F € V'. The
problem is to find up € V), so that

a(up, v) = Flv], Vv €Vp, (xxx)

We ideally would like to know the following

1 Does a solution exist? Is the solution unique?
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2 What error estimates hold for up, in approximating u?
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The Galerkin Approximation is based on a finite-dimensional subspace V, C V and F € V'. The
problem is to find up € V), so that

a(up,v) = Flv], Vv €Vp, (x%x)

We ideally would like to know the following

1 Does a solution exist? Is the solution unique?
2 What error estimates hold for up, in approximating u?

3 What conditions might result in non-symmetric bilinear forms?

Example:
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Definition

The Galerkin Approximation is based on a finite-dimensional subspace V, C V and F € V'. The
problem is to find up € V), so that

a(up,v) = Flv], Vv €Vp, (x%x)

We ideally would like to know the following

1 Does a solution exist? Is the solution unique?

2 What error estimates hold for up, in approximating u?

3 What conditions might result in non-symmetric bilinear forms?
Example:

Consider PDE
—u"+u +u="Ff, x€l0,1], J(0)=14d'(1)=0.
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Definition

The Galerkin Approximation is based on a finite-dimensional subspace V, C V and F € V'. The
problem is to find up € V), so that

a(up,v) = Flv], Vv €Vp, (x%x)

We ideally would like to know the following

1 Does a solution exist? Is the solution unique?
2 What error estimates hold for up, in approximating u?

3 What conditions might result in non-symmetric bilinear forms?

Example:
Consider PDE

—u"+u +u="Ff, x€l0,1], J(0)=14d'(1)=0.
A weak formulation is on V = H([0,1]), F[v] = (f, v), with

1
a(u,v) = [y u'v' + u'v + uvdx,
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Definition

The Galerkin Approximation is based on a finite-dimensional subspace V, C V and F € V'. The
problem is to find up € V), so that

a(up,v) = Flv], Vv €Vp, (x%x)

We ideally would like to know the following

1 Does a solution exist? Is the solution unique?

2 What error estimates hold for up, in approximating u?

3 What conditions might result in non-symmetric bilinear forms?
Example:

Consider PDE

—u"+u +u="Ff, x€l0,1], J(0)=14d'(1)=0.
A weak formulation is on V = H([0,1]), F[v] = (f, v), with
a(u,v) = 01 u'v' + u'v + uvdx, which is not symmetric given v'v.
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Definition (Contraction Mapping)

A contraction map is any mapping T on a function space V that satisfies for some M < 1
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Definition (Contraction Mapping)

A contraction map is any mapping T on a function space V that satisfies for some M < 1

| Tvi — Twal| < M|jvi — va|.
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A contraction map is any mapping T on a function space V that satisfies for some M < 1
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A fixed point u of T is any function satisfying
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Definition (Contraction Mapping)

A contraction map is any mapping T on a function space V that satisfies for some M < 1
| Tvi — Twal| < M|jvi — va|.

A fixed point u of T is any function satisfying

u= Tu.

Lemma (Fix Point Theorem)
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Definition (Contraction Mapping)

A contraction map is any mapping T on a function space V that satisfies for some M < 1
| Tvi — Twal| < M|jvi — va|.

A fixed point u of T is any function satisfying

u= Tu.

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof:
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof:
We show uniqueness first, then existence.
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof:
We show uniqueness first, then existence. Suppose Tv; = vy and Tva = vy, then by the contraction

principle
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof:
We show uniqueness first, then existence. Suppose Tv; = vy and Tva = vy, then by the contraction
principle

[Tvi = Tve|| < Mlvi — ve|
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof:
We show uniqueness first, then existence. Suppose Tv; = vy and Tva = vy, then by the contraction

principle
[Tvi = Tvo| < Mlvy — ve|

where 0 < M < 1.
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof:
We show uniqueness first, then existence. Suppose Tv; = vy and Tva = vy, then by the contraction

principle
[Tvi = Tvo| < Mlvy — ve|

where 0 < M < 1. By the fix-point property
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof:
We show uniqueness first, then existence. Suppose Tv; = vy and Tva = vy, then by the contraction

principle
[Tvi = Tvo| < Mlvy — ve|
where 0 < M < 1. By the fix-point property

[vi — w2l < M[vi — va]|.
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof:
We show uniqueness first, then existence. Suppose Tv; = vy and Tva = vy, then by the contraction

principle
[Tvi = Tvo| < Mlvy — ve|
where 0 < M < 1. By the fix-point property

[vi — w2l < M[vi — va]|.

This implies |[vi —w||=0 — vi = wv.
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof:
We show uniqueness first, then existence. Suppose Tv; = vy and Tva = vy, then by the contraction

principle
[Tvi = Twa|| < Mljvy — vl
where 0 < M < 1. By the fix-point property
[vi = voll < Mvi = val|.
This implies |[vi —w||=0 — vi = wv.

We next show existence.
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof (continued):
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof (continued):
For a given vy € V define the generated sequence as v,11 = Tvk. This satisfies
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof (continued):
For a given vy € V define the generated sequence as v,11 = Tvk. This satisfies

vk = viea || < MK7Hlve = woll.
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof (continued):
For a given vy € V define the generated sequence as v,11 = Tvk. This satisfies

vk = viea || < MK7Hlve = woll.

For any N > n we have
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof (continued):
For a given vy € V define the generated sequence as v,11 = Tvk. This satisfies

Ivie = v || < M Hlvi = wo -
For any N > n we have

N
g Vik — Vk—1

k=n+1

v = vall =
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof (continued):
For a given vy € V define the generated sequence as v,11 = Tvk. This satisfies

Ivie = v || < M Hlvi = wo -
For any N > n we have

N
g Vik — Vk—1

k=n+1

N
v = vall = <vi-wl Y M

k=n+1
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Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof (continued):
For a given vy € V define the generated sequence as v,11 = Tvk. This satisfies

vk = viea || < MK7Hlve = woll.

For any N > n we have

N N
v = vall = || D vie=viea|| < v —wol Y Mt < Tyl — vl
k=n+1 k=n+1
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Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof (continued):
For a given vy € V define the generated sequence as v,11 = Tvk. This satisfies

Ivie = v || < M Hlvi = wo -
For any N > n we have

N
g Vik — Vk—1

k=n+1

n

1-M

N
v = vall = <u—wll 3 M < E v = wl| < | Tvo — vl .

- 1-M
k=n+1
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Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof (continued):
For a given vy € V define the generated sequence as v,11 = Tvk. This satisfies

vk = viea || < MK7Hlve = woll.

For any N > n we have

N N n n
vy — V|| = vav_ < |lvi — v ZM"71< vi — vl < Tvo — wl|.
[[viv = val| Ry k= Vi—1|| < [[vi — wo| 2 < 7oplve = wll < 7= 11T — wll

This shows {vx} forms a Cauchy sequence and by completeness we have there exists v* € V) so that
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Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof (continued):
For a given vy € V define the generated sequence as v,11 = Tvk. This satisfies

vk = viea || < MK7Hlve = woll.

For any N > n we have

N N n n
vy — V|| = vav_ < |lvi — v ZM"71< vi — vl < Tvo — wl|.
[[viv = val| Ry k= Vi—1|| < [[vi — wo| 2 < 7oplve = wll < 7= 11T — wll

This shows {vx} forms a Cauchy sequence and by completeness we have there exists v* € V) so that

Vi = lim vy = lim Tv, = T( lim v,,) — TV~

n—oo n—o0 n—oo
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Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof (continued):
For a given vy € V define the generated sequence as v,11 = Tvk. This satisfies

vk = viea || < MK7Hlve = woll.

For any N > n we have

N N n n
vy — V|| = vav_ < |lvi — v ZM"71< vi — vl < Tvo — wl|.
[[viv = val| Ry k= Vi—1|| < [[vi — wo| 2 < 7oplve = wll < 7= 11T — wll

This shows {vx} forms a Cauchy sequence and by completeness we have there exists v* € V) so that
Vi = lim v, = lim Tv, = T( lim v,,) = Tv*
n— o0 n— o0 n— oo

This establishes existence of a fixed point for T.
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Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying
u= Tu.

Proof (continued):
For a given vy € V define the generated sequence as v,11 = Tvk. This satisfies

vk = viea || < MK7Hlve = woll.

For any N > n we have

N N n n
vy — V|| = vav_ < |lvi — v ZM"71< vi — vl < Tvo — wl|.
[[viv = val| Ry k= Vi—1|| < [[vi — wo| 2 < 7oplve = wll < 7= 11T — wll

This shows {vx} forms a Cauchy sequence and by completeness we have there exists v* € V) so that
Vi = lim v, = lim Tv, = T( lim v,,) = Tv*
n— o0 n— o0 n— oo

This establishes existence of a fixed point for T. B
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], YveV.
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], YveV.

Significance: This establishes for variational problems the existence and uniqueness of the solution u.
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], YveV.

Significance: This establishes for variational problems the existence and uniqueness of the solution w.
Implications: Also shows for the Galerkin approximations for the finite-dimensional problems the
existence and uniqueness of solution wuy,.
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv e V.

Proof:
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv e V.

Proof:
Define the operator Au which has action on a function v € V as Au[v] = a(u, v).
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv e V.

Proof:
Define the operator Au which has action on a function v € V as Au[v] = a(u, v).
Properties of a imply Au is linear, bounded, and has norm [|Aul|y» < C|lully < o0, so Au € V.
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv e V.

Proof:

Define the operator Au which has action on a function v € V as Au[v] = a(u, v).

Properties of a imply Au is linear, bounded, and has norm [|Aul|y» < C|lully < o0, so Au € V.
Riesz Representation Theorem implies ¢ € V' there exists 7¢ € V so that ¢[v] = (7¢, v).
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv e V.

Proof:

Define the operator Au which has action on a function v € V as Au[v] = a(u, v).

Properties of a imply Au is linear, bounded, and has norm [|Aul|y» < C|lully < o0, so Au € V.
Riesz Representation Theorem implies ¢ € V' there exists 7¢ € V so that ¢[v] = (7¢, v).

The variational problem requires u such that Au[v] = F[v], Yv € V.
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv e V.

Proof:

Define the operator Au which has action on a function v € V as Au[v] = a(u, v).

Properties of a imply Au is linear, bounded, and has norm [|Aul|y» < C|lully < o0, so Au € V.
Riesz Representation Theorem implies ¢ € V' there exists 7¢ € V so that ¢[v] = (7¢, v).

The variational problem requires u such that Au[v] = F[v], Yv € V.

We show 7Au = 7F in V, which implies solution to the variational problem holds.
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv e V.

Proof:

Define the operator Au which has action on a function v € V as Au[v] = a(u, v).

Properties of a imply Au is linear, bounded, and has norm [|Aul|y» < C|lully < o0, so Au € V.
Riesz Representation Theorem implies ¢ € V' there exists 7¢ € V so that ¢[v] = (7¢, v).

The variational problem requires u such that Au[v] = F[v], Yv € V.

We show 7Au = 7F in V, which implies solution to the variational problem holds.

We do this using a contraction mapping principle for T[v] := v — p(TAv — 7F).
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv e V.

Proof:

Define the operator Au which has action on a function v € V as Au[v] = a(u, v).

Properties of a imply Au is linear, bounded, and has norm [|Aul|y» < C|lully < o0, so Au € V.
Riesz Representation Theorem implies ¢ € V' there exists 7¢ € V so that ¢[v] = (7¢, v).

The variational problem requires u such that Au[v] = F[v], Yv € V.

We show 7Au = 7F in V, which implies solution to the variational problem holds.

We do this using a contraction mapping principle for T[v] := v — p(TAv — 7F). The fixed point
theorem yields Tu = u — p(7Au—7F) = u.
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv e V.

Proof:

Define the operator Au which has action on a function v € V as Au[v] = a(u, v).

Properties of a imply Au is linear, bounded, and has norm [|Aul|y» < C|lully < o0, so Au € V.
Riesz Representation Theorem implies ¢ € V' there exists 7¢ € V so that ¢[v] = (7¢, v).

The variational problem requires u such that Au[v] = F[v], Yv € V.

We show 7Au = 7F in V, which implies solution to the variational problem holds.

We do this using a contraction mapping principle for T[v] := v — p(TAv — 7F). The fixed point
theorem yields Tu = u — p(7Au — 7F) = u. This implies TAu — 7F = 0.
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv e V.

Proof:

Define the operator Au which has action on a function v € V as Au[v] = a(u, v).

Properties of a imply Au is linear, bounded, and has norm [|Aul|y» < C|lully < o0, so Au € V.
Riesz Representation Theorem implies ¢ € V' there exists 7¢ € V so that ¢[v] = (7¢, v).

The variational problem requires u such that Au[v] = F[v], Yv € V.

We show 7Au = 7F in V, which implies solution to the variational problem holds.

We do this using a contraction mapping principle for T[v] := v — p(TAv — 7F). The fixed point
theorem yields Tu = u — p(7Au — 7F) = u. This implies TAu — 7F = 0.

We now show that such a p # 0 exists making T a contraction map.
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv eV.

Proof (continued):
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv eV.

Proof (continued):
For any vi, v, € V, let v = vy — v, then
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv eV.

Proof (continued):
For any vi, v, € V, let v = vy — v, then

| Tvs — TV2H2 = |lvp — va — p(TAvy — TAV2)H2
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv eV.

Proof (continued):
For any vi, v, € V, let v = vy — v, then

|| TVl — TV2H2

[lvi — vo — p(TAv; — TAV2)H2

v — p(TAV)|]?, (7, A are linear)
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv eV.

Proof (continued):
For any vi, v, € V, let v = vy — v, then

| Tvs — TV2H2 = |lvp — va — p(TAvy — TAV2)H2

v — p(TAV)|]?, (7, A are linear)
= vl = 2p(rAv,v) + p?||[TAV|]?
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv eV.

Proof (continued):
For any vi, v, € V, let v = vy — v, then

| Tvs — TV2H2 = |lvp — va — p(TAvy — TAV2)H2

v — p(TAV)|]?, (7, A are linear)
= |Iv|? = 2p(7Av, v) + p*|ITAV|?
V]2 = 2pAv[v] + p*Av[rAv], (definition of 7)
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv eV.

Proof (continued):
For any vi, v, € V, let v = vy — v, then
[Tvi— Twa|?> = |vi — va — p(TAvy — TAW)|]?
= |lv—=p(TAV)|]?, (7,A are linear)
= VI = 20(rAv, v) + p?| T Av?
= |lv|]? = 2pAv[v] + p?Av[TAv], (definition of T) ,
[v]|? = 2pa(v, v) + p®a(v, TAv), (definition of A) ,
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv eV.

Proof (continued):
For any vi,vo € V, let v = v; — v, then
| Tvs — TV2H2 = |lvp — va — p(TAvy — TAV2)H2
= |lv—=p(TAV)|]?, (7,A are linear)
= VI = 2p(rAv, v) + Pl AV
= |lv|]? = 2pAv[v] + p?Av[TAv], (definition of T) ,
= ||v|® = 2pa(v, v) + p*a(v,TAv), (definition of A) ,
< IvI? = 2p||v|]? 4+ p2C||v||||TAvV]|, (cocercivity and continuity of A) ,
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], Vv eV.

Proof (continued):
For any vi, v, € V, let v = vy — v, then
| Tvs — TV2H2 = |lvp — va — p(TAvy — TAV2)H2
= |lv—=p(TAV)|]?, (7,A are linear)
= V]2 = 2p(rAv,v) + R AV
= |lv|]? = 2pAv[v] + p?Av[TAv], (definition of T) ,
[v]|? = 2pa(v, v) + p®a(v, TAv), (definition of A) ,
[v]|? = 2p[|v|* + p*>C||v||||TAv]|, (cocercivity and continuity of A) ,
(1 —2pa+ p*>C?) ||v||* (A bounded, T isometric)

INIA
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], YveV.

Proof (continued):
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], YveV.

Proof (continued):

[Tvi — Two|®> < (1—2pa+p>C?)|v||* (A bounded, T isometric)
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], YveV.

Proof (continued):

|| TV1 — TV2||2

IN

(1 —2pa+ p*>C?) ||v||*> (A bounded, T isometric)
= (1-2pa+pC%) ||y — vo|?
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], YveV.

Proof (continued):

|| TV1 — TV2||2

IN

(1 —2pa+ p*>C?) ||v||*> (A bounded, T isometric)
(1=2pa+p*C?) v — vo?

= M?[lvi — wva|*.
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], YveV.

Proof (continued):

|| TV1 — TV2||2

IN

(1 —2pa+ p*>C?) ||v||*> (A bounded, T isometric)
(1=2pa+p*C?) v — vo?

= M?[lvi — wva|*.
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], YveV.

Proof (continued):

|| TV1 — TV2||2

IN

(1 —2pa+ p*>C?) ||v||*> (A bounded, T isometric)
(1=2pa+p*C?) v — vo?

= M?[lvi — wva|*.

We need
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], YveV.

Proof (continued):

|| TV1 — TV2||2

IN

(1 —2pa+ p*>C?) ||v||*> (A bounded, T isometric)
(1=2pa+p*C?) v — vo?

= M?[lvi — wva|*.

We need
1—2pa+p?C?<1
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], YveV.

Proof (continued):

[Tvi — Two|®> < (1—2pa+p>C?)|v||* (A bounded, T isometric)
= (1-2pa+pC%) ||y — vo|?
= M?[lvi — wva|*.
We need
1—2pa—|—p2C2<1—>p(pC2—2a)<0. (1)
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], YveV.

Proof (continued):

[Tvi — Two|®> < (1—2pa+p>C?)|v||* (A bounded, T isometric)
= (1-2pa+pC%) ||y — vo|?
= M?[lvi — wva|*.
We need
1—2pa—|—p2C2<1—>p(pC2—2a)<0. (1)

This is satisfied for p € (0,2a/C?) giving M < 1.
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Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space (V, (-, -)), a continuous, coercive bilinear form a(-, -) (not necessarily symmetric),
and F € V', there exists a unique u € V so that

a(u,v) = Flv], YveV.

Proof (continued):

[Tvi — Two|®> < (1—2pa+p>C?)|v||* (A bounded, T isometric)
= (1-2pa+pC%) ||y — vo|?
= M?[lvi — wva|*.
We need
1—2pa—|—p2C2<1—>p(pC2—2a)<0. (1)

This is satisfied for p € (0,2a/C?) giving M < 1. By the contraction principle we obtain the results. B
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Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (x) or (x * x).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (x) or (* x %). For the bilinear form a(-,-), let
C denote the continuity constant in the boundedness condition and a denote the coercivity parameter.
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Theorem (Céa)

Suppose we have the conditions hold for the variational problems (x) or (* x %). For the bilinear form a(-,-), let
C denote the continuity constant in the boundedness condition and « denote the coercivity parameter. The
following error bound holds for the Galerkin approximation

c .
lu— unlly < = min [[u—v]y.
Q vEV)

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (x) or (* x %). For the bilinear form a(-,-), let
C denote the continuity constant in the boundedness condition and « denote the coercivity parameter. The
following error bound holds for the Galerkin approximation

c .
o= unllv < = min flu—v]y.
Q vEV)

Significance: This shows the solution uj obtain from the Galerkin approximation is bounded by all
approximations in the space ¥V when measuring errors in the Hilbert-space norm.
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Significance: This shows the solution uj obtain from the Galerkin approximation is bounded by all
approximations in the space ¥V when measuring errors in the Hilbert-space norm.
This will become the basis for further estimates on the accuracy of Finite Element Methods.
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Suppose we have the conditions hold for the variational problems (x) or (* x %). For the bilinear form a(-,-), let
C denote the continuity constant in the boundedness condition and « denote the coercivity parameter. The
following error bound holds for the Galerkin approximation

c .
o= unllv < = min flu—v]y.
Q vEV)

Significance: This shows the solution uj obtain from the Galerkin approximation is bounded by all
approximations in the space ¥V when measuring errors in the Hilbert-space norm.

This will become the basis for further estimates on the accuracy of Finite Element Methods.
Proof:
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Significance: This shows the solution uj obtain from the Galerkin approximation is bounded by all
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approximations in the space ¥V when measuring errors in the Hilbert-space norm.

This will become the basis for further estimates on the accuracy of Finite Element Methods.
Proof:

By subtracting the variational problems for the exact and Galerkin approximation we obtain

a(u— up,v) =0Vv € V.
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Suppose we have the conditions hold for the variational problems (x) or (* x %). For the bilinear form a(-,-), let
C denote the continuity constant in the boundedness condition and « denote the coercivity parameter. The
following error bound holds for the Galerkin approximation

c .
o= unllv < = min flu—v]y.
Q vEV)

Significance: This shows the solution uj obtain from the Galerkin approximation is bounded by all
approximations in the space ¥V when measuring errors in the Hilbert-space norm.

This will become the basis for further estimates on the accuracy of Finite Element Methods.
Proof:

By subtracting the variational problems for the exact and Galerkin approximation we obtain
a(u— up,v) =0Vv € V.

For all v € V, we have
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Suppose we have the conditions hold for the variational problems (x) or (* x %). For the bilinear form a(-,-), let
C denote the continuity constant in the boundedness condition and « denote the coercivity parameter. The
following error bound holds for the Galerkin approximation

c .
o= unllv < = min flu—v]y.
Q vEV)

Significance: This shows the solution uj obtain from the Galerkin approximation is bounded by all
approximations in the space ¥V when measuring errors in the Hilbert-space norm.

This will become the basis for further estimates on the accuracy of Finite Element Methods.
Proof:

By subtracting the variational problems for the exact and Galerkin approximation we obtain
a(u— up,v) =0Vv € V.
For all v € V4 we have

allu— w3 < a(u— un u— uy) (by coercivity)
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Suppose we have the conditions hold for the variational problems (x) or ( x x). For the bilinear form a(:,-), let
C denote the continuity constant in the boundedness condition and a denote the coercitivity parameter. The
following error bound holds for the Galerkin approximation

c .
lu = uplly < = min ||ju—v]|v.
Q vEV)

Proof (continued):

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (x) or ( x x). For the bilinear form a(:,-), let
C denote the continuity constant in the boundedness condition and a denote the coercitivity parameter. The
following error bound holds for the Galerkin approximation

c .
lu = uplly < = min ||ju—v]|v.
Q vEV)

Proof (continued):

allu— w3 < a(u— un, u— uy) (by coercivity)

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (x) or ( x x). For the bilinear form a(:,-), let
C denote the continuity constant in the boundedness condition and a denote the coercitivity parameter. The
following error bound holds for the Galerkin approximation

c .
lu = uplly < = min ||ju—v]|v.
Q vEV)

Proof (continued):
allu— w3 < a(u— un, u— uy) (by coercivity)

= a(u—upn,u—v)+a(u— unv—us)
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C denote the continuity constant in the boundedness condition and a denote the coercitivity parameter. The
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Proof (continued):
allu— w3 < a(u— un, u— uy) (by coercivity)
= a(u—upn,u—v)+a(u— unv—us)

= a(u—upu—v), (sincev—uy € V)
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Proof (continued):

allu— w3 < a(u— un, u— uy) (by coercivity)
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= a(u—upu—v), (sincev—uy € V)
< Cllu—= up|lv]ju—v]lv (by continuity) .

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Variational Formulation

Theorem (Céa)
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Q vEV)

Proof (continued):

allu— w3 < a(u— un, u— uy) (by coercivity)
= a(u—upn,u—v)+a(u— unv—us)
= a(u—upu—v), (sincev—uy € V)
< Cllu—= up|lv]ju—v]lv (by continuity) .

By dividing through we obtain for all v € V},
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Suppose we have the conditions hold for the variational problems (x) or ( x x). For the bilinear form a(:,-), let
C denote the continuity constant in the boundedness condition and a denote the coercitivity parameter. The
following error bound holds for the Galerkin approximation

c .
lu = uplly < = min ||ju—v]|v.
Q vEV)

Proof (continued):

N

2
allu = ully

<

By dividing through we obtain for all v € V},

a(u — up,u— up) (by coercivity)
a(lu— up,u—v)+a(u— up, v — up)
a(u— up,u—v), (sincev—up€WVy)

Cllu — up||v]ju — v|lv (by continuity) .

c
lu = unlly < —[Ju=vllv.
Qo
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C denote the continuity constant in the boundedness condition and « denote the coercitivity parameter. The
following error bound holds for the Galerkin approximation

c .
u— anlly < < min fla— vl
Q vEV)
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C denote the continuity constant in the boundedness condition and « denote the coercitivity parameter. The
following error bound holds for the Galerkin approximation

c .
u— anlly < < min fla— vl
Q vEV)

Proof (continued): By dividing through we obtain for all v € V}

c
o= unllv < —lu=v]v.
e
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Suppose we have the conditions hold for the variational problems (x) or (x * x). For the bilinear form a(-,-), let
C denote the continuity constant in the boundedness condition and « denote the coercitivity parameter. The
following error bound holds for the Galerkin approximation

c .
u— anlly < < min fla— vl
Q vEV)

Proof (continued): By dividing through we obtain for all v € V}
C
lu—unllv < =llu—vllv.
e

This implies (since Vj, is closed)
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Proof (continued): By dividing through we obtain for all v € V}
C
u—ullv < —llu—=viv.
e
This implies (since Vj, is closed)

C . c .
lu—unllvy < = inf Ju—v|y.= = min |ju—v|v.
@ vEV), @ vEV),
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