Ritz-Galerkin Approximation

Paul J. Atzberger

206D: Finite Element Methods
University of California Santa Barbara

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

MATH 206D: Finite Element Methods

Welcome to MATH 206D: Finite Element Methods!
We will use the following books:
@ Finite Elements: Theory, Fast Solvers, and

Applications in Solid Mechanics (third edition),
D. Braess.

TEXTS IN APPLIED MATHEMATICS

The Mathematical
Theory of Finite
Element Methods

@ The Mathematical Theory of Finite Element Methods
(third edition),
S. Brenner and R. Scott.

‘JJ‘,

For more information, see the course website:
http://teaching.atzberger.org/

| look forward to working with you this quarter.
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Introduction to Finite Element Methods
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Variational Approach

Variational Principle

1 1
E[u] :;/o (u'(x))2dx—i—/0 f(x)u(x)dx.
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Variational Approach

Variational Principle
1 1
E[u] :;/o (u'(x))2dx—i—/0 f(x)u(x)dx.

What configuration of u(x) minimizes E[u]?
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Variational Approach

Variational Principle
1 1
E[u] :;/o (u'(x))2dx—i—/0 f(x)u(x)dx.

What configuration of u(x) minimizes E[u]? Minimizer satisfies:

(GEL]) (v) = &

E[u+ev]=0.
e=0
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Variational Approach

Variational Principle
1 1
E[u] :;/o (u'(x))2dx—i—/0 f(x)u(x)dx.

What configuration of u(x) minimizes E[u]? Minimizer satisfies:

(OE[u]) (v) = Bae E[u+ev]=0.

e=0

We find that
1 1
(0E[u]) (v) = /0 u’(x)v’(x)dx—i—/0 v(x)f(x)dx
= [u’(x)v(x)]0 —/0 (u”(x) — f(x)) v(x)dx.
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Variational Approach

Variational Principle
1 1
Efu]l = ;/0 (u'(x))2dx—i—/0 f(x)u(x)dx.

What configuration of u(x) minimizes E[u]? Minimizer satisfies:

(OE[u]) (v) = Bae E[u+ev]=0.

e=0

We find that

1 1
(0E[u]) (v) = /Ou’(x)v’(x)dx—i—/0 v(x)f(x)dx

Suggests " natural boundary conditions” — /(0) = /(1) = 0.
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Variational Approach: Strong and Weak Forms

Variational Principle (¢/(0) = /(1) = 0)
1 1
(OE[u]) (v) = /0 U (x)V(x)dx + /o v(x)f(x)dx
1
= —/0 (u"(x) — f(x)) v(x)dx =0, Vv € V.
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Variational Approach: Strong and Weak Forms

Variational Principle (¢/(0) = /(1) = 0)
(GE[u]) (v) = /0 0OV () d /O ()
. /0 C(W(6) — () v(x)dx = 0, Vv € V.
Implies PDE holds (strong form)

{ u"(x) = f(x), x € [0,1]
u'(0) = /(1) =0, x on boundary.
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Variational Approach: Strong and Weak Forms

Variational Principle (¢/(0) = /(1) = 0)
1 1
(OE[u]) (v) = /0 U (x)V(x)dx + /o v(x)f(x)dx
1
= —/0 (u"(x) — f(x)) v(x)dx =0, Vv € V.

Implies PDE holds (strong form)

{ u"(x) = f(x), x € [0,1]
u'(0) = /(1) =0, x on boundary.

Let a(u,v) = fol u'(x)v'(x)dx and (u,v) = fo u(x)v(
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Variational Approach: Strong and Weak Forms

Variational Principle (¢/(0) = /(1) = 0)
1 1
(OE[u]) (v) = /0 u’(x)v’(x)dx—i—/0 v(x)f(x)dx
1
= —/0 (u"(x) — f(x)) v(x)dx =0, Vv € V.

Implies PDE holds (strong form)

{ u"(x) = f(x), x € [0,1]
u'(0) = /(1) =0, x on boundary.

Let a(u, v) fo x)dx and (u,v) = fo u(x)v(
Then (0E[u]) (v) = 0 |mp||es (weak form)

a(u,v) =(—f,v), Vv € V.
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Variational Approach: Strong and Weak Forms

Variational Principle (¢/(0) = /(1) = 0)
1 1
(OE[u]) (v) = /0 u’(x)v’(x)dx—i—/0 v(x)f(x)dx
1
= —/0 (u"(x) — f(x)) v(x)dx =0, Vv € V.

Implies PDE holds (strong form)

{ u"(x) = f(x), x € [0,1]
u'(0) = /(1) =0, x on boundary.

Let a(u, v) fo x)dx and (u,v) = fo u(x)v(
Then (0E[u]) (v) = 0 |mp||es (weak form)

a(u,v) =(—f,v), Vv € V.
We take for now V = {v € L2[0,1],a(v, v) < oo, v(0) = 0}
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Variational Approach: Strong and Weak Forms

Variational Principle (¢/(0) = /(1) = 0)
1 1
(OE[u]) (v) = /0 u’(x)v’(x)dx—i—/0 v(x)f(x)dx
1
= —/0 (u"(x) — f(x)) v(x)dx =0, Vv € V.

Implies PDE holds (strong form)

{ u"(x) = f(x), x € [0,1]
u'(0) = /(1) =0, x on boundary.

Let a(u, v) fo x)dx and (u,v) = fo u(x)v(
Then (0E[u]) (v) = 0 |mp||es (weak form)
a(u,v) =(—f,v), Vv € V.
We take for now V = {v € 2?[0,1], a(v, v) < o0, v(0) = 0} (need to refine later).
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace.
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying

a(us,v)=(—f,v), veSs. (Ps)
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying

a(us,v) =(—f,v), veS. (Ps)
The us provides the Ritz-Galerkin Approximation to solutuon u.
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying

a(us,v)=(—f,v), veSs. (Ps)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying

a(us,v)=(—f,v), veSs. (Ps)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof Given that S is finite dimensional it has a basis {¢;}Y;.
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying

a(us,v)=(—f,v), veSs. (Ps)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof Given that S is finite dimensional it has a basis {¢;}" ;. Any function us € S can be expressed

as
N

U5(X) = Z u,-gi),-(x).

i=1
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying

a(us,v)=(—f,v), veSs. (Ps)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof Given that S is finite dimensional it has a basis {¢;}" ;. Any function us € S can be expressed

as
N

U5(X) = Z u,-gi),-(x).
i=1
Plugging this into the weak form, we obtain the linear system

Ku = —f.
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Ritz-Galerkin Approximation

Let S C V where S is any finite dimensional subspace. Then we obtain numerical approximation as the
us satisfying

a(us,v)=(—f,v), veSs. (Ps)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof Given that S is finite dimensional it has a basis {¢;}" ;. Any function us € S can be expressed

as
N

us(x) = Z uii(x).
i=1
Plugging this into the weak form, we obtain the linear system
Ku = —f.

We have "stiffness matrix” [K];; = a(¢i, ¢;) and "load vector” [f]; = (f, ¢).
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0.
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us. \

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us. \

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,¥i = a(v,v) =0
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi = a(v,v) =0 = fol v (x)V/(x)dx = fol (vV(x))?dx =0
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi = a(v,v) =0 = fol v (x)V/(x)dx = fol (V(x))?dx =0 =
V/(x) =0
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi = a(v,v) =0 = fol v (x)V/(x)dx = fol (V(x))?dx =0 =
Vi(x)=0= v(x)=c.
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi = a(v,v) =0 = fol v (x)V/(x)dx = fol (V(x))?dx =0 =
V(x)=0=v(x)=c.NowveSCV,
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi = a(v,v) =0 = fol v (x)V/(x)dx = fol (V(x))?dx =0 =
Vix)=0=v(x)=c.NowveSCV,sov(0)=0= c=0.
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the ug satisfying

a(US7V):(_f7 V)7 ves. (PS)

The ug provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L?[0, 1] the problem Ps has unique solution us.

Proof (continued) We need to show ker(K) = 0. Let v € S then

N

v(x) = Z vigi(x).

i=1

If Kv =0 then a(v,¢;) =0,Vi = a(v,v) =0 = fol v (x)V/(x)dx = fol (V(x))?dx =0 =
Vix)=0=v(x)=c.NowveSCV,sov(0)=0= c=0.
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the us satisfying

a(“va):(_fv V)’ ves. (PS)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof (continued)
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the us satisfying

a(“va):(_fv V)’ ves. (PS)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof (continued)
Hence, if two solutions us and ig, then let v = ugs — is.
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the us satisfying

a(“va):(_fv V)’ ves. (PS)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof (continued)
Hence, if two solutions us and s, then let v = us — iis. We then have a(v, ¢;) = 0, Vi,
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the us satisfying

a(“va):(_fv V)’ ves. (PS)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof (continued)

Hence, if two solutions us and ds, then let v = us — ids. We then have a(v, ¢;) = 0,Vi, so
v=20
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the us satisfying

a(u57v):(—f-, V)’ ves. (PS)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof (continued)

Hence, if two solutions us and ds, then let v = us — ids. We then have a(v, ¢;) = 0,Vi, so
v=0 = us = is and Ker{K} = 0.

[ |
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the us satisfying

a(u57v):(—f-, V)’ ves. (PS)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof (continued)

Hence, if two solutions us and ds, then let v = us — ids. We then have a(v, ¢;) = 0,Vi, so
v=0 = us = is and Ker{K} = 0.

[ |

Shows the problem has a solution.
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Ritz-Galerkin Approximation

Let S C V where § is any finite dimensional subspace. Then we obtain numerical
approximation as the us satisfying

a(u57v):(—f-, V)’ ves. (PS)

The us provides the Ritz-Galerkin Approximation to solutuon u.

Given f € L2[0, 1] the problem Ps has unique solution us.

Proof (continued)

Hence, if two solutions us and ds, then let v = us — ids. We then have a(v, ¢;) = 0,Vi, so
v=0 = us = is and Ker{K} = 0.

|

Shows the problem has a solution.

Still, need theory to show us — u as S — V (i.e. we recover solution to the PDE in limit).
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Linear Elements

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Linear Elements

Consider space S generated by
n+1

v(x) = vigi(x)

i=1

Zo Ti—1 Ti Tit+1 Tnt1
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Linear Elements

Consider space S generated by

n+1
v(x) = Z vigi(x)
i=1
where ¢;(x) = Nj(x),
Zo Ti—1 Tj Ti+l Tn+1
(x = xi—1)/hi-1, x € [xi-1,xi]
Ni(x) =< (xix1—x)/hi,  x € [xj, Xit1] (Hat Functions).

0, otherwise
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Linear Elements

Consider space S generated by
n+1

v(x) = vigi(x)

i=1

where ¢;(x) = Nj(x),

Zo Ti—1 Ti Tit+1 Tnt1

(x = xi—1)/hi—1, x € [xi—1,xi]
Ni(x) =< (xix1—x)/hi,  x € [xj, Xit1] (Hat Functions).
0, otherwise

Here, h,' = Xj4+1 — Xj and N,'(Xj) = (S,J
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Linear Elements

Consider space S generated by
n+1

v(x) = vigi(x)

i=1

where ¢;(x) = Nj(x),

Zo Ti—1 Ti Tit+1 Tnt1

(x = xi—1)/hi—1, x € [xi—1,xi]
Ni(x) =< (xix1—x)/hi,  x € [xj, Xit1] (Hat Functions).
0, otherwise

Here, h,' = Xj4+1 — Xj and N,'(Xj) = (S,J
Mesh: xg, xi,...,xp+1. Elements: e; = {x|x;_1 < x < x;31}. Shape Functions: N;(x).
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Linear Elements

Consider space S generated by
n+1

v(x) = vigi(x)

i=1

where ¢;(x) = Nj(x),

Zo Ti—1 Ti Tit+1 Tnt1

(x = xi—1)/hi—1, x € [xi—1,xi]
Ni(x) =< (xix1—x)/hi,  x € [xj, Xit1] (Hat Functions).
0, otherwise

Here, h,' = Xj4+1 — Xj and N,'(Xj) = (S,J
Mesh: xg, xi,...,xp+1. Elements: e; = {x|x;_1 < x < x;31}. Shape Functions: N;(x).

Let S = {v|v € C[0, L], v(x) = >_i_; viNj(x)}, referred to as the shape space.
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Linear Elements

Consider space S generated by

n+1
v(x) = Z vigi(x)
i=1
where ¢;(x) = Nj(x),
Xo Ti—1 Tj Titl Tn41
(x = xi—1)/hi—1, x € [xi—1,xi]
Ni(x) =< (xiy1 — x)/hi, x € [xj, Xi+1] (Hat Functions).
0, otherwise
Here, h,' = Xj4+1 — Xj and N,'(Xj) = (S,J
Mesh: xg, xi,...,xp+1. Elements: e; = {x|x;_1 < x < x;31}. Shape Functions: N;(x).

Let S = {v|v € C[0, L], v(x) = >_i_; viNj(x)}, referred to as the shape space.

We would like to carry-out the Ritz-Galerkin approximations over this space.
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, x € [x-1,x]
Ni(x) = q (xie1 = x)/hi,  x € [xi, xi41]
0, otherwise

Zo Ti—1 Ti Tit1 Tnt1
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, x € [x-1,x]

Ni(x) = ¢ (Xiv1—x)/hi, X € [xi, xi41]
0, otherwise
Consider the heat equation in 1D on [0, L] To Tio1 Ty Titl  Tntl

dz—f() XG[O,I_]
u(0) = Ty,u(L) = T2, x on boundary
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, x € [x-1,x]

Ni(x) = ¢ (Xiv1—x)/hi, X € [xi, xi41]
0, otherwise
Consider the heat equation in 1D on [0, L] To Tio1 Ty Titl  Tntl

dz—f() XG[O,I_]
u(0) = Ty,u(L) = T2, x on boundary

Boundary conditions: vy = T; and u,41 = T throughout.
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, x € [x-1,x]

Ni(x) = ¢ (Xiv1—x)/hi, X € [xi, xi41]
0, otherwise
Consider the heat equation in 1D on [0, L] To Tio1 Ty Titl  Tntl

dz—f() XG[O,I_]
u(0) = Ty,u(L) = T2, x on boundary

Boundary conditions: ug = T; and u,41 = T; throughout. Weak form

a(u,v)=(-f,v),YveV, WLOGV ={v|ve C[0,L],v(0) =v(L) =0}
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, x € [x-1,x]

Ni(x) = ¢ (Xiv1—x)/hi, X € [xi, xi41]
0, otherwise
Consider the heat equation in 1D on [0, L] To Tio1 Ty Titl  Tntl

dz—f() XE[O,L]
u(0) = Ty,u(L) = T2, x on boundary

Boundary conditions: ug = T; and u,41 = T; throughout. Weak form
a(u,v)=(-f,v), Y'veV, WLOGV = {v|ve C[0,L],v(0) = v(L) =0}
We obtain Ritz-Galerkin Approximation by considering finite dimensional problem

a(u57 V) = (_fa V)7 Vv e 87 WLOG S = {V|V = 27:1 ViNi(X)}
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, x € [x-1,x]

Ni(x) = ¢ (Xiv1—x)/hi, X € [xi, xi41]
0, otherwise
Consider the heat equation in 1D on [0, L] To Tio1 Ty Titl  Tntl

dz—f() XE[O,L]
u(0) = Ty,u(L) = T2, x on boundary

Boundary conditions: ug = T; and u,41 = T; throughout. Weak form
a(u,v)=(-f,v), Y'veV, WLOGV = {v|ve C[0,L],v(0) = v(L) =0}
We obtain Ritz-Galerkin Approximation by considering finite dimensional problem
a(us,v) = (—f,v), Vv €S, WLOG S = {v|v =, viN;i(x)}

To obtain stiffness matrix K and load vector f, we need to compute the inner-products.
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = ¢ (xie1 = x)/hiy  x € [x5, Xi41]
0, otherwise

Ritz-Galerkin Approximation
a(US,V):(—f, V)) VVES, §= {V‘V:Z,r]:l ViNi(X)}

Zo Ti—1 Ti Tit+1 Tnt1
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Linear Elements

Shape functions:
(x = xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = (xie1 —x)/hi,  x € [xi, xi41]
0, otherwise
Ritz-Galerkin Approximation

i-1 Ti T Tn
a(us,v) = (—f,v), WweS, S={vlv=S",uN(x)} . T i

Stiffness matrix Kjj = a(N;, N;) when |i — j| <1, Kjj = 0 otherwise.
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Linear Elements

Shape functions:
(x = xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = (xie1 —x)/hi,  x € [xi, xi41]
0, otherwise
Ritz-Galerkin Approximation

i-1 Ti T Tn
a(us,v) = (—F,v), WeS, S={vv=Y",uN(q)} . o i me
Stiffness matrix Kjj = a(N;, N;) when |i — j| <1, Kjj = 0 otherwise.

a(N;_1, N;) :/ —1/h? jdx = —
Xi—1

1<i<n+1

)

i—1
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Linear Elements

Shape functions:
(x = xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = (xie1 —x)/hi,  x € [xi, xi41]
0, otherwise
Ritz-Galerkin Approximation

i-1 Ti T Tn
a(us,v) = (—F,v), WeS, S={vv=Y",uN(q)} . o i me
Stiffness matrix Kjj = a(N;, N;) when |i — j| <1, Kjj = 0 otherwise.

a(N;_1, N;) :/ —1/h? jdx = —
Xi—1

1<i<n+1

)

i—1

Xi Xi+1 1 1
a(N,-,N,-):/ 1/h,?_1dx+/ 1/hdx = - + o
Xi—1 X 1— 1

9
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Linear Elements

Shape functions:
(x = xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = (xie1 —x)/hi,  x € [xi, xi41]
0, otherwise
Ritz-Galerkin Approximation

i-1 Ti T Tn
a(us,v) = (—F,v), WeS, S={vv=Y",uN(q)} . o i me
Stiffness matrix Kjj = a(N;, N;) when |i — j| <1, Kjj = 0 otherwise.

a(N;_1, N;) :/ —1/h? jdx = —
Xi—1

1<i<n+1

)

i—1

Xi Xi+1 1 1
a(N,-,N,-):/ 1/h,?_1dx+/ 1/hdx = - + o
Xi—1 X 1— 1

(—F, N}) = — / T N (x)dx.

Xi—1
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Linear Elements

Shape functions:
(x = xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = (xie1 —x)/hi,  x € [xi, xi41]
0, otherwise
Ritz-Galerkin Approximation

i—1 Ti Tg Tn
a(us,v) = (—f,v), WweS, S={vlv=S",uN(x)} . T i
Stiffness matrix Kjj = a(N;, N;) when |i — j| <1, Kjj = 0 otherwise.

a(N;_1, N;) :/ —1/h? jdx = —
Xi—1

1<i<n+1

)

i—1

Xi Xit1 1 1
a(Ni,N;):/ l/h?_ldx—l—/ 1/h?dx: + =,
Xi—1 Xj hl*l hl
Xi+1
(—f,N;) = —/ f(x)N;(x)dx.

Xi—1

When f = Z,";rol fiNi(x), compute via "mass matrix" Mj; = (N;, N;), and [f]; = M;f;

j .
Paul J. Atzberger, UCSB
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, x € [xj—1,xi]

Ni(x) = (xigr —x) /i, x € [xi; xi41]
0, otherwise
Ritz-Galerkin Approximation Zo Tio1 Ti Tisl Tyl

{ a(us,v) =(—f,v), Vv e S
S =A{vlv =31 viNi(x)}
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = ¢ (xie1 = x)/hiy  x € [xi, xi41]
0, otherwise

Ritz-Galerkin Approximation

Zo Ti—1 Ti Tit1 Tnt1

{ a(us,v) =(—f,v), Vv e S
S =A{vlv =31 viNi(x)}

Stiffness matrix when h; = hg = h and load vector when f(x) = f;,

2 -1 0 0
1 2 -1 0

Kk—1| 0o -1 2 - 0 ,
0 0 -1 - -1
0 0 0 2

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Linear Elements

Shape functions:

(x = xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = ¢ (xie1 = x)/hiy  x € [xi, xi41]
0, otherwise

Ritz-Galerkin Approximation

Zo Ti—1 i Ti+1 Tn+1
{ a(us,v) =(—f,v), Vv e S
S ={vlv =3 viNi(x)}
Stiffness matrix when h; = hg = h and load vector when f(x) = f;,

2 -1 0 0 fo
1 2 -1 0 fo
Kel| 0 -1 2 - 0ofg_plHh
o 0 -1 . -1 :
0 0 o0 2 fo
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Linear Elements

Shape functions:

(x = xi—1)/hi—1, x € [xj—1,xi]
Ni(x) = ¢ (xie1 = x)/hiy  x € [xi, xi41]
0, otherwise

Ritz-Galerkin Approximation

Xo Ti—1 Tj Tiyl Tn41
{ a(us,v) =(—f,v), Vv e S
S ={vlv =31 viNi(x)}
Stiffness matrix when h; = hg = h and load vector when f(x) = f;,
2 -1 0 0 fo
-1 2 -1 0 fo
Kel| 0 -1 2 - 0ofg_plHh
0o 0 -1 -1 :
0 0 O 2 fo
In this case, the Ku = —f has similarities to Finite Difference Method for the heat equation.
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Error Estimates

We have for any solution us to the Ritz-Galerkin approximation

a(u—us,w)=0,YyweS

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Error Estimates

We have for any solution us to the Ritz-Galerkin approximation
a(u—us,w)=0,YyweS

Geometric interpretation = us is projection of u to hyperplane spanned by members of S.
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Error Estimates

We have for any solution us to the Ritz-Galerkin approximation
a(u—us,w)=0,YyweS

Geometric interpretation = us is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: ||v|lg = +/a(v, v).

)
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Error Estimates

We have for any solution us to the Ritz-Galerkin approximation
a(u—us,w)=0,YyweS

Geometric interpretation = us is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: ||v|lg = +/a(v, v).

)

Swartz Inequality: |a(v, w)| < ||v|el|w| g, Vv, w € V.
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Error Estimates

We have for any solution us to the Ritz-Galerkin approximation
a(u—us,w)=0,YyweS

Geometric interpretation = us is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: ||v|lg = +/a(v, v).

Swartz Inequality: |a(v, w)| < ||v|el|w| g, Vv, w € V.

This gives for any v € S that
|lu—usl|z = a(u—us,u—us)=a(u—us,u—v)+a(u— us,v— us)

= a(u—us,u—v)<|lu—uslellu—vle (swartz)

http://atzberger.org/

Finite Element Methods
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Error Estimates

We have for any solution us to the Ritz-Galerkin approximation

a(u—us,w)=0,YyweS

Geometric interpretation = us is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: ||v|lg = +/a(v, v).

Swartz Inequality: |a(v, w)| < ||v|el|w| g, Vv, w € V.

This gives for any v € S that
|lu—usl|z = a(u—us,u—us)=a(u—us,u—v)+a(u— us,v— us)
= a(u—us,u—v)<|lu—uslellu—vle (swartz)

If ||u — us||g # 0 we can divide to obtain
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Error Estimates

We have for any solution us to the Ritz-Galerkin approximation

a(u—us,w)=0,YyweS

Geometric interpretation = us is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: ||v|lg = +/a(v, v).

Swartz Inequality: |a(v, w)| < ||v|el|w| g, Vv, w € V.

This gives for any v € S that
|lu—usl|z = a(u—us,u—us)=a(u—us,u—v)+a(u— us,v— us)
= a(u—us,u—v)<|lu—uslellu—vle (swartz)
If ||u — us||g # 0 we can divide to obtain

lu—us|le < ||lu—vl]Eg, VveES.
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Error Estimates

This gives
lu— us|le < inf{||u— v|glv e S}.

Note, S C V.

Zo Ti—1 Ti Tit+1 Tnt1
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Error Estimates

This gives
lu— us|le < inf{||u— v|glv e S}.

Note, S C V. Since us € S, we have

lu— us|le = inf{||u— v|glv € S}.

Zo Ti—1 Ti Tit+1 Tnt1
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Error Estimates

This gives
lu— us|le < inf{||u— v|glv e S}.
Note, S C V. Since us € S, we have

lu— us|le = inf{||u— v|glv € S}.

The us is the best approximation possible when using energy norm T Tio1 T
to measure errors.

Tit+1 Tn+1
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Error Estimates

This gives
lu— us|le < inf{||u— v|glv e S}.
Note, S C V. Since us € S, we have

lu— us|le = inf{||u— v|glv € S}.

The us is the best approximation possible when using energy norm T Tio1 T
to measure errors.

Tit1 Tn+1

Example (linear elements):
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Error Estimates

This gives
lu— us|le < inf{||u— v|glv e S}.
Note, S C V. Since us € S, we have

lu— us|le = inf{||u— v|glv € S}.

The us is the best approximation possible when using energy norm T Tio1 T
to measure errors.

Tit1 Tn+1

Example (linear elements):
The Green's function for —d?u/dx? = f is given by

2
G(Xaxo):{x’ X< }7 dc.;:{l’ X< }; dG__(;(X—XO).

Xg, Xp, otherwise dx 0, xg, otherwise dx2
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Error Estimates

This gives
lu— us|le < inf{||u— v|glv e S}.

Note, S C V. Since us € S, we have

lu— us|le = inf{||u— v|glv € S}.

The us is the best approximation possible when using energy norm Zo Tio1 T Titl Tnt1
to measure errors.

Example (linear elements):
The Green's function for —d?u/dx? = f is given by

2
G(Xaxo):{x’ X< }7 dc.;:{l’ X< }; dG__(;(X—XO).

Xg, Xp, otherwise dx 0, xg, otherwise dx2

The solution u above can be expressed as

u(x) = / G, y)F(y)dy.
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Error Estimates

Example (linear elements) (continued)

xo Ti—1 Ti Tit1 Tn+1

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Error Estimates

Example (linear elements) (continued)
The Green's function also has the property that

v(xo) = a(v, G(-, x0)), Vv eV

xo Ti—1 Ti Tit1 Tn+1
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Error Estimates

Example (linear elements) (continued)
The Green's function also has the property that

v(xo) = a(v, G(-, x0)), Vv eV

xo Ti—1 Ti Tit1 Tn+1

Putting this together we have the error can be expressed as

(u—us)(x0) =a(u—us,G(-,x0)) = a(u — us, G(+, x0) — v), Vves
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Error Estimates

Example (linear elements) (continued)
The Green's function also has the property that

v(xo) = a(v, G(-, x0)), Vv eV

Ty il Ty Tip1l  Tntl
Putting this together we have the error can be expressed as
(u—us)(x0) =a(u—us,G(-,x0)) = a(u — us, G(+, x0) — v), Vves
Since G € S we have at the nodes x1, x», ..., x, that
(u—us)(x;) =a(u—us,G(-,x;) —v) =0, YvesS
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Error Estimates

Example (linear elements) (continued)
The Green's function also has the property that

v(xo) = a(v, G(-, x0)), Vv eV

xo Ti—1 Ti Tit1 Tn+1

Putting this together we have the error can be expressed as
(u—us)(x0) =a(u—us,G(-,x0)) = a(u — us, G(+, x0) — v), Vves
Since G € S we have at the nodes x1, x», ..., x, that
(u—us)(x;) =a(u—us,G(-,x;) —v) =0, YvesS

This means us is piece-wise linear with us(x;) = u(x;). We denote us = u; where uj is the
linear interpolation of the solution.
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Error Estimates

Lemma: The error of linear interpolation satisfies
Ju— o < CH?[|" oo

xo Ti—1 T Ti+l Tp41
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Error Estimates

Lemma: The error of linear interpolation satisfies
Ju— ]| < CH?[|" oo

Proof: We have (u— u)(0) =0= (u—u

)(h) since these are
node locations.

xo Ti—1 T Ti+l Tp41
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Error Estimates

Lemma: The error of linear interpolation satisfies
Ju— ]| < CH?[|" oo

Proof: We have (v — u;)(0) = 0 = (u — u;)(h) since these are
node locations.

By Rolle's Lemma we have there exists x, € [0, h] s.t.
UI(X*) - U;(X*) =0. Zo Ti—1 Tj Tiq1

xn+1
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Error Estimates

Lemma: The error of linear interpolation satisfies

lu = ulloe < CH[|u"]|oc.

Proof: We have (v — u;)(0) = 0 = (u — u;)(h) since these are
node locations.

By Rolle's Lemma we have there exists x, € [0, h] s.t.

u'(x.) — uj(x.) = 0. Note this will be maximum or minimum, or on To Tim1 Ti Tigl  Tnil
boundary. WLOG interior case, then |(v — uj)(x)| = ||u — 1] co-
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Error Estimates

Lemma: The error of linear interpolation satisfies

Ju— e < CP|u" |

Proof: We have (v — u;)(0) = 0 = (u — u;)(h) since these are
node locations.

By Rolle's Lemma we have there exists x, € [0, h] s.t.

u'(x.) — uj(x.) = 0. Note this will be maximum or minimum, or on To Tim1 Ti Tigl  Tnil
boundary. WLOG interior case, then |(v — uj)(x)| = ||u — 1] co-

By the Taylor Remainder theorem we have for some £ € [0, h] that

(u—u)(x) = (v = u)(x0) + (v = uf) (x0)(x = x0) + %(U” — U )(€)(x = x0)?
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Error Estimates

Lemma: The error of linear interpolation satisfies

Ju— e < CP|u" |

Proof: We have (v — u;)(0) = 0 = (u — u;)(h) since these are
node locations.

By Rolle's Lemma we have there exists x, € [0, h] s.t.

u'(x.) — uj(x.) = 0. Note this will be maximum or minimum, or on To Tim1 Ti Tigl  Tnil
boundary. WLOG interior case, then |(v — uj)(x)| = ||u — 1] co-

By the Taylor Remainder theorem we have for some £ € [0, h] that

(u—u)(x) = (v = u)(x0) + (v = uf) (x0)(x = x0) + %(U” — U )(€)(x = x0)?

Let x =0, xp = X, then

0= (= u)(xe) + 0+ S(" — ) Ox — x)? = (0~ w)lxe) = e (€)(x — x.)?
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Error Estimates

Lemma: The error of linear interpolation satisfies

Ju— e < CP|u" |

Proof: We have (v — u;)(0) = 0 = (u — u;)(h) since these are
node locations.

By Rolle's Lemma we have there exists x, € [0, h] s.t.

u'(x.) — uj(x.) = 0. Note this will be maximum or minimum, or on To Tim1 Ti Tigl  Tnil
boundary. WLOG interior case, then |(v — uj)(x)| = ||u — 1] co-

By the Taylor Remainder theorem we have for some £ € [0, h] that

(u—u)(x) = (v = u)(x0) + (v = uf) (x0)(x = x0) + %(U” — U )(€)(x = x0)?

Let x =0, xp = X, then

0= (= u)(xe) + 0+ S(" — ) Ox — x)? = (0~ w)lxe) = e (€)(x — x.)?

= lu—ulleo < CH|U" o.M
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Error Estimates

For & = "space of piecewise linear functions” (linear elements) the solution us has the error

lu— uslloo < CH[|u" |
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Error Estimates

For & = "space of piecewise linear functions” (linear elements) the solution us has the error

lu— uslloo < CH[|u" |

Remark:
Shows the Ritz-Galerkin approximation with linear elements has error that decays like O(h?).
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Error Estimates

For & = "space of piecewise linear functions” (linear elements) the solution us has the error

lu— uslloo < CH[|u" |

Remark:
Shows the Ritz-Galerkin approximation with linear elements has error that decays like O(h?).

We have h ~ 1/n, where n is the number of elements. If we double the number of elements = error
reduced by factor of 1/4.

Finite Element Methods http://atzberger.org/
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Error Estimates
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Remark:
Shows the Ritz-Galerkin approximation with linear elements has error that decays like O(h?).

We have h ~ 1/n, where n is the number of elements. If we double the number of elements = error
reduced by factor of 1/4.

For computational efficiency we ideally would like high-order methods with e = O(h®), with « as large
as possible.
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Error Estimates

For & = "space of piecewise linear functions” (linear elements) the solution us has the error

lu— uslloo < CH[|u" |

Remark:
Shows the Ritz-Galerkin approximation with linear elements has error that decays like O(h?).

We have h ~ 1/n, where n is the number of elements. If we double the number of elements = error
reduced by factor of 1/4.

For computational efficiency we ideally would like high-order methods with e = O(h®), with « as large
as possible.

Key is to design function spaces and study their interpolation theory, since this indicates FEM errors.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Paul J. Atzberger, UC Finite Element Methods



http://atzberger.org/

Paul J. Atzberger, UC Finite Element Methods



http://atzberger.org/

Paul J. Atzberger, UC Finite Element Methods



http://atzberger.org/

