Paul J. Atzberger

206D: Finite Element Methods University of California Santa Barbara

MATH 206D: Finite Element Methods

Welcome to MATH 206D: Finite Element Methods!

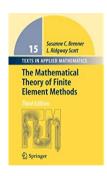
We will use the following books:

- Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics (third edition), D. Braess.
- The Mathematical Theory of Finite Element Methods (third edition),
 - S. Brenner and R. Scott.

For more information, see the course website:

http://teaching.atzberger.org/

I look forward to working with you this quarter.



Introduction to Finite Element Methods

Variational Principle

$$E[u] = \frac{1}{2} \int_0^1 (u'(x))^2 dx + \int_0^1 f(x)u(x) dx.$$

Variational Principle

$$E[u] = \frac{1}{2} \int_0^1 (u'(x))^2 dx + \int_0^1 f(x)u(x) dx.$$

What configuration of u(x) minimizes E[u]?

Variational Principle

$$E[u] = \frac{1}{2} \int_0^1 (u'(x))^2 dx + \int_0^1 f(x)u(x) dx.$$

What configuration of u(x) minimizes E[u]? Minimizer satisfies:

$$(\delta E[u])(v) = \frac{\partial}{\partial \epsilon}\Big|_{\epsilon=0} E[u+\epsilon v] = 0.$$

Variational Principle

$$E[u] = \frac{1}{2} \int_0^1 (u'(x))^2 dx + \int_0^1 f(x)u(x) dx.$$

What configuration of u(x) minimizes E[u]? Minimizer satisfies:

$$(\delta E[u])(v) = \frac{\partial}{\partial \epsilon}\Big|_{\epsilon=0} E[u+\epsilon v] = 0.$$

We find that

$$(\delta E[u])(v) = \int_0^1 u'(x)v'(x)dx + \int_0^1 v(x)f(x)dx$$

= $[u'(x)v(x)]_0^1 - \int_0^1 (u''(x) - f(x)) v(x)dx.$

Variational Principle

$$E[u] = \frac{1}{2} \int_0^1 (u'(x))^2 dx + \int_0^1 f(x)u(x) dx.$$

What configuration of u(x) minimizes E[u]? Minimizer satisfies:

$$(\delta E[u])(v) = \frac{\partial}{\partial \epsilon}\Big|_{\epsilon=0} E[u+\epsilon v] = 0.$$

We find that

$$(\delta E[u])(v) = \int_0^1 u'(x)v'(x)dx + \int_0^1 v(x)f(x)dx$$
$$= \left[u'(x)v(x)\right]_0^1 - \int_0^1 \left(u''(x) - f(x)\right)v(x)dx.$$

Suggests "natural boundary conditions" $\rightarrow u'(0) = u'(1) = 0$.

Variational Principle
$$(u'(0) = u'(1) = 0)$$

$$(\delta E[u])(v) = \int_0^1 u'(x)v'(x)dx + \int_0^1 v(x)f(x)dx$$

= $-\int_0^1 (u''(x) - f(x)) v(x)dx = 0, \forall v \in V.$

Variational Principle (u'(0) = u'(1) = 0)

$$(\delta E[u])(v) = \int_0^1 u'(x)v'(x)dx + \int_0^1 v(x)f(x)dx$$

= $-\int_0^1 (u''(x) - f(x)) v(x)dx = 0, \forall v \in \mathcal{V}.$

Implies PDE holds (strong form)

$$\left\{ \begin{array}{ll} u''(x)=f(x), & x\in [0,1]\\ u'(0)=u'(1)=0, & x \text{ on boundary.} \end{array} \right.$$

Variational Principle (u'(0) = u'(1) = 0)

$$(\delta E[u])(v) = \int_0^1 u'(x)v'(x)dx + \int_0^1 v(x)f(x)dx$$

= $-\int_0^1 (u''(x) - f(x)) v(x)dx = 0, \forall v \in \mathcal{V}.$

Implies PDE holds (strong form)

$$\left\{ \begin{array}{ll} u''(x)=f(x), & x\in [0,1]\\ u'(0)=u'(1)=0, & x \text{ on boundary.} \end{array} \right.$$

Let $a(u, v) = \int_0^1 u'(x)v'(x)dx$ and $(u, v) = \int_0^1 u(x)v(x)dx$.

Variational Principle (u'(0) = u'(1) = 0)

$$(\delta E[u])(v) = \int_0^1 u'(x)v'(x)dx + \int_0^1 v(x)f(x)dx$$

= $-\int_0^1 (u''(x) - f(x)) v(x)dx = 0, \forall v \in \mathcal{V}.$

Implies PDE holds (strong form)

$$\begin{cases} u''(x) = f(x), & x \in [0,1] \\ u'(0) = u'(1) = 0, & x \text{ on boundary.} \end{cases}$$

Let $a(u, v) = \int_0^1 u'(x)v'(x)dx$ and $(u, v) = \int_0^1 u(x)v(x)dx$. Then $(\delta E[u])(v) = 0$ implies (weak form)

$$a(u, v) = (-f, v), \forall v \in \mathcal{V}.$$

Variational Principle (u'(0) = u'(1) = 0)

$$(\delta E[u])(v) = \int_0^1 u'(x)v'(x)dx + \int_0^1 v(x)f(x)dx$$

= $-\int_0^1 (u''(x) - f(x)) v(x)dx = 0, \forall v \in \mathcal{V}.$

Implies PDE holds (strong form)

$$\left\{ \begin{array}{ll} u''(x)=f(x), & x\in [0,1]\\ u'(0)=u'(1)=0, & x \text{ on boundary.} \end{array} \right.$$

Let $a(u, v) = \int_0^1 u'(x)v'(x)dx$ and $(u, v) = \int_0^1 u(x)v(x)dx$. Then $(\delta E[u])(v) = 0$ implies (weak form)

$$a(u, v) = (-f, v), \forall v \in \mathcal{V}.$$

We take for now $V = \{v \in L^2[0,1], a(v,v) < \infty, v(0) = 0\}$

Variational Principle (u'(0) = u'(1) = 0)

$$(\delta E[u])(v) = \int_0^1 u'(x)v'(x)dx + \int_0^1 v(x)f(x)dx$$

= $-\int_0^1 (u''(x) - f(x)) v(x)dx = 0, \forall v \in \mathcal{V}.$

Implies PDE holds (strong form)

$$\left\{ \begin{array}{ll} u''(x)=f(x), & x\in [0,1]\\ u'(0)=u'(1)=0, & x \text{ on boundary.} \end{array} \right.$$

Let $a(u, v) = \int_0^1 u'(x)v'(x)dx$ and $(u, v) = \int_0^1 u(x)v(x)dx$. Then $(\delta E[u])(v) = 0$ implies (weak form)

$$a(u, v) = (-f, v), \forall v \in \mathcal{V}.$$

We take for now $\mathcal{V} = \{v \in L^2[0,1], a(v,v) < \infty, v(0) = 0\}$ (need to refine later).

Let $\mathcal{S} \subset \mathcal{V}$ where \mathcal{S} is any finite dimensional subspace.

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{P_S}$$

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{P_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{P_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{P_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof Given that S is finite dimensional it has a basis $\{\phi_i\}_{i=1}^N$.

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{P_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof Given that S is finite dimensional it has a basis $\{\phi_i\}_{i=1}^N$. Any function $u_S \in S$ can be expressed as

$$u_S(x) = \sum_{i=1}^N u_i \phi_i(x).$$

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{P_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof Given that S is finite dimensional it has a basis $\{\phi_i\}_{i=1}^N$. Any function $u_S \in S$ can be expressed as

$$u_S(x) = \sum_{i=1}^N u_i \phi_i(x).$$

Plugging this into the weak form, we obtain the linear system

$$K\mathbf{u} = -\mathbf{f}$$
.

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{P_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof Given that S is finite dimensional it has a basis $\{\phi_i\}_{i=1}^N$. Any function $u_S \in S$ can be expressed as

$$u_S(x) = \sum_{i=1}^N u_i \phi_i(x).$$

Plugging this into the weak form, we obtain the linear system

$$K\mathbf{u} = -\mathbf{f}$$
.

We have "stiffness matrix" $[K]_{ij} = a(\phi_i, \phi_i)$ and "load vector" $[\mathbf{f}]_i = (f, \phi_i)$.

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{\mathcal{P}_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued) We need to show ker(K) = 0.

Let $\mathcal{S} \subset \mathcal{V}$ where \mathcal{S} is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_{\mathcal{S}},v)=(-f,v),\ v\in\mathcal{S}.\tag{$\mathcal{P}_{\mathcal{S}}$}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued) We need to show ker(K) = 0. Let $v \in S$ then

$$v(x) = \sum_{i=1}^{N} v_i \phi_i(x).$$

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{\mathcal{P}_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued) We need to show ker(K) = 0. Let $v \in S$ then

$$v(x) = \sum_{i=1}^{N} v_i \phi_i(x).$$

If $K\mathbf{v} = 0$ then $a(\mathbf{v}, \phi_i) = 0, \forall i$

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{\mathcal{P}_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued) We need to show ker(K) = 0. Let $v \in S$ then

$$v(x) = \sum_{i=1}^{N} v_i \phi_i(x).$$

If $K\mathbf{v} = 0$ then $a(v, \phi_i) = 0, \forall i \Rightarrow a(v, v) = 0$

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_{\mathcal{S}},v)=(-f,v),\ v\in\mathcal{S}.\tag{$\mathcal{P}_{\mathcal{S}}$}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued) We need to show ker(K) = 0. Let $v \in S$ then

$$v(x) = \sum_{i=1}^{N} v_i \phi_i(x).$$

If
$$K\mathbf{v} = 0$$
 then $a(v, \phi_i) = 0, \forall i \Rightarrow a(v, v) = 0 \Rightarrow \int_0^1 v'(x)v'(x)dx = \int_0^1 (v'(x))^2 dx = 0$

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_{\mathcal{S}},v)=(-f,v),\ v\in\mathcal{S}.\tag{$\mathcal{P}_{\mathcal{S}}$}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued) We need to show ker(K) = 0. Let $v \in S$ then

$$v(x) = \sum_{i=1}^{N} v_i \phi_i(x).$$

If $K\mathbf{v} = 0$ then $a(v, \phi_i) = 0, \forall i \Rightarrow a(v, v) = 0 \Rightarrow \int_0^1 v'(x)v'(x)dx = \int_0^1 (v'(x))^2 dx = 0 \Rightarrow v'(x) = 0$

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_{\mathcal{S}},v)=(-f,v),\ v\in\mathcal{S}.\tag{$\mathcal{P}_{\mathcal{S}}$}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued) We need to show ker(K) = 0. Let $v \in S$ then

$$v(x) = \sum_{i=1}^{N} v_i \phi_i(x).$$

If $K\mathbf{v} = 0$ then $a(v, \phi_i) = 0, \forall i \Rightarrow a(v, v) = 0 \Rightarrow \int_0^1 v'(x)v'(x)dx = \int_0^1 (v'(x))^2 dx = 0 \Rightarrow v'(x) = 0 \Rightarrow v(x) = c$.

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_{\mathcal{S}},v)=(-f,v),\ v\in\mathcal{S}.\tag{$\mathcal{P}_{\mathcal{S}}$}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued) We need to show ker(K) = 0. Let $v \in S$ then

$$v(x) = \sum_{i=1}^{N} v_i \phi_i(x).$$

If $K\mathbf{v} = 0$ then $a(v, \phi_i) = 0, \forall i \Rightarrow a(v, v) = 0 \Rightarrow \int_0^1 v'(x)v'(x)dx = \int_0^1 (v'(x))^2 dx = 0 \Rightarrow v'(x) = 0 \Rightarrow v(x) = c$. Now $v \in \mathcal{S} \subset \mathcal{V}$,

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{\mathcal{P}_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued) We need to show ker(K) = 0. Let $v \in S$ then

$$v(x) = \sum_{i=1}^{N} v_i \phi_i(x).$$

If
$$K\mathbf{v} = 0$$
 then $a(v, \phi_i) = 0, \forall i \Rightarrow a(v, v) = 0 \Rightarrow \int_0^1 v'(x)v'(x)dx = \int_0^1 (v'(x))^2 dx = 0 \Rightarrow v'(x) = 0 \Rightarrow v(x) = c$. Now $v \in \mathcal{S} \subset \mathcal{V}$, so $v(0) = 0 \Rightarrow c = 0$.

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{\mathcal{P}_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued) We need to show ker(K) = 0. Let $v \in S$ then

$$v(x) = \sum_{i=1}^{N} v_i \phi_i(x).$$

If
$$K\mathbf{v} = 0$$
 then $a(v, \phi_i) = 0, \forall i \Rightarrow a(v, v) = 0 \Rightarrow \int_0^1 v'(x)v'(x)dx = \int_0^1 (v'(x))^2 dx = 0 \Rightarrow v'(x) = 0 \Rightarrow v(x) = c$. Now $v \in \mathcal{S} \subset \mathcal{V}$, so $v(0) = 0 \Rightarrow c = 0$.

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{\mathcal{P}_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued)

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{\mathcal{P}_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued)

Hence, if two solutions u_S and \tilde{u}_S , then let $v = u_S - \tilde{u}_S$.

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{\mathcal{P}_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued)

Hence, if two solutions u_S and \tilde{u}_S , then let $v=u_S-\tilde{u}_S$. We then have $a(v,\phi_i)=0, \forall i$,

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{\mathcal{P}_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued)

Hence, if two solutions u_S and \tilde{u}_S , then let $v=u_S-\tilde{u}_S$. We then have $a(v,\phi_i)=0, \forall i$, so v=0

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{\mathcal{P}_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued)

Hence, if two solutions u_S and \tilde{u}_S , then let $v=u_S-\tilde{u}_S$. We then have $a(v,\phi_i)=0, \forall i$, so $v=0 \Rightarrow u_S=\tilde{u}_S$ and $\text{Ker}\{K\}=0$.

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{\mathcal{P}_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued)

Hence, if two solutions u_S and \tilde{u}_S , then let $v = u_S - \tilde{u}_S$. We then have $a(v, \phi_i) = 0, \forall i$, so $v = 0 \Rightarrow u_S = \tilde{u}_S$ and $\text{Ker}\{K\} = 0$.

Shows the problem has a solution.

Let $S \subset V$ where S is any finite dimensional subspace. Then we obtain numerical approximation as the u_S satisfying

$$a(u_S, v) = (-f, v), \ v \in \mathcal{S}. \tag{\mathcal{P}_S}$$

The u_S provides the Ritz-Galerkin Approximation to solutuon u.

Theorem

Given $f \in L^2[0,1]$ the problem \mathcal{P}_S has unique solution u_S .

Proof (continued)

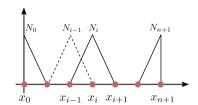
Hence, if two solutions u_S and \tilde{u}_S , then let $v = u_S - \tilde{u}_S$. We then have $a(v, \phi_i) = 0, \forall i$, so $v = 0 \Rightarrow u_S = \tilde{u}_S$ and $\text{Ker}\{K\} = 0$.

Shows the problem has a solution.

Still, need theory to show $u_S \to u$ as $S \to V$ (i.e. we recover solution to the PDE in limit).

Consider space $\mathcal S$ generated by

$$v(x) = \sum_{i=1}^{n+1} v_i \phi_i(x)$$

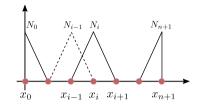


Consider space ${\mathcal S}$ generated by

$$v(x) = \sum_{i=1}^{n+1} v_i \phi_i(x)$$

where $\phi_i(x) = N_i(x)$,

$$N_i(x) = \left\{ egin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \ 0, & ext{otherwise} \end{array}
ight\}$$



(Hat Functions).

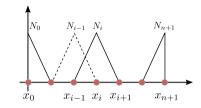
Consider space ${\cal S}$ generated by

$$v(x) = \sum_{i=1}^{n+1} v_i \phi_i(x)$$

where $\phi_i(x) = N_i(x)$,

$$N_i(x) = \left\{ egin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \ 0, & ext{otherwise} \end{array}
ight\}$$

Here, $h_i = x_{i+1} - x_i$ and $N_i(x_j) = \delta_{ij}$.



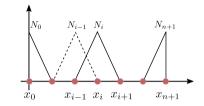
(Hat Functions).

Consider space ${\cal S}$ generated by

$$v(x) = \sum_{i=1}^{n+1} v_i \phi_i(x)$$

where $\phi_i(x) = N_i(x)$,

$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$



(Hat Functions).

Here, $h_i = x_{i+1} - x_i$ and $N_i(x_j) = \delta_{ij}$.

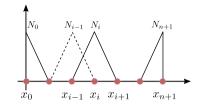
Mesh: $x_0, x_1, ..., x_{n+1}$. Elements: $e_i = \{x | x_{i-1} \le x \le x_{i+1}\}$. Shape Functions: $N_i(x)$.

Consider space ${\cal S}$ generated by

$$v(x) = \sum_{i=1}^{n+1} v_i \phi_i(x)$$

where $\phi_i(x) = N_i(x)$,

$$N_{i}(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_{i}] \\ (x_{i+1} - x)/h_{i}, & x \in [x_{i}, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$



(Hat Functions).

Here, $h_i = x_{i+1} - x_i$ and $N_i(x_j) = \delta_{ij}$.

Mesh: $x_0, x_1, ..., x_{n+1}$. Elements: $e_i = \{x | x_{i-1} \le x \le x_{i+1}\}$. Shape Functions: $N_i(x)$.

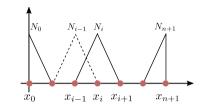
Let $S = \{v | v \in C[0, L], v(x) = \sum_{i=1}^{n} v_i N_i(x)\}$, referred to as the **shape space**.

Consider space $\mathcal S$ generated by

$$v(x) = \sum_{i=1}^{n+1} v_i \phi_i(x)$$

where $\phi_i(x) = N_i(x)$,

$$N_{i}(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_{i}] \\ (x_{i+1} - x)/h_{i}, & x \in [x_{i}, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$



(Hat Functions).

Here, $h_i = x_{i+1} - x_i$ and $N_i(x_i) = \delta_{ij}$.

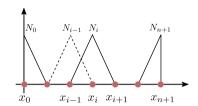
Mesh: $x_0, x_1, \ldots, x_{n+1}$. Elements: $e_i = \{x | x_{i-1} \le x \le x_{i+1}\}$. Shape Functions: $N_i(x)$.

Let $S = \{v | v \in C[0, L], v(x) = \sum_{i=1}^{n} v_i N_i(x)\}$, referred to as the **shape space**.

We would like to carry-out the Ritz-Galerkin approximations over this space.

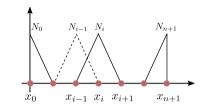
Shape functions:

$$N_i(x) = \left\{ egin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \ 0, & ext{otherwise} \end{array}
ight\}$$



Shape functions:

$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$

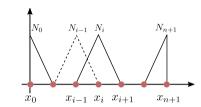


Consider the heat equation in 1D on [0, L]

$$\left\{ \begin{array}{ll} \frac{d^2u}{dx^2} = f(x), & x \in [0,L] \\ u(0) = T_1, u(L) = T_2, & x \text{ on boundary} \end{array} \right.$$

Shape functions:

$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$



Consider the heat equation in 1D on [0, L]

$$\begin{cases} \frac{d^2u}{dx^2} = f(x), & x \in [0, L] \\ u(0) = T_1, u(L) = T_2, & x \text{ on boundary} \end{cases}$$

Boundary conditions: $u_0 = T_1$ and $u_{n+1} = T_2$ throughout.

Shape functions:

$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$



Consider the heat equation in 1D on [0, L]

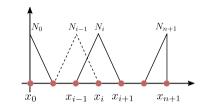
$$\left\{ \begin{array}{l} \frac{d^2u}{dx^2} = f(x), & x \in [0, L] \\ u(0) = T_1, u(L) = T_2, & x \text{ on boundary} \end{array} \right.$$

Boundary conditions: $u_0 = T_1$ and $u_{n+1} = T_2$ throughout. Weak form

Finite Element Methods http://atzberger.org/

Shape functions:

$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$



Consider the heat equation in 1D on [0, L]

$$\begin{cases} \frac{d^2u}{dx^2} = f(x), & x \in [0, L] \\ u(0) = T_1, u(L) = T_2, & x \text{ on boundary} \end{cases}$$

Boundary conditions: $u_0 = T_1$ and $u_{n+1} = T_2$ throughout. Weak form

$$a(u,v)=(-f,v), \ \forall v\in\mathcal{V}, \qquad \text{WLOG } \mathcal{V}=\{v|v\in C[0,L], v(0)=v(L)=0\}$$

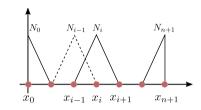
We obtain Ritz-Galerkin Approximation by considering finite dimensional problem

$$a(u_S, v) = (-f, v), \ \forall v \in S,$$
 WLOG $S = \{v | v = \sum_{i=1}^{n} v_i N_i(x)\}$

Finite Element Methods http://atzberger.org/

Shape functions:

$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$



Consider the heat equation in 1D on [0, L]

$$\begin{cases} \frac{d^2u}{dx^2} = f(x), & x \in [0, L] \\ u(0) = T_1, u(L) = T_2, & x \text{ on boundary} \end{cases}$$

Boundary conditions: $u_0 = T_1$ and $u_{n+1} = T_2$ throughout. Weak form

$$a(u,v)=(-f,v), \ \forall v\in\mathcal{V}, \qquad \text{WLOG} \ \mathcal{V}=\{v|v\in\mathcal{C}[0,L],v(0)=v(L)=0\}$$

We obtain Ritz-Galerkin Approximation by considering finite dimensional problem

$$a(u_S, v) = (-f, v), \ \forall v \in S,$$
 WLOG $S = \{v | v = \sum_{i=1}^{n} v_i N_i(x)\}$

To obtain stiffness matrix K and load vector \mathbf{f} , we need to compute the inner-products.

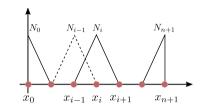
Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Shape functions:

$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$

Ritz-Galerkin Approximation

$$a(u_S, v) = (-f, v), \ \forall v \in S, \qquad S = \{v | v = \sum_{i=1}^{n} v_i N_i(x)\}$$

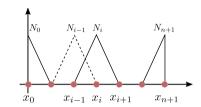


Shape functions:

$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$

Ritz-Galerkin Approximation

$$a(u_S, v) = (-f, v), \ \forall v \in S, \qquad S = \{v | v = \sum_{i=1}^n v_i N_i(x)\}$$



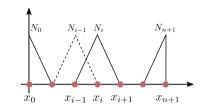
Shape functions:

$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$

Ritz-Galerkin Approximation

$$a(u_S, v) = (-f, v), \ \forall v \in S, \qquad S = \{v | v = \sum_{i=1}^n v_i N_i(x)\}$$

$$a(N_{i-1}, N_i) = \int_{x_{i-1}}^{x_i} -1/h_{i-1}^2 dx = -\frac{1}{h_{i-1}}, 1 \le i \le n+1$$



Shape functions:

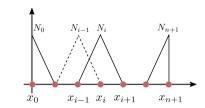
$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$

Ritz-Galerkin Approximation

$$a(u_S, v) = (-f, v), \ \forall v \in S, \qquad S = \{v | v = \sum_{i=1}^n v_i N_i(x)\}$$

$$a(N_{i-1}, N_i) = \int_{x_{i-1}}^{x_i} -1/h_{i-1}^2 dx = -\frac{1}{h_{i-1}}, 1 \le i \le n+1$$

$$a(N_i, N_i) = \int_{x_{i-1}}^{x_i} 1/h_{i-1}^2 dx + \int_{x_i}^{x_{i+1}} 1/h_i^2 dx = \frac{1}{h_{i-1}} + \frac{1}{h_i}.$$



Shape functions:

$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$

Ritz-Galerkin Approximation

$$a(u_S, v) = (-f, v), \ \forall v \in S, \qquad S = \{v | v = \sum_{i=1}^n v_i N_i(x)\}$$

$$x_0$$
 x_{i-1} x_i x_{i+1} x_{n+1}

$$a(N_{i-1}, N_i) = \int_{x_{i-1}}^{x_i} -1/h_{i-1}^2 dx = -\frac{1}{h_{i-1}}, 1 \le i \le n+1$$

$$a(N_i, N_i) = \int_{x_{i-1}}^{x_i} 1/h_{i-1}^2 dx + \int_{x_i}^{x_{i+1}} 1/h_i^2 dx = \frac{1}{h_{i-1}} + \frac{1}{h_i}.$$

$$(-f, N_i) = -\int_{x_{i-1}}^{x_{i+1}} f(x)N_i(x)dx.$$

Shape functions:

$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$

Ritz-Galerkin Approximation

$$a(u_{\mathcal{S}}, v) = (-f, v), \ \forall v \in \mathcal{S}, \qquad \mathcal{S} = \{v | v = \sum_{i=1}^{n} v_i N_i(x)\}$$

Stiffness matrix $K_{ij} = a(N_i, N_j)$ when $|i - j| \le 1$, $K_{ij} = 0$ otherwise.

$$x_0$$
 x_{i-1} x_i x_{i+1} x_{n+1}

$$a(N_{i-1}, N_i) = \int_{x_{i-1}}^{x_i} -1/h_{i-1}^2 dx = -\frac{1}{h_{i-1}}, 1 \le i \le n+1$$

$$a(N_i, N_i) = \int_{x_{i-1}}^{x_i} 1/h_{i-1}^2 dx + \int_{x_i}^{x_{i+1}} 1/h_i^2 dx = \frac{1}{h_{i-1}} + \frac{1}{h_i}.$$

$$(-f, N_i) = -\int_{x_{i-1}}^{x_{i+1}} f(x)N_i(x)dx.$$

When $f = \sum_{i=0}^{n+1} f_i N_i(x)$, compute via "mass matrix" $M_{ij} = (N_i, N_j)$, and $[\mathbf{f}]_i = M_{ij} f_j$.

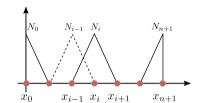
Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Shape functions:

$$N_{i}(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_{i}] \\ (x_{i+1} - x)/h_{i}, & x \in [x_{i}, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$

Ritz-Galerkin Approximation

$$\begin{cases} a(u_S, v) = (-f, v), \ \forall v \in S \\ S = \{v | v = \sum_{i=1}^n v_i N_i(x)\} \end{cases}$$



Shape functions:

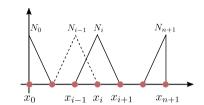
$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$

Ritz-Galerkin Approximation

$$\begin{cases} a(u_S, v) = (-f, v), \ \forall v \in \mathcal{S} \\ \mathcal{S} = \{v | v = \sum_{i=1}^n v_i N_i(x) \} \end{cases}$$

Stiffness matrix when $h_i = h_0 = h$ and load vector when $f(x) = f_0$,

$$K = \frac{1}{h} \begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 \\ 0 & 0 & -1 & \ddots & -1 \\ 0 & 0 & 0 & \cdots & 2 \end{bmatrix},$$



Shape functions:

$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$

Ritz-Galerkin Approximation

$$\begin{cases} a(u_{\mathcal{S}}, v) = (-f, v), \ \forall v \in \mathcal{S} \\ \mathcal{S} = \{v | v = \sum_{i=1}^{n} v_i N_i(x) \} \end{cases}$$

 x_0 x_{i-1} x_i x_{i+1} x_{n+1}

Stiffness matrix when $h_i = h_0 = h$ and load vector when $f(x) = f_0$,

$$\mathcal{K} = rac{1}{h} \left[egin{array}{ccccc} 2 & -1 & 0 & \cdots & 0 \ -1 & 2 & -1 & \cdots & 0 \ 0 & -1 & 2 & \cdots & 0 \ 0 & 0 & -1 & \ddots & -1 \ 0 & 0 & 0 & \cdots & 2 \end{array}
ight], \mathbf{f} = h \left[egin{array}{c} f_0 \ f_0 \ f_0 \ \vdots \ f_0 \end{array}
ight]$$

Shape functions:

$$N_i(x) = \left\{ \begin{array}{ll} (x - x_{i-1})/h_{i-1}, & x \in [x_{i-1}, x_i] \\ (x_{i+1} - x)/h_i, & x \in [x_i, x_{i+1}] \\ 0, & \text{otherwise} \end{array} \right\}$$

 x_0 x_{i-1} x_i x_{i+1} x_{n+1}

Ritz-Galerkin Approximation

$$\begin{cases} a(u_S, v) = (-f, v), \ \forall v \in \mathcal{S} \\ \mathcal{S} = \{v | v = \sum_{i=1}^n v_i N_i(x) \} \end{cases}$$

Stiffness matrix when $h_i = h_0 = h$ and load vector when $f(x) = f_0$,

$$\mathcal{K} = rac{1}{h} \left[egin{array}{ccccc} 2 & -1 & 0 & \cdots & 0 \ -1 & 2 & -1 & \cdots & 0 \ 0 & -1 & 2 & \cdots & 0 \ 0 & 0 & -1 & \ddots & -1 \ 0 & 0 & 0 & \cdots & 2 \end{array}
ight], \mathbf{f} = h \left[egin{array}{c} f_0 \ f_0 \ f_0 \ \vdots \ f_0 \end{array}
ight]$$

In this case, the $K\mathbf{u} = -\mathbf{f}$ has similarities to Finite Difference Method for the heat equation.

We have for any solution u_S to the Ritz-Galerkin approximation

$$a(u-u_S,w)=0, \forall w\in S$$

We have for any solution u_S to the Ritz-Galerkin approximation

$$a(u-u_S,w)=0, \forall w\in S$$

Geometric interpretation $\Rightarrow u_S$ is projection of u to hyperplane spanned by members of S.

We have for any solution u_S to the Ritz-Galerkin approximation

$$a(u-u_S,w)=0, \forall w\in S$$

Geometric interpretation $\Rightarrow u_S$ is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: $||v||_E = \sqrt{a(v,v)}$.

We have for any solution u_S to the Ritz-Galerkin approximation

$$a(u-u_S,w)=0, \forall w\in S$$

Geometric interpretation $\Rightarrow u_S$ is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: $||v||_E = \sqrt{a(v,v)}$.

Lemma

Swartz Inequality: $|a(v, w)| \leq ||v||_E ||w||_E, \forall v, w \in \mathcal{V}$.

We have for any solution u_S to the Ritz-Galerkin approximation

$$a(u-u_S,w)=0, \forall w\in S$$

Geometric interpretation $\Rightarrow u_S$ is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: $||v||_E = \sqrt{a(v,v)}$.

Lemma

Swartz Inequality: $|a(v, w)| \le ||v||_E ||w||_E, \forall v, w \in \mathcal{V}$.

This gives for any $v \in \mathcal{S}$ that

$$||u - u_S||_E^2 = a(u - u_S, u - u_S) = a(u - u_S, u - v) + a(u - u_S, v - u_S)$$

= $a(u - u_S, u - v) \le ||u - u_S||_E ||u - v||_E$ (swartz)

We have for any solution u_S to the Ritz-Galerkin approximation

$$a(u-u_S,w)=0, \forall w\in S$$

Geometric interpretation $\Rightarrow u_S$ is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: $||v||_E = \sqrt{a(v,v)}$.

Lemma

Swartz Inequality: $|a(v, w)| \leq ||v||_E ||w||_E, \forall v, w \in \mathcal{V}$.

This gives for any $v \in \mathcal{S}$ that

$$||u - u_S||_E^2 = a(u - u_S, u - u_S) = a(u - u_S, u - v) + a(u - u_S, v - u_S)$$

= $a(u - u_S, u - v) \le ||u - u_S||_E ||u - v||_E$ (swartz)

If $||u - u_S||_E \neq 0$ we can divide to obtain

We have for any solution u_S to the Ritz-Galerkin approximation

$$a(u-u_S,w)=0, \forall w\in S$$

Geometric interpretation $\Rightarrow u_S$ is projection of u to hyperplane spanned by members of S.

Definition

Energy Norm: $||v||_E = \sqrt{a(v,v)}$.

Lemma

Swartz Inequality: $|a(v, w)| \leq ||v||_E ||w||_E, \forall v, w \in \mathcal{V}$.

This gives for any $v \in \mathcal{S}$ that

$$||u - u_S||_E^2 = a(u - u_S, u - u_S) = a(u - u_S, u - v) + a(u - u_S, v - u_S)$$

= $a(u - u_S, u - v) \le ||u - u_S||_E ||u - v||_E$ (swartz)

If $||u - u_S||_E \neq 0$ we can divide to obtain

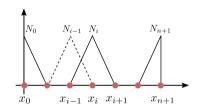
$$||u-u_S||_E \leq ||u-v||_E, \ \forall v \in \mathcal{S}.$$

Paul J. Atzberger, UCSB

This gives

Note,
$$\mathcal{S} \subset \mathcal{V}$$
.

$$||u-u_S||_E \leq \inf\{||u-v||_E|v\in S\}.$$

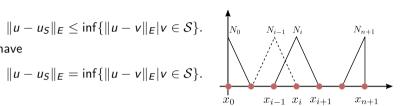


This gives

$$||u-u_S||_E \leq \inf\{||u-v||_E|v\in S\}.$$

Note, $S \subset V$. Since $u_S \in S$, we have

$$|u-u_S||_E = \inf\{||u-v||_E|v \in S$$



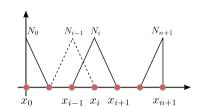
This gives

$$\|u-u_S\|_E \leq \inf\{\|u-v\|_E|v\in \mathcal{S}\}.$$

Note, $S \subset V$. Since $u_S \in S$, we have

$$||u - u_S||_E = \inf\{||u - v||_E | v \in S\}.$$

The u_S is the best approximation possible when using energy norm to measure errors.



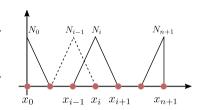
This gives

$$\|u-u_{\mathcal{S}}\|_{\mathcal{E}} \leq \inf\{\|u-v\|_{\mathcal{E}}|v\in\mathcal{S}\}.$$
 No wave

Note, $S \subset V$. Since $u_S \in S$, we have

$$||u - u_S||_E = \inf\{||u - v||_E | v \in S\}.$$

The u_S is the best approximation possible when using energy norm to measure errors.



Example (linear elements):

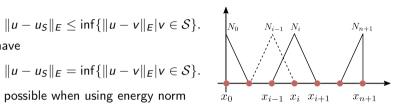
This gives

$$||u-u_S||_E \le \inf\{||u-v||_E|v \in \mathcal{S}\}.$$

Note, $S \subset V$. Since $u_S \in S$, we have

$$\|u - u_S\|_E = \inf\{\|u - v\|_E | v \in \mathcal{S}\}$$

The u_s is the best approximation possible when using energy norm to measure errors.



Example (linear elements):

The Green's function for $-d^2u/dx^2 = f$ is given by

$$G(x,x_0) = \left\{ \begin{array}{ll} x, & x < x_0 \\ x_0, & x_0, \text{ otherwise} \end{array} \right\}, \quad \frac{dG}{dx} = \left\{ \begin{array}{ll} 1, & x < x_0 \\ 0, & x_0, \text{ otherwise} \end{array} \right\}, \quad \frac{d^2G}{dx^2} = -\delta(x-x_0).$$

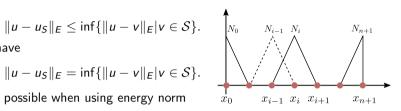
This gives

$$||u-u_S||_E \leq \inf\{||u-v||_E|v\in S\}.$$

Note, $S \subset V$. Since $u_S \in S$, we have

$$\|u - u_S\|_E = \inf\{\|u - v\|_E | v \in \mathcal{S}\}$$

The u_s is the best approximation possible when using energy norm to measure errors.



Example (linear elements):

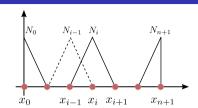
The Green's function for $-d^2u/dx^2 = f$ is given by

$$G(x,x_0) = \left\{ \begin{array}{ll} x, & x < x_0 \\ x_0, & x_0, \text{ otherwise} \end{array} \right\}, \quad \frac{dG}{dx} = \left\{ \begin{array}{ll} 1, & x < x_0 \\ 0, & x_0, \text{ otherwise} \end{array} \right\}, \quad \frac{d^2G}{dx^2} = -\delta(x-x_0).$$

The solution u above can be expressed as

$$u(x) = \int G(x, y) f(y) dy.$$

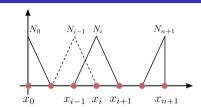
Example (linear elements) (continued)



Example (linear elements) (continued)

The Green's function also has the property that

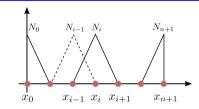
$$v(x_0) = a(v, G(\cdot, x_0)), \ \forall v \in \mathcal{V}$$



Example (linear elements) (continued)

The Green's function also has the property that

$$v(x_0) = a(v,G(\cdot,x_0)), \ \forall v \in \mathcal{V}$$



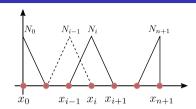
Putting this together we have the error can be expressed as

$$(u - u_S)(x_0) = a(u - u_S, G(\cdot, x_0)) = a(u - u_S, G(\cdot, x_0) - v), \quad \forall v \in S$$

Example (linear elements) (continued)

The Green's function also has the property that

$$v(x_0) = a(v, G(\cdot, x_0)), \ \forall v \in \mathcal{V}$$



Putting this together we have the error can be expressed as

$$(u - u_S)(x_0) = a(u - u_S, G(\cdot, x_0)) = a(u - u_S, G(\cdot, x_0) - v), \quad \forall v \in S$$

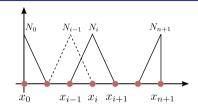
Since $G \in \mathcal{S}$ we have at the nodes x_1, x_2, \dots, x_n that

$$(u-u_S)(x_i) = a(u-u_S, G(\cdot, x_i) - v) = 0, \quad \forall v \in S$$

Example (linear elements) (continued)

The Green's function also has the property that

$$v(x_0) = a(v, G(\cdot, x_0)), \ \forall v \in \mathcal{V}$$



Putting this together we have the error can be expressed as

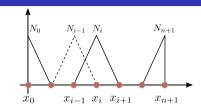
$$(u-u_S)(x_0)=a(u-u_S,G(\cdot,x_0))=a(u-u_S,G(\cdot,x_0)-v), \qquad \forall v\in S$$

Since $G \in \mathcal{S}$ we have at the nodes x_1, x_2, \dots, x_n that

$$(u-u_S)(x_i)=a(u-u_S,G(\cdot,x_i)-v)=0, \qquad \forall v\in S$$

This means u_S is piece-wise linear with $u_S(x_i) = u(x_i)$. We denote $u_S = u_I$ where u_I is the linear interpolation of the solution.

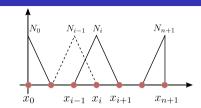
Lemma: The error of linear interpolation satisfies $\|u - u_I\|_{\infty} \le Ch^2 \|u''\|_{\infty}$.



Lemma: The error of linear interpolation satisfies

$$\|u-u_I\|_{\infty}\leq Ch^2\|u''\|_{\infty}.$$

Proof: We have $(u - u_I)(0) = 0 = (u - u_I)(h)$ since these are node locations.



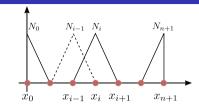
Lemma: The error of linear interpolation satisfies

$$\|u-u_I\|_{\infty} \leq Ch^2\|u''\|_{\infty}.$$

Proof: We have $(u - u_I)(0) = 0 = (u - u_I)(h)$ since these are node locations.

By Rolle's Lemma we have there exists $x_* \in [0,h]$ s.t.

$$u'(x_*) - u'_I(x_*) = 0.$$



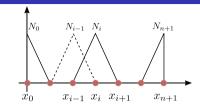
Lemma: The error of linear interpolation satisfies

$$\|u-u_I\|_{\infty}\leq Ch^2\|u''\|_{\infty}.$$

Proof: We have $(u - u_I)(0) = 0 = (u - u_I)(h)$ since these are node locations.

By Rolle's Lemma we have there exists $x_* \in [0, h]$ s.t.

 $u'(x_*) - u_I'(x_*) = 0$. Note this will be maximum or minimum, or on boundary. WLOG interior case, then $|(u - u_I)(x_*)| = ||u - u_I||_{\infty}$.

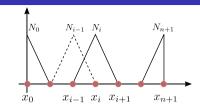


Lemma: The error of linear interpolation satisfies

$$\|u-u_I\|_{\infty}\leq Ch^2\|u''\|_{\infty}.$$

Proof: We have $(u - u_I)(0) = 0 = (u - u_I)(h)$ since these are node locations.

By Rolle's Lemma we have there exists $x_* \in [0, h]$ s.t. $u'(x_*) - u'_I(x_*) = 0$. Note this will be maximum or minimum, or on boundary. WLOG interior case, then $|(u - u_I)(x_*)| = ||u - u_I||_{\infty}$. By the Taylor Remainder theorem we have for some $\xi \in [0, h]$ that



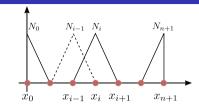
$$(u-u_I)(x)=(u-u_I)(x_0)+(u'-u_I')(x_0)(x-x_0)+\frac{1}{2}(u''-u_I'')(\xi)(x-x_0)^2$$

Lemma: The error of linear interpolation satisfies

$$||u-u_I||_{\infty} \leq Ch^2||u''||_{\infty}.$$

Proof: We have $(u - u_I)(0) = 0 = (u - u_I)(h)$ since these are node locations.

By Rolle's Lemma we have there exists $x_* \in [0, h]$ s.t. $u'(x_*) - u'_I(x_*) = 0$. Note this will be maximum or minimum, or on boundary. WLOG interior case, then $|(u - u_I)(x_*)| = ||u - u_I||_{\infty}$. By the Taylor Remainder theorem we have for some $\xi \in [0, h]$ that



$$(u-u_I)(x)=(u-u_I)(x_0)+(u'-u_I')(x_0)(x-x_0)+\frac{1}{2}(u''-u_I'')(\xi)(x-x_0)^2$$

Let
$$x = 0, x_0 = x_*$$
, then

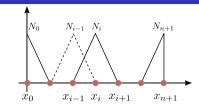
$$0 = (u - u_I)(x_*) + 0 + \frac{1}{2}(u'' - u_I'')(\xi)(x - x_*)^2 \Rightarrow (u - u_I)(x_*) = -\frac{1}{2}u''(\xi)(x - x_*)^2$$

Lemma: The error of linear interpolation satisfies

$$\|u-u_I\|_{\infty}\leq Ch^2\|u''\|_{\infty}.$$

Proof: We have $(u - u_I)(0) = 0 = (u - u_I)(h)$ since these are node locations.

By Rolle's Lemma we have there exists $x_* \in [0, h]$ s.t. $u'(x_*) - u'_I(x_*) = 0$. Note this will be maximum or minimum, or on boundary. WLOG interior case, then $|(u - u_I)(x_*)| = ||u - u_I||_{\infty}$. By the Taylor Remainder theorem we have for some $\xi \in [0, h]$ that



$$(u-u_I)(x)=(u-u_I)(x_0)+(u'-u_I')(x_0)(x-x_0)+\frac{1}{2}(u''-u_I'')(\xi)(x-x_0)^2$$

Let $x = 0, x_0 = x_*$, then

$$0 = (u - u_I)(x_*) + 0 + \frac{1}{2}(u'' - u_I'')(\xi)(x - x_*)^2 \Rightarrow (u - u_I)(x_*) = -\frac{1}{2}u''(\xi)(x - x_*)^2$$

$$\Rightarrow \|u - u_I\|_{\infty} \le Ch^2 \|u''\|_{\infty}. \blacksquare$$

Theorem:

For S = "space of piecewise linear functions" (linear elements) the solution u_S has the error

$$\|u-u_{\mathcal{S}}\|_{\infty}\leq Ch^2\|u''\|_{\infty}.$$

Theorem:

For S = "space of piecewise linear functions" (linear elements) the solution u_S has the error

$$\|u-u_{\mathcal{S}}\|_{\infty}\leq Ch^2\|u''\|_{\infty}.$$

Remark:

Shows the Ritz-Galerkin approximation with linear elements has error that decays like $O(h^2)$.

Theorem:

For $\mathcal{S}=$ "space of piecewise linear functions" (linear elements) the solution $u_{\mathcal{S}}$ has the error

$$\|u-u_{\mathcal{S}}\|_{\infty}\leq Ch^2\|u''\|_{\infty}.$$

Remark:

Shows the Ritz-Galerkin approximation with linear elements has error that decays like $O(h^2)$.

We have $h \sim 1/n$, where n is the number of elements. If we double the number of elements \Rightarrow error reduced by factor of 1/4.

Theorem:

For $\mathcal{S}=$ "space of piecewise linear functions" (linear elements) the solution $u_{\mathcal{S}}$ has the error

$$\|u-u_S\|_{\infty}\leq Ch^2\|u''\|_{\infty}.$$

Remark:

Shows the Ritz-Galerkin approximation with linear elements has error that decays like $O(h^2)$.

We have $h \sim 1/n$, where n is the number of elements. If we double the number of elements \Rightarrow error reduced by factor of 1/4.

For computational efficiency we ideally would like high-order methods with $\epsilon = O(h^{\alpha})$, with α as large as possible.

Theorem:

For $\mathcal{S}=$ "space of piecewise linear functions" (linear elements) the solution $u_{\mathcal{S}}$ has the error

$$\|u-u_S\|_{\infty}\leq Ch^2\|u''\|_{\infty}.$$

Remark:

Shows the Ritz-Galerkin approximation with linear elements has error that decays like $O(h^2)$.

We have $h \sim 1/n$, where n is the number of elements. If we double the number of elements \Rightarrow error reduced by factor of 1/4.

For computational efficiency we ideally would like high-order methods with $\epsilon = O(h^{\alpha})$, with α as large as possible.

Key is to design function spaces and study their interpolation theory, since this indicates FEM errors.