Paul J. Atzberger

206D: Finite Element Methods University of California Santa Barbara

The $L^2(\Omega)$ for a smooth domain Ω , denotes the space of all functions f that are Lebegue square-integrable $\int_{\Omega} f^2 dx < \infty$.

The $L^2(\Omega)$ for a smooth domain Ω , denotes the space of all functions f that are Lebegue square-integrable $\int_{\Omega} f^2 dx < \infty$. We define the L^2 -inner-product as

$$(u, v)_0 = (u, v)_{L^2} = \int_{\Omega} u(x)v(x)dx.$$

The $L^2(\Omega)$ for a smooth domain Ω , denotes the space of all functions f that are Lebegue square-integrable $\int_{\Omega} f^2 dx < \infty$. We define the L^2 -inner-product as

$$(u, v)_0 = (u, v)_{L^2} = \int_{\Omega} u(x)v(x)dx.$$

This has the compatible L^2 -norm

$$||u||_2 = \sqrt{(u,u)_{L^2}}.$$

The $L^2(\Omega)$ for a smooth domain Ω , denotes the space of all functions f that are Lebegue square-integrable $\int_{\Omega} f^2 dx < \infty$. We define the L^2 -inner-product as

$$(u, v)_0 = (u, v)_{L^2} = \int_{\Omega} u(x)v(x)dx.$$

This has the compatible L^2 -norm

$$||u||_2 = \sqrt{(u,u)_{L^2}}.$$

Definition:

A function $u \in L^2$ has as its **weak derivative** $v = \mathcal{D}_{\alpha} u = \partial^{\alpha} u$ if

$$(v,w)_{L^2}=(-1)^{|\alpha|}(u,\partial^{\alpha}w)_{L^2},\ \forall w\in C_0^{\infty}.$$

The $L^2(\Omega)$ for a smooth domain Ω , denotes the space of all functions f that are Lebegue square-integrable $\int_{\Omega} f^2 dx < \infty$. We define the L^2 -inner-product as

$$(u, v)_0 = (u, v)_{L^2} = \int_{\Omega} u(x)v(x)dx.$$

This has the compatible L^2 -norm

$$||u||_2 = \sqrt{(u,u)_{L^2}}.$$

Definition:

A function $u \in L^2$ has as its **weak derivative** $v = \mathcal{D}_{\alpha} u = \partial^{\alpha} u$ if

$$(v,w)_{L^2}=(-1)^{|\alpha|}(u,\partial^{\alpha}w)_{L^2}, \ \forall w\in C_0^{\infty}.$$

 C^{∞} is the space of all functions is infinitely continuously differentiable.

The $L^2(\Omega)$ for a smooth domain Ω , denotes the space of all functions f that are Lebegue square-integrable $\int_{\Omega} f^2 dx < \infty$. We define the L^2 -inner-product as

$$(u, v)_0 = (u, v)_{L^2} = \int_{\Omega} u(x)v(x)dx.$$

This has the compatible L^2 -norm

$$||u||_2 = \sqrt{(u,u)_{L^2}}.$$

Definition:

A function $u \in L^2$ has as its **weak derivative** $v = \mathcal{D}_{\alpha} u = \partial^{\alpha} u$ if

$$(v,w)_{L^2}=(-1)^{|\alpha|}(u,\partial^{\alpha}w)_{L^2}, \ \forall w\in C_0^{\infty}.$$

 C^{∞} is the space of all functions is infinitely continuously differentiable.

The $C_0^{\infty} \subset C^{\infty}$ are all functions zero outside a compact set.

For any integer $m \ge 0$, let H^m be the space of all functions that have weak derivatives $\partial^{\alpha} u$ up to order m, $|\alpha| \le m$.

For any integer $m \ge 0$, let H^m be the space of all functions that have weak derivatives $\partial^{\alpha} u$ up to order m, $|\alpha| \le m$.

We define an **inner-product on** H^m as

$$(u,v)_m = \sum_{|\alpha| \leq m} (\partial^{\alpha} u, \partial^{\alpha} v).$$

For any integer $m \ge 0$, let H^m be the space of all functions that have weak derivatives $\partial^{\alpha} u$ up to order m, $|\alpha| \le m$.

We define an **inner-product on** H^m as

$$(u,v)_m = \sum_{|\alpha| \leq m} (\partial^{\alpha} u, \partial^{\alpha} v).$$

We define H^m -norm as

$$\|u\|_m = \sqrt{(u,u)_m} = \sqrt{\sum_{|\alpha| \leq m} \|\partial^{\alpha}u\|_{L^2}^2}.$$

For any integer $m \ge 0$, let H^m be the space of all functions that have weak derivatives $\partial^{\alpha} u$ up to order m, $|\alpha| \le m$.

We define an **inner-product on** H^m as

$$(u,v)_m = \sum_{|\alpha| \leq m} (\partial^{\alpha} u, \partial^{\alpha} v).$$

We define H^m -norm as

$$\|u\|_m = \sqrt{(u,u)_m} = \sqrt{\sum_{|\alpha| \leq m} \|\partial^{\alpha}u\|_{L^2}^2}.$$

We define k-semi-norm as

$$|u|_k = \sqrt{\sum_{|\alpha|=k} (\partial^{\alpha} u, \partial^{\alpha} u)_0} = \sqrt{\sum_{|\alpha|=k} \|\partial^{\alpha} u\|_{L^2}^2}.$$

For any integer $m \ge 0$, let H^m be the space of all functions that have weak derivatives $\partial^{\alpha} u$ up to order m, $|\alpha| \le m$.

We define an **inner-product on** H^m as

$$(u,v)_m = \sum_{|\alpha| \leq m} (\partial^{\alpha} u, \partial^{\alpha} v).$$

We define H^m -norm as

$$\|u\|_m = \sqrt{(u,u)_m} = \sqrt{\sum_{|\alpha| \leq m} \|\partial^{\alpha}u\|_{L^2}^2}.$$

We define k-semi-norm as

$$|u|_k = \sqrt{\sum_{|\alpha|=k} (\partial^{\alpha} u, \partial^{\alpha} u)_0} = \sqrt{\sum_{|\alpha|=k} \|\partial^{\alpha} u\|_{L^2}^2}.$$

We refer to H^m with this inner-product as a **Sobolev space**. Also denoted by $W^{m,2}$.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

We can define Sobolev spaces without resorting directly to the notion of weak derivatives.

We can define Sobolev spaces without resorting directly to the notion of weak derivatives.

Theorem

Let $\Omega \subset \mathbb{R}^n$ be an open set with piecewise smooth boundary. Let $m \geq 0$, then $C^{\infty}(\Omega) \cap H^m(\Omega)$ is dense in $H^m(\Omega)$ under the norm $\|\cdot\|_m$.

We can define Sobolev spaces without resorting directly to the notion of weak derivatives.

Theorem

Let $\Omega \subset \mathbb{R}^n$ be an open set with piecewise smooth boundary. Let $m \geq 0$, then $C^{\infty}(\Omega) \cap H^m(\Omega)$ is dense in $H^m(\Omega)$ under the norm $\|\cdot\|_m$.

This means that we can view H^m as the natural extension of working with smooth functions $C^{\infty}(\Omega)$ and inner-product $(\cdot, \cdot)_m$.

We can define Sobolev spaces without resorting directly to the notion of weak derivatives.

Theorem

Let $\Omega \subset \mathbb{R}^n$ be an open set with piecewise smooth boundary. Let $m \geq 0$, then $C^{\infty}(\Omega) \cap H^m(\Omega)$ is dense in $H^m(\Omega)$ under the norm $\|\cdot\|_m$.

This means that we can view H^m as the natural extension of working with smooth functions $C^{\infty}(\Omega)$ and inner-product $(\cdot, \cdot)_m$.

The H^m is the completion under $\|\cdot\|_m$.

We can define Sobolev spaces without resorting directly to the notion of weak derivatives.

Theorem

Let $\Omega \subset \mathbb{R}^n$ be an open set with piecewise smooth boundary. Let $m \geq 0$, then $C^{\infty}(\Omega) \cap H^m(\Omega)$ is dense in $H^m(\Omega)$ under the norm $\|\cdot\|_m$.

This means that we can view H^m as the natural extension of working with smooth functions $C^{\infty}(\Omega)$ and inner-product $(\cdot, \cdot)_m$.

The H^m is the completion under $\|\cdot\|_m$.

Definition

Denote the completion of $C_0^{\infty}(\Omega)$ under $\|\cdot\|_m$ by H_0^m .

We can define Sobolev spaces without resorting directly to the notion of weak derivatives.

Theorem

Let $\Omega \subset \mathbb{R}^n$ be an open set with piecewise smooth boundary. Let $m \geq 0$, then $C^{\infty}(\Omega) \cap H^m(\Omega)$ is dense in $H^m(\Omega)$ under the norm $\|\cdot\|_m$.

This means that we can view H^m as the natural extension of working with smooth functions $C^{\infty}(\Omega)$ and inner-product $(\cdot, \cdot)_m$.

The H^m is the completion under $\|\cdot\|_m$.

Definition

Denote the completion of $C_0^{\infty}(\Omega)$ under $\|\cdot\|_m$ by H_0^m .

We have the following relations between the function spaces

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

We can also define function spaces based on $L^p(\Omega)$, C^{∞} , C_0^{∞} similarly using the norm $\|\cdot\|_p$.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

We can also define function spaces based on $L^p(\Omega)$, C^{∞} , C_0^{∞} similarly using the norm $\|\cdot\|_p$.

Definition

The Sobolev space denoted by $W^{m,p}$ (also by W^m_p) is the collection of functions obtained by completing $C^{\infty}(\Omega) \subset L^p(\Omega)$ under the norm $\|\cdot\|_m$.

We can also define function spaces based on $L^p(\Omega)$, C^{∞} , C_0^{∞} similarly using the norm $\|\cdot\|_p$.

Definition

The Sobolev space denoted by $W^{m,p}$ (also by W^m_p) is the collection of functions obtained by completing $C^{\infty}(\Omega) \subset L^p(\Omega)$ under the norm $\|\cdot\|_m$.

Similarly, we obtain $W_0^{m,p}$ by completing $C_0^{\infty}(\Omega) \subset L^p(\Omega)$ under $\|\cdot\|_m$.

Definition

Consider a given domain Ω and compact sets $K \subset \Omega$. We define the set of **locally integrable** functions as

$$L^1_{loc}(\Omega) := \{ v | v \in L^1(K), \ \forall K \subset \Omega^o \}$$

Definition

Consider a given domain Ω and compact sets $K \subset \Omega$. We define the set of **locally integrable** functions as

$$L^1_{loc}(\Omega) := \{ v | v \in L^1(K), \ \forall K \subset \Omega^o \}$$

These functions can behave poorly near the boundary of Ω as illustrated by $v(x) = \phi(1/\operatorname{dist}(x,\partial\Omega))$ where $\phi(x) = e^{e^x}$ which still yields $v \in L^1_{loc}(\Omega)$.

Definition

Consider a given domain Ω and compact sets $K \subset \Omega$. We define the set of **locally integrable** functions as

$$L^1_{loc}(\Omega) := \{ v | v \in L^1(K), \ \forall K \subset \Omega^o \}$$

These functions can behave poorly near the boundary of Ω as illustrated by $v(x) = \phi(1/\mathrm{dist}(x,\partial\Omega))$ where $\phi(x) = e^{e^x}$ which still yields $v \in L^1_{loc}(\Omega)$.

Definition

The $p = \infty$ norm is given by

$$||v||_{L^{\infty}(\Omega)} := \operatorname{ess-sup}\{|v(x)| \mid x \in \Omega\}$$

Definition

Consider a given domain Ω and compact sets $K \subset \Omega$. We define the set of **locally integrable** functions as

$$L^1_{loc}(\Omega) := \{ v | v \in L^1(K), \ \forall K \subset \Omega^o \}$$

These functions can behave poorly near the boundary of Ω as illustrated by $v(x) = \phi(1/\mathrm{dist}(x,\partial\Omega))$ where $\phi(x) = e^{e^x}$ which still yields $v \in L^1_{loc}(\Omega)$.

Definition

The $p = \infty$ norm is given by

$$||v||_{L^{\infty}(\Omega)} := \operatorname{ess-sup}\{|v(x)| \mid x \in \Omega\}$$

If U = ess-sup(v) then $v(x) \leq U$ for almost every $x \in \Omega$ (except set of measure zero).

Definition

Consider a given domain Ω and compact sets $K \subset \Omega$. We define the set of **locally integrable** functions as

$$L^1_{loc}(\Omega) := \{ v | v \in L^1(K), \ \forall K \subset \Omega^o \}$$

These functions can behave poorly near the boundary of Ω as illustrated by $v(x) = \phi(1/\mathrm{dist}(x,\partial\Omega))$ where $\phi(x) = e^{e^x}$ which still yields $v \in L^1_{loc}(\Omega)$.

Definition

The $p = \infty$ norm is given by

$$||v||_{L^{\infty}(\Omega)} := \operatorname{ess-sup}\{|v(x)| \mid x \in \Omega\}$$

If $U = \operatorname{ess-sup}(v)$ then $v(x) \leq U$ for almost every $x \in \Omega$ (except set of measure zero).

Example: Let f(x) = 3 on the rationals \mathbb{Q} and f(x) = 2 on the positive irrationals $\mathbb{R}^+ \setminus \mathbb{Q}$ and f(x) = -1 on the negative irrationals $\mathbb{R}^- \setminus \mathbb{Q}$.

Definition

Consider a given domain Ω and compact sets $K \subset \Omega$. We define the set of **locally integrable** functions as

$$L^1_{loc}(\Omega) := \{ v | v \in L^1(K), \ \forall K \subset \Omega^o \}$$

These functions can behave poorly near the boundary of Ω as illustrated by $v(x) = \phi(1/\mathrm{dist}(x,\partial\Omega))$ where $\phi(x) = e^{e^x}$ which still yields $v \in L^1_{\mathrm{loc}}(\Omega)$.

Definition

The $p = \infty$ norm is given by

$$||v||_{L^{\infty}(\Omega)} := \operatorname{ess-sup}\{|v(x)| \mid x \in \Omega\}$$

If U = ess-sup(v) then $v(x) \leq U$ for almost every $x \in \Omega$ (except set of measure zero).

Example: Let f(x) = 3 on the rationals \mathbb{Q} and f(x) = 2 on the positive irrationals $\mathbb{R}^+ \setminus \mathbb{Q}$ and f(x) = -1 on the negative irrationals $\mathbb{R}^- \setminus \mathbb{Q}$. We have ess-sup $\{f(x) \mid x \in \Omega\} = 2$

Definition

Consider a given domain Ω and compact sets $K \subset \Omega$. We define the set of **locally integrable** functions as

$$L^1_{loc}(\Omega) := \{ v | v \in L^1(K), \ \forall K \subset \Omega^o \}$$

These functions can behave poorly near the boundary of Ω as illustrated by $v(x) = \phi(1/\mathrm{dist}(x,\partial\Omega))$ where $\phi(x) = e^{e^x}$ which still yields $v \in L^1_{\mathrm{loc}}(\Omega)$.

Definition

The $p = \infty$ norm is given by

$$||v||_{L^{\infty}(\Omega)} := \operatorname{ess-sup}\{|v(x)| \mid x \in \Omega\}$$

If U = ess-sup(v) then $v(x) \leq U$ for almost every $x \in \Omega$ (except set of measure zero).

Example: Let f(x)=3 on the rationals \mathbb{Q} and f(x)=2 on the positive irrationals $\mathbb{R}^+\setminus\mathbb{Q}$ and f(x)=-1 on the negative irrationals $\mathbb{R}^-\setminus\mathbb{Q}$. We have ess-sup $\{f(x)\mid x\in\Omega\}=2$ and ess-inf $\{f(x)\mid x\in\Omega\}=-$ ess-sup $\{-f(x)\mid x\in\Omega\}=-1$.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Definition

For $1 \le p < \infty$, we define the **Sobolev norm** as

$$\|v\|_{W^k_
ho}(\Omega) := \left(\sum_{|lpha| \leq k} \|D^lpha_w v\|_{L^p(\Omega)}^
ho
ight)^{1/
ho},$$

Definition

For $1 \le p < \infty$, we define the **Sobolev norm** as

$$\|v\|_{W^k_
ho}(\Omega):=\left(\sum_{|lpha|\leq k}\|D^lpha_wv\|^
ho_{L^
ho(\Omega)}
ight)^{1/
ho},$$

We assume k is a non-negative integer, $v \in L^1_{loc}(\Omega)$, and $D^{\alpha}_w v$ exists for all $|\alpha| \leq k$.

Definition

For $1 \le p < \infty$, we define the **Sobolev norm** as

$$\|v\|_{W^k_
ho}(\Omega):=\left(\sum_{|lpha|\leq k}\|D^lpha_wv\|^
ho_{L^
ho(\Omega)}
ight)^{1/
ho},$$

We assume k is a non-negative integer, $v \in L^1_{loc}(\Omega)$, and $D^{\alpha}_w v$ exists for all $|\alpha| \leq k$.

For $p = \infty$, we define the **Sobolev norm** as

$$\|v\|_{W^k_\infty(\Omega)} := \max_{|\alpha| \le k} \|D^\alpha_w v\|_{L^\infty(\Omega)}.$$

Definition

The **Sobolev space** is defined as

$$W_p^k(\Omega) := \{ v \in L^1_{loc}(\Omega) \mid ||v||_{W_p^k(\Omega)} < \infty \}$$

Definition

The **Sobolev space** is defined as

$$W_{\rho}^{k}(\Omega) := \{ v \in L^{1}_{loc}(\Omega) \mid \|v\|_{W_{\rho}^{k}(\Omega)} < \infty \}$$

Definition

For $1 \le p < \infty$, we define the **Sobolev semi-norm** as

$$|
u|_{W^k_
ho}(\Omega) := \left(\sum_{|lpha|=k} \|D^lpha_w
u\|_{L^p(\Omega)}^
ho
ight)^{1/
ho},$$

Definition

The **Sobolev space** is defined as

$$W^k_{
ho}(\Omega):=\{v\in L^1_{ ext{loc}}(\Omega)\mid \|v\|_{W^k_{
ho}(\Omega)}<\infty\}$$

Definition

For $1 \le p < \infty$, we define the **Sobolev semi-norm** as

$$|v|_{\mathcal{W}^k_p}(\Omega) := \left(\sum_{|lpha|=k} \|D^lpha_w v\|_{L^p(\Omega)}^p
ight)^{1/p},$$

For $p = \infty$, the **Sobolev semi-norm** as

$$|v|_{W^k_\infty(\Omega)} := \max_{|\alpha|=k} \|D^\alpha_w v\|_{L^\infty(\Omega)}.$$

The general Sobolev spaces also satisfy inclusion relations.

The general Sobolev spaces also satisfy inclusion relations.

Theorem

For k, m are non-negative integers with $k \leq m$ and p any real number with $1 \leq p \leq \infty$, we have

$$W_p^m(\Omega) \subset W_p^k(\Omega)$$
.

Sobolev Spaces

The general Sobolev spaces also satisfy inclusion relations.

Theorem

For k, m are non-negative integers with $k \leq m$ and p any real number with $1 \leq p \leq \infty$, we have

$$W_p^m(\Omega) \subset W_p^k(\Omega).$$

Theorem

For k any non-negative integer and p, q any real numbers with $1 \le p \le q \le \infty$, we have

$$W_q^k(\Omega) \subset W_p^k(\Omega)$$
.

Sobolev Spaces

The general Sobolev spaces also satisfy inclusion relations.

Theorem

For k, m are non-negative integers with $k \leq m$ and p any real number with $1 \leq p \leq \infty$, we have

$$W_p^m(\Omega) \subset W_p^k(\Omega)$$
.

Theorem

For k any non-negative integer and p, q any real numbers with $1 \le p \le q \le \infty$, we have

$$W_q^k(\Omega) \subset W_p^k(\Omega)$$
.

Theorem

For k, m non-negative integers with k < m and and p, q any real numbers with $1 \le p < q \le \infty$, we have

$$W_q^m(\Omega) \subset W_p^k(\Omega)$$
.

Finite Element Methods

Theorem

Poincaré-Friedrichs Inequality: Consider the domain $\Omega \subset [0, s]^n$ is contained within a cube of side-length s. Then

$$||v||_0 \le s|v|_1, \ \forall v \in H_0^1(\Omega).$$

Theorem

Poincaré-Friedrichs Inequality: Consider the domain $\Omega \subset [0,s]^n$ is contained within a cube of side-length s. Then

$$||v||_0 \leq s|v|_1, \ \forall v \in H_0^1(\Omega).$$

This shows the 1-semi-norm bounds the 0-norm.

Theorem

Poincaré-Friedrichs Inequality: Consider domain $\Omega \subset Q = [0, s]^n$, Q is cube of side-length s. Then

$$||v||_0 \leq s|v|_1, \ \forall v \in H_0^1(\Omega).$$

Proof:

Theorem

Poincaré-Friedrichs Inequality: Consider domain $\Omega \subset Q = [0, s]^n$, Q is cube of side-length s. Then

$$||v||_0 \leq s|v|_1, \ \forall v \in H_0^1(\Omega).$$

Proof: Since $v \in H_0^1$ and using a point on the boundary $(0, x_2, x_3, \dots, x_n)$ we can express v as

$$v(x_1, x_2, ..., x_n) = v(0, x_2, ..., x_n) + \int_0^{x_1} \partial^1 v(z, x_2, ..., x_n) dz = \int_0^{x_1} \partial^1 v(z, x_2, ..., x_n) dz$$

Theorem

Poincaré-Friedrichs Inequality: Consider domain $\Omega \subset Q = [0, s]^n$, Q is cube of side-length s. Then

$$||v||_0 \le s|v|_1, \ \forall v \in H_0^1(\Omega).$$

Proof: Since $v \in H_0^1$ and using a point on the boundary $(0, x_2, x_3, \dots, x_n)$ we can express v as

$$v(x_1, x_2, ..., x_n) = v(0, x_2, ..., x_n) + \int_0^{x_1} \partial^1 v(z, x_2, ..., x_n) dz = \int_0^{x_1} \partial^1 v(z, x_2, ..., x_n) dz$$

By the Cauchy-Swartz inequality we have

$$|v(\mathbf{x})|^2 \le \left(\int_0^{x_1} \partial^1 v(z, x_2, \dots, x_n) dz\right)^2 = \int_0^{x_1} 1^2 dz \int_0^{x_1} |\partial^1 v(z, x_2, \dots, x_n)|^2 dz$$

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Theorem

Poincaré-Friedrichs Inequality: Consider domain $\Omega \subset Q = [0, s]^n$, Q is cube of side-length s. Then

$$||v||_0 \le s|v|_1, \ \forall v \in H_0^1(\Omega).$$

Proof: Since $v \in H_0^1$ and using a point on the boundary $(0, x_2, x_3, \dots, x_n)$ we can express v as

$$v(x_1, x_2, ..., x_n) = v(0, x_2, ..., x_n) + \int_0^{x_1} \partial^1 v(z, x_2, ..., x_n) dz = \int_0^{x_1} \partial^1 v(z, x_2, ..., x_n) dz$$

By the Cauchy-Swartz inequality we have

$$|v(\mathbf{x})|^{2} \leq \left(\int_{0}^{x_{1}} \partial^{1} v(z, x_{2}, \dots, x_{n}) dz\right)^{2} = \int_{0}^{x_{1}} 1^{2} dz \int_{0}^{x_{1}} |\partial^{1} v(z, x_{2}, \dots, x_{n})|^{2} dz$$

$$\leq s \int_{0}^{x_{1}} |\partial^{1} v(z, x_{2}, \dots, x_{n})|^{2} dz$$

Theorem

Poincaré-Friedrichs Inequality: Consider domain $\Omega \subset Q = [0, s]^n$, Q is cube of side-length s. Then

$$||v||_0 \le s|v|_1, \ \forall v \in H_0^1(\Omega).$$

Proof: Since $v \in H_0^1$ and using a point on the boundary $(0, x_2, x_3, \dots, x_n)$ we can express v as

$$v(x_1, x_2, ..., x_n) = v(0, x_2, ..., x_n) + \int_0^{x_1} \partial^1 v(z, x_2, ..., x_n) dz = \int_0^{x_1} \partial^1 v(z, x_2, ..., x_n) dz$$

By the Cauchy-Swartz inequality we have

$$|v(\mathbf{x})|^{2} \leq \left(\int_{0}^{x_{1}} \partial^{1} v(z, x_{2}, \dots, x_{n}) dz\right)^{2} = \int_{0}^{x_{1}} 1^{2} dz \int_{0}^{x_{1}} |\partial^{1} v(z, x_{2}, \dots, x_{n})|^{2} dz$$

$$\leq s \int_{0}^{x_{1}} |\partial^{1} v(z, x_{2}, \dots, x_{n})|^{2} dz$$

We integrate over the cube $Q = [0, s]^n$ with v, $\partial^1 v$ extended to vanish outside of Ω .

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Theorem

Poincaré-Friedrichs Inequality: Consider the domain $\Omega \subset [0, s]^n$ is contained within a cube of side-length s. Then

$$||v||_0 \leq s|v|_1, \ \forall v \in H_0^1(\Omega).$$

Proof:

$$|v(\mathbf{x})|^{2} \leq \left(\int_{0}^{x_{1}} \partial^{1} v(z, x_{2}, \dots, x_{n}) dz\right)^{2} = \int_{0}^{x_{1}} 1^{2} dz \int_{0}^{x_{1}} |\partial^{1} v(z, x_{2}, \dots, x_{n})|^{2} dz$$

$$\leq s \int_{0}^{s} |\partial^{1} v(z, x_{2}, \dots, x_{n})|^{2} dz$$

Theorem

Poincaré-Friedrichs Inequality: Consider the domain $\Omega \subset [0, s]^n$ is contained within a cube of side-length s. Then

$$\|v\|_0 \leq s|v|_1, \ \forall v \in H_0^1(\Omega).$$

Proof:

$$|v(\mathbf{x})|^{2} \leq \left(\int_{0}^{x_{1}} \partial^{1} v(z, x_{2}, \dots, x_{n}) dz\right)^{2} = \int_{0}^{x_{1}} 1^{2} dz \int_{0}^{x_{1}} |\partial^{1} v(z, x_{2}, \dots, x_{n})|^{2} dz$$

$$\leq s \int_{0}^{s} |\partial^{1} v(z, x_{2}, \dots, x_{n})|^{2} dz$$

We now integrate both sides over \int_0^s and note RHS independent of x_1

Theorem

Poincaré-Friedrichs Inequality: Consider the domain $\Omega \subset [0, s]^n$ is contained within a cube of side-length s. Then

$$||v||_0 \leq s|v|_1, \ \forall v \in H_0^1(\Omega).$$

Proof:

$$|v(\mathbf{x})|^{2} \leq \left(\int_{0}^{x_{1}} \partial^{1} v(z, x_{2}, \dots, x_{n}) dz\right)^{2} = \int_{0}^{x_{1}} 1^{2} dz \int_{0}^{x_{1}} |\partial^{1} v(z, x_{2}, \dots, x_{n})|^{2} dz$$

$$\leq s \int_{0}^{s} |\partial^{1} v(z, x_{2}, \dots, x_{n})|^{2} dz$$

We now integrate both sides over \int_0^s and note RHS independent of x_1

$$\int_0^s |v(\mathbf{x})|^2 dx_1 \leq s^2 \int_0^s |\partial^1 v(z, x_2, \dots, x_n)|^2 dz$$

Theorem

Poincaré-Friedrichs Inequality: Consider the domain $\Omega \subset [0, s]^n$ is contained within a cube of side-length s. Then

$$\|v\|_0 \leq s|v|_1, \ \forall v \in H_0^1(\Omega).$$

Proof:

$$\int_0^s |v(\mathbf{x})|^2 dx_1 \leq s^2 \int_0^s |\partial^1 v(z, x_2, \dots, x_n)|^2 dz$$

Theorem

Poincaré-Friedrichs Inequality: Consider the domain $\Omega \subset [0, s]^n$ is contained within a cube of side-length s. Then

$$||v||_0 \leq s|v|_1, \ \forall v \in H_0^1(\Omega).$$

Proof:

$$\int_0^s |v(\mathbf{x})|^2 dx_1 \leq s^2 \int_0^s |\partial^1 v(z, x_2, \dots, x_n)|^2 dz$$

We integrate over the other components to obtain

Theorem

Poincaré-Friedrichs Inequality: Consider the domain $\Omega \subset [0, s]^n$ is contained within a cube of side-length s. Then

$$||v||_0 \leq s|v|_1, \ \forall v \in H_0^1(\Omega).$$

Proof:

$$\int_0^s |v(\mathbf{x})|^2 dx_1 \leq s^2 \int_0^s |\partial^1 v(z, x_2, \dots, x_n)|^2 dz$$

We integrate over the other components to obtain

$$||v||_0^2 = \int_Q |v(\mathbf{x})|^2 d\mathbf{x} \le s^2 \int_Q |\partial^1 v(\mathbf{x})|^2 d\mathbf{x} = s^2 |v|_1^2.$$

Theorem

Poincaré-Friedrichs Inequality: Consider the domain $\Omega \subset [0, s]^n$ is contained within a cube of side-length s. Then

$$||v||_0 \leq s|v|_1, \ \forall v \in H_0^1(\Omega).$$

Proof:

$$\int_0^s |v(\mathbf{x})|^2 dx_1 \leq s^2 \int_0^s |\partial^1 v(z, x_2, \dots, x_n)|^2 dz$$

We integrate over the other components to obtain

$$||v||_0^2 = \int_Q |v(\mathbf{x})|^2 d\mathbf{x} \le s^2 \int_Q |\partial^1 v(\mathbf{x})|^2 d\mathbf{x} = s^2 |v|_1^2.$$

 $\Rightarrow \|v\|_0 < s|v|_1$

We can also apply the inequality using the derivatives $\tilde{\textit{v}} = \partial^{\alpha}\textit{u}$ to obtain

We can also apply the inequality using the derivatives $\tilde{\mathbf{v}} = \partial^{\alpha} \mathbf{u}$ to obtain

$$|\partial^{\alpha} u|_{0} \leq s|\partial^{1}\partial^{\alpha} u|_{0}, \ |\alpha| \leq m-1, \ u \in H_{0}^{m}(\Omega).$$

We can also apply the inequality using the derivatives $\tilde{\mathbf{v}} = \partial^{\alpha} \mathbf{u}$ to obtain

$$|\partial^{\alpha} u|_{0} \leq s|\partial^{1}\partial^{\alpha} u|_{0}, \ |\alpha| \leq m-1, \ u \in H_{0}^{m}(\Omega).$$

By induction we obtain

We can also apply the inequality using the derivatives $ilde{v}=\partial^{lpha}u$ to obtain

$$|\partial^{\alpha}u|_{0} \leq s|\partial^{1}\partial^{\alpha}u|_{0}, \ |\alpha| \leq m-1, \ u \in H_{0}^{m}(\Omega).$$

By induction we obtain

Theorem

Poincaré-Friedrichs Inequality II: Consider the domain $\Omega \subset [0,s]^n$ is contained within a cube of side-length s. Then

$$|v|_m \leq ||v||_m \leq (1+s)^m |v|_m, \ \forall v \in H_0^m(\Omega).$$

We can also apply the inequality using the derivatives $ilde{v}=\partial^{lpha}u$ to obtain

$$|\partial^{\alpha} u|_{0} \leq s|\partial^{1}\partial^{\alpha} u|_{0}, \ |\alpha| \leq m-1, \ u \in H_{0}^{m}(\Omega).$$

By induction we obtain

Theorem

Poincaré-Friedrichs Inequality II: Consider the domain $\Omega \subset [0, s]^n$ is contained within a cube of side-length s. Then

$$|v|_m \le ||v||_m \le (1+s)^m |v|_m, \ \forall v \in H_0^m(\Omega).$$

When Ω is bounded, the *m*-semi-norm $|v|_m$ is in fact a proper norm on $H_0^m(\Omega)$.

We can also apply the inequality using the derivatives $ilde{v}=\partial^{lpha}u$ to obtain

$$|\partial^{\alpha} u|_{0} \leq s|\partial^{1}\partial^{\alpha} u|_{0}, \ |\alpha| \leq m-1, \ u \in H_{0}^{m}(\Omega).$$

By induction we obtain

Theorem

Poincaré-Friedrichs Inequality II: Consider the domain $\Omega \subset [0, s]^n$ is contained within a cube of side-length s. Then

$$|v|_m \leq ||v||_m \leq (1+s)^m |v|_m, \ \forall v \in H_0^m(\Omega).$$

When Ω is bounded, the *m*-semi-norm $|v|_m$ is in fact a proper norm on $H_0^m(\Omega)$.

The norm $|v|_m$ is equivalent to $||v||_m$ (convergence in one implies convergence in other).

Theorem

Sobolev Inequality: Consider a domain $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary, k>0 with k an integer, and p real number with $1 \leq p < \infty$ such that

Theorem

Sobolev Inequality: Consider a domain $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary, k>0 with k an integer, and p real number with $1 \leq p < \infty$ such that

$$k \geq n$$
, when $p = 1$

k > n/p, when p > 1.

Theorem

Sobolev Inequality: Consider a domain $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary, k>0 with k an integer, and p real number with $1 \leq p < \infty$ such that

$$k \geq n$$
, when $p = 1$
 $k > n/p$, when $p > 1$.

We then have there is a constant C so that

Theorem

Sobolev Inequality: Consider a domain $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary, k>0 with k an integer, and p real number with $1 \leq p < \infty$ such that

$$k \geq n$$
, when $p = 1$
 $k > n/p$, when $p > 1$.

We then have there is a constant C so that for all $u \in W_p^k(\Omega)$

Theorem

Sobolev Inequality: Consider a domain $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary, k>0 with k an integer, and p real number with $1 \leq p < \infty$ such that

$$k \geq n$$
, when $p = 1$
 $k > n/p$, when $p > 1$.

We then have there is a constant C so that for all $u \in W^k_p(\Omega)$

$$||u||_{L^{\infty}(\Omega)} \leq C||u||_{W_{\rho}^{k}(\Omega)}.$$

Theorem

Sobolev Inequality: Consider a domain $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary, k > 0 with k an integer, and p real number with $1 \le p < \infty$ such that

$$k \geq n$$
, when $p = 1$
 $k > n/p$, when $p > 1$.

We then have there is a constant C so that for all $u \in W_p^k(\Omega)$

$$||u||_{L^{\infty}(\Omega)} \leq C||u||_{W_{\rho}^{k}(\Omega)}.$$

Also, for the equivalence class of u in $L^{\infty}(\Omega)$, there is a representative that is a continuous function.

Theorem

Sobolev Inequality: Consider a domain $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary, k>0 with k an integer, and p real number with $1 \leq p < \infty$ such that

$$k \geq n$$
, when $p = 1$
 $k > n/p$, when $p > 1$.

We then have there is a constant C so that for all $u \in W^k_p(\Omega)$

$$||u||_{L^{\infty}(\Omega)} \leq C||u||_{W_{\rho}^{k}(\Omega)}.$$

Also, for the equivalence class of u in $L^{\infty}(\Omega)$, there is a representative that is a continuous function.

Significance: Shows that if a function has enough weak derivatives then in fact it can be viewed as equivalent to a continuous, bounded function.

Theorem

Sobolev Inequality: Consider a domain $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary, k > 0 with k an integer, and p real number with $1 \le p < \infty$ such that

$$k \geq n$$
, when $p = 1$
 $k > n/p$, when $p > 1$.

We then have there is a constant C so that for all $u \in W_p^k(\Omega)$

$$||u||_{L^{\infty}(\Omega)} \leq C||u||_{W_{\rho}^{k}(\Omega)}.$$

Also, for the equivalence class of u in $L^{\infty}(\Omega)$, there is a representative that is a continuous function.

Significance: Shows that if a function has enough weak derivatives then in fact it can be viewed as equivalent to a continuous, bounded function.

Also, shows that if we have convergence in $\|\cdot\|_{W^k_\rho(\Omega)}$ then also converges in $\|\cdot\|_{L^\infty(\Omega)}$.

When working with L^p functions how do we characterize values on the boundary which are sets of measure zero.

When working with L^p functions how do we characterize values on the boundary which are sets of measure zero.

Example: Consider $\Omega = \{(x, y)|x^2 + y^2 < 1\} = \{(r, \theta)|r < 1, 0 \le \theta < 2\pi\}.$

When working with L^p functions how do we characterize values on the boundary which are sets of measure zero.

Example: Consider $\Omega = \{(x, y)|x^2 + y^2 < 1\} = \{(r, \theta)|r < 1, 0 \le \theta < 2\pi\}.$

Lemma

Let Ω be the unit disk. For all $u \in W_2^1(\Omega)$ the restriction of $u|_{\partial\Omega}$ can interpreted as a function in $L^2(\partial\Omega)$. Furthermore, it satisfies the bound

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

When working with L^p functions how do we characterize values on the boundary which are sets of measure zero.

Example: Consider $\Omega = \{(x, y)|x^2 + y^2 < 1\} = \{(r, \theta)|r < 1, 0 \le \theta < 2\pi\}.$

Lemma

Let Ω be the unit disk. For all $u \in W_2^1(\Omega)$ the restriction of $u|_{\partial\Omega}$ can interpreted as a function in $L^2(\partial\Omega)$. Furthermore, it satisfies the bound

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

When working with L^p functions how do we characterize values on the boundary which are sets of measure zero.

Example: Consider $\Omega = \{(x, y)|x^2 + y^2 < 1\} = \{(r, \theta)|r < 1, 0 \le \theta < 2\pi\}.$

Lemma

Let Ω be the unit disk. For all $u \in W_2^1(\Omega)$ the restriction of $u|_{\partial\Omega}$ can interpreted as a function in $L^2(\partial\Omega)$. Furthermore, it satisfies the bound

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

For $u \in C^1(\overline{\Omega})$, consider the restriction to $\partial \Omega$ when $r \leq 1$,

When working with L^p functions how do we characterize values on the boundary which are sets of measure zero.

Example: Consider $\Omega = \{(x, y)|x^2 + y^2 < 1\} = \{(r, \theta)|r < 1, 0 \le \theta < 2\pi\}.$

Lemma

Let Ω be the unit disk. For all $u \in W_2^1(\Omega)$ the restriction of $u|_{\partial\Omega}$ can interpreted as a function in $L^2(\partial\Omega)$. Furthermore, it satisfies the bound

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

For $u \in C^1(\overline{\Omega})$, consider the restriction to $\partial \Omega$ when $r \leq 1$,

$$u(1,\theta)^{2} = \int_{0}^{1} \frac{\partial}{\partial r} \left(r^{2}u(r,\theta)^{2}\right) dr = \int_{0}^{1} 2\left(r^{2}uu_{r} + ru^{2}\right)\left(r,\theta\right) dr$$

When working with L^p functions how do we characterize values on the boundary which are sets of measure zero.

Example: Consider $\Omega = \{(x, y)|x^2 + y^2 < 1\} = \{(r, \theta)|r < 1, 0 \le \theta < 2\pi\}.$

Lemma

Let Ω be the unit disk. For all $u \in W_2^1(\Omega)$ the restriction of $u|_{\partial\Omega}$ can interpreted as a function in $L^2(\partial\Omega)$. Furthermore, it satisfies the bound

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

For $u \in C^1(\overline{\Omega})$, consider the restriction to $\partial \Omega$ when $r \leq 1$,

$$u(1,\theta)^{2} = \int_{0}^{1} \frac{\partial}{\partial r} (r^{2}u(r,\theta)^{2}) dr = \int_{0}^{1} 2(r^{2}uu_{r} + ru^{2}) (r,\theta) dr$$

$$= \int_{0}^{1} 2(r^{2}u\nabla u \cdot \frac{(x,y)}{r} + ru^{2}) (r,\theta) dr \leq \int_{0}^{1} 2(r^{2}|u||\nabla u| + ru^{2}) (r,\theta) dr$$

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Let Ω be the unit disk. For all $u \in W^1_2(\Omega)$ the restriction of $u|_{\partial\Omega}$ can interpreted as a function in $L^2(\partial\Omega)$. Furthermore, it satisfies the bound

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

$$u(1,\theta)^2 \leq \int_0^1 2\left(r^2|u||\nabla u|+ru^2\right)\right)(r,\theta)dr \leq \int_0^1 2\left(|u||\nabla u|+u^2\right)\right)(r,\theta)rdr.$$

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

$$u(1,\theta)^2 \leq \int_0^1 2(r^2|u||\nabla u| + ru^2)(r,\theta)dr \leq \int_0^1 2(|u||\nabla u| + u^2)(r,\theta)rdr.$$

Using polar coordinates and integrating out the $\boldsymbol{\theta}$ we obtain

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

$$u(1,\theta)^2 \leq \int_0^1 2(r^2|u||\nabla u| + ru^2)(r,\theta)dr \leq \int_0^1 2(|u||\nabla u| + u^2)(r,\theta)rdr.$$

Using polar coordinates and integrating out the θ we obtain

$$\int_{\partial\Omega}u^2d\theta\leq 2\int_{\Omega}\left(|u||\nabla u|+u^2\right)dxdy.$$

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

$$u(1,\theta)^2 \leq \int_0^1 2(r^2|u||\nabla u| + ru^2)(r,\theta)dr \leq \int_0^1 2(|u||\nabla u| + u^2)(r,\theta)rdr.$$

Using polar coordinates and integrating out the θ we obtain

$$\int_{\partial\Omega}u^2d\theta\leq 2\int_{\Omega}\left(|u||\nabla u|+u^2\right)dxdy.$$

The norm of function $u|_{\partial\Omega}$ restricted to the boundary is

Let Ω be the unit disk. For all $u \in W_2^1(\Omega)$ the restriction of $u|_{\partial\Omega}$ can interpreted as a function in $L^2(\partial\Omega)$. Furthermore, it satisfies the bound

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

$$u(1,\theta)^2 \leq \int_0^1 2\left(r^2|u||\nabla u|+ru^2\right)\right)(r,\theta)dr \leq \int_0^1 2\left(|u||\nabla u|+u^2\right)\right)(r,\theta)rdr.$$

Using polar coordinates and integrating out the θ we obtain

$$\int_{\partial\Omega} u^2 d\theta \le 2 \int_{\Omega} \left(|u| |\nabla u| + u^2 \right) dx dy.$$

The norm of function $u|_{\partial\Omega}$ restricted to the boundary is

$$||u||_{L^2(\partial\Omega)}^2 := \int_{\partial\Omega} u^2 d\theta = \int_0^{2\pi} u(1,\theta)^2 d\theta.$$

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Let Ω be the unit disk. For all $u \in W^1_2(\Omega)$ the restriction of $u|_{\partial\Omega}$ can interpreted as a function in $L^2(\partial\Omega)$. Furthermore, it satisfies the bound

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

By Cauchy-Swartz we have

Let Ω be the unit disk. For all $u \in W^1_2(\Omega)$ the restriction of $u|_{\partial\Omega}$ can interpreted as a function in $L^2(\partial\Omega)$. Furthermore, it satisfies the bound

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

By Cauchy-Swartz we have

$$||u||_{L^{2}(\partial\Omega)}^{2} \leq 2||u||_{L^{2}(\Omega)} \left(\int_{\Omega} |\nabla u|^{2} dx dy\right)^{1/2} + 2 \int_{\Omega} u^{2} dx dy.$$

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

By Cauchy-Swartz we have

$$||u||_{L^2(\partial\Omega)}^2 \leq 2||u||_{L^2(\Omega)} \left(\int_{\Omega} |\nabla u|^2 dx dy\right)^{1/2} + 2\int_{\Omega} u^2 dx dy.$$

Using the arithmetic-geometric mean inequality we have

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

By Cauchy-Swartz we have

$$||u||_{L^2(\partial\Omega)}^2 \leq 2||u||_{L^2(\Omega)} \left(\int_{\Omega} |\nabla u|^2 dx dy\right)^{1/2} + 2\int_{\Omega} u^2 dx dy.$$

Using the arithmetic-geometric mean inequality we have

$$\left(\int_{\Omega} |\nabla u|^2 dx dy\right)^{1/2} + \left(\int_{\Omega} u^2 dx dy\right)^{1/2} \leq \left(2\int_{\Omega} \left(|\nabla u|^2 + u^2\right) dx dy\right)^{1/2}.$$

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

By Cauchy-Swartz we have

$$||u||_{L^{2}(\partial\Omega)}^{2} \leq 2||u||_{L^{2}(\Omega)} \left(\int_{\Omega} |\nabla u|^{2} dx dy\right)^{1/2} + 2 \int_{\Omega} u^{2} dx dy.$$

Using the arithmetic-geometric mean inequality we have

$$\left(\int_{\Omega} |\nabla u|^2 dx dy\right)^{1/2} + \left(\int_{\Omega} u^2 dx dy\right)^{1/2} \leq \left(2\int_{\Omega} \left(|\nabla u|^2 + u^2\right) dx dy\right)^{1/2}.$$

This implies

Let Ω be the unit disk. For all $u \in W_2^1(\Omega)$ the restriction of $u|_{\partial\Omega}$ can interpreted as a function in $L^2(\partial\Omega)$. Furthermore, it satisfies the bound

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

By Cauchy-Swartz we have

$$\|u\|_{L^2(\partial\Omega)}^2 \leq 2\|u\|_{L^2(\Omega)} \left(\int_{\Omega} |\nabla u|^2 dx dy \right)^{1/2} + 2 \int_{\Omega} u^2 dx dy.$$

Using the arithmetic-geometric mean inequality we have

$$\left(\int_{\Omega} |\nabla u|^2 dx dy\right)^{1/2} + \left(\int_{\Omega} u^2 dx dy\right)^{1/2} \leq \left(2\int_{\Omega} \left(|\nabla u|^2 + u^2\right) dx dy\right)^{1/2}.$$

This implies

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Proof (sketch):

By Cauchy-Swartz we have

$$||u||_{L^2(\partial\Omega)}^2 \leq 2||u||_{L^2(\Omega)} \left(\int_{\Omega} |\nabla u|^2 dx dy\right)^{1/2} + 2\int_{\Omega} u^2 dx dy.$$

Using the arithmetic-geometric mean inequality we have

$$\left(\int_{\Omega} |\nabla u|^2 dx dy\right)^{1/2} + \left(\int_{\Omega} u^2 dx dy\right)^{1/2} \leq \left(2\int_{\Omega} \left(|\nabla u|^2 + u^2\right) dx dy\right)^{1/2}.$$

This implies

$$||u||_{L^2(\partial\Omega)} \le 8^{1/4} ||u||_{L^2(\Omega)}^{1/2} ||u||_{W_2^1(\Omega)}^{1/2}.$$

Theorem

Trace Theorem: Consider Ω with a Lipschitz boundary and p real number with $1 \le p \le \infty$. We then have there exists a constant C so that

$$||v||_{L^p(\partial\Omega)} \leq C||v||_{L^p(\Omega)}^{1-1/p}||v||_{W_p^1(\Omega)}^{1/p}, \ \forall v \in W_p^1(\Omega).$$

Theorem

Trace Theorem: Consider Ω with a Lipschitz boundary and p real number with $1 \le p \le \infty$. We then have there exists a constant C so that

$$\|v\|_{L^{p}(\partial\Omega)} \leq C\|v\|_{L^{p}(\Omega)}^{1-1/p}\|v\|_{W_{p}^{1}(\Omega)}^{1/p}, \ \forall v \in W_{p}^{1}(\Omega).$$

Definition

Trace-Free Sobolev Spaces: We denote by $\mathring{W}^{1}_{\rho}(\Omega)$ the subset of $W^{1}_{\rho}(\Omega)$ consisting of the functions whose trace on the boundary $v|_{\partial\Omega}$ is zero. In particular,

$$\mathring{\mathcal{W}}^1_{\rho}(\Omega) = \{ v \in W^1_{\rho}(\Omega) \mid v|_{\partial\Omega} = 0 \text{ in } L^2(\partial\Omega) \}.$$

Theorem

Trace Theorem: Consider Ω with a Lipschitz boundary and p real number with $1 \le p \le \infty$. We then have there exists a constant C so that

$$||v||_{L^p(\partial\Omega)} \le C||v||_{L^p(\Omega)}^{1-1/p}||v||_{W_p^1(\Omega)}^{1/p}, \ \forall v \in W_p^1(\Omega).$$

Definition

Trace-Free Sobolev Spaces: We denote by $\mathring{W}^{1}_{\rho}(\Omega)$ the subset of $W^{1}_{\rho}(\Omega)$ consisting of the functions whose trace on the boundary $v|_{\partial\Omega}$ is zero. In particular,

$$\mathring{\mathcal{W}}^1_{\rho}(\Omega)=\{v\in W^1_{\rho}(\Omega)\mid v|_{\partial\Omega}=0 \text{ in } L^2(\partial\Omega)\}.$$

Similarly, $\mathring{W}^k_{\rho}(\Omega)$ consists of functions whose derivatives of order k-1 are in $\mathring{W}^1_{\rho}(\Omega)$, so that

Theorem

Trace Theorem: Consider Ω with a Lipschitz boundary and p real number with $1 \le p \le \infty$. We then have there exists a constant C so that

$$||v||_{L^{p}(\partial\Omega)} \leq C||v||_{L^{p}(\Omega)}^{1-1/p}||v||_{W_{p}^{1}(\Omega)}^{1/p}, \ \forall v \in W_{p}^{1}(\Omega).$$

Definition

Trace-Free Sobolev Spaces: We denote by $\mathring{W}^{1}_{\rho}(\Omega)$ the subset of $W^{1}_{\rho}(\Omega)$ consisting of the functions whose trace on the boundary $v|_{\partial\Omega}$ is zero. In particular,

$$\mathring{\mathcal{W}}^1_{\rho}(\Omega)=\{v\in W^1_{\rho}(\Omega)\mid v|_{\partial\Omega}=0 \text{ in } L^2(\partial\Omega)\}.$$

Similarly, $\mathring{W}^k_p(\Omega)$ consists of functions whose derivatives of order k-1 are in $\mathring{W}^1_p(\Omega)$, so that

$$\mathring{W}^k_p(\Omega) = \{ v \in W^k_p(\Omega) \mid v^{(\alpha)}|_{\partial\Omega} = 0 \text{ in } L^2(\partial\Omega), \ \forall |\alpha| < k \}.$$