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1. Show that each of the elements have the stated regularity as follows:

(a) Lagrange triangular element based on Pk with k+1 distinct nodes along each edge
is C0.

(b) Hermite triangular element based on P3 is C0.

(c) Argyris triangular element based on P5 is C1 in the normal direction across edges.

Figure 1: Triangular Elements.

2. There are many ways to develop quadratures for triangulations T to approximate∫ ∫
T0
f(x)dx ≈

∑
k

wkf(xk), x = (x1, x2).

(a) Consider Duffy’s Transform from a reference triangular element to a quadrilateral
element as shown in Figure 2. This is given by
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where η ∈ [0, 1], ξ ∈ [0, 1 − η], ξ′, η′ ∈ [0, 1]. We can express integration over the
triangular element as∫ 1
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where the Jacobian for Duffy’s Transform is given by J(ξ′, η′) = 1
8
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Figure 2: Duffy’s Transform.

Use Gaussian quadratures for the cases of 2 and 3 nodes to construct quadratures
for the iterated integrals for the quadrilateral. Determine the corresponding nodes
and weights for the triangle and construct a quadrature table for the triangular
elements for the Gaussian quadrature cases.

(b) Alternatively, we can use for the weights wk and nodes xk from Table 1. For
n = 4, 7, compare this with the Duffy’s Transform approach for the test functions
(i) 3x3y2, (ii) sin(πxy/2), and (iii) exp (−3x2 + 3y2). In each case, which yields the
more accurate approximation.

d n k xk ωk k xk wk k xk wk k xk wk

1 1 1 (1/3,1/3) 1/2
2 3 1 (1/6,1/6) 1/6 2 (2/3,1/6) 1/6 3 (1/6,2/3) 1/6
3 4 1 (1/3,1/3) -9/32 2 (3/5,1/5) 25/96 3 (1/5,3/5) 25/96 4 (1/5,1/5) 25/96
4 7 1 (0,0) 1/40 2 (1/2,0) 1/15 3 (1,0) 1/40

4 (1/2,1/2) 1/15 5 (0,1) 1/40 6 (0,1/2) 1/15 7 (1/3,1/3) 9/40

Table 1: Quadratures on triangulations for
∫ 1

0

∫ 1−x1

0
f(x)dx ≈

∑
k f(xk)wk, x = (x1, x2). The d is the

quadrature order, n number of nodes, xk nodes, and ωk weights. For affine reference element map x =
ψ(X) with ψ(Tℓ) = T0 and Jacobian J(X) = |det ∂ψ/∂X|, the quadrature is applied using

∫
Tℓ
F (X)dX =∫

T0
F (ψ−1(x))J−1dx.

3. Consider the elliptic PDE (Poisson problem) given by

∆u(x) = −f(x), x ∈ Ω, u(x) = g(x), x ∈ ∂Ω,

where Ω = [−L,L] × [−L,L] ⊂ R2, and g(x) are the boundary values. In the Ritz-
Galerkin approximation, we seek a solution uh ∈ Vh ⊂ V = H1

0 (Ω) with

a(uh, w) = −⟨f, w⟩L2 , ∀w ∈ Vh,

where a(uh, w) =
∫
Ω
∇xuh(x) · ∇xw(x)dx and ⟨f, w⟩L2 =

∫
Ω
f(x)w(x)dx. Consider a

basis of functions {ϕk}Nk=1 for Vh. We can represent any v ∈ Vh by v(x) =
∑

i viϕi(x),



uh(x) =
∑

i uiϕi(x), and approximate f by fh(x) =
∑

i fiϕi(x). The FEM approxima-
tion uh can be expressed as solving the linear system

Au = −M f .

The A is the stiffness matrix given by Aij = a(ϕi, ϕj), M is the mass matrix given by
Mij = ⟨ϕi, ϕj⟩L2 , and [u]i = ui, [f ]i = fi.

To handle the Dirichlet boundary conditions we need to use that the boundary values
g(x) determine some of the nodal variables. By ordering the nodal indices appropriately,
we can split the system into components as u = [uI ,uB] and A = [AI |AB]. The uI

corresponds to the nodal locations interior to the domain Ω and uB correspond to
the nodal locations on the boundary ∂Ω. Since the values uB are known, be sure
to move these to the right-hand-side (RHS) of the linear system when solving. By
restricting to the rows of the system for the indices of uI , we obtain the linear system
AIuI = −M f − ABuB.

(a) (Meshing) Discretize the domain Ω into elements T = {Tℓ}mℓ=1, where Tℓ are trian-
gular elements. For the square domain Ω = [−L,L] × [−L,L] ⊂ R2, one way to
discretize is to define a coarse mesh. A basic algorithm to obtain a more refined dis-
cretization is to loop over each triangle and bisect the edges to obtain four smaller
triangles, see Figure 3. Data structures for this are a list of vertices vi ∈ R2 and
tuples (i1, i2, i3) which give the indices of the vertices of each triangle.

Figure 3: Mesh triangulation and refinement by triangle bisection.

Implement this meshing algorithm for the triangulation in Figure 3. Plot the tri-
angulations when this refinement procedure is done up to n = 5 times.

(b) (Assembly and Quadratures) For the discretization into triangular elements T =
{Tℓ}mℓ=1, take {ϕk}Nk=1 to be the nodal basis functions for Lagrange elements with
polynomial shape functions of degree d so that vh|Tℓ ∈ Pd. The stiffness matrix
A is obtained through an assembly procedure where we compute the integral by
breaking it into parts summing up the inner-products over each element Tℓ as
Aij = a(ϕi, ϕj) =

∑m
ℓ=1

∫
Tℓ
∇xϕi(x) · ∇xϕj(x)dx =

∑m
ℓ=1Aℓ,ij, and similarly, Mij =

⟨ϕi, ϕj⟩L2 =
∑m

ℓ=1

∫
Tℓ
ϕi(x)ϕj(x)dx =

∑m
ℓ=1Mℓ,ij. Integrals are approximated by

high-precision quadratures

Ãℓ,ij =
∑
k

ωk∇xϕi(xk) · ∇xϕj(xk), M̃ℓ,ij =
∑
k

ωkϕi(xk)ϕj(xk).



The {ωk} are the quadrature weights and {xk} are the quadrature nodes. Note
in general the quadrature nodes can differ from the finite element nodes. We use
these approximations to obtain

Ãu = −M̃ f .

For the case of Lagrange elements using polynomial spaces of degree d, we use
quadratures that have order 2d. This allows for computing the integrals up to
round-off errors. For quadratures on triangulations, see Figure 4 and Table 1.

Figure 4: Quadrature Nodes.

Using this assembly + quadrature approach, implement codes to compute for a
given triangulation the stiffness and mass matrices when d = 1 and d = 2.

Consider the FEM approximation for the solutions u with L = π and (i) u(x1, x2) =
cos(5x1) sin(5x2) and (ii) u(x1, x2) = exp (− cos(3x1) + sin(3x2)). Use f(x) = −∆u
evaluated at the nodal points to obtain the numerical data for these test problems.

Make a log-log plot of the solution error vs mesh size h−1 = 2−n for meshes with
refinements n = 1, 2, . . . , 5. What is the exhibited order of accuracy of the Lagrange
FEMs when d = 1 and d = 2?

(c) (Iterative Methods) To solve approximately

Au = b, where b = −M f ,

iterative methods can be used of the form

Bun+1 = Cun + b.

For convergence, B − C = A and the spectral radius of B−1C is taken to satisfy
ρ(B−1C) < 1. It is common to decompose the matrix as A = D − L − U , where
D is the diagonal entries, −L the lower entries, and −U the upper entries. A few
example iterative methods are

i. Direct Relaxation with B = I and C = I+ηA, with small enough η s.t. η ≤ 2/λ
or smaller, where λ is the largest eigenvalue of A.

ii. Jacobi Iteration with B = D and C = L+ U .

iii. Gauss-Seidel Iteration with B = D + L and C = U .



Compare these methods for approximating the solution u when L = π and (i)
u(x1, x2) = cos(5x1) sin(5x2) and
(ii) u(x1, x2) = exp (− cos(3x1) + sin(3x2)). Use f(x) = −∆u evaluated at the
nodal points to obtain the numerical data for these test problems.

Make a log-log plot of the number iterations and the error for meshes with n = 5
refinements. How many iterations does each method need to converge to 1% accu-
racy for solving the linear system? We remark that in practice these convergence
rates are further enhanced by using preconditioners.


