

Final Exam Outline Math 124B: Numerical Analysis Professor: Paul J. Atzberger

- Fourier Series for functions on an Interval $[-\ell, \ell]$
 - o real-valued sine/cosine expansion
 - coefficients from function integrations
 - series representations
 - o complex-valued exponential expansion
 - coefficients from function integrations
 - series representations
 - conversion between
 - real-valued A_n, B_n coefficients
 - complex-valued coefficients cn
- Analysis of Fourier Series
 - definitions of convergence
 - uniform convergence
 - pointwise convergence
 - L²-convergence
 - weak convergence
 - theorems for convergence (conditions)
 - uniform convergence
 - pointwise convergence
 - L²-convergence
 - o ability to compute fourier series representations of
 - continuous functions
 - discontinuous functions
 - L²-functions
- Solution of Parabolic PDEs
 - \circ $\,$ Fourier series approaches in the following cases
 - periodic boundary conditions.
 - homogeneous dirichlet boundary conditions.
 - homogeneous neumann boundary conditions.
 - inhomogeneous dirichlet boundary conditions, h(t), j(t).
- Solution of Hyperbolic PDEs
 - Fourier series approaches in the following cases
 - periodic boundary conditions.
 - homogeneous dirichlet boundary conditions.
- Solution of Elliptic PDEs on Rectangles and Cubes
 - o maximum principle
 - existence and uniqueness

- Fourier series approaches in the following cases
 - rectangle: dirichlet boundary conditions (homogeneous).
 - rectangle: neumann boundary conditions (homogeneous).
 - cube: dirichlet boundary conditions (homogeneous).
 - cube: neumann boundary conditions (homogeneous).
- Solution of Elliptic PDEs on Disks and Wedges
 - o poisson formula for the disk
 - dirichlet boundary conditions
 - mean-value property
 - maximum principle
 - o fourier series approaches for the wedge
 - dirichlet boundary conditions
 - neumann boundary conditions
- Discrete Fourier Transform (DFT)
 - definition of the (DFT) and inverse (IDFT)
 - o aliasing formula
 - o fourier interpolation using DFTs
 - solution of elliptic PDEs on an interval with periodic conditions
- Approximate Solutions using Finite Difference Methods for PDEs
 - o von Neumann Analysis
 - stability of finite difference methods
 - o approximating solutions of parabolic and hyperbolic PDEs