

Midterm Exam Outline

Math 124B: Numerical Analysis Professor: Paul J. Atzberger

- Fourier Series
 - o real-valued sine/cosine expansion
 - coefficients from function integrations
 - series representations
 - o complex-valued exponential expansion
 - coefficients from function integrations
 - series representations
 - conversion between
 - real-valued A_n,B_n coefficients
 - complex-valued coefficients cn
- Analysis
 - o definitions of convergence
 - uniform convergence
 - pointwise convergence
 - L²-convergence
 - weak convergence
- Fourier Methods
 - theorems for convergence (conditions)
 - uniform convergence
 - pointwise convergence
 - L²-convergence
 - o ability to compute fourier series representations of
 - continuous functions
 - discontinuous functions
 - L²-functions
- Solution of Parabolic PDEs
 - Fourier series approaches in cases
 - periodic boundary conditions.
 - homogeneous dirichlet boundary conditions.
 - homogeneous neumann boundary conditions.
 - inhomogeneous dirichlet boundary conditions, h(t), j(t).
- Solution of Hyperbolic PDEs
 - Fourier series approaches in cases
 - periodic boundary conditions.
 - homogeneous dirichlet boundary conditions.

- Solution of Elliptic PDEs (2D/3D)
 - o maximum principle
 - existence and uniqueness
 - Fourier series approaches in cases
 - rectangle: dirichlet boundary conditions (homogeneous).
 - rectangle: neumann boundary conditions (homogeneous).
 - cube: dirichlet boundary conditions (homogeneous).
 - cube: neumann boundary conditions (homogeneous).