
Math 124 Partial Differential Equations Paul J. Atzberger

Elliptic PDEs
We give some brief discussions on solution techniques for elliptic PDEs
using Fourier Methods.

Poisson Problem
Consider the general elliptic poisson problem{

∆u = f, x ∈ Ω
u(x) = g(x), x ∈ ∂Ω.

Case of 2D Square: One Inhomogeneous Dirichlet Boundary and f = 0.
We consider the square in R2 with side-lengths [0, π], giving the domain Ω = [0, π] × [0, π].
We also consider the case when all boundaries have g = 0 except for the right-most edge of
the square. We take this to have the Dirichlet boundary condition u(π, y) = q(y).

From separation of variables derivations in lecture, this has the following series expansion

u(x, y) =
∞∑

m=1

Am sinh
(√

m2x
)
sin(my).

We obtain from integration∫ π

0

u(x, y) sin(m∗y)dy =
∞∑

m=1

Am sinh
(√

m2x
)
·∫ π

0

sin(my) sin(m∗y)dy

=
π

2
Am sinh

(√
m2x

)
.

By applying this when x = (π, y), substituting the boundary condition for u, and solving
for Am, we obtain for the coefficients the solution

Am =
2

π sinh
(√

m2π
) ∫ π

0

q(y) sin(my)dy. (1)

As a summary, we obtain our series solution to the PDE by performing for the boundary
condition q(y) the Fourier Transform given in equation 1. We also remark that a similar
expression can be obtained when the inhomogeneous boundary term is on any of the other
edges of the square. One way to readily obtain these expressions is to do a change of
variable. For example, suppose we had u(x, π) = q(x), then doing the change of variable to
x′ = y, y′ = x in the series above would yield the solution. A similar approach can be used for
the faces when x = 0. Also, if we had a combination of inhomoegeneous boundary conditions
these also can be obtained by sovling for each separately u1, u2 and then successively applying
the superposition principle to obtain the solution u = u1 + u2. These are a few ways the
invariance and linear properties of the Laplacian ∆ can be useful in obtaining practical
solutions.
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Case of 2D Square: Homogeneous Dirichlet Boundary Conditions and f ̸= 0.
We consider the square in R2 with side-lengths [0, π], giving the domain Ω = [0, π] × [0, π].
We also consider the case when all boundaries have g = 0. We address the case when there
is a non-zero f source term on the right-hand side.

From our eigenfunction derivations in lecture, this leads to the following fourier series
expansion

u(x, y) =
∞∑

m=1

∞∑
n=1

Am,n sin(mx) sin(ny).

We can similarly obtain an expansion for f as

f(x, y) =
∞∑

m=1

∞∑
n=1

Fm,n sin(mx) sin(ny).

By direct differentiation we formally obtain

f =
∞∑

m=1

∞∑
n=1

Fm,n sin(mx) sin(ny)

= ∆u(x, y) =
∞∑

m=1

∞∑
n=1

−λm,nAm,n sin(mx) sin(ny),

were λm,n = m2 + n2. We obtain the solution by using the uniqueness of the Fourier
expansions. This gives the solution for Am,n in terms of Fm,n as

Am,n =
−Fm,n

λm,n

. (2)

This provides the solution to the Poisson problem using the series expansion for u.
We remark we can also derive the expression for obtaining Fm,n as follows from the

expansion∫ π

0

∫ π

0

f(x, y) sin(m∗y) sin(n∗y)dxdy =
∞∑

m=1

∞∑
n=1

Fm,n sin(mx) sin(ny) sin(m∗x) sin(n∗y)dxdy

=
π2

4
Fm∗,n∗ .

This gives

Fm,n =
4

π2

∫ π

0

∫ π

0

f(x, y) sin(mx) sin(ny)dxdy.

By applying this to a given function f(x, t) we obtain the solution to the poisson problem
with Homogeneous Dirichlet Boundary conditions. This can be combined with our other
solution techniques by using the superposition principle.
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Case of 3D Cube: One Inhomogeneous Dirichlet Boundary and f = 0.
We consider the cube in R3 with side-lengths [0, π], giving the domain Ω = [0, π] × [0, π] ×
[0, π]. We also consider the case when all boundaries have g = 0 except for the right-most
face of the cube. We take this to have the Dirichlet boundary condition u(π, y, z) = q(y, z).

From separation of variables derivations in lecture, this has the following series expansion

u(x, y, z) =
∞∑

m=1

∞∑
n=1

Am,n sinh
(√

m2 + n2x
)
sin(my) sin(nz).

We obtain from integration∫ π

0

∫ π

0

u(x, y, z) sin(m∗y) sin(n∗z)dydz =
∞∑

m=1

∞∑
n=1

Am,n sinh
(√

m2 + n2x
)
·∫ π

0

∫ π

0

sin(my) sin(nz). sin(m∗y) sin(n∗z)dydz

=
π2

4
Am∗,n∗ sinh

(√
m2 + n2x

)
.

By applying this when x = (π, y, z), substituting the boundary condition for u, and solving
for Am,n we obtain for the coefficients the solution

Am,n =
4

π2 sinh
(√

m2 + n2π
) ∫ π

0

∫ π

0

q(y, z) sin(my) sin(nz)dydz. (3)

As a summary, we obtain our series solution to the PDE by performing for the boundary
condition q(y, x) the 2D Fourier Transform given in equation 3. We also remark that a
similar expression can be obtained when the inhomogeneous boundary term is on any of the
other faces of the cube. One way to readily obtain these expressions is to do a change of
variable. For example, suppose we had u(x, π, z) = q(x, z), then doing the change of variable
to x′ = y, y′ = x, z′ = z in the series above would yield the solution. A similar approach
can be used for the faces when x = 0. These are a few ways the invariance properties of the
Laplacian ∆ can be useful in obtaining practical solutions.

Case of 3D Cube: Homogeneous Dirichlet Boundary Conditions and f ̸= 0.
We consider the cube in R3 with side-lengths [0, π], giving the domain Ω = [0, π] × [0, π] ×
[0, π]. We also consider the case when all boundaries have g = 0. We address the case when
there is a non-zero f source term on the right-hand side.

From eigenfunction derivations in lecture, this has the following series expansion

u(x, y, z) =
∞∑

m=1

∞∑
n=1

∞∑
p=1

Am,n,p sin(mx) sin(ny) sin(pz).

We can similarly obtain an expansion for f as

f(x, y, z) =
∞∑

m=1

∞∑
n=1

∞∑
p=1

Fm,n,p sin(mx) sin(ny) sin(pz).
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By direct differentiation we formally obtain

f(x, y, z) =
∞∑

m=1

∞∑
n=1

∞∑
p=1

Fm,n,p sin(mx) sin(ny) sin(pz)

= ∆u(x, y, z) =
∞∑

m=1

∞∑
n=1

∞∑
p=1

−λm,n,pAm,n,p sin(mx) sin(ny) sin(pz),

were λm,n,p = m2 + n2 + p2. We can use uniqueness of the Fourier expansions to obtain the
solution for Am,n,p given by

Am,n,p =
−Fm,n,p

λm,n,p

. (4)

This provides the solution to the Poisson problem using the series expansion for u.
We remark we can also derive the expression for obtaining Fm,n,p as follows from the

expansion∫ π

0

∫ π

0

∫ π

0

f(x, y, z) sin(m∗y) sin(n∗y) sin(p∗z)dxdydz

=
∞∑

m=1

∞∑
n=1

∞∑
p=1

Fm,n,p ·∫ π

0

∫ π

0

∫ π

0

sin(mx) sin(ny) sin(pz) sin(m∗x) sin(n∗y) sin(p∗z)dxdydz

=
π3

23
Fm∗,n∗,p∗ .

This gives

Fm,n,p =
23

π3

∫ π

0

∫ π

0

∫ π

0

f(x, y, z) sin(mx) sin(ny) sin(pz)dxdydz.

Summary. These techniques provide a few methods for using fourier approaches for solving
elliptic PDEs on squares and cubes. These methods also extend in a similar manner to higher
dimensions. The results can also be used for numerical approximation of solutions to these
PDEs. One approach would be to truncate the series expansions to a finite number of terms
N and then replacing the fourier transforms by performing approximations to the integrals,
such as using quadratures like the trapezoidal method we discussed in previous lectures. This
would yield approaches closely related to discrete fourier transforms and spectral numerical
methods. The solution techniques mentioned here can be extended in several ways, including
performing additional analysis and derivations to obtain similar series expansion solution in
other geometries, such as disks, wedges, and annuli. We will discuss these and other related
topics in upcoming lectures.

4


