Practice Problems

Professor: Paul J. Atzberger
Partial Differential Equations, 124, 2024

Problem 1:

Consider the Fourier Series expansion

$$
\tilde{\phi}(x)=\frac{1}{2} A_{0}+\sum_{k=1}^{\infty} A_{n} \cos \left(\frac{k \pi x}{\ell}\right)+\sum_{k=1}^{\infty} B_{n} \sin \left(\frac{k \pi x}{\ell}\right),
$$

(a) What are the Fourier Coefficients for $\phi(x)=3 x$ on the interval $[-\pi, \pi]$?
(b) What are the Fourier Coefficients when $\phi(x)=2$ on the interval $[0, \pi]$ and ϕ has an odd extension?
(c) What are the Fourier Coefficients when $\phi(x)=2 \sin (3 x)+3 \sin (2 x)$ on the interval $[0, \pi]$ and ϕ has an odd extension?
(d) What are the Fourier Coefficients when $\phi(x)=2 x$ on the interval $[0, \pi]$ and ϕ has an even extension?
(e) What are the Fourier Coefficients when $\phi(x)=4 \sin (3 x)+2 \cos (2 x)$ on the interval $[-\pi, \pi]$ and ϕ has an periodic extension?
(f) What are the Fourier Coefficients when $\phi(x)=-2+\sin (2 x)$ on the interval $[-\pi, \pi]$ and ϕ has an periodic extension?

Problem 2:

Consider the Fourier Series expansion

$$
\tilde{\phi}(x)=\sum_{k=-\infty}^{\infty} c_{n} \exp (i k \pi x / \ell),
$$

(a) What are the Fourier Coefficients for $\phi(x)=8 \cos (4 x)$ on the interval $[-\pi, \pi]$? Hint: You can either use the conversion formula or compute them directly.
(b) What are the Fourier Coefficients when $\phi(x)=-3$ on the interval $[0, \pi]$ and ϕ has an odd extension?
(c) What are the Fourier Coefficients for $\phi(x)=2 \sin (5 x)+3 \cos (2 x)$ on the interval $[-\pi, \pi]$?
(d) What are the Fourier Coefficients when $\phi(x)=2+4 \cos (3 x)+2 \sin (x)$ on the interval $[-\pi, \pi]$ and ϕ has periodic extension?

Problem 3:

Consider the diffusion equation on the interval with the Dirichlet Boundary Conditions:

$$
\begin{cases}u_{t}=\kappa u_{x x}, & 0<x<\ell, t>0 \\ u(0, t)=j(t), u(\ell, t)=h(t), & t>0 \\ u(x, 0)=\phi(x), & 0<x<\ell, t=0\end{cases}
$$

(a) Determine the solution when $\kappa=1, \quad \ell=\pi, \phi(x)=2 \sin (3 x)+\sin (2 x)$ and $j(t)=$ $0, h(t)=0$.
(b) Determine the solution when $\kappa=1, \ell=\pi, \phi(x)=0$ and $j(t)=\sin (t), h(t)=\cos (t)$.
(c) Determine the solution when $\kappa=1, \ell=\pi, \phi(x)=3 \sin (2 x)$ and $j(t)=-2 t, h(t)=0$.
(d) Determine the solution when $\kappa=1, \ell=\pi, \phi(x)=0$ and $j(t)=0, h(t)=\exp (-3 t)$.

Problem 4:

Consider the wave equation on the interval with the Dirichlet Boundary Conditions:

$$
\begin{cases}u_{t t}=\kappa u_{x x}, & 0<x<\ell, t>0 \\ u(0, t)=j(t), u(\ell, t)=h(t), & t>0 \\ u(x, 0)=\phi(x), & 0<x<\ell, t=0 \\ u_{t}(x, 0)=\psi(x), & 0<x<\ell, t=0\end{cases}
$$

(a) Determine the solution when $\kappa=1, \ell=\pi, \phi(x)=-3 \sin (5 x), \psi(x)=0$, and $j(t)=$ $0, h(t)=0$.
(b) Determine the solution when $\kappa=1, \ell=\pi, \phi(x)=0, \psi(x)=-15 \cos (5 x)$, and $j(t)=$ $0, h(t)=0$.

Problem 5:

Consider the elliptic equation on the domain with the Dirichlet Boundary Conditions, $\Omega=$ $[0, \ell] \times[0, \ell]:$

$$
\begin{cases}\Delta u=f, & x \in \Omega \\ u=g, & x \in \partial \Omega\end{cases}
$$

(a) Determine the solution when $\ell=\pi, f(x)=0, g(0, y)=g(x, \pi)=g(x, 0)=0$, and $g(\pi, y)=q(y)$, where $q(y)=\sin (3 y)+\sin (y)$.
(b) Determine the solution when $\ell=\pi, f(x)=-3+2 \sin (x), g(0, y)=g(x, \pi)=g(x, 0)=0$, and $g(\pi, y)=q(y)$, where $q(y)=0$.

