

Final Exam Outline

Math 124A: Numerical Analysis Professor: Paul J. Atzberger

(look for any updates near end of the quarter)

- First-Order PDEs and Method of Characteristics
 - constant coefficient case
 - form of the characteristics (lines)
 - general solutions
 - o variable coefficient case when a(x, y) > 0
 - characteristic equations
 - form of the characteristics based on y(x)
 - general solutions
 - general variable coefficient case
 - characteristic equations for $\gamma(s)$
 - general solutions
 - inhomogeneous case
 - method of characteristics with sources/sinks
 - o examples
 - transport PDEs
- Second-Order PDEs
 - linear change-of-variables
 - relationship between the gradients in each coordinate system
 - how second-order differential operators transform under coordinate changes
 - classifying second-order PDEs
 - expressing PDE similar to a quadratic form in matrix-vector notation
 - elliptic case
 - conditions on the coefficients a_{ii}
 - canonical form when first-order terms are zero
 - hyperbolic case
 - conditions on the coefficients a_{ii}
 - canonical form when first-order terms are zero
 - parabolic case
 - conditions on the coefficients a_{ii}
 - canonical form when all but one first-order term is zero
 - definition of well-posedness.
 - sufficient criteria for well-posedness.
 - o uniqueness, existence, robustness to perturbations.
- Hyperbolic PDEs
 - o wave equation initial value problem
 - o wave equation with a source
 - o solution technique in 1D on R^1

- form of the general solution (D'Almbert's Formula)
- o example
 - hat function initial conditions
- domain of dependence
- o domain of influence
- kinetic and potential energy of solutions
- conservation of energy principle

Parabolic PDEs

- o diffusion equation initial value problem
- diffusion equation with a source
- o uniqueness
- stability
- o solution technique in 1D on \mathbb{R}^1
- o properties of the diffusion equation
- special solution (Green's function)
- form of the general solution
- entropy production
- o maximum principle

Boundary Conditions

- o even/odd reflections of functions
- diffusion equation on half-line (parabolic pdes)
 - Dirichlet case (odd reflection)
 - Neurmann case (even reflection)
- diffusion equation on interval (parabolic pdes)
 - Dirichlet case (odd reflections)
- wave equation on half-line (hyperbolic pdes)
 - Dirichlet case (odd reflection)
- wave equation on interval (hyperbolic pdes)
 - Dirichlet case (odd reflections)
- solution of inhomogeneous linear pdes (Duhamel's Principle)
 - diffusion equation with a source (parabolic pdes)
 - wave equation with a source (hyperbolic pdes)

Separation of Variables

- method of separation of variables
- o diffusion equation on finite interval (parabolic pdes)
 - dirichlet boundary conditions
 - neumann boundary conditions
- wave equation on finite interval (hyperbolic pdes)
 - dirichlet boundary conditions
 - neumann boundary conditions