Name: \qquad

Final Practice Problems:
 Professor: Paul J. Atzberger Partial Differential Equations, 124A

Directions: Please answer each question carefully. Be sure to show your work. If you have questions, please feel free to ask.

Problem 1:

Use method of characteristics to find the solution of

$$
\begin{cases}4 u_{x}(x, y)+12 x^{2} u_{y}(x, y)=-u, & -\infty<y<\infty, x>0 \\ u(0, y)=e^{-|y|}, & -\infty<y<\infty, x=0\end{cases}
$$

Use method of characteristics to find the solution of

$$
\begin{cases}3 u_{x}(x, y)+6 x u_{y}(x, y)=-1, & x>0,-\infty<y<\infty \\ u(0, y)=\cos (y), & -\infty<y<\infty, x=0\end{cases}
$$

Problem 2:

a) Use method of characteristics to find the solution of

$$
\begin{cases}6 x u_{x}(x, y)-3 u_{y}(x, y)=0, & y>0,-\infty<x<\infty \\ u(x, 0)=\sin (x), & y=0,-\infty<x<\infty\end{cases}
$$

b) Use method of characteristics to find the solution of

$$
\begin{cases}6 u_{x}(x, y)+3 x u_{y}(x, y)=0, & x>0,-\infty<y<\infty \\ u(0, y)=\cos (y), & x=0,-\infty<y<\infty\end{cases}
$$

Problem 3:

Classify each of the following Partial Differential Equations as either elliptic, hyperbolic, or parabolic. Give a canonical form for the second-order part of each PDE.
(a) $u_{x x}-u_{t}+u_{x}=0$.
(b) $u_{t x}+u_{x}+2 u=0$.
(c) $2 u_{x y}+u_{y y}+2 u_{x x}+u_{y}-u=0$.
(d) $u_{x x}-u_{y y}+u_{x y}+u_{x}+u_{y}=0$.

Problem 4:

satisfies the wave equation on the half-line

$$
\begin{cases}u_{t t}(x, t)=c^{2} u_{x x}(x, t), & 0<x<\infty, t>0 \\ u(0, t)=0, & x=0, t>0 \\ u(x, 0)=\phi(x), & 0<x<\infty, t=0 \\ u_{t}(x, 0)=\psi(x), & 0<x<\infty, t=0\end{cases}
$$

a) Determine the solution to the wave equation when the initial configuration is $\phi(x)=$ $\exp (-x)$ and initial velocity is $\psi(x)=0$.
b) Determine the solution to the wave equation when the initial configuration is $\phi(x)=0$ and initial velocity is $\psi(x)=\exp (-x)$.

Problem 5:

$$
\begin{cases}u_{t t}(x, t)=c^{2} u_{x x}(x, t)+f(x, t), & -\infty<x<\infty, t>0 \\ u(x, 0)=\phi(x), & -\infty<x<\infty, t=0 \\ u_{t}(x, 0)=\psi(x), & -\infty<x<\infty, t=0\end{cases}
$$

a) Determine the solution to the wave equation when the initial configuration is $\phi(x)=0$, the initial velocity is $\psi(x)=0$, and the source is $f(x, t)=-1$.
b) Determine the solution to the wave equation when the initial configuration is $\phi(x)=$ $\exp (-x)$, the initial velocity is $\psi(x)=\sin (4 \pi x)$, and the source is $f(x, t)=-2$.
c) Determine the solution to the wave equation when the initial configuration is $\phi(x)=$ $\exp (-x)$, the initial velocity is $\psi(x)=0$, and the source is $f(x, t)=-t$.

Problem 6:

Consider the wave equation on the interval with Dirichlet Boundary Conditions

$$
\begin{cases}u_{t t}=c^{2} u_{x x}, & 0<x<\ell, t>0 \\ u(0, t)=u(\ell, t)=0, & t>0 \\ u(x, 0)=\phi(x), & 0<x<\ell, t=0 \\ u_{t}(x, 0)=\psi(x), & 0<x<\ell, t=0\end{cases}
$$

a) Determine the solution when $\phi(x)=\sin (2 \pi x), \psi(x)=0$, and $c^{2}=2$, $\ell=1$ using the method of Separation of Variables.
b) Determine the solution when $\phi(x)=0, \psi(x)=\sin (2 \pi x)$, and $c^{2}=2$, $\ell=1$ using the method of Separation of Variables.

Problem 7:

Consider the diffusion equation on the half-line with Neumann Boundary Conditions:

$$
\begin{cases}u_{t}=k u_{x x}, & 0<x<\infty, t>0 \\ u_{x}(0, t)=0, & x=0, t>0 \\ u(x, 0)=\phi(x), & 0<x<\infty, t=0\end{cases}
$$

a) Determine the solution when $k=2, \phi(x)=\exp \left(-x^{2}\right)$.

Problem 8:

Consider the diffusion equation on the half-line with Dirichlet Boundary Conditions:

$$
\begin{cases}u_{t}=k u_{x x}, & 0<x<\infty, t>0 \\ u(0, t)=0, & x=0, t>0 \\ u(x, 0)=\phi(x), & 0<x<\infty, t=0\end{cases}
$$

a) Determine the solution when $k=2, \phi(x)=\exp \left(-x^{2}\right)$.

Problem 9:

Consider the diffusion equation on the real-line with a source $f(x, t)$

$$
\begin{cases}u_{t}=k u_{x x}+f(x, t), & -\infty<x<\infty, t>0 \\ u(x, 0)=\phi(x), & -\infty<x<\infty, t=0\end{cases}
$$

a) Determine the solution when $\phi(x)=0, k=1$, and $f(x, t)=\exp \left(-x^{2}\right)$.
b) Determine the solution when $\phi(x)=\exp \left(-x^{2}\right), k=1$, and $f(x, t)=\exp \left(-x^{2}\right)$.

Problem 10:

Consider the diffusion equation on the interval with Dirichlet Boundary Conditions

$$
\begin{cases}u_{t}=\kappa u_{x x}, & 0<x<\ell, t>0 \\ u(0, t)=u(\ell, t)=0, & t>0 \\ u(x, 0)=\phi(x), & 0<x<\ell, t=0\end{cases}
$$

a) Determine the solution when $\phi(x)=\sin (x), \ell=2 \pi$, and $k=2$ by using the method of Separation of Variables.

