Name: \qquad

Midterm Practice Problems:
 Professor: Paul J. Atzberger Partial Differential Equations, 124A

Directions: Please answer each question carefully. Be sure to show your work. If you have questions, please feel free to ask.

Problem:

Classify each of the following Partial Differential Equations as either elliptic, hyperbolic, or parabolic. Give a canonical form for each PDE.
(a) $u_{t x}=0$.
(b) $u_{x}+u_{t t}=0$.
(c) $u_{x x}+u_{y y}+4 u_{x y}=0$.
(d) $u_{x x}+u_{y y}+\frac{1}{4} u_{x y}=0$.

Problem:

Use method of characteristics to find the solution of

$$
\begin{cases}2 u_{x}(x, y)+4 u_{y}(x, y)=0, & -\infty<x<\infty, y>0 \\ u(x, 0)=\cos (x), & -\infty<x<\infty, y=0\end{cases}
$$

Problem:

Use method of characteristics to find the solution of

$$
\begin{cases}5 u_{x}(x, y)+15 x^{2} u_{y}(x, y)=-u, & -\infty<x, y<\infty, t>0 \\ u(0, y)=e^{-|y|}, & -\infty<y<\infty, t=0\end{cases}
$$

Problem: Consider a vibrating string with displacements $u(x, t)$ at time t. To leading order the displacement u satisfies the wave equation:

$$
\begin{cases}u_{t t}(x, t)=c^{2} u_{x x}(x, t), & -\infty<x<\infty, t>0 \\ u(x, 0)=\phi(x), & -\infty<x<\infty, t=0 \\ u_{t}(x, 0)=\psi(x), & -\infty<x<\infty, t=0\end{cases}
$$

a) Determine the solution to the wave equation when the initial configuration is $\phi(x)=\sin (x)$ and initial velocity is $\psi(x)=\cos (x)$.
b) Show that in general the total energy E of solutions of the wave equation is conserved. The total energy is given by the kinetic energy + the potential energy of the mechanical system. For the vibrating string this is

$$
E(t)=\int_{-\infty}^{\infty} \frac{1}{2}\left|u_{t}(t, y)\right|^{2} d y+\int_{-\infty}^{\infty} \frac{c^{2}}{2}\left|u_{x}(t, y)\right|^{2} d y
$$

Hint: Conservation of energy corresponds to E remaining constant in time. Show this using the PDE and integration by parts to obtain $\partial E / \partial t=0$.
c) Compute the total energy $E(0)$ at time 0 in terms of ϕ and ψ. Hint: Use that $u_{x}(x, 0)=$ $\phi_{x}(x)$.
d) Suppose that the energy is $E(t)=0$ for all time for a twice continuously differentiable function $u(x, t)$. What must the function u be in this case? In the case that we additionally impose that $\phi(x)=0$, what must u be? Hint: Consider what $E=0$ implies about u_{x} and u_{t} and then integrate in x and t to obtain a form for u.
e) Suppose $u_{1}(x, t)$ and $u_{2}(x, t)$ are two solutions of the PDE with the same boundary conditions, then $v(x, t)=u_{2}(x, t)-u_{1}(x, t)$ is a solution of the PDE with $\phi(x)=\psi(x)=0$. What is the energy $E(t)$ of v ? Hint: Use linearity of the PDE and compute $E(0)$ for v at time 0 . If u_{1} and u_{2} are both continuous, how are they related at each (x, t) ? Are solutions of this PDE unique?

Problem 3:

a) Solve the diffusion equation on the real-line:

$$
\begin{cases}u_{t}=k u_{x x}, & -\infty<x<\infty, t>0 \\ u(x, 0)=e^{-x^{2}}, & -\infty<x<\infty, t=0\end{cases}
$$

b) Show that the energy below decays, so $E(t) \leq E(0)$ for solutions u of the diffusion equation given in part (a), $(t>0)$

$$
E[u](t)=\int_{-\infty}^{\infty} u^{2}(x, t) d x
$$

c) Show that if $E[w]=0$ for a smooth function w, then w must be zero. Show this requires any two solutions u_{1} and u_{2} of the Diffusion Equation in part (a) be equal? This shows solutions of the Diffusion Equation are unique. Hint: Use part (b) and consider $w=u_{2}-u_{1}$.

