Name: Solutions

# Midterm Exam: <br> Professor: Paul J. Atzberger Partial Differential Equations, 124A 

Scoring:
Problem 1: $\qquad$

Problem 2: $\qquad$

Problem 3: $\qquad$

Problem 4: $\qquad$

Directions: Please answer each question carefully. Be sure to show your work. If you have questions, please feel free to ask.

Problem 1:
Use the method of characteristics to find the solution of

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
2 u_{x}+6 u_{y}=0, \quad-\infty<x<\infty, y \geq 0 \\
u(x, 0)=\sin (x),
\end{array} \quad-\infty<x<\infty, y=0 .\right.
\end{array}\right] \begin{aligned}
& 2 u_{x}+6 u_{y}=0 \Rightarrow u_{x}+3 u_{y}=0 \\
& \frac{d y}{d x}=3 \Rightarrow y(x)=3 x+c \\
& \left(x_{1}, y_{1}\right): y_{1}=3 x_{1}+c \Rightarrow c=y_{1}-3 x_{1} \\
& y(x)=3\left(x-x_{1}\right)+y_{1}
\end{aligned} \begin{aligned}
& (x, 0): 0=3\left(x-x_{1}\right)+y_{1} \Rightarrow x=\frac{-y_{1}+3 x_{1}}{3}=x_{1}-\frac{1}{3} y_{1} \\
& \text { solution } \\
& u\left(x_{1}, y_{1}\right)=u\left(x_{1}-\frac{1}{3} y_{1}, 0\right)=\sin \left(x_{1}-\frac{1}{3} y_{1}\right) .
\end{aligned}
$$

Problem 2:
Classify each of the following Partial Differential Equations as either elliptic, hyperbolic, or parabolic.

$$
\begin{aligned}
& \text { (a) } u_{x x}+u_{y y}+6 u_{x y}+u_{y}=0, \quad \mathcal{L}[n]=\mathcal{L}_{2}[n]+\mathcal{L}_{1}[n], \\
& \mathscr{L}_{2}[n]=u_{x x}+6 u_{x y}+u_{y y}=a_{11} u_{x y}+2 a_{12} u_{x y}+a_{22} u_{y y} \\
& a_{11}=1, a_{12}=3, a_{22}=1 \\
& d=a_{12}^{2}-a_{11} a_{22}=a-1=8>0
\end{aligned}
$$

hyperbolic

$$
\begin{aligned}
& \text { (b) } u_{x x}+u_{y y}+u_{x}+u_{y}=0 . \\
& a_{11}=1, a_{12}=0, a_{2 z}=1 \\
& d=0-1=-1<0
\end{aligned}
$$

elliptic
(c)

$$
\begin{aligned}
& u_{x x}+u_{y y}+2 u_{x y}+u_{x}=0, \quad \mathcal{L}[n]=\mathcal{L}_{2}[n]+\mathcal{L}_{1}[n], \\
& a_{11}=1, a_{12}=1, a_{2 r}=1 \\
& d=1^{2}-1 \cdot 1=0 \\
& \mathcal{L}_{1}[n]=a_{1} u_{x}+a_{2} u_{y} \\
& a_{1} \neq 0,
\end{aligned}
$$

parabolic.

Problem 3:
Use the method of characteristics to find the solution of

$$
\left.\begin{array}{l} 
\begin{cases}2 u_{x}-2 y u_{y}=0, & -\infty<y<\infty, x>0 \\
u(0, y)=y^{2}, & -\infty<y<\infty, x=0\end{cases} \\
2 u_{x}-2 y u_{y}=0 \Rightarrow u_{x}-y u_{y}=0
\end{array}\right\} \begin{aligned}
& \frac{d y}{d x}=-y \Rightarrow y(x)=c e^{-x} \\
& \left(x_{1}, y_{1}\right): y_{1}=c e^{-x_{1}} \Rightarrow c=y_{1} e^{x_{1}} \\
& (0, y): y=c e^{-0} \Rightarrow y=c=y_{1} e^{x_{1}}
\end{aligned}
$$

Solution:

$$
u\left(x_{1}, y_{1}\right)=u(0, c)=c^{2}=y_{1}^{2} e^{2 x_{1}}
$$

Problem 4:
Consider a vibrating string with displacements $u(x, t)$ at time $t$ satisfying the wave equation

$$
\begin{cases}u_{t t}=c^{2} u_{x x}, & -\infty<x<\infty, t>0 \\ u(x, 0)=\phi(x), & -\infty<x<\infty, t=0 \\ u_{t}(x, 0)=\psi(x), & -\infty<x<\infty, t=0\end{cases}
$$

a) Determine the solution to the wave equation when the initial configuration is $\phi(x)=\exp \left(-x^{2}\right)$ and initial velocity is $\psi(x)=-2 x \exp \left(-x^{2}\right)$.

$$
\begin{aligned}
& u(x, t)=\frac{1}{2}[\phi(x-c t)+\phi(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(\tilde{x}) d \tilde{x} \\
& =\frac{1}{2}\left[e^{-(x-c t)^{2}}+e^{-(x+c t)^{2}}\right]+\frac{1}{2 c} \int_{x-c t}^{x+c t}-2 \tilde{x} e^{-x^{2}} d \hat{x} \\
& =\frac{1}{2}\left[e^{-(x-c t)^{2}}+e^{-\left(x+(t)^{2}\right.}\right]+\frac{1}{2 c}\left[e^{-x^{2}}\right]_{x-c t}^{x+c t} \\
& =\left[\frac{1}{2}+\frac{1}{2 c}\right]\left[e^{-(x-c t)^{2}}+e^{-\left(x+(t)^{2}\right.}\right]=\left(\frac{c+1}{2 c}\right)\left[e^{-(x-c t)^{2}}+e^{-(x+c t)^{2}}\right]
\end{aligned}
$$

b) Compute the total energy $E(0)$ at time 0 in terms of $\phi$ and $\psi$.

Hint: Use $\int x^{2} \exp \left(-x^{2}\right) d x=\sqrt{\pi} / 2$.

$$
\begin{aligned}
& E\left[(t)=\frac{1}{2} \int_{-\infty}^{\infty} u_{t}^{2} d x+\frac{c^{2}}{2} \int_{-\infty}^{\infty} u_{x}^{2} d x .\right. \\
&=\frac{1}{2} \int_{-\infty}^{\infty} \psi^{2}(x) d x+\frac{c^{2}}{2} \int_{-\infty}^{\infty}\left(\phi_{x}(x)\right)^{r} d x \\
&=\frac{1}{2} \int_{-\infty}^{\infty} 4 x^{2} e^{-2 x^{2}} d x+\frac{c^{2}}{2} \int_{-\infty}^{\infty} 4 x^{2} e^{-2 x^{2}} d x \\
& \text { let } z=\sqrt{2} x, d x=\frac{1}{\sqrt{2}} d z \\
&=\frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} z^{2} e^{-z^{2}} d z+\frac{c^{2}}{\sqrt{2}} \int_{-\infty}^{\infty} z^{2} e^{-z^{2}} d z=\frac{\sqrt{\pi}}{2 \sqrt{2}}\left(1+c^{2}\right)_{0}
\end{aligned}
$$

c) Show that the total energy $E$ of solutions of the wave equation is conserved by showing $d E / d t=0$. Hint: Use the PDE and integration by parts.

$$
\begin{aligned}
\frac{d E}{d t} & =\frac{1}{2} \int_{-\infty}^{\infty} 2 u_{t} u_{t t} d x+\frac{c^{2}}{2} \int_{-\infty}^{\infty} 2 u_{x} u_{x t} d x \\
& =\frac{1}{2} \int_{-\infty}^{\infty} \alpha c^{2} u_{t} u_{t x} d x+\frac{c^{2}}{2}\left[2 u_{x} u_{t}\right]_{-\infty}^{0} \leftarrow \sin 0 c_{x \rightarrow 0}^{2} \int_{-\infty}^{\infty} 2 u_{x \rightarrow \pm \infty}^{\infty} u_{x} u_{t} d x \\
& =0
\end{aligned}
$$

