Exercises

Machine Learning: Foundations and Applications MATH 260

Paul J. Atzberger http://atzberger.org/

1. (Kernel Methods and RKHS) Consider the classification of points $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$ having labels associated with the XOR operation $y = x_1 \oplus x_2$ with

 $S = \{(-1, -1, F), (-1, 1, T), (1, -1, T), (1, 1, F)\}$. There is no direct linear classifier $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$ that can correctly label these points. Here, we use (-1 for False, 1 for True). However, if we use the feature map $\phi(\mathbf{x}) = [\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \phi_3(\mathbf{x})] = [x_1, x_2, x_1 x_2]$ into \mathbb{R}^3 there is a linear classifier of the form $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \phi(\mathbf{x}) + b)$.

- (a) Find weights \mathbf{w} and b that correctly classifies the points with XOR labels.
- (b) Give the kernel function $k(\mathbf{x}, \mathbf{z})$ associated with this feature map into \mathbb{R}^3 .
- (c) Show the Reproducing Kernel Hilbert Space (RKHS) \mathcal{H} for this feature map consists of all the functions of the form $f(\cdot) = ax_1 + bx_2 + cx_1x_2$. Using that $\phi(\mathbf{z}) = k(\cdot, \mathbf{z})$, give the inner-product $\langle f, g \rangle_{\mathcal{H}}$ for two functions $f(\cdot)$ and $g(\cdot)$ from this space.
- (d) Show $k(\cdot, \mathbf{z})$ has the reproducing property under this inner-product.
- (e) Show that we can express $\mathbf{w} = \sum_{i} \alpha_{i} k(\cdot, \mathbf{x}_{i})$ and that the classifier can be expressed using only kernel evaluations as $h(\mathbf{x}) = \operatorname{sign}(\sum_{i} \alpha_{i} k(\mathbf{x}, \mathbf{x}_{i}) + b)$. Hint: Recall that the dot-product expressions are short-hand $\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}) = \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}) \rangle_{\mathcal{H}}$.
- 2. (Support Vector Machine (SVM)). The SVM is a widely used method to perform classification by trying to find hyperplanes that separate the data classes of $S = \{x_i, y_i\}_{i=1}^m$. SVMs aim to obtain generalization by looking for hyperplanes with the largest margin. In the case with two separable classes, this corresponds to the constrained optimization problem

$$\min_{\mathbf{w},b} \|\mathbf{w}\|^2 \text{ subject to } \left(\mathbf{w}^T \mathbf{x}_i + b\right) y_i \ge 1.$$

- (a) What is the VC-dimension of the set of hyperplane classifiers for $\mathbf{x} \in \mathbb{R}^n$? The hypothesis space is $\mathcal{H} = \{h \mid h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x}_i + b), \mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}\}.$
- (b) We derived in lecture the *dual problem* for SVMs in the non-separable case using the Karush-Kuhn-Tucker (KKT) conditions. Derive the dual formulation for the SVM in the separable case.
- (c) How does the weight vector \mathbf{w} depend on the training data samples $S = \{x_i, y_i\}_{i=1}^m$? In particular, which training data samples contribute to \mathbf{w} ? Hint: Use the KKT conditions to obtain representation formula for \mathbf{w} in terms of the data. (Which coefficients are non-zero?)
- 3. (Kernel-Ridge Regression) Consider the problem of constructing a model that approximates the relation y = f(x) from samples obscured by noise $y_i = f(\mathbf{x}_i) + \xi_i$, where ξ_i is Gaussian. As discussed in lecture when using Bayesian methods with a Gaussian prior this leads to the optimization problem

$$\min_{\mathbf{w}} J(\mathbf{w}), \text{ where } J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \left(\mathbf{w}^{T} \phi(\mathbf{x}_{i}) - y_{i} \right)^{2} + \frac{1}{2} \gamma \mathbf{w}^{T} \mathbf{w}.$$

- (a) Show that the solution weight vector \mathbf{w} always can be expressed in the form $\mathbf{w} = \sum_{i=1}^{m} \alpha_i \phi(\mathbf{x}_i)$. Hint: Compute the gradient $\nabla_{\mathbf{w}} J = 0$.
- (b) Consider the design matrix $\mathbf{\Phi} = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_m)]^T$ defined by the data so we can express $\mathbf{w} = \mathbf{\Phi}^T \boldsymbol{\alpha}$. Substitute this into the optimization problem to obtain the dual formulation in terms of minimizing over a function $J(\boldsymbol{\alpha})$. Express this in terms of the design matrix $\mathbf{\Phi}$ and Gram matrix K, where $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$.
- (c) Compute the gradient $\nabla_{\alpha} J = 0$ to derive equations for the solution of the optimization problem. Express the linear equations for the solution α in terms of the Gram matrix K.
- (d) Explain briefly the importance of the term γ and role it plays in the solution.
- (e) Suppose we consider the regression problem to be over all functions $f \in \mathcal{H}$ in some Reproducing Kernel Hilbert Space (RKHS) \mathcal{H} with kernel k and use regularization $||f||_{\mathcal{H}}^2$. This corresponds to the optimization problem

$$\min_{f \in \mathcal{H}} J[f], \text{ with } J[f] = \frac{1}{2} \sum_{i=1}^{m} \left(f(\mathbf{x}_i) - y_i \right)^2 + \frac{1}{2} \|f\|_{\mathcal{H}}^2.$$

Show the solution to this optimization problem yields the same result as in the formulation above using α . Hint: Use representation results for objective functions of the form $J[f] = L(f(x_1), \ldots, f(x_m)) + G(||f||_{\mathcal{H}}).$

- 4. Consider kernel regression in the case when $k(\mathbf{x}, \mathbf{z}) = \exp\left(-c \|\mathbf{x} \mathbf{z}\|^2\right)$. Compute the kernelridge regression for $f(x) = \sin(x)$ in the specific case of $y_i = \sin(x_i)$ with $x_i = 2\pi(i-1)/m$ for i = 1, 2, ..., m. Study the L_2 -error (least-squares error) $\epsilon_{\text{err}} = \int_0^{2\pi} \left(\mathbf{w}^T \phi(z) - f(z)\right)^2 dz$ when estimated by $\tilde{\epsilon}_{\text{err}} = \frac{2\pi}{N} \sum_{\ell=1}^N \left(\mathbf{w}^T \phi(z_i) - f(z_i)\right)^2$. To try to approximate the integral well take $z_i = 2\pi(i-1)/N$ with large $N \gg m$, say $N = 10^5$. Use this to construct a log-log plot of $\tilde{\epsilon}_{\text{err}}$ vs m when m varies over the range, say $10, 10 \times 2^1, 10 \times 2^2, \ldots 10 \times 2^9$. Plot on the same figure the errors $\tilde{\epsilon}_{\text{err}}$ vs m for a few different choices of the hyperparameter c, say c = 100, 10, 1, 0.1, 0.01. For $f(x) = \sin(x)$ for which c values do you get the best accuracy? Explain briefly for what choice of c you would expect for the model to generalize the best under a data distribution for x_i that is uniform on $[0, 2\pi]$.
- 5. $(L_1 \text{ vs } L_2 \text{ Regularization})$ Consider the optimization problem

$$\min_{\mathbf{w}} J(\mathbf{w}), \text{ with } J(\mathbf{w}) = \frac{1}{2} (\mathbf{w} - \mathbf{q})^T (\mathbf{w} - \mathbf{q}) + R(\mathbf{w}).$$

- (a) Find the solution $\mathbf{w} \in \mathbb{R}^4$ when $R(\mathbf{w}) = \gamma \frac{1}{2} \|\mathbf{w}\|_2^2$ with $\mathbf{q} = (1, 1, 1, 4)$ and $\gamma = 1$. Hint: Consider values \mathbf{w} where $\nabla_{\mathbf{w}} J = 0$ or the gradient does not exist.
- (b) Find the solution $\mathbf{w} \in \mathbb{R}^4$ when $R(\mathbf{w}) = \gamma ||\mathbf{w}||_1$ with $\mathbf{q} = (1, 1, 1, 4)$ and $\gamma = 1$. Hint: Consider values \mathbf{w} where $\nabla_{\mathbf{w}} J = 0$ or the gradient does not exist.
- (c) For which solution are most of the components of \mathbf{w} zero. Briefly explain why one might expect one of the regularizations to do better in pushing solutions close to the coordinate axes to promote sparsity.

- 6. (Perceptron) Consider the separable case and a dataset $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ represented as $\mathbf{x}_i = (\tilde{\mathbf{x}}_i, 1)$ to handle the bias term. We could try to find a classifying hyperplane $h(\mathbf{x}) = \text{sign}(\langle \mathbf{w}, \mathbf{x} \rangle)$ using the following procedure: (i) initialize $\mathbf{w}^{(1)} = \mathbf{0}$, (ii) if there is some index *i* with \mathbf{x}_i misclassified with $y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \leq 0$ then update the weights using $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y_i \mathbf{x}_i$.
 - (a) Show this method always converges in the separable case to a $\hat{\mathbf{w}}$ so that $y_i \langle \hat{\mathbf{w}}, \mathbf{x}_i \rangle > 0$.
 - (b) Show the method converges in at most T iterations with $T \leq (RB)^2$, where $B = \min_{\mathbf{w}} \{ \|\mathbf{w}\| \text{ s.t. } y_i \langle \mathbf{w}, \mathbf{x} \rangle \geq 1 \}$ and $R = \max_i \|\mathbf{x}_i\|$.

Hint: Let \mathbf{w}^* be the vector of smallest norm with $y_i \langle \mathbf{w}^*, \mathbf{x}_i \rangle \geq 1$, which exists by the separability condition. Show after T iterations $\frac{\langle \mathbf{w}^*, \mathbf{w}^{(T+1)} \rangle}{\|\mathbf{w}^*\|\|\mathbf{w}^{(T+1)}\|} \geq \frac{\sqrt{T}}{RB}$. Cauchy-Schwartz then yields the inequality.