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1. (Kernel Methods and RKHS) Consider the classification of points x = (x1,z2) € R? having
labels associated with the XOR operation y = x1 @ xo with
S={(-1,-1,F),(-1,1,7),(1,-1,7),(1,1, F)}. There is no direct linear classifier h(x) =
sign(w!'x + b) that can correctly label these points. Here, we use (—1 for False, 1 for True).
However, if we use the feature map ¢(x) = [¢1(x), $2(x), ¢3(x)] = [x1, T2, T172] into R3 there
is a linear classifier of the form h(x) = sign(w’ ¢(x) + b).

(a) Find weights w and b that correctly classifies the points with XOR labels.
(b) Give the kernel function k(x,z) associated with this feature map into R3.

(c) Show the Reproducing Kernel Hilbert Space (RKHS) # for this feature map consists of
all the functions of the form f(-) = axy1 + bxa + cx1x9. Using that ¢(z) = k(-,z), give
the inner-product (f, g)% for two functions f(-) and g(-) from this space.

(d) Show k(-,z) has the reproducing property under this inner-product.

(e) Show that we can express w = > . «a;k(-,%;) and that the classifier can be expressed
using only kernel evaluations as h(x) = sign(}_, a;k(x,x;) + b).
Hint: Recall that the dot-product expressions are short-hand w’ ¢ (x) = (w, ¢(x))%.

2. (Support Vector Machine (SVM)). The SVM is a widely used method to perform classification
by trying to find hyperplanes that separate the data classes of S = {z;,y;}I*;. SVMs aim to
obtain generalization by looking for hyperplanes with the largest margin. In the case with
two separable classes, this corresponds to the constrained optimization problem

mill)l |w|? subject to (WTXZ' +b)y; > 1.
w7

(a) What is the VC-dimension of the set of hyperplane classifiers for x € R"? The hypothesis
space is H = {h | h(x) = sign(w'x; + b),w € R", b € R}.

(b) We derived in lecture the dual problem for SVMs in the non-separable case using the
Karush-Kuhn-Tucker (KKT) conditions. Derive the dual formulation for the SVM in
the separable case.

(c) How does the weight vector w depend on the training data samples S = {z;, y;}/%,? In
particular, which training data samples contribute to w? Hint: Use the KKT conditions
to obtain representation formula for w in terms of the data. (Which coefficients are
non-zero?)

3. (Kernel-Ridge Regression) Consider the problem of constructing a model that approximates
the relation y = f(z) from samples obscured by noise y; = f(x;) + &;, where &; is Gaussian.
As discussed in lecture when using Bayesian methods with a Gaussian prior this leads to the
optimization problem

(who(x:) — i) + -

min J(w), where J(w) = 5
i=1

N | =

1
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(a) Show that the solution weight vector w always can be expressed in the form w =
S, aip(x;). Hint: Compute the gradient Vy,J = 0.

(b) Consider the design matrix ® = [¢(x1),...,(Xm)]’ defined by the data so we can
express w = ® a. Substitute this into the optimization problem to obtain the dual
formulation in terms of minimizing over a function J(a). Express this in terms of the
design matrix ® and Gram matrix K, where K;; = k(x;,%;) = ¢(x;)T ¢(x;).

(¢) Compute the gradient V4J = 0 to derive equations for the solution of the optimization

problem. Express the linear equations for the solution ¢ in terms of the Gram matrix
K.

(d) Explain briefly the importance of the term « and role it plays in the solution.

(e) Suppose we consider the regression problem to be over all functions f € H in some
Reproducing Kernel Hilbert Space (RKHS) H with kernel k and use regularization || f||3,.
This corresponds to the optimization problem

min J|/], with J|f] =

> (76— wi)? + 31

=1

N

Show the solution to this optimization problem yields the same result as in the formula-
tion above using . Hint: Use representation results for objective functions of the form

JUT=L(f (1), ..., f(@m)) + G fln)-

4. Consider kernel regression in the case when k(x,z) = exp (—c||x — z||?). Compute the kernel-
ridge regression for f(z) = sin(x) in the specific case of y; = sin(z;) with x; = 27(i — 1)/m
for i = 1,2,...,m. Study the Lo-error (least-squares error) €., = 027r (WT¢(z) — f(z))de
when estimated by €., = %” Zévzl (ngzS(zi) - f(zi))Q. To try to approximate the integral
well take z; = 27(i — 1)/N with large N > m, say N = 10°. Use this to construct a log-log
plot of &, vs m when m varies over the range, say 10,10 x 2',10 x 22,...10 x 2°. Plot on
the same figure the errors €., vs m for a few different choices of the hyperparameter ¢, say
¢ =100,10,1,0.1,0.01. For f(x) = sin(z) for which ¢ values do you get the best accuracy?
Explain briefly for what choice of ¢ you would expect for the model to generalize the best
under a data distribution for z; that is uniform on [0, 27].

5. (L1 vs L2 Regularization) Consider the optimization problem

1

min J(w), with J(w) = §(W —q)f(w—q) + R(w).

w

(a) Find the solution w € R* when R(w) = v3||w|3 with g = (1,1,1,4) and v = 1. Hint:
Consider values w where VJ = 0 or the gradient does not exist.

(b) Find the solution w € R* when R(w) = v|w|; with q = (1,1,1,4) and v = 1. Hint:
Consider values w where Vy,J = 0 or the gradient does not exist.

(¢) For which solution are most of the components of w zero. Briefly explain why one might
expect one of the regularizations to do better in pushing solutions close to the coordinate
axes to promote sparsity.



6. (Perceptron) Consider the separable case and a dataset S = {(x;,y;)}I"; represented as
x; = (X;,1) to handle the bias term. We could try to find a classifying hyperplane h(x) =
sign((w,x)) using the following procedure: (i) initialize w(l) = 0, (ii) if there is some index i
with x; misclassified with y;(w,x;) < 0 then update the weights using wttD) = w® 4 yix;.

(a) Show this method always converges in the separable case to a W so that y;(w,x;) > 0.

(b) Show the method converges in at most T iterations with 7' < (RB)?, where B =
miny {||w|| s.t. y;(w,x) > 1} and R = max; ||x;]|.

Hint: Let w* be the vector of smallest norm with y;(w*,x;) > 1, which exists by the

>
.. . . . <w*7w(T+1)> T
separability condition. Show after T iterations Tw T Tw O] > %p- Cauchy-Schwartz

then yields the inequality.



