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Linear Programming and Simplex Method
We give here a brief introduction to linear programming and the simplex method. The
problem is to find a solution of

min cTx
subject Ax = b

x ≥ 0.

This optimization problem arises in many settings, including in machine learning, statistics,
economics, business logistics, optimal transport, physics, and engineering [1–3]. While the
objective function and the constraints being linear may seem to suggest a simple solution, in
practice these problems exhibit interesting behaviors and challenges for efficient numerical
solution. As we shall also discuss, many interesting problems can also be transformed to be
expressed as linear programs.

Primal and Dual Problems for Linear Programming

We first derive some necessary and sufficient conditions to achieve the minimizer of the
linear program based on the Karuch-Kahn-Tucker (KKT) conditions. We consider the KKT
conditions for the constrained problem

min f(x)
subject h(x) = 0

g(x) ≤ 0.

This has the Lagrangian

L(x,λ, s) = f(x) + λTh(x) + sTg(x), (1)

where λ ∈ Rn and s ∈ Rm with s ≥ 0. The linear program (LP) has the Lagrangian

L(x,λ, s) = cTx− λT (Ax− b)− sTx, (2)

where we let f(x) = cTx, h(x) = b− Ax, and g(x) = −x. This can also be expressed as

L(x,λ, s) = bTλ− xT
(
ATλ+ s− c

)
. (3)

We obtain the KKT conditions for LP by computing ∇x,λL = 0 and ∇sL ≤ 0. This yields

∇xL = c− ATλ− s = 0, ∇λL = Ax− b = 0, ∇sL = x ≥ 0, s ≥ 0, sTx = 0. (4)

The KKT conditions for the LP are

ATλ+ s = c (5)

Ax− b = 0 (6)

x ≥ 0 (7)

s ≥ 0 (8)

sixi = 0. (9)
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For a triple (x∗,λ∗, s∗) that satisfies the KKT conditions, we have

cTx∗ = (Aλ∗ + s∗)T x∗ = (Ax∗)T λ∗ = bTλ∗ ⇒ bTλ∗ = cTx∗. (10)

If we instead consider any feasible point x̄, we have for the triple (x̄,λ∗, s∗) that

cT x̄ = (Aλ∗ + s∗)T x̄ = (Ax̄)T λ∗ + s∗T x̄ = bTλ∗ + s∗T x̄ = cTx∗ + s∗T x̄, (11)

which yields

cT x̄ = cTx∗ + s∗T x̄. (12)

Since s∗,T x̄ ≥ 0, we have cT x̄ ≥ bTλ∗ = cTx∗. We see that when s∗T x̄ ̸= 0 the inequality is
strict. This also shows that x̄ is a minimizer if and only if s∗T x̄ = 0. As a consequence, if
we can find a triple (x,λ, s) that satisfies the KKT conditions in equation 5- 9, we will have
found a minimizer for the LP.

These considerations are also related to the dual optimization problem. For the LP, the
dual problem can be obtained from

max
λ,s

q(λ, s) (13)

subject s ≥ 0,

where q(λ, s) = infx∈Rn L(x,λ, s). For LP, the dual objective function is

q(λ, s) = inf
x∈Rn

L(x,λ, s) =

{
bTλ, when ATλ+ s = c.

−∞, otherwise.
(14)

This follows, since if we have a non-zero residual v = ATλ + s − c ̸= 0, we can take
x(β) = βv. This gives L(x(β),λ, s) = bTλ− β∥v∥2 → −∞ as β → ∞. When v = 0 we see
the Lagrangian is simply bTλ. Since q(λ, s) = −∞ when ATλ + s ̸= c, we can add this as
a constraint above and obtain an optimization problem with the same solutions as the dual
problem in equation 13. This yields the dual problem for the LP

maxλ,s bTλ
subject ATλ+ s = c, s ≥ 0.

(15)

Since these solve the same KKT conditions, we have from our results above that for any
feasible λ, s to the dual problem and any feasible x from the primal problem that

cTx ≥ bTλ. (16)

We already showed that this becomes equal when the KKT conditions are satisfied. This is
equivalent to having a triple of points (x,λ, s) where x is feasible for the primal problem and
(λ, s) is feasible for the dual problem. For such a triple, the x is a solution minimizing the
primal problem and (λ, s) are a solution maximizing the dual problem. This provides useful
criteria for characterizing the optimal solution and for developing optimization algorithms.
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Geometric Intuition of Linear Programming and Constraints

For the LP using the formulation in equation 28, we have that the constraints Ax = b give a
geometry that requires the solution to lie within the intersection of a collection of hyperplanes
and within the positive orthant x ≥ 0. To help with some intuition, we illustrate some basic
cases for different choices of m in three spatial dimensions n = 3 in Figure 1. In higher
dimensions, while the geometry can become more rich it shares many similar properties.

Figure 1: Geometry of Linear Programming (LP). We show the basic feasible points
that arise from the constraints Ax = b and x ≥ 0 (red points).

The condition x ≥ 0 requires the solution remain within the positive orthant (xi ≥ 0
for all i). In the case of m = 1 the constraint Ax = b requires the solution also to be on
a hyperplane of points orthogonal to u1 = (a11, . . . , a1n). In the case each a1j is non-zero,
this will intersect with all three coordinate axes and form a simplex. Since the objective
function cTx is linear it will always achieve its minimum value at one of the vertex points.
An interesting property of the vertex points for m = 1 is they can only have at most one
non-zero component v = (v1, 0, 0), v = (0, v2, 0), or v = (0, 0, v3). We next consider the
case with m = 2, which involves adding another constraint to Ax = b requiring the solution
also to lie on the hyperplane of points orthogonal to u2 = (a21, . . . , a2n). This requires
the feasible points to lie on the line of intersection. An interesting property of the vertex
points for m = 2 is they can only have at most two non-zero components v = (v1, v2, 0),
v = (v1, 0, v3), or v = (0, v2, v3). Again, these vertex points arise from the intersection of
the hyperplanes and the positive orthant conditions xi ≥ 0 for all i. The linear objective
function cTx again will always achieve its minimum value at one of the vertex points. For
m = 3, we introduce an addition constraint which gives an additional hyperplane. This
results in the solution having to lie at the intersection of three hyperplanes, so in n = 3 if
these are consistent this defines a single point. This gives the vertex points for m = 3 can
have at most three non-zero components v = (v1, v2, v3), which while not really a restriction
it follows the same pattern as above. In particular, for m constraints the vertex points v
have at most m non-zero components. This motivates the following definitions which are
closely related to these properties of the vertices.
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Def: A basic feasible point x is a point that is feasible and for which there exists a collection
of indices B satisfying the following properties

(i) |B| = m, contains exactly m indices.

(ii) if i ̸∈ B then xi = 0.

(iii) The m×m matrix B = [Ai]i∈B is non-singular.

The Ai denotes the ith column of the matrix A. We call B the basis set. We call the matrix
constructed from this subset of columns of A as the basis matrix.

It can be proven that the basic feasible points are precisely the vertices of the constraint
set of Ax = b and x ≥ 0. This provides a useful characterization and way to generate vertex
points. Since the objective is linear, the minimum value of the LP must occur at one of the
basic feasible points provided the problem is bounded and an optimal solution exists. This
suggests one strategy to find a minimizer x is to search through the basic feasible points.
However, from the definitions we see a brute-force search could be expensive since there
can be up to

(
n
m

)
basic feasible points. We show how the objective function and feasibility

conditions derived above can be used to try to more efficiently guide traversing of the basic
feasible points to search for a minimum.

Simplex Method Motivations

Suppose we have a basic feasible point x for the LP with basis set B. We define the set of
indices not in the basis as N = {i | i ̸∈ B}. WLOG we can arrange at a given stage our
indices so B = {1, 2, . . . ,m} are the first m indices. It is convenient to express the point in
terms of components as x = (xB,xN), where xB = (x1, . . . , xm) and xN = (xm+1, . . . , xn).
We will sometimes abuse notation and also express this as x = xB + xN .

A good initial step would be to see if we can construct a triple (x,λ, s) that satisfies
the KKT conditions, since then we would have the minimum. We can construct λ, s from x
using B. We first express xB in terms of b by

Ax = b ⇒ BxB +NxN = b ⇒ BxB = b ⇒ xB = B−1b. (17)

The N is the m × (n −m) matrix consisting of the columns of Ai with indices i ∈ N . We
can relate any of these vertices to the (λ, s) by using that they need to satisfy the condition
ATλ+ s = c. This yields

BTλ+ sB = cB, NTλ+ sN = cN . (18)

The complimentary conditions would be

xT s = xT
BsB + xT

NsN = 0. (19)

For a non-degenerate basis B we would have [xB]i > 0, which requires sB = 0. This gives

BTλ = cB, NTλ+ sN = cN . (20)
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We can solve these to obtain

λ = B−TcB, sN = cN −NTλ = cN −
(
B−1N

)T
cB. (21)

This gives λ and s for the basis B. The only condition not explicitly enforced above is the
non-negativity s ≥ 0. If we have that this holds for s then the triple (x,λ, s) would satisfy
the KKT conditions and we would have that x is the optimal solution. When this fails,
then we must have that one of the components of sN is negative. Also notice that the above
construction for λ and s do not depend on x but only on the choice of basis B.

Similar to the calculation in equation 11, we also have for this λ, s that for any feasible
x the objective function satisfies

cTx = bTλ+ sTx = bTλ+ sTNxN . (22)

Since sN has at least one negative component corresponding to an index q ̸∈ B, this suggests
if we are at the basic feasible point for B we can make the objective function even smaller by
increasing the qth component so that xq > 0, so that sTNxN = sqxq < 0. We mention again
that we are assuming throughout we are in the non-degenerate case.

Since we need to keep x(xq) a feasible point, this would also require adjusting the other
components of x so that Ax(xq) = b is maintained. We now show how it is possible to do
this. We use that B is non-singular which implies that all of its columns A1, . . . , Am are
linearly independent and form a basis for Rm. This allows us to express the qth column as

Aq =
m∑
i=1

viAi,⇒
m∑
i=1

viAi − Aq = 0. (23)

WLOG, we arrange the indexing so that q = m + 1. This shows that if we let v =
(v1, v2, . . . , vm,−1, 0, . . . , 0) then Av = 0. Since we have the constraints x ≥ 0, it is con-
venient to let w = −v = (w1, w2, . . . , wm, 1, 0, . . . , 0), where wi = −vi. We now consider
x(ϵ) = x0 + ϵw = x0 − ϵv, which satisfies Ax(ϵ) = b for any ϵ provided x0 is feasible.
When x0 is taken to be the basic feasible point for B we have the qth component is given
by [x(ϵ)]q = xq = ϵ, since [x0]q = 0. For x(ϵ) to be feasible for the LP, we also need to have
x(ϵ) ≥ 0. In the non-degenerate case, we have components

(x(ϵ))i = xi − ϵvi, i ∈ B
(x(ϵ))q = ϵ, i = q
(x(ϵ))i = 0, i ∈ N \ {q}.

(24)

To reduce the objective, we try to take xq = ϵ as large as possible until one of the components
becomes zero, xi − ϵvi = 0. Making xq any larger would result in violating the constraint
x ≥ 0. In particular, we take

xq = min

{
xi

vi
| vi > 0

}
, p = argmin

i

{
xi

vi
| vi > 0

}
. (25)

If there are no vi > 0 then we can make xq as large as we like and we can conclude that the
objective function is unbounded from equation 22. If the objective is bounded, the index p
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denotes the component for which the zero occurs and we take xq = ϵ = xp/vp. If there is
a tie, we take the index of smallest value. WLOG we take p = m − 1 and q = m + 1 for
convenience, which always can be arranged by adjusting the index ordering.

Now the new point we end up at is of the form

x(ϵ) = (x1(ϵ), . . . , xp−1(ϵ), 0, xp+1(ϵ), xq(ϵ), 0, . . . , 0),

where xi(ϵ) = xi − ϵvi ≥ 0, xq = ϵ ≥ 0, and xp(ϵ) = 0. This point only has m non-zero
components making it a good candidate for a basic feasible point. To construct the basis set
we take B+ = (B \ {p}) ∪ {q} = {1, . . . , p − 1, p + 1, q}. This is obtained by removing the
index p and adding the index q.

The main property we have to verify is that B+ = [Ai]i∈B+ is non-singular. We need to
show

∑
i∈B+ βiAi = 0 implies βi = 0. This follows from vp ̸= 0 and equation 23, which gives

0 =
∑

i∈B+,i ̸=q

βiAi + βqAq =
∑

i∈B,i ̸=p

(βi + viβq)Ai + βqvpAp (26)

⇒ βqvp = 0, (βi + viβq) = 0,⇒ βq = 0 ⇒ βi = 0. (27)

We used the linear independence of B. This shows that B+ is a basis set and that x(ϵ) is
a basic feasible point for ϵ = xq = xp/vp. From equation 22, we see in this case that the
new basic feasible point has smaller value for the objective. We obtained this result under
the assumption that the basis set was non-degenerate and A had full rank m. In practice,
these assumptions can be relaxed with some additional technical considerations for handling
potential cycling and other issues, which we do not go into detail here. The above was meant
to help motivate the intuition for the steps of the simplex method in one of the most common
cases.

Now we can again use equations 5- 9 to construct for the new feasible point x+ the λ+, s+

to see if the triple (x+,λ+, s+) satisfy the KKT conditions. In particular, if s+ ≥ 0 holds,
then the x+ would be the optimal solution to the LP. The simplex method effectively uses
the procedures we mentioned above successively until either finding a point that satisfies the
KKT conditions or determines the problem is unbounded.

Simplex Method: Summary

Start with a basic feasible point x and see if is optimal by checking the KKT conditions. If
KKT is satisfied, then we are done and x is optimal. Otherwise, proceed by performing the
following modifications to the basis set B = {1, 2, . . .m}.

(i) Choose an index q ∈ N for which sq < 0, which we call the entering index.

(ii) Construct x(ϵ) = x−ϵv, with v = (v1, . . . , vm,−1, 0, . . . , 0) by adding Aq to the column
set so {A1, . . . , Am, Aq} is linearly dependent and Aq =

∑m
i=1 viAi.

(iii) Increase xq = ϵ away from zero until one of the components of xB becomes zero,

x+
q = min

{
xi

vi
| vi > 0

}
, p = argmini

{
xi

vi
| vi > 0

}
. Let ϵ+ = x+

q = xp/vp. If no such

xq > 0 exists, then the objective function can be made arbitrarily negative and we halt
by declaring the LP is unbounded.

6



Notes Optimization Paul J. Atzberger

(iv) Remove the index p (leaving index ) from B and replace it with the entering index q to
obtain the set of indices B+.

(v) The B+ gives the basis set for the new basic feasible point x+ = x(ϵ+). If it satisfies
the KKT conditions (s+i ≥ 0 for all i), then we have found the minimum and are done.
If not, then proceed to step (i) to move to a new basic feasible point.

The above procedure is sometimes referred to as pivoting. This moves from one vertex of the
polytope to another vertex. In practice, degenerate bases can be encountered, in which case
additional technical steps are needed to prevent cycling and other issues, which we do not
discuss here. For more details, see [1–3]. In the non-degenerate case with A having full rank
m this results in a strict decrease in the objective function each step. Since there are only a
finite number of basic feasible points, the algorithm will eventually terminate by declaring
unboundedness or finding an optimal solution.

Two-Phase Method for LPs

An important issue that arises in practice for many LP problems is to find an initial basic
feasible point. For this purpose an LP with artificial variables y is introduced that has an
easy to find initial basic feasible point. The design of this LP is such that it has solutions
that are basic feasible points of the original LP problem. The artificial LP problem is

min y1 + y2 + · · ·+ ym
subject [A, Im][x;y] = b

[x;y] ≥ 0.

In our notation [x;y] indicates row concatenation of the vectors to form a larger column
vector. The [A, Im] denotes column concatenation to form an enlarged matrix. The Im
indices the m ×m identity matrix. This problem will always have the feasible initial point
x = [0;b]. If the original problem has a feasible point x then this LP problem has minimizer
[x; 0] with y = 0 and objective 0. If no such minimizer can be obtained, we can conclude
the original problem does not have any feasible points.

We split solving an LP into two phases. In the first phase, we transform the LP into the
artificial problem and apply the simplex method to search for the solution [x; 0]. If no such
solution exists, we declare the LP is infeasible. If such a solution exists, we use this solution
as the initial basic feasible point x for the original LP problem. In the second phase, we
proceed to solve the LP by using x as the initial basic feasible point in the simplex method.
In this way, we can handle general LP problems in the standardized form even when there
is not an obvious initial basic feasible point.

Tableau Notation

For book-keeping the steps of the simplex method various types of tableau notations are used.
We discuss a few of the most common ones here along with how they can be interpreted. The
starting point for encoding the simplex method is to construct a table of the standardized
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problem for A,b, c of the form

a1 · · · an b
a11 · · · a1n b1
...

...
...

am1 · · · amn bm
cT c1 · · · cn 0

(28)

This corresponds to the composite matrix[
A b
cT 0

]
=

[
B N b
cTB cTN 0

]
. (29)

In this representation we take the basis set to be B = {1, . . . ,m} without loss of generality.
Now for the basis set, we want to convert all columns to be represented over the basis
vectors A1, A2, . . . , Am. This is equivalent to computing yi = B−1Ai which gives components
[yi]j = yij. In the special case of indices with i ∈ B, we obtain yi = ei where ei is the vector
of all zeros except for a one in component i. This can also be expressed as yji = δij for the
Kronecker delta function. For i ̸∈ B, we obtain yij from B−1Ai. We also represent b over
the basis as y0 = B−1b.

This conversion can be computed through the action of B−1, which is equivalent to
performing row reductions of the entire matrix so the components of B are transformed it
into the identity matrix Im. This would be equivalent to multiplying on the left to obtain[

B−1 0
0 1

] [
B N b
cTB cTN 0

]
=

[
Im B−1N B−1b
cTB cTN 0

]
=

[
Im [yji]i ̸∈B [yj0]
cTB cTN 0

]
. (30)

The [yji]i ̸∈B give the matrix of components of the columns Ai represented over the basis.
The [yj0] gives the vector of components for b represented over the basis. We next perform
further row operations to reduce the cTB term to zero. This can be accomplished by[

Im 0
−cTB 1

] [
Im B−1N B−1b
cTB cTN 0

]
=

[
Im B−1N B−1b
0T cTN − cTBB

−1N −cTBB
−1b

]
. (31)

This was done to obtain some useful terms in the last row that are helpful for determining
the pivot operations. This provides the final form for the canonical tableau[

Im B−1N B−1b
0T sTN −cTBB

−1b

]
. (32)

The sTN = cTN − cTBB
−1N are the reduced cost coefficients used to determine the entering

index q. We also remark that in the lower right is the negative objective function value
cTx = cTBB

−1b for the current basic feasible point x = (xB,xN). The upper right also gives
the non-zero components of the basic feasible point xB = B−1b. The utility of the tableau
is that it presents all the quantities explicitly that we need to decide each pivoting step of
the simplex method.

We next discuss how the canonical tableau is transformed after each pivoting operation
from the basis B to the basis B+. While in principle, we could recompute the tableau from
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scratch each iteration this would be inefficient. Instead, we can use how the representations
transform when we change the basis by removing the column Ap and adding to the basis the
column Aq. In particular,

Aq =
m∑
i=1

yiqAi =
m∑

i=1,i ̸=p

yiqAi + ypqAp ⇒ Ap =
1

ypq
Aq −

m∑
i=1,i ̸=p

yiq
ypq

Ai. (33)

For any vector u we have

u =
m∑
i=1

uiAi =
m∑

i=1,i ̸=p

uiAi + upAp =
m∑

i=1,i ̸=p

(
ui −

yiq
ypq

up

)
Ai +

up

ypq
Aq. (34)

In the case that u = Aj = yj or u = b = y0 we obtain the transformation rule

y+ij = yij −
yiq
ypq

ypj, if i ̸= p (35)

y+pj =
ypj
ypq

, if i = p,

where j = 0, 1, . . . , n. This is equivalent to multiplying the row p by yiq/ypq and subtracting
it from row i, when i ̸= p. In the case of row i = p, this row is simply modified by multiplying
it by the factor 1/ypq. To handle the last row of cost reduction coefficients, we can compute
z+j = [cTBB

−1N ]j = cTBy
+
j =

∑m
i=1 ciy

+
ij to obtain s+j = [sT+

N ]j = cj − z+j . We obtain the last
component of the row giving the negative objective function by computing −z+0 = cTBy

+
0 .

This gives all the row operations to perform to update the canonical tableau for the basis B
to the basis B+.

There are also more parsimonious representations often used in calculations. This is
based on the key driver of each step of the simplex method being B−1. The basis set of
variables and components of this matrix are the main items to be tracked. In matrix form
[B−1,y0]. This gives the revised tableau notation for basis B = {i1, i2, . . . , im} of the form

variable B−1 y0

xi1 βi1i1 · · · βi1im yi1,0
...

...
...

...
xim βimi1 · · · βimim yim,0

(36)

This notation tracks [B−1]ij = βij with βij the components of the inverse matrix. This also
tracks the representation of b over this basis, y0 = B−1b = xB = [yi1,0, . . . , yim,0]. We then
decide the next step of pivoting using the information that derives from B−1 and y0. We
compute the updated cost reduction coefficients sTN = cTN −cTBB

−1N to decide on optimality
or on the next pivot q and p to use.

To obtain the updated revised tableau for the new basis B+, we can similarly update the
matrix by using the row operations based on the transforms in equation 35. We first need to
compute the entering index basis element Aq as yq = B−1Aq = [yi1,q, . . . , yim,q]. We also need
this representation in the new basis. For this purpose we extend temporally the tableau to
[B−1,y0,yq]. We then perform row operations on the entire extended tableau. In particular,
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we multiply row p by yiq/ypq and subtract it from row i when i ̸= p. For i = p, this row is
just multiplied by 1/ypq. In fact, this transforms row i = p into the needed form for q, see
equation 34. As a result, we change the label for row p to q to represent the variable xq.
This gives the updated tableau [B−1+,y+

0 ] for basis B+.
The presented tableaus provide a few approaches that are used to perform book-keeping

when solving linear programs in practice. Many of these steps also can be made more
efficient by utilizing sparsity of the matrix A or other specialized data structures within
implementations.

Conclusion
These notes are meant to serve as a brief introduction to linear programming and some
related algorithms for finding their solutions. Linear programming is an active field with
applications in machine learning, AI, statistics, economics, engineering, sciences, and other
disciplines. Additional discussions and details on these algorithms also can be found in the
references.

For comments or errors concerning these notes, please email: atzberg@gmail.com.
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