

Midterm Exam Outline

Math 132B: Optimization Professor: Paul J. Atzberger

- Constrained Optimization
 - o canonical formulations for optimization problems
 - set constrained
 - equality constraints
 - inequality constraints
 - both equality & inequality
 - o geometric interpretation of equality constraints
 - level sets of constraints
 - curves within constraint space
 - definition of regular points
 - definition of tangent plane, normal plane
 - definition of tangent space, normal space
 - orthogonality of tangent & normal space
 - local decomposition theorem for Rⁿ at regular points
- Lagrangians for constraints
 - equality case
 - inequality case
 - mixed equality & inequality
 - Necessary conditions for minimizers
 - first-order conditions for Lagrangians
 - second-order conditions for Lagrangians
 - Sufficient conditions for minimizers
 - second-order conditions for Lagrangians

- Karuch-Kuhn-Tucker (KKT) conditions
 - Results for
 - equality case (method of lagrange multipliers)
 - inequality case (KKT equations)
 - mixed equality & inequality (KKT equations)
 - Example cases (KKT conditions)
 - linear objective with linear constraints
 - quadratic objective with quadratic constraints
 - general smooth non-linear objectives and constraints
- Linear Programming
 - \circ canonical formulation of the primal problem
 - slack variables
 - \circ definition of a basic feasible point x
 - $\circ~$ definition of basis set ${\mathcal B}$ and basis matrix B
 - KKT conditions for linear programming
 - dual formulation