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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 63, Number 1, March 1998 

SUPPLEMENTS OF BOUNDED PERMUTATION GROUPS 

STEPHEN BIGELOW 

Abstract. Let ). < i, be infinite cardinals and let Q be a set of cardinality 'c. The bounded permutation 

group B. (Q), or simply B2, is the group consisting of all permutations of Q which move fewer than A points 

in Q. We say that a permutation group G acting on Q is a supplement of B2 if BA G is the full symmetric 

group on Q. 

In [7], Macpherson and Neumann claimed to have classified all supplements of bounded permutation 

groups. Specifically, they claimed to have proved that a group G acting on the set Q is a supplement 

of B. if and only if there exists A C Q with JAI < 2 such that the setwise stabiliser G{A} acts as the 

full symmetric group on Q \ A. However I have found a mistake in their proof. The aim of this paper is 

to examine conditions tinder which Macpherson and Neumann's claim holds, as well as conditions tinder 

which a counterexample can be constructed. In the process we will discover surprising links with cardinal 

arithmetic and Shelah's recently developed pcf theory. 

?1. Introduction. This paper concerns an error in Macpherson and Neumann's 
paper "Subgroups of Infinite Symmetric Groups" [7]. The proof they give for 
their Theorem 1.2 contains a tacit assumption that alf cardinals are regular. In 
this paper I will demonstrate conditions under which the theorem is true as well as 
conditions under which a counterexample can be constructed. 

Suppose F is an infinite set. We denote the full symmetric group on F by Sym(F). 
If A < IFI is an infinite cardinal then the bounded group B2 (F) is the group 

{g E Sym(F): Isupp(g)I < i}. 

It is well known that the bounded groups B2 (F) and the finitary alternating 
group Alt(F) are the only non-trivial proper normal subgroups of Sym(F). See, for 
example, [9, Theorem 11.3.4]. 

Throughout the paper, Q will denote an infinite set of cardinality X, and S will 
denote Sym(Q). If A < X is an infinite cardinal then we use B), to denote B2 (Q). A 
supplement of B. in S is a group G < S such that B2 G = S. It can be shown that if 
there exists A c Q with cardinality less than A such that the setwise stabiliser G{A} 

acts as the full symmetric group on Ac then G is a supplement of B2. (See the first 
paragraph of the proof of [7, Theorem 1.2].) We now define two propositions, both 
of which imply that all supplements of B2 are of this form. 

DEFINITION 1.1. Let Semmes' Proposition, or SP for short, denote the following 
statement. 
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90 STEPHEN BIGELOW 

Suppose Q is an infinite set, A < IQI is an infinite cardinal, and G < Sym(Q) 
is such that BAG = Sym(Q). Then there exists A c Q with JAI < A such 
that the pointwise stabiliser G(A) acts as the full symmetric group on AC. 

Let Macpherson and Neumann's Proposition, or MNP for short, denote the fol- 
lowing statement. 

Suppose Q is an infinite set, A Q is an infinite cardinal, and G < Sym(Q) 
is such that B2G = Sym(Q). Then there exists A c Q with JAI < A such 
that the setwise stabiliser G{A} acts as the full symmetric group on AC. 

In [10], Semmes announced that the Generalised Continuum Hypothesis implies 
SP. In [7], Macpherson and Neumann claimed to have proved MNP using standard 
set theory without the luxury of the GCH. Unfortunately, their proof was incorrect. 
To examine the truth or falsehood of special cases of SP and MNP we introduce 
the following "local" versions of these propositions. 

DEFINITION 1.2. If A < K are infinite cardinals then let SP(K, A) denote the fol- 
lowing statement: 

If Q} = X, and G < Sym(Q) satisfies B2G = Sym(Q) then there exists 
A c Q with JAI < A such that the pointwise stabiliser G(A) acts as the full 
symmetric group on AC; 

and let MNP(K, A) denote the following statement: 
If Q1 = X, and G < Sym(Q) satisfies BAG = Sym(Q) then there exists 
A c Q with JAI < A such that the setwise stabiliser G{A} acts as the full 
symmetric group on Ac. 

The following concept will play a very important role in determining the truth or 
falsehood of MNP(K, A). 

DEFINITION 1.3. Suppose F is an uncountable set and ,u < {FJ is an infinite 
cardinal. A eu-covering of F is a collection F of subsets of F, each of cardinality less 
than IFI, such that every ,u-subset of F is a subset of some element of F. 

If ,u < v are cardinals then let the u-covering number for v, or cov(v, ,u), be the 
minimum cardinality of a ,u-covering of the set v. 

In [12], cov(v,,u) is only defined when cf(v) < ,u < v. For our purposes it is 
convenient to keep the definition as written when ,u < cf(v), in which case we have 
the following easy result. 

LEMMA 1.1. If u < cf(v) then cov(v,,u) = cf(v). 

On the other hand, in the case ,u > cf(v), we have the following, which can be 
proved by a fairly straightforward diagonalisation argument. 

LEMMA 1.2. If cf(v) < ,u < v then cov(v,,u) > v. 

We will also use the concept of coverings of groups by chains of proper subgroups. 
Macpherson and Neumann pointed out in [7, Note 3] that any group which is not 
finitely generated may be written as the union of an increasing chain of proper 
subgroups. They then went on to make the following definition. 
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SUPPLEMENTS OF BOUNDED PERMUTATION GROUPS 91 

DEFINITION 1.4. If G is not finitely generated then write c (G) for the least cardinal 
number 0 such that G can be expressed as the union of an increasing chain of 
0 proper subgroups of G. 

Let c (X) := c (Sym(K)). 

The following is [7, Theorem 1.1]. 

LEMMA 1.3 (Macpherson and Neumann). c (K) > K'. 

The main results of this paper are as follows. 

THEOREM 1.1. Suppose A < K. Then SP(K, A) holds if and only if 

(V,ul < A) (2,u < 2r-). 

THEOREM 1.2. Suppose A < K, and SP(K, A) is false. Then MNP(K, A) holds if 

(Vv G [X,K])(V'U < A)(cov(vqi) < c(K)), 

and only if 

(Vv EE [X, ;])(V~u < A)(cov(v,ju) < 2'). 

We will prove these theorems in Sections 3 and 4 respectively. In Section 5 we 
use Theorem 1.2, together with some results from Shelah's pcf theory, to prove 
MNP(K, A) for certain values of X, and A. In Section 6 we find values of X, and A 
for which MNP(K, A) is consistent with ZFC. Some of these consistency results 
will require large cardinal axioms. However no knowledge of large cardinal axioms 
will be necessary if one is prepared to take on faith some results from the study of 
cardinal arithmetic. 

To give an initial glimpse of the consequences of Theorem 1.2, we give two 
corollaries which follow immediately from Theorem 1.2 and the preceding Lemmas. 

COROLLARY 1. 1. If A < K, < A,, then MNP(K, A) holds. 

COROLLARY 1.2. If 210 - 28ou = Rco+, then - MNP(R, 41I). 

?2. Preliminaries. 
2.1. Notation and terminology. Throughout this paper, all functions and per- 

mutations will act on the right. We use angular brackets () to denote the group 
generated by the enclosed list of elements or subsets of a group. If F c Q then FC is 
simply shorthand for Q \ F, that is, { ae E Q: a g F }. A moiety of Q is a set E c Q 
such that I 1 = IE. 1 A Iu-set is a set of cardinality ,u. A yu-subset of a set F is yu-set 
which is a subset of F. If F is a set and A is an infinite cardinal then [F]<" denotes 
the set of all subsets of F which have cardinality less than A. 

If g E Sym(Q) then the support of g is given by 

supp(g) := { a c Q : ag ZA ae} 

If G < Sym(Q) then the support of G is given by 

supp(G) := U{ supp(g): g G G } 
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92 STEPHEN BIGELOW 

Suppose G < Sym(Q) and F c Q. The pointwise stabiliser of F in G is given by 

G(r) :{g E G: (Vy F)(yg = y)}. 

The setwise stabiliser of F in G is given by 

Gfrl={g E G Fg =}. 

This induces the following permutation group acting on F: 

Gr :{gtF: g E Gfr} } 

If Gr = Sym(F) then we say that F is full for G. 
All cardinals in this paper are assumed to be infinite unless otherwise stated. If 
= R, and n < co then i, +n = Ra+n and i+ = Ra+,. I use round and square 

brackets to indicate intervals of cardinals in the usual way: for example, if ,u < v 
are cardinals then (u, v] is the set of cardinals A such that ,u < A < v. 

2.2. Preliminary results. We now list some basic background lemmas. 
The following is proved in [7, Lemma 2.3]. 

LEMMA 2.1. Suppose X1 and Z2 are subsets of Q such that I n0 21 = K, and 

El U Z2 = Q. If G < S is such that E1 and Z2 are fullfor G then G = S. 

The following is salvaged from Macpherson and Neumann's incorrect proof 
of MNP. It is proved in the second paragraph of the proof of [7, Theorem 1.2]. 

LEMMA 2.2 (Macpherson and Neumann). If BA G = S then there is a moiety X 
of Q and a group H < G such that X is fullfor H and HQ\ ? B, (Q \ X). 

Finally, we will use the following result. 

LEMMA 2.3. If A is uncountable and BA G = S then there exists ,u < A such that 

B,+G = S. 

PROOF. Suppose A = Ra < , and BAG = S. Note that B = U{ BN+: ,B < a 
It follows that (BN,+, G)f<c, is an increasing chain of subgroups of S whose union 
is S. But the length of this chain is no greater than K. Thus, by Lemma 1.3, not all 
of the groups in the chain are proper subgroups of S, and we are done. -A 

?3. Semmes' proposition. The aim of this section is to prove Theorem 1.1. 
Macpherson and Neumann state this in [7, Theorem 4.4] as a corollary to MNP. 
The proof given here is completely different and does not assume MNP. We will 
use the following lemmas. 

LEMMA 3.1. Suppose Z is a moiety of Q and K < S is such that Z is fullfor K and 
KQ\f I < 2'. Then K(Q\E) = S(Q\E) 

PROOF. Let F be a collection of pairwise disjoint n -subsets of Z such that IF l 
For every subset W of F, choose kv e K such that supp(ko) n 0 = U V. There 
must exist distinct subsets W and _q of F such that kTdc = kgqdTc. Let k 
ko ks-. Then k e K(Q\,). Also, supp(k) must include the symmetric difference 
of U . and U q, so I supp(k) n X= K. Thus K(Q\y) contains a permutation of 
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SUPPLEMENTS OF BOUNDED PERMUTATION GROUPS 93 

degree N. But K(Q\Ey) acts on E as a normal subgroup of Sym(Z). Thus K(Q\) 
S(Q\Y-) 

LEMMA 3.2. Suppose B2 G = S and there exists a moiety E of Q such that G(Q\xF) 
S(Q\xy). Then there exists a set A c Q with IA I < A such that G(A) = S(A). 

PROOF. Since B2G S, there exists g E G such that Z n 0gJ = K, and IQ 
(E U Zg) I < A. Let A := Q \ (E U Zg). Then E and Yg are both full for G(A) . By 
Lemma 2.1, G(A) = S(A). 

PROOF OF THEOREM 1.1. The "only if" half was correctly proved in [7, Lemma 
4.2]. Conversely, suppose G < S satsisfies B2G = S, where A < K, are such that 
2" < 2' for all yu < A. We are required to show that there exists a set A c Q such 
that JAI < A and G(A) = S(A). By Lemmas 3.1 and 3.2, it suffices to show that there 

exists a moiety E of Q and a group K < G such that E is full for K and I K\x I < 2K. 
Suppose A = Ro. By Lemma 2.2, there is a moiety E of Q and a subgroup 

H < G{f} such that E is full for H and H'\x < BNO(Q \ X). But I BNO (Q \ A) I K, 

so we are done. 
From now on, we will assume that A > Ro. 
By Lemma 2.3, there exists yu < A such that Bl+G S. By Lemma 2.2, there 

is a moiety E of Q and a subgroup H < G{f} such that E is full for H and 

HQ\y < BU+ (Q \ Y-) 
If 2P > K then 

IHQ\x < u < (2")" = 2" < 2k, 

so we are done. 
From now on, we will assume that 2" < a. 

CLAIM. There is a u-set 1 such that every u-subset of Q \ 1 is full for G n By+. 

PROOF OF CLAIM. Suppose the contrary: that for every lu-set D there is a ju- 

subset of Q \ 1 which is not full for G n Be+. We can inductively construct a 
sequence (:)~</,+ of pairwise disjoint ,u-sets which are not full for G n Be+. Let 
T := U;</+ CF>. We can assume that IQ \ TP =- K (by omitting every second term 

in the sequence (D><;):<u+ if necessary). Since By+ G = S, there exists g E G such 
that 'Pg \ El < u. There must exist 4 < u+ such that 'Ieg c E. Then (Dg is full 
for G n Be+. Hence (D, is also full for G n Be+. This contradiction completes the 
proof of the claim. - 

CLAIM. There exists a set T with the following properties: 
*D c'P; 

* 'P = 2"; 
* For every u-subset F of ' we have (G n By+?) < (G(Q\T)) . 

Note that the second and third of these properties will also hold for 'Pg for any 
g E G. 

PROOF OF CLAIM. To construct T, we first construct an increasing chain (TP)><u+ 
such that for every 4 < y + we have: 

* c sT; 

* T I=2/; 
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94 STEPHEN BIGELOW 

* If C < 4 then for every ju-subset F of TP we have (G n B.,+)' < (G(Q\T<))'. 
Let T0 be an arbitrary 2" -set such that CD c To. 
If 4 is a non-zero limit ordinal then let TP := Uq1<< T. 
Now suppose 4 = q + 1. There are only 2" distinct ju-subsets of T., each of which 

can be permuted in only 2" distinct ways. Thus there is a group K < G n By+ such 
that JKJ = 2" and Kr = (G nBl+) for everyiu-subset F of ,,. Let Ti := supp(K). 
Then K < G(p\T=). Thus (G n B,,+)r < (G(n\T,))r for every 1u-subset F of T'7. 
Also CF c En, and 'T< 2", so TP satisfies all of our requirements. 

Having constructed the chain, we now let 

T:= U Ts. 

Clearly 1D c T and 'Pj = 2". If F is a Ju-subset of T then F c T, for some < u+, 
so 

(G n Bu+)r < (G(n\T ))F < (G(Q\T))r' 

Thus T satisfies all of our requirements. A 
Having constructed ', we now replace H by H(xnT) and replace E by E \ '. Thus 

we may assume that E is disjoint from ' and that the conclusions of Lemma 2.2 still 
hold, namely that H < Gfy1 is such that E is full for H and H'\ < B,+ (Q \ E). 

CLAIM. If F is a u-subset of Q \ E then there exists gag G(x) such that Fg c '. 

PROOF OF CLAIM. Let F be a 1u-subset of Q \ E. Let E c Q be a 1u-set which 
includes F \ ', meets T at a 1u-set, and is disjoint from CF. Since E is disjoint 
from (D, it is full for G n Bl+. It follows that there exists h E G n B,+ such that 
F c T'U'Th. 

Now let 0 c Th be a ju-set which includes Th \ T, meets (T n Th) \ F at a ju-set, 
and is disjoint from O. Since 0 is disjoint from (, it is full for G n Bl+. Since 0 is a 
,u-subset of Th, it is also full for G(n\qlh, It follows that there exists a permutation 
g E G(n\Th) which fixes 'h n E pointwise and sends F n 'h into T. 

Now F \ 'h is a subset of ' and is fixed pointwise by g, so g in fact sends all 
of F into '. Also, both Q \ 'h and Th n E are fixed pointwise by g, so g fixes 
E pointwise. Thus g satisfies the requirements of the claim. -1 

Suppose h E H. Let F. supp(h) \E. By the previous claim, there exists g E G(x) 

such that Fg E 'P. Let kh :=g hg. Then (kh TX) = (h TX) and (kh TXc) E B1+ ('P). 
(I am abusing notation slightly by considering By+ (') to be a subgroup of Sym(Ec) 
in the obvious way.) 

Now let K (ki,: h E H). Then E is full for K and KQ\ < B?+ (T). But 

tBl+ (T) I < (21) P = 2/' < 2. 

This completes the proof of the theorem. 

?4. Macpherson and Neumann's proposition. The aim of this section is to prove 
Theorem 1.2. 
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4.1. The "if" half. We now prove the "if" half of Theorem 1.2. 
The proof is based on Macpherson and Neumann's incorrect proof of [7, Theorem 

1.2]. I have overcome the mistake in their proof by using the added assumption that 
certain covering numbers are sufficiently small. We will use the following simple 
lemma, whose proof is almost identical to that of [7, Corollary 3.1]. 

LEMMA 4.1. Suppose F is a collection of subsets of S such that IF < c(X) and 
S = (U F). Then there exists afinite subcollection So c F such that S = (U S). 

PROOF OF THE "IF" HALF OF THEOREM 1.2. Fix A < K,. Suppose SP(K, A) is false 
and cov(v, ,u) < c (X) for all v E [R. a,] and yu < A. Let G be such that BAG = S. We 
are required to find a set A c Q such that IAI < A and A' is full for G. 

Since SP(K, A) is false, Theorem 1.1 implies that A must be uncountable. By 
Lemma 2.3, there exists yu < A such that BIG = S. By Lemma 2.2, there 
exists a moiety X0 of Q and a group H < G{fy} such that X0 is full for H and 
Hn\'F? < ByU+ (Q \ 10). 

If T c Q \ Xo then let HaT denote the group { h E H: supp(h) c Xo U T }. Let 
To C Q \ Lo be a set of minimal cardinality such that Xo is full for HTO. I claim that 
ITo1 < A. Suppose not. Let v := Tol. Then cov(v,,u) < c(X), so we can choose a 
R-covering F of 0 such that IF1 < c (K). Then HTo = ( HrF: F G F). Thus Zo is 
full for ( Hi- : F ). By Lemma 4.1, there exists a finite subcollection 2 of F 
such that X0 is full for (Hr: F c E ). Let :'= U S. Then X0 is full for HT. But 
IT < v, thus contradicting the minimality of ITo . Thus IoI < A. 

Let Ho:= HTp. Then X0 is full for Ho and supp(Ho) c- X0 U To. Since BAG = S, 
there exists g c G such that IEo n XogI = K and IQ \ (Xo U Xog)I < A. Let 
El := Xog, let t, := Tog, and let HI := g-'Hog. Then El is full for HI and 
supp(HI) c E1 U TI. 

By replacing Ho with Ho(Tpnyo) and Xo with X0 \ TI, we can assume that X0 is 
disjoint from T'I. Similarly, we can assume that El is disjoint from To. We still have 
that Xi is full for Hi and supp(Hi) c Xi U Wi. Let A := Q \ (Xo U El). Now Ho 
fixes X0 setwise and supp(Ho) c X0 U A, so Ho must fix A setwise. Thus X0 is full 
for G{A}. Similarly, El is full for G{A}. Thus Ac is full for G, by Lemma 2.1. But 
AI < A, so we are done. - 

4.2. The "only if" half. We now prove the "only if" half of Theorem 1.2. We will 
use the following lemmas. 

LEMMA 4.2. There exists a group F < Sym(co) such that F is a free group of 
rank 1 o and supp(g) = co for every non-identity element g of F. 

PROOF. Use the right-regular representation of the free group of rank o0. - 

DEFINITION 4. 1. Let X and Y be arbitrary sets. We say a collection Y of functions 
from X to Y is independent if, for every finite collection f l, ..., fn of distinct 
elements of i, there exists x c X such that xf1, ..., fXfn are distinct. 

The following is proved in [2]. 

LEMMA 4.3. For every cardinal u there exists an independent collection Y offunc- 
tionsfrom ,u to co such that 1JT = 2u. 
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96 STEPHEN BIGELOW 

PROOF OF THE "ONLY IF" HALF OF THEOREM 1.2. Fix A < Es. Suppose SP(t,, A) is 
false, so 2/to = 2' for some ,uo < A. Suppose further that v E [R, es] and ,u 1 < A are 
such that cov(v,,u 1) = 2 . Letdu := max(,uo,,u 1). Then 2' = 2' and cov(v,,u) = 2'. 
We will now construct a group G such that Bt+ G = S but for all A c Q such that 
AI < v we have that Ac is not full for G. 

Let T be a v-subset of Q such that IQ \ 1 = a,. Let D be a du-subset of T. 
Let ((Dq1,n)t7<,u,1<n<co be a collection of pairwise disjoint au-subsets of D. Let 

(T) <, be a collection of pairwise disjoint v-subsets of T \ D. 
Let F < Sym(co) be a free group of rank 10 such that supp(g) = co for every 

non-identity element g of F. Let X c F freely generate F. 
Let (Yf )4<2- be an independent sequence of functions from U to X. 
Let (s )1?<<2- enumerate Sym(TC). 
Let (A )4<2- enumerate the collection of all sets A such that D c A c Q and 

JAI < v. 
We now construct sequences (g9 )4<2n and (Ft l<,<2 such that for all < <2 

and q < u, the following are all satisfied: 
* F,, is a du-subset of T' and g; E S; 
* If a < 4 andg c (gl: /< 4) then F,, ? Aug; 
* If m G co and n = m(jf) then: 

- if m, n > 0 then DN,M1g, = D)1, 
- if m = 0 then F _,Sg = (D,,,, and 
- ifn 0thenQ,,,2g= F,; 

* If 4 > 0 then gjTTC = s<; 
* If 0 = 0 then IT n Tg = pu and IQ \ (T U'g4)j =T. 

We construct these sequences simultaneously by induction on 4. Suppose we are 
up to stage 4 in the construction. Note that there are fewer than 2K sets of the 
form Ag, where a < 4 and g E ( gp: /J < 4 ). But cov(v, ,u) = 2'. Thus, for every 
q < u, we can choose a du-subset F,, of T'P such that F,, , Ag for all a < 4 and 
g E ( gp: P < 4 ). It is now trivial to construct a permutation go which satisfies all 
of the other requirements. 

Having constructed the chain, let G := (ge, : a < 2' ). I claim that G satisfies 
our requirements. 

Choose x E BU+ such that Tgox is disjoint from T. Then both Q \ T and 
Q \ Tgox are full for B1+ G. Thus Bu+ G = S, by Lemma 2. 1. Now suppose A c Q 
and JAI < v. Then A U D = Aa for some a < 2'. To show that Ac is not full for G, 
it suffices to show that Ac is not full for G. This follows from the following claim, 
by simple cardinality considerations. 

CLAIM. G{A} < ?(g: : <a). 

PROOF OF CLAIM. Suppose g E G \ ( : 4 < a). We will show that g V G{Ac}. 
We can express g as a word in { g: 4 < 26c }. This word must involve at least one 

element go for which 4 > a. Thus we can write g in the form g = hw (k), where 
h E (g, : 4 < ae) and 

W g g,, a gal a, 

is a reduced word in { gfl / < 2' } with ai = 1 and PJo > a. By the independence 
of (fY );<2-, we can choose q < ,u such that if /i #: ,/3 then qffp, #/ pfpj. For all 
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i < r, let xi :jfjj,. Then 
w(x) .. .6' x7l 

is a reduced word in X. Thus every non-empty subword of w (x) is a non-identity 
element of F, and hence has no fixed points in co. In particular, for every i < r we 
have 

O _ 
O(xIo ... Xk). 

Thus it can be shown by induction on r that 

FrjfoW (k) = @1} 

where n Ow (x). LetF F:= ,flo h -l. By our choice of F1,p0 we have thatF r A,. 
But Fg =Dx7,,, c A, It follows that g , G{A,}, thus proving the claim. - 

Thus G is a counterexample to MNP(r,, A). 

?5. Proving cases. In this section we will use Theorem 1.2 to prove MNP(r,, A) for 
certain values of es and A. The following two cases are easy corollaries of Theorems 
1.1 and 1.2. 

COROLLARY 5.1. MNP(r,, 1o) holdsfor any infinite cardinal N'. 

PROOF. Indeed Theorem 1.1 yields the stronger result SP(r,, no). A 

COROLLARY 5.2. If A is a regular cardinal and K, = t for some n < co then 
MNP(,K, A) holds. 

PROOF. Let Es = A+"' where A is a regular cardinal and n < co. Suppose v and ,u are 
cardinals such that v c [R. es] and ,u < A. Either v = A or v is a successor cardinal. 
In either case, v is regular, so cov(v,,u) = v by Lemma 1.1. Thus cov(v,,u) < c (E), 
by Lemma 1.3. Thus MNP(%,, A) holds, by Theorem 1.2. -A 

To prove other cases of MNP(Ks, A), we will require upper bounds on values of 
cov(v, u) in cases where pu > cf(v). We will use results from Shelah's recently 
developed pcf theory to obtain some such bounds in the case ,u = cf(v). We now 
proceed to show that the case ,u > cf(v) will take care of itself 

LEMMA 5.1. Suppose u < A < v < K are cardinals such that cov(O, ,u) < , for all 
O c [,, v]. Then there exists a collection F C [v]<' such that F forms a u-covering 
of v and IFI<. 

PROOF. We proceed by induction on v. If v = A then we can simply let F be 
a ,u-covering of v such that 1F1 = cov(v,,u). Now suppose v > A. Let V be a 
,u-covering of v such that 1VI < i,. We can assume that every element of S has 
cardinality at least A. By the induction hypothesis, for each A c S there exists 
a collection ?SRA c [A]<' which forms a ,u-covering of A and satisfies L4A ?I < r. 
Let F := U{ ?'RA A c s }. Then it is not hard to check that F satisfies our 
requirements, so we are done. A 

LEMMA 5.2. Let A < r, be uncountable cardinals such that A is regular Suppose we 
have that cov(v, cf(v)) < irfor all v c [{, K] such that cf(v) < A. Then cov(v, ,u) < ', 

for all v c [{, r,] and ,u < A, and hence MNP(t,, A) holds. 

This content downloaded from 128.111.88.226 on Tue, 05 May 2015 20:28:33 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


98 STEPHEN BIGELOW 

PROOF. Proof is by double induction on pu and v. Suppose u < A is such that: 

(8V E [Al K]) NO < U) (cov(v, a) < r'). 

Note that this is vacuously true in the base case ,u 
Now suppose v E [R, es] is such that 

(VO E [A, v)) (cov(0,#) < '). 

Note that this is vacuously true in the base case v = A. 
We will show that cov(v,,u) < es. If ,u < cf(v) then this holds by Lemma 1.1, 

while if cf(v) = u then this holds by our assumptions. Thus we assume ,u > cf(v). 
By applying Lemma 5.1 to the induction hypothesis on v, we have that for each 

ordinal 4 such that A < 4 < v, there exists a collection , c [f]< such that X: is a 
,u-covering of 4 and 11< es. Let 

Si := Ufv < < v}. 

Now cf(v) < ,u and 1VI < es. Thus, by applying Lemma 5.1 to the inductive 
hypothesis on pu we have that there exists a collection N c [s]< such that W is a 
cf (v) -covering of v and I 0 I < es. Let 

F { {UB B .0} 

Then IF1 < Ks. Also F c [v]<', since A is regular. Finally, F is a ,u-covering of v, 
since any ,u-subset of v can be expressed as the union of at most cf(v) bounded 
,u-subsets of v. Thus cov(v, ,u) < r, and we are done. -1 

We can prove cases of MNP(tK, A) where A is singular by using the following 
lemma, which is an easy consequence of Lemma 2.3. 

LEMMA 5.3. Suppose 0 < A < ff are cardinals such that MNP(ts, ,u+) holds for all 
,u c [0, A). Then MNP(r,, A) holds. 

We are now ready to use Shelah's results concerning a quantity called the pseu- 
dopower of v, or pp(v). For a definition of pp(v), see [12]. Pseudopowers are related 
to covering numbers by [12, Theorem 5.7], which is as follows. 

LEMMA 5.4 (Shelah). If v is a singular cardinal satisfying v < 1,, then pp(v) 
cov(v, cf(v)). 

Note that results on pseudopowers will tell us nothing about the values cov(v, 
cf(v)) can take when v is a cardinal fixed point, that is, when v = . We will 
avoid this problem by only attempting to prove cases of MNP(tK, A) for which the 
intervals [A{, K] contains no cardinal fixed points. Theorem 6.4 and Problem 6.1 
suggest that this may indeed be prudent. 

The following is given as the last theorem in [12]. 

THEOREM 5.1 (Shelah). If v < 1~1,4 has countable cofinality then pp(v) < 1,4. 

COROLLARY 5.3. MNP(1W4, 1 1) holds. 

The following is [12, Theorem 6.3]. 
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THEOREM 5.2 (Shelah). If a is an ordinal, 6 is a limit ordinal and s < 10,+b then 
PP('a+6) < 'a+1,61+4. 

COROLLARY 5.4. Suppose A and Es = 1, are such that [R, r,] contains no cardinal 
fixed points, and 5 can be expressed as afinite ordinal sum: 

oS = 61 + . . * + 6r + n 

where r, n < co andfor each i < r we have that 5i is a limit cardinal and cf(6 ) > A. 
Then MNP(r,, A) holds. 

As a special case, if s is a limit cardinal which is smaller than the first cardinal 
fixed point then MNP(1z, A) holds for all A < cf(s). Thus, for example, we have 
the curious fact that MNP(lWW, , 5 l ) is a theorem of ZFC. 

It is not known whether "+4" can be replaced by "+" in Theorem 5.2. If it could, 
then the word "limit" could be removed from the corollary. 

?6. Forcing failures. In this section we will use Theorem 1.2 to find values of 
es and A for which MNP(r,, A) is consistent with ZFC. Throughout this section, 
M will denote a countable model of ZFC. 

The following lemma reduces the problem of constructing a model of-i MNP(r,, A) 
to a problem of constructing a model with a sufficiently large covering number. Ev- 
erything else we need in order to construct a counterexample can easily be obtained 
by forcing, whereas covering numbers are not so easily altered. 

THEOREM 6. 1. Suppose, in M, we have that pu < A < v < E, are cardinals such that 
cov(v, ,u) > ri. Then there exists a notion offorcing P c M which preserves cofinalities 
and cardinalities <+, such that if ' is P-generic over M then M[&] = MNP(r,, A). 

PROOF. We will use some standard forcing results, all of which can be found in [6]. 
We use a two-stage iterated forcing construction. Working in M, and using the 

notation of [6], let Po := Fn(r,+, 2, Es+), let Pi := Fn(i,+, 2) and let P := Po x Pi. 
Let W be P-generic over M. Note that both Po and PI, and hence also P, preserve 
cofinalities and cardinalities <Es+. By standard forcing arguments, M[i] ,= 2t? = 
2 = es+. By Theorem 1.2, it remains only to show that M[i] , cov(v, u) > i,. 

We use the following claim, which follows from Theorems VIII.1.4, VII.5.5 and 
VII.6.14 in [6]. 

CLAIM. Suppose A c M[9] is such that A c M and M[V] , IAI < Es. Then there 
exists B c M such that A c B and M[] JAI = IB 1. 

Now suppose, seeking a contradiction, that M[f?] , cov(v, u) < K. Working 
in Ma[gi], let F be a u-covering of v such that IFI = ,. By the above claim, we can 
replace every set A E F with a set B E N such that A c B and Mi[dV] , IAI = IBr 
Thus we can assume that F c M. Applying the claim once again allows us to 
assume that F c M. Since P preserves cardinals <Es it follows that, in M, we have 
that F is a uncovering of v and 1F1 = . This contradicts our assumption that 
M , cov(v, u) > K. Thus M[9] , cov(v, u) > K, and we are done. - 

Lemma 1.2 now yields the following. 
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COROLLARY 6.1. If M , cf(t,) < i < Kir then there exists a notion of forcing 
P E M which preserves cofinalities and cardinalities < +, such that if ' is P-generic 
over M then M[54] = MNP(, A)4 

PROOF. Suppose M , cf(r,) < A < Es. By Lemma 1.2, we also have M l 
cov(f,, cf(r,)) > Es. Now apply Theorem 6.1 with u= cf(,K) and v =E. K 

The next theorem shows that, in order to construct counterexamples to MNP(K, A) 
with A < cf(Ks), we will require covering numbers that are larger than Lemma 1.2 
can provide. 

In line with [7], we say that a group G < Sym(Q) is ample if there exists A c Q 
such that JAI < JQJ and Ac is full for G. 

THEOREM 6.2. The following are equiconsistent. 
(a) There exist cardinals A and K, such that A < cf(t,) and M MNP(M, i); 
(b) There exists an ample counterexample to MNP. 
(c) There exist cardinals , < v such that cov(v,,u) > V+. 

PROOF. Suppose (a) holds. By Theorem 1.2 and Lemma 1.3, there exist v c [R. Es] 
and ,u < i such that cov(v,,u) > is. By Lemma 1.1 we have cov(tu) = cf(n), so 
v ,4 K. Thus v < es, so cov(v, ,u) > v+, and hence (c) holds. 

Conversely, suppose M is a model of (c). Working in M, let A u + and es: v+. 
By Theorem 6.1, we can extend M to a model N of M MNP(,, A) in which Es remains 
regular. Then N is a model of (a). 

The proof that (b) and (c) are equiconsistent requires a slightly more careful 
reworking of the proof of Theorem 1.2, and will not be covered here. - 

Results due to Dodd and Jensen show that if cov(v, ,u) > v+ for any cardinals 
,u < v then there exists an inner model of ZFC which has a measurable cardinal. 
(This fact follows from [3, Corollary 6.10] and [4, Theorem 5.17].) Thus none 
of the items in Theorem 6.2 can be shown to be consistent without assuming the 
consistency of some large cardinal axiom. The following lemma eliminates the need 
for us to deal directly with large cardinals by allowing us instead to borrow results 
from the field of cardinal arithmetic. 

LEMMA 6.1. If v is a singular strong limit cardinal and cf(v) < pu < v then 
cov(v, A) = 2" 

PROOF. Under the assumptions, we have that 2"' = vP. (See, for example, [5, 
Lemma 6.5].) 

Let F be a u-covering of v such that IFI = cov(v, u). Every du-subset of v is a 
subset of an element of F. But v is a strong limit cardinal, so each element of F 
has fewer than v subsets. Thus there are at most 1F1 distinct lu-subsets of v. Thus 
vP' < cov(v, ,u). But clearly cov(v, ,u) < vij, so we are done. A 

The question of what values covering numbers can take is therefore closely related 
to the question of what values 2" can take when v is a singular strong limit cardinal. 
This is the so called "singular cardinals problem". Recent years have seen explosion 
of consistency results in this area. I will list only a couple of examples here. 

The following is a special case of [8, Theorem 2]. The general result is harder to 
state, and only slightly more useful for our purposes. 
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THEOREM 6.3 (Magidor). Suppose, in M, we have that 0 is a supercompact cardi- 
nal, P < 0 is a limit ordinal and n < co. Then there exists an extension of M in which 
1p is a strong limit cardinal and 2'9 = 1A+,, Furthermore, if I/fl < 81 then we can 
assume that cofinalities and cardinalities are preserved < P 

For example, this yields the following result. 

COROLLARY 6.2. For all n < co we have that MNP(C,,+,1, 1) is consistent with 
the existence of a supercompact cardinal. 

PROOF. Let M be a model of ZFC containing a supercompact cardinal. By 
Theorem 6.3, there exists an extension N of M in which c,, is a strong limit 
cardinal and 21'v = 1c,+,,+j. By Lemma 6.1, N satisfies cov(lc,, 1o) = 1CIw+11+1. By 
Theorem 6.1, we can extend N to a model of - MNP(tj+,i, ) 81 1) 

Our next example requires us to define a rather big cardinal (though not a "large" 
cardinal, as such). 

DEFINITION 6.1. Let F0 be the class of all cardinals. For all n < co, let FT1+1 be 
the class of cardinals v c id such that { A E Fn: A < v } has cardinality v. Let 
F. = 

n,? <WD it? - 
Thus Fi is the class of cardinal fixed points, F2 is the class of fixed points of F1, 

and so on. Note that min A,, has countable cofinality. The following is taken from 
[11, Theorem 2.6]. 

THEOREM 6.4 (Shelah). Suppose, in M, we have that the GCH holds, v is a super- 
compact cardinal whose supercompactness is preserved by v-directed complete forcing, 
and ii > v is such that (v, i] contains no inaccessible cardinals. Then there exists an 
extension of M in which no cardinals in [v, ir+] are collapsed, except possibly successors 
of singular cardinals, and v is a singular strong limit cardinal satisfying v = minm F 
and 2" = -+. 

Although somewhat cumbersome to state rigorously, this theorem basically tells 
us that if we assume the consistency of supercompact cardinals then there is no upper 
bound on the size of cov(min c, no). It follows that MNP(t,, A) is consistent with 
the existence of supercompact cardinals for any "suitably specified" cardinals A and 
es satisfying A < mind, < K. 

The following, given as [1, Problem 5.26], is an open problem. 

PROBLEM 6. 1. Suppose thefirst cardinalfixedpoint6 = 1 6 is a strong limit cardinal. 
Is there an upper bound on 26 ? 
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