The Burau representation is not faithful for $n=5$

Stephen Bigelow
Department of Mathematics
UC Berkeley
Berkeley, CA 94720, USA
Email: bigelow@math.berkeley.edu

Abstract

The Burau representation is a natural action of the braid group B_{n} on the free $\mathbf{Z}\left[t, t^{-1}\right]$-module of rank $n-1$. It is a longstanding open problem to determine for which values of n this representation is faithful. It is known to be faithful for $n=3$. Moody has shown that it is not faithful for $n \geq 9$ and Long and Paton improved on Moody's techniques to bring this down to $n \geq 6$. Their construction uses a simple closed curve on the 6 -punctured disc with certain homological properties. In this paper we give such a curve on the 5 -punctured disc, thus proving that the Burau representation is not faithful for $n \geq 5$.

AMS Classification numbers Primary: 20F36
Secondary: 57M07, 20C99

Keywords: Braid group, Burau representation

Proposed: Joan Birman
Seconded: Shigeyuki Morita, Dieter Kotschick

Received: 21 July 1999
Accepted: 23 November 1999

1 Introduction

The braid groups B_{n} appear in many different guises. We recall here the definition we will be using and some of the main properties we will need. For other equivalent definitions see [1].
Let D denote a disc and let q_{1}, \ldots, q_{n} be n distinct points in the interior of D. For concreteness, take D to be the disc in the complex plane centered at the origin and having radius $n+1$, and take q_{1}, \ldots, q_{n} to be the points $1, \ldots, n$. Let D_{n} denote the punctured disc $D \backslash\left\{q_{1}, \ldots, q_{n}\right\}$, with basepoint p_{0} on ∂D, say $p_{0}=-(n+1) i$.

Definition 1.1 The braid group B_{n} is the group of all equivalence classes of orientation preserving homeomorphisms $h: D_{n} \rightarrow D_{n}$ which fix ∂D pointwise, where two such homeomorphisms are equivalent if they are homotopic rel ∂D.

It can be shown that B_{n} is generated by $\sigma_{1}, \ldots, \sigma_{n-1}$, where σ_{i} exchanges punctures q_{i} and q_{i+1} by means of a clockwise twist.

Let x_{1}, \ldots, x_{n} be free generators of $\pi_{1}\left(D_{n}, p_{0}\right)$, where x_{i} passes counterclockwise around q_{i}. Consider the map $\epsilon: \pi_{1}\left(D_{n}\right) \rightarrow \mathbf{Z}$ which takes a word in x_{1}, \ldots, x_{n} to the sum of its exponents. Let \tilde{D}_{n} be the corresponding covering space. The group of covering transformations of \tilde{D}_{n} is \mathbf{Z}, which we write as a multiplicative group generated by t. Let Λ denote the ring $\mathbf{Z}\left[t, t^{-1}\right]$. The homology group $H_{1}\left(\tilde{D}_{n}\right)$ can be considered as a Λ-module, in which case it becomes a free module of rank $n-1$.

Let ψ be an autohomeomorphism of D_{n} representing an element of B_{n}. This can be lifted to a map $\tilde{\psi}: \tilde{D}_{n} \rightarrow \tilde{D}_{n}$ which fixes the fiber over p_{0} pointwise. This in turn induces a Λ-module automorphism $\tilde{\psi}_{*}$ of $H_{1}\left(\tilde{D}_{n}\right)$. The (reduced) Burau representation is the map

$$
\psi \mapsto \tilde{\psi}_{*} .
$$

This is an ($n-1$)-dimensional representation of B_{n} over Λ.
The main result of this paper is the following.
Theorem 1.2 The Burau representation is not faithful for $n=5$.
The idea is to use the fact that the Dehn twists about two simple closed curves commute if and only if those simple closed curves can be freely homotoped off each other. Our construction will use two simple closed curves which cannot
be freely homotoped off each other but in some sense "fool" the Burau representation into thinking that they can. To make this precise, we first make the following definition.

Definition 1.3 Suppose α and β are two arcs in D_{n}. Let $\tilde{\alpha}$ and $\tilde{\beta}$ be lifts of α and β respectively to \tilde{D}_{n}. We define

$$
\int_{\beta} \alpha=\sum_{k \in \mathbf{Z}}\left(t^{k} \tilde{\alpha}, \tilde{\beta}\right) t^{k},
$$

where $\left(t^{k} \tilde{\alpha}, \tilde{\beta}\right)$ denotes the algebraic intersection number of the two arcs in \tilde{D}_{n}. Note that this is only defined up to multiplication by a power of t, depending on the choice of lifts $\tilde{\alpha}$ and $\tilde{\beta}$. This will not pose a problem because we will only be interested in whether or not $\int_{\beta} \alpha$ is zero.

Theorem 1.4 For $n \geq 3$, the Burau representation of B_{n} is not faithful if and only if there exist embedded arcs α and β on D_{n} such that α goes from q_{1} to q_{2}, β goes from p_{0} to q_{3} or from q_{3} to q_{4}, α cannot be homotoped off β rel endpoints, and $\int_{\beta} \alpha=0$.

The special case in which β goes from p_{0} to q_{3} follows easily from [3, Theorem 1.5]. This special case is all we will need to prove Theorem 1.2. Nevertheless, we will give a direct proof of Theorem 1.4 in Section 2. In Section 3 we give a pair of curves on the 5 -punctured disc which satisfy the requirements of Theorem 1.4, thus proving Theorem 1.2.

Throughout this paper, elements of the braid group act on the left. If ψ_{1} and ψ_{2} are elements of the braid group B_{n} then we denote their commutator by:

$$
\left[\psi_{1}, \psi_{2}\right]=\psi_{1}^{-1} \psi_{2}^{-1} \psi_{1} \psi_{2}
$$

2 Proof of Theorem 1.4

It will be useful to keep the following lemma in mind. It can be found in [2, Proposition 3.10].

Lemma 2.1 Suppose α and β are simple closed curves on a surface which intersect transversely at finitely many points. Then α and β can be freely homotoped to simple closed curves which intersect at fewer points if and only if there exists a "digon", that is, an embedded disc whose boundary consists of one subarc of α and one subarc of β.

First we prove the "only if" direction of Theorem 1.4. Let $n \geq 3$ be such that for any embedded arcs α from q_{1} to q_{2} and β from p_{0} to q_{3} in D_{n} satisfying $\int_{\beta} \alpha=0$ we have that α can be homotoped off β rel endpoints. Let $\psi: D_{n} \rightarrow D_{n}$ lie in the kernel of the Burau representation. We must show that ψ is homotopic to the identity map.
Let α be the straight arc from q_{1} to q_{2} and let β be the straight arc from p_{0} to q_{3}. Then $\int_{\beta} \psi(\alpha)=0$. Thus $\psi(\alpha)$ can be homotoped off β. By applying this same argument to an appropriate conjugate of ψ we see that $\psi(\alpha)$ can be homotoped off the straight arc from p_{0} to q_{j} for any $j=3, \ldots, n$. It follows that we can homotope ψ so as to fix α. Similarly, we can homotope ψ so as to fix every straight arc from q_{j} to q_{j+1} for $j=1, \ldots, n-1$. The only braids with this property are powers of Δ, the Dehn twist about a simple closed curve parallel to ∂D. But Δ acts as multiplication by t^{n} on $H_{1}\left(\tilde{D}_{n}\right)$. Thus the only power of Δ which lies in the kernel of the Burau representation is the identity.

We now prove the converse for the case in which β is an embedded arc from q_{3} to q_{4} in D_{n}. Let α be an embedded arc from q_{1} to q_{2} such that α cannot be homotoped off β rel endpoints but $\int_{\beta} \alpha=0$. Let $\tau_{\alpha}: D_{n} \rightarrow D_{n}$ be a "half Dehn twist" about the boundary of a regular neighborhood of α. This is the homeomorphism which exchanges punctures q_{1} and q_{2} and whose square is a full Dehn twist about the boundary of a regular neighborhood of α. Similarly, let τ_{β} be a half Dehn twist about the boundary of a regular neighborhood of β. We will show that the commutator of τ_{α} and τ_{β} is a non-trivial element of the kernel of the Burau representation.
Let ϵ be an embedded arc in D_{n} which crosses α once. Figure 1 shows ϵ and

Figure 1: The action of τ_{α}
its image under the action of τ_{α}. Thus the effect of τ_{α} on ϵ is, up to homotopy rel endpoints, to insert the "figure-eight" α^{\prime} shown in Figure 2. Now let $\tilde{\epsilon}$ be

Figure 2: The "figure eight" α^{\prime}
a lift of ϵ to the covering space \tilde{D}_{n}. Note that α^{\prime} lifts to a closed curve in
\tilde{D}_{n}. Thus the effect of $\tilde{\tau}_{\alpha}$ on $\tilde{\epsilon}$ is, up to homotopy rel endpoints, to insert a lift of α^{\prime}.

Let $\tilde{\gamma}$ be a closed arc in \tilde{D}_{n}. The effect of $\tilde{\tau}_{\alpha}$ on $\tilde{\gamma}$ is to insert some lifts of α^{\prime}. If we consider $\tilde{\gamma}$ and $\tilde{\alpha}^{\prime}$ as representing elements of $H_{1}\left(\tilde{D}_{n}\right)$ then

$$
\left(\tilde{\tau}_{\alpha}\right)_{*}(\tilde{\gamma})=\tilde{\gamma}+P(t) \tilde{\alpha}^{\prime},
$$

where $P(t) \in \Lambda$. Similarly,

$$
\left(\tilde{\tau}_{\beta}\right)_{*}(\tilde{\gamma})=\tilde{\gamma}+Q(t) \tilde{\beta}^{\prime},
$$

where $Q(t) \in \Lambda$ and β^{\prime} is a figure eight defined similarly to α^{\prime}.
Any lift of α, and hence of α^{\prime}, has algebraic intersection number zero with any lift of β. It follows that

$$
\left(\tilde{\tau}_{\beta}\right)_{*}\left(\tilde{\alpha}^{\prime}\right)=\tilde{\alpha}^{\prime}
$$

Thus

$$
\left(\tilde{\tau}_{\beta} \tilde{\tau}_{\alpha}\right)_{*}(\tilde{\gamma})=\left(\tilde{\gamma}+Q(t) \tilde{\beta}^{\prime}\right)+P(t) \tilde{\alpha}^{\prime}
$$

Similarly

$$
\left(\tilde{\tau}_{\alpha} \tilde{\tau}_{\beta}\right)_{*}(\tilde{\gamma})=\left(\tilde{\gamma}+P(t) \tilde{\alpha}^{\prime}\right)+Q(t) \tilde{\beta}^{\prime} .
$$

Thus $\left(\tilde{\tau}_{\alpha}\right)_{*}$ and $\left(\tilde{\tau}_{\beta}\right)_{*}$ commute, so the commutator $\left[\tau_{\alpha}, \tau_{\beta}\right]$ lies in the kernel of the Burau representation.

It remains to show that $\left[\tau_{\alpha}, \tau_{\beta}\right]$ is not homotopic to the identity map. Let γ be the boundary of a regular neighborhood of α. Using Lemma 2.1 and the fact that γ cannot be freely homotoped off β, it is not hard to check that $\tau_{\beta}(\gamma)$ cannot be freely homotoped off α. A similar check then shows that $\tau_{\alpha} \tau_{\beta}(\gamma)$ cannot be freely homotoped off $\tau_{\beta}(\gamma)$. Thus $\tau_{\alpha} \tau_{\beta}(\gamma)$ is not freely homotopic to $\tau_{\beta}(\gamma)$. But $\tau_{\beta}(\gamma)=\tau_{\beta} \tau_{\alpha}(\gamma)$. Thus $\tau_{\alpha} \tau_{\beta}$ is not homotopic to $\tau_{\beta} \tau_{\alpha}$, so $\left[\tau_{\alpha}, \tau_{\beta}\right]$ is not homotopic to the identity map.

The case in which β goes from p_{0} to q_{3} can be proved by a similar argument. Instead of a half Dehn twist about the boundary of a regular neighborhood of β we use a full Dehn twist about the boundary of a regular neighborhood of $\beta \cup \partial D$. Instead of a figure eight curve β^{\prime} we obtain a slightly more complicated curve which is a commutator of ∂D and the boundary of a regular neighborhood of β.

Figure 3: Arcs on the 5-punctured disc

3 Proof of Theorem 1.2

Let α and β be the embedded arcs on D_{5} as shown in Figure 3. These cannot be homotoped off each other rel endpoints, as can be seen by applying Lemma 2.1 to boundaries of regular neighborhoods of α and $\beta \cup \partial D$. It remains to show that $\int_{\beta} \alpha=0$.
Let $\tilde{\alpha}$ and $\tilde{\beta}$ be lifts of α and β to \tilde{D}_{5}. Each point p at which β crosses α contributes a monomial $\pm t^{k}$ to $\int_{\beta} \alpha$. The exponent k is such that $\tilde{\beta}$ and $t^{k} \tilde{\alpha}$ cross at a lift of p, and the sign of the monomial is the sign of that crossing. We choose our lifts and sign conventions such that the first point at which β crosses α is assigned the monomial $+t^{0}$.
In Figure 3, the sign of the monomial at a crossing p will be positive if β is directed upwards at p and negative if β is directed downwards at p. The exponents of the monomials can be computed using the following remark:

Remark Let $p_{1}, p_{2} \in \alpha \cap \beta$ and let k_{1} and k_{2} be the exponents of the monomials at p_{1} and p_{2} respectively. Let α^{\prime} and β^{\prime} be the arcs from p_{1} to p_{2} along α and β respectively and suppose that $\alpha^{\prime} \cap \beta^{\prime}=\left\{p_{1}, p_{2}\right\}$. Let k be such that $\alpha^{\prime} \cup \beta^{\prime}$ bounds a k-punctured disc. Then $\left|k_{2}-k_{1}\right|=k$. If β^{\prime} is directed counterclockwise around the k-punctured disc then $k_{2} \geq k_{1}$, otherwise $k_{2} \leq k_{1}$.

One can now progress along β, using the above remark to calculate the exponent at each crossing from the exponent at the previous crossing. Reading the
crossings from left to right, top to bottom, we obtain the following:

$$
\begin{aligned}
\int_{\alpha} \beta= & -t^{-3}-t^{0}+t^{1}+t^{-1}+t^{-3} \\
& -t^{-1}-t^{2}+t^{3}+t^{1}+t^{-1}-t^{-2}-t^{0}-t^{2}+t^{1}+t^{-2} \\
& -t^{-1}+t^{0}-t^{1}+t^{2}-t^{3}+t^{2}-t^{1}+t^{0}-t^{-1}+t^{-2} \\
& -t^{1}-t^{4}+t^{5}+t^{3}+t^{1}-t^{0}-t^{2}-t^{4}+t^{3}+t^{0} \\
& -t^{1}+t^{2}-t^{3}+t^{4}-t^{5}+t^{4}-t^{3}+t^{2}-t^{1}+t^{0} \\
& -t^{2}+t^{1}-t^{0}+t^{-1}-t^{-2} \\
= & 0 .
\end{aligned}
$$

Thus α and β satisfy the requirements of Theorem 1.4, and we conclude that the Burau representation is not faithful for $n=5$.

The proof of Theorem 1.4 gives an explicit non-trivial element of the kernel, namely the commutator of a half Dehn twist about the boundary of a regular neighborhood of α and a full Dehn twist about the boundary of a regular neighborhood of $\beta \cup \partial D$. The following element of B_{5} sends α to a straight arc from q_{4} to q_{5} :

$$
\psi_{1}=\sigma_{3}^{-1} \sigma_{2} \sigma_{1}^{2} \sigma_{2} \sigma_{4}^{3} \sigma_{3} \sigma_{2}
$$

The following element of B_{5} sends β to a straight arc from p_{0} to q_{5} :

$$
\psi_{2}=\sigma_{4}^{-1} \sigma_{3} \sigma_{2} \sigma_{1}^{-2} \sigma_{2} \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1} \sigma_{4}^{5} .
$$

Thus the required kernel element is:

$$
\left[\psi_{1}^{-1} \sigma_{4} \psi_{1}, \psi_{2}^{-1} \sigma_{4} \sigma_{3} \sigma_{2} \sigma_{1}^{2} \sigma_{2} \sigma_{3} \sigma_{4} \psi_{2}\right]
$$

This is a word of length 120 in the generators.
The arcs in Figure 3 were found using a computer search, although they are simple enough to check by hand. A similar computer search for the case $n=4$ has shown that any pair of arcs on D_{4} satisfying the requirements of Theorem 1.4 must intersect each other at least 500 times.

We conclude with an example of a non-trivial braid in the kernel of the Burau representation for $n=6$ which is as simple such a braid as one could reasonably hope to obtain from Theorem 1.4. The curves in Figure 4 give us the braid

$$
\left[\psi_{1}^{-1} \sigma_{3} \psi_{1}, \psi_{2}^{-1} \sigma_{3} \psi_{2}\right],
$$

where

$$
\psi_{1}=\sigma_{4} \sigma_{5}^{-1} \sigma_{2}^{-1} \sigma_{1}
$$

Figure 4: Arcs on the 6-punctured disc
and

$$
\psi_{2}=\sigma_{4}^{-1} \sigma_{5}^{2} \sigma_{2} \sigma_{1}^{-2}
$$

This is a word of length 44 in the generators.

References

[1] Joan S Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, NJ (1974)
[2] A Fathi, F Laudenbach, V Poénaru, Travaux de Thurston sur les surfaces, Séminaire Orsay, Astérisque 66-67, Société Mathématique de France, Paris (1979) [MR 82m:57003]
[3] D D Long, M Paton, The Burau representation is not faithful for $n \geq 6$, Topology, 32 (1993) 439-447
[4] John Atwell Moody, The Burau representation of the braid group B_{n} is unfaithful for large n, Bull. Amer. Math. Soc. 25 (1991) 379-384

