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2 Edited by T. OhtsukiSine the interation between geometry and mathematial physis in the 1980s,many invariants of knots and 3-manifolds have been disovered and studied.The disovery and analysis of the enormous number of these invariants yieldeda new area: the study of invariants of knots and 3-manifolds (from anotherviewpoint, the study of the sets of knots and 3-manifolds). Reent works havealmost ompleted the topologial reonstrution of the invariants derived fromthe Chern-Simons �eld theory, whih was one of main problems of this area.Further, relations among these invariants have been studied enough well, andthese invariants are now well-organized. For the future developments of thisarea, it might be important to onsider various streams of new diretions;2 thisis a reason why the editor tried to make the problem list expository. The editorhopes this problem list will larify the present frontier of this area and assistreaders when onsidering future diretions.The editor will try to keep this problem list up to date at his web site.3 If thereader knows a (partial) solution of any problem in this list, please let him4know it. February, 2003T. Ohtsuki

2For example, diretions related to other areas suh as hyperboli geometry via the volumeonjeture and the theory of operator algebras via invariants arising from 6j-symbols.3http://www.kurims.kyoto-u.a.jp/~tomotada/proj01/4Email address of the editor is: tomotada�kurims.kyoto-u.a.jpGeometry & Topology Monographs, Volume X (20XX)
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6 Edited by T. Ohtsuki0 IntrodutionThe study of quantum invariants of links and three-manifolds has a strangestatus within topology. When it was born, with Jones' 1984 disovery of hisfamous polynomial [Jon85℄, it seemed that the novelty and power of the newinvariant would be a wonderful tool with whih to resolve some outstandingquestions of three-dimensional topology. Over the last 16 years, suh hopeshave been largely unful�lled, the only obvious exeption being the solution ofthe Tait onjetures about alternating knots (see for example [MeTh93℄).This is a disappointment, and partiularly so if one expets the role of the quan-tum invariants in mathematis to be the same as that of the lassial invariantsof three-dimensional topology. Suh a omparison misses the point that most ofthe lassial invariants were reated spei�ally in order to distingush betweenthings; their de�nitions are mainly intrinsi, and it is therefore lear what kindof topologial properties they reet, and how to attempt to use them to solvetopologial problems.Quantum invariants, on the other hand, should be thought of as having beendisovered. Their onstrution is usually indiret (think of the Jones polyno-mial, de�ned with referene to diagrams of a knot) and their existene seems todepend on very speial kinds of algebrai strutures (for example, R-matries),whose behaviour is losely related to three-dimensional ombinatorial topology(for example, Reidemeister moves). Unfortunately suh onstrutions give lit-tle insight into what kind of topologial information the invariants arry, andtherefore into what kind of appliations they might have.Consequently, most of the development of the subjet has taken plae in dire-tions away from lassial algebrai and geometri topology. From the earliestdays of the subjet, a wealth of onnetions to di�erent parts of mathematishas been evident: originally in links to operator algebras, statistial mehanis,graph theory and ombinatoris, and latterly through physis (quantum �eldtheory and perturbation theory) and algebra (deformation theory, quantumgroup representation theory). It is the investigation of these outward onne-tions whih seems to have been most pro�table, for the two main frameworksof the modern theory, that of Topologial Quantum Field Theory and Vassilievtheory (perturbation theory) have arisen from these.The TQFT viewpoint [Ati89℄ gives a good interpretation of the utting andpasting properties of quantum invariants, and viewed as a kind of \higher di-mensional representation theory" ties in very well with algebrai approahesChapter 0 was written by J. Roberts.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 7to deformations of representation ategories. It ties in well with geometriquantization theory and representations of loop groups [Ati90a℄. In its physialformulation via the Chern-Simons path-integral (see Witten [Wit89℄), it eveno�ers a oneptual explanation of the invariants' existene and properties, butbeause this is not rigorous, it an only be taken as a heuristi guide to theproperties of the invariants and the onnetions between the various approahesto them.The Vassiliev theory (see [Bar95a, Kon94, Thu00℄) gives geometri de�nitionsof the invariants in terms of integrals over on�guration spaes, and also an beviewed as a lassi�ation theory, in the sense that there is a universal invariant,the Kontsevih integral (or more generally the Le-Murakami-Ohtsuki invariant[LMO98℄), through whih all the other invariants fator. Its drawbak is thatthe integrals are very hard to work with { eight years passed between thede�nition and alulation [Thu00℄ of the Kontsevih integral of the unknot!These two frameworks have revealed many amazing properties and algebraistrutures of quantum invariants, whih show that they are important and in-teresting piees of mathematis in their own right, whether or not they haveappliations in three-dimensional topology. The strutures revealed are pre-isely those whih an, and therefore must, be studied with the aid of three-dimensional pitures and a topologial viewpoint; the whole theory shouldtherefore be onsidered as a new kind of algebrai topology spei� to threedimensions.Perhaps the most important overall goal is simply to really understand thetopology underlying quantum invariants in three dimensions: to relate the \newalgebrai topology" to more lassial notions and obtain good intrinsi topologi-al de�nitions of the invariants, with a view to appliations in three-dimensionaltopology and beyond.The problem list whih follows ontains detailed problems in all areas of thetheory, and their division into setions is really only for onveniene, as there arevery many interrelationships between them. Some address unresolved mattersor extensions arising from existing work; some introdue spei� new onje-tures; some desribe evidene whih hints at the existene of new patterns orstrutures; some are surveys on major and long-standing questions in the �eld;some are purely speulative.Compiling a problem list is a very good way to stimulate researh inside asubjet, but it also provides a great opportunity to \take stok" of the overallGeometry & Topology Monographs, Volume X (20XX)



8 Edited by T. Ohtsukistate and diretion of a subjet, and to try to demonstrate its vitality and worthto those outside the area. We hope that this list will do both.
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Problems on Invariants of Knots and 3-Manifolds 91 Polynomial invariants of knots1.1 The Jones polynomialThe Kau�man braket of unoriented link diagrams is de�ned by the followingreursive relations,D E = AD E+A�1D E;
 D� = (�A2 �A�2)hDi for any diagram D,hthe empty diagram ;i = 1;where three pitures in the �rst formula imply three links diagrams, whih areidential exept for a ball, where they di�er as shown in the pitures. The Jonespolynomial VL(t) of an oriented link L is de�ned byVL(t) = (�A2 �A�2)�1(�A3)�w(D)hDi���A2=t�1=2 2 Z[t1=2; t�1=2℄;where D is a diagram of L, w(D) is the writhe of D , and hDi is the Kau�manbraket of D with its orientation forgotten. The Jones polynomial is an isotopyinvariant of oriented links uniquely haraterized byt�1VL+(t)� tVL�(t) = (t1=2 � t�1=2)VL0(t); (1)VO(t) = 1;where O denotes the trivial knot, and L+ , L� , and L0 are three oriented links,whih are idential exept for a ball, where they di�er as shown in Figure 1. Itis shown, by (1), that for any knot K , its Jones polynomial VK(t) belongs toZ[t; t�1℄.
L+ L� L0Figure 1: Three links L+; L�; L0Geometry & Topology Monographs, Volume X (20XX)



10 Edited by T. Ohtsuki1.1.1 Does the Jones polynomial distinguish the trivial knot?Problem 1.1 ([Jon00, Problem 1℄) Find a non-trivial knot K with VK(t) =1.Remark It is shown by omputer experiments that there are no non-trivialknots with VK(t) = 1 up to 17 rossings of their diagrams [DaHo97℄, and up to18 rossings [Yam00℄. See [Big02℄ (and [Big.www℄) for an approah to �nd suhknots by using representations of braid groups.Remark Two knots with the same Jones polynomial an be obtained by mu-tation. A mutation is a relation of two knots, whih are idential exept for aball, where they di�er by � rotation of a 2-strand tangle in one of the followingways (see [APR89℄ for mutations).
For example, the Conway knot and the Kinoshita-Terasaka knot are related bya mutation.
They have the same Jones polynomial, beause their diagrams have the samewrithe and the Kau�man braket of the tangle shown in the dotted irle anbe presented byD E = xD E+ yD E = D E;with some salars x and y .Remark The Jones polynomial an be obtained from the Kontsevih invariantthrough the weight system Wsl2;V for the vetor representation V of sl2 (see,e.g., [Oht02℄). Problem 1.1 might be related to the kernel of Wsl2;V .Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 11Remark Some links with the Jones polynomial equal to that of the orrespond-ing trivial links are given in [EKT03℄. For example, the Jones polynomial ofthe following link is equal to the Jones polynomial of the trivial 4-omponentlink.
Remark (X.-S. Lin [Lin.www℄) Use Kontsevih integral to show the existene ofa non-trivial knot with trivial Alexander-Conway polynomial. This might giveus some hints to Problem 1.1.1.1.2 Charaterization and interpretation of the Jones polynomialProblem 1.2 ([Jon00, Problem 2℄) Charaterize those elements of Z[t; t�1℄of the form VK(t).Remark ([Jon00℄) The orresponding problem for the Alexander polynomialhas been solved; it is known that a polynomial f(t) 2 Z[t; t�1℄ is equal to theAlexander polynomial of some knot K if and only if f(1) = 1 and f(t) =f(t�1). The formulas VK(1) = 1 and VK(exp 2�p�13 ) = 1 are obtained by theskein relation (1). These formulas give weak haraterizations of the requiredelements.Remark (X.-S. Lin [Lin.www℄) The Mahler measure (see [Eve98℄ for its exposi-tion) of a polynomial F (x) = aQi(x� �i) 2 C [x℄ is de�ned bym(F ) = log jaj+Xi logmaxf1; j�ijg = Z 10 log jF (e2�p�1�)jd�:The Mahler measure an be de�ned also for a Laurent polynomial similarly. Isit true that m(VK) > 0 for the Jones polynomial VK of a knot K , if K is anon-trivial knot?Problem 1.3 Find a 3-dimensional topologial interpretation of the Jones poly-nomial of links.Geometry & Topology Monographs, Volume X (20XX)



12 Edited by T. OhtsukiRemark The Alexander polynomial has a topologial interpretation suh asthe harateristi polynomial of H1( ^S3 �K;Q) of the in�nite yli over ofthe knot omplement S3 �K , where H1( ^S3 �K;Q) is regarded as a Q[t; t�1 ℄-module by regarding t as the ation of the dek transformation on ^S3 �K .Remark In the viewpoint of mathematial physis, Witten [Wit89℄ gave a 3-dimensional interpretation of the Jones polynomial of a link by a path integralinluding a holonomy along the link in the Chern-Simons �eld theory.Remark Certain speial values of the Jones polynomial have some interpreta-tions. The formulas VL(1) = (�2)#L�1 and VL(exp 2�p�13 ) = 1 are shown bythe skein relation (1), where #L denotes the number of omponents of L. It isknown that jVL(�1)j is equal to the order of H1(M2;L) if its order is �nite, and0 otherwise. Here, M2;L denotes the double branhed over of S3 branhedalong L. It is shown, in [Mur86℄, that VL(p�1) = (�p2)#L�1(�1)Arf(L) ifArf(L) exists, and 0 otherwise. It is shown, in [LiMi86℄, that VL(exp p�1�3 ) =�p�1#L�1p�3dimH1(M2;L;Z=3Z). If ! is equal to a 2nd, 3rd, 4th, 6th root ofunity, the omputation of VL(!) an be done in polynomial time of the numberof rossings of diagrams of L by the above interpretation of VL(!). Otherwise,VL(!) does not have suh a topologial interpretation, in the sense that om-puting VL(!) of an alternating link L at a given value ! is #P-hard exeptfor the above mentioned roots of unity (see [JVW90, Wel94℄).Problem 1.4 (J. Roberts) Why is the Jones polynomial a polynomial?Remark (J. Roberts) A topologial invariant of knots should ideally be de-�ned in an intrinsially 3-dimensional fashion, so that its invariane underorientation-preserving di�eomorphisms of S3 is built-in. Unfortunately, almostall of the known onstrutions of the Jones polynomial (via R-matries, skeinrelations, braid groups or the Kontsevih integral, for example) break the sym-metry, requiring the introdution of an axis (Morsi�ation of the knot) or planeof projetion (diagram of the knot). I believe that the \perturbative" onstru-tion via on�guration spae integrals [Thu99a℄, whose output is believed to beessentially equivalent to the Kontsevih integral, is the only known intrinsionstrution.In the de�nitions with broken symmetry, it is generally easy to see that theresult is an integral Laurent polynomial in q or q 12 . In the perturbative ap-proah, however, we obtain a formal power series in ~, and although we knowGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 13that it ought to be the expansion of an integral Laurent polynomial under thesubstitution q = e~ , it seems hard to prove this diretly. A related observationis that the analogues of the Jones polynomial for knots in 3-manifolds otherthan S3 are not polynomials, but merely funtions from the roots of unity toalgebrai integers. What is the speial property of S3 (or perhaps R3 ) whihauses this behaviour, and why does the variable q seem natural only when onebreaks the symmetry?The typial raison d'etre of a Laurent polynomial is that it is a harater of theirle. (In highbrow terms this is an example of \ategori�ation", but it is alsobelongs to a onrete tradition in ombinatoris that to prove that somethingis a non-negative integer one should show that it is the dimension of a vetorspae.) The idea that the Jones polynomial is related to K -theory [Wil02℄ andthat it ought to be the S1 -equivariant index of some ellipti operator de�nedusing the speial geometry of R3 or S3 is something Simon Willerton and Ihave been pondering for some time. As for the meaning of q , Atiyah suggestedthe example in equivariant K -theoryKSO(3)(S2) �= KS1(pt) = Z[q�1℄;in to make the �rst identi�ation requires a hoie of axis in R3 . (This wouldsuggest looking for an SO(3)-equivariant S2 -family of operators.)Problem 1.5 (J. Roberts) Is there a relationship between values of Jonespolynomials at roots of unity and branhed yli overings of a knot?Problem 1.6 (J. Roberts) Is there a relationship between the Jones polyno-mial of a knot and the ounting of points in varieties de�ned over �nite �elds?Remark (J. Roberts) These two problems prolong the \ri� in the key of q":the amusing fat that traditional, apparently independent uses of that letter,denoting the number of elements in a �nite �eld, the deformation parameterq = e~ , the variable in the Poinar�e series of a spae, the variable in the theoryof modular forms, et. turn out to be related.The �rst problem addresses a relationship whih holds for the Alexander poly-nomial. For example, the order of the torsion in H1 of the n-fold branhedyli over equals the produt of the values of the Alexander polynomial at allthe nth roots of unity. It's hard not to feel that the variable q has some kindof meaning as a dek translation, and that the values of the Jones polynomialat roots of unity should have speial meanings.Geometry & Topology Monographs, Volume X (20XX)



14 Edited by T. OhtsukiThe seond has its roots in Jones' original formulation of his polynomial usingHeke algebras. The Heke algebra Hn(q) is just the Hall algebra of doubleosets of the Borel subgroup inside SL(n; Fq ); the famous quadrati relation�2 = (q�1)�+ q falls naturally out of this. Although the alternative de�nitionof Hn(q) using generators and relations extends to allow q to be any omplexnumber (and it is then the roots of unity, at whih Hn(q) is not semisimple,whih are the obvious speial values), it might be worth onsidering whetherJones polynomials at prime powers q = ps have any speial properties.Ideally one ould try to �nd a topologial de�nition of the Jones polynomial(perhaps only at suh values) whih involves �nite �elds. The oloured Jonespolynomials of the unknot are quantum integers, whih ount the numbers ofpoints in projetive spaes de�ned over �nite �elds; might those for arbitraryknots in S3 ount points in other varieties? Instead of ounting ounting points,one ould onsider Poinar�e polynomials, as the two things are losely relatedby the Weil onjetures.One obvious onstrution involving �nite �elds is to ount representations of afundamental group into a �nite group of Lie type, suh as SL(n; Fq ). Very muhin this vein, Je�rey Sink [Sin00℄ assoiated to a knot a zeta-funtion formed fromthe ounts of representations into SL(2; Fps ), for �xed p and varying s. Hishope, motivated by the Weil onjetures, was the idea that the SU(2) Cassoninvariant might be related to suh ounting. For suh an idea to work, it isprobably neessary to �nd some way of ounting representations with signs, orat least to enhane the ounting in some way. Perhaps the kind of twisting usedin the Dijkgraaf-Witten theory [DiWi90℄ ould be used.Problem 1.7 (J. Roberts) De�ne the Jones polynomial intrinsially usinghomology of loal systems.Remark (J. Roberts) The Alexander polynomial of a knot an be de�ned usingthe twisted homology of the omplement. In the ase of the Jones polynomial,no similar diret onstrution is known, but the approah of Bigelow [Big01b℄is tantalising. He shows how to onstrut a representation of the braid groupB2n on the twisted homology of the on�guration spae of n points in the 2n-puntured dis, and how to use a ertain \matrix element" of this representationto obtain the Jones polynomial of a knot presented as a plait. Is there any wayto write the same alulation diretly in terms of on�guration spaes of npoints in the knot omplement, for example?Problem 1.8 (J. Roberts) Study the relation between the Jones polynomialand Gromov-Witten theory.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 15Remark (J. Roberts) The theory of pseudo-holomorphi urves or \Gromov-Witten invariants" has been growing steadily sine around 1985, in parallelwith the theory of quantum invariants in three dimensional topology. Duringthat time it has ome to absorb large parts of modern geometry and topol-ogy, inluding sympleti topology, Donaldson/Seiberg-Witten theory, Floerhomology, enumerative algebrai geometry, et. It is remarkable that three-dimensional TQFT has remained isolated from it for so long, but �nally thereis a onnetion, as explained in the paper by Vafa and Gopakumar [GoVa00℄(though pre�gured by Witten [Wit95℄), and now under investigation by manygeometers. The basi idea is that the HOMFLY polynomial an be reformu-lated as a generating funtion ounting pseudo-holomorphi urves in a ertainCalabi-Yau manifold, with boundary ondition a Lagrangian submanifold as-soiated to the knot. (This is the one plae where the HOMFLY and not theJones polynomial is essential!) The importane of this onnetion an hardly beoverestimated, as it should allow the exhange of powerful tehniques betweenthe two subjets.
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Figure 2: The upper pitures show the distribution of zeros of the Jones polynomial foralternating knots of 11 and 12 rossings [Lin.www℄. The lower piture shows the distri-bution of zeros of the Jones polynomial for 12 rossing non-alternating knots [Lin.www℄.See [Lin.www℄ for further pitures for alternating knots with 10 and 13 rossings.Geometry & Topology Monographs, Volume X (20XX)
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Figure 3: The upper pitures show the distribution of zeros of the Jones polynomial forn-twist knots, with n from 1 to 50 and from 51 to 100, respetively [Lin.www℄. The lowerpitures show the distribution of zeros of the Jones polynomial for (2; 2n � 1) torusknots, with n from 1 to 50 and from 51 to 100, respetively [Lin.www℄. See [Lin.www℄for further pitures for (3; 3n+ 1) and (3; 3n+ 2) torus knots.
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Problems on Invariants of Knots and 3-Manifolds 171.1.3 Numerial experimentsThe following problem might haraterize the form of the Jones polynomial ofknots in some sense.Problem 1.9 (X.-S. Lin) Desribe the set of zeros of the Jones polynomialof all (alternating) knots.Remark (X.-S. Lin) The plottings in Figure 2 numerially desribe the set ofzeros of the Jones polynomial of many knots. Similar plottings are already pub-lished in [WuWa01℄ for some other in�nite families of knots for whih the Jonespolynomial is known expliitly. See also [ChSh01℄ for some other plottings.Remark (X.-S. Lin) It would be a basi problem to look into the zero distri-bution of the family of polynomials with bounded degree suh that oeÆientsare all integers and oeÆients sum up to 1, and ompare it with the zero dis-tribution of the Jones polynomial on the olletion of (alternating) knots withbounded rossing number. The paper [OdPo93℄ disusses the zero distributionof the family of polynomials with 0,1 oeÆients and bounded degree. It ispartiularly interesting to ompare the plotting shown in this paper with theplottings in Figures 2 and 3 for the zeros of the Jones polynomials.Problem 1.10 (N. Dun�eld) Desribe the relationship between the hyper-boli volume of knot omplements and log VK(�1) (resp. log VK(�1)= log degVK(t)).Remark (N. Dun�eld [Dun.www℄) VK(�1) is just �K(�1), whih is the orderof the torsion in the homology of the bouble over of S3 branhed over K .log VK(�1) is one of the �rst terms of the volume onjeture (Conjeture 1.19).Figure 4 suggests that for alternating knots with a �xed number of rossings,log VK(�1) is almost a linear funtion of the volume.Figure 5 suggests that there should be an inequalitylog VK(�1)log degVK(t) < a � vol(S3 �K) + bfor some onstants a and b. For 2-bridge knots, Agol's work on the volumes of 2-bridge knots [Ago99℄ an be used to prove suh an inequality with a = b = 2=v3(here, v3 is the volume of a regular ideal tetrahedron).Geometry & Topology Monographs, Volume X (20XX)
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Figure 4: The distribution of pairs of the hyperboli volume of knot omplements and� logVK(�1) for alternating knots with 13 rossings [Dun.www℄.1.1.4 Categori�ation of the Jones polynomialKhovanov [Kho00, Kho02℄ de�ned ertain homology groups of a knot whoseEuler harateristi is equal to the Jones polynomial, whih is alled the at-egori�ation of the Jones polynomial. See also [Bar02℄ for an exposition ofit.Problem 1.11 Understand Khovanov's ategori�ation of the Jones polyno-mial.Problem 1.12 Categorify other knot polynomials.Remark (M. Huthings) There does exist a ategori�ation of the Alexanderpolynomial, or more preisely of �K(t)=(1 � t)2 , where �K(t) denotes the(symmetrized) Alexander polynomial of the knot K . It is a kind of Seiberg-Witten Floer homology of the three-manifold obtained by zero surgery on K .One an regard it as Z�Z=2Z graded, although in fat the olumn whose Eulerharateristi gives the oeÆient of tk is relatively Z=2kZ graded.Geometry & Topology Monographs, Volume X (20XX)
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20 Edited by T. Ohtsuki1.2 The HOMFLY, Q, and Kau�man polynomialsThe skein polynomial (or the HOMFLY polynomial) PL(l;m) 2 Z[l�1;m�1℄ ofan oriented link L is uniquely haraterized byl�1PL+(l;m)� lPL�(l;m) = mPL0(l;m);PO(l;m) = 1;where O denotes the trivial knot, and L+ , L� , and L0 are three oriented links,whih are idential exept for a ball, where they di�er as shown in Figure 1.For a knot K , PK(l;m) 2 Z[l�2;m℄. The Kau�man polynomial FL(a; z) 2Z[a�1; z�1℄ of an oriented link L is de�ned by FL(a; z) = a�w(D)[D℄ for anunoriented diagram D presenting L (forgetting its orientation), where [D℄ isuniquely haraterized by" #+ " # = z " #+ " #!" # = a" # ;[O℄ = 1:For a knot K , FK(a; z) 2 Z[a�1; z℄. The Q polynomial QL(x) 2 Z[x�1℄ of anunoriented link L is uniquely haraterized byQ� �+Q� � = x Q� �+Q� �!Q(O) = 1:It is known thatVL(t) = PL(t; t1=2 � t�1=2) = FL(�t�3=4; t1=4 + t�1=4);�L(t) = PL(1; t1=2 � t�1=2);QL(z) = FL(1; z);where �L(t) denotes the Alexander polynomial of L. The variable m ofPL(l;m) is alled the Alexander variable. See, e.g., [Kaw+90, Li97a℄, for de-tails of this paragraph.Let the span of a polynomial denote the maximal degree minus the minimaldegree of the polynomial.Problem 1.13 (A. Stoimenow) Does the Jones polynomial V admit only�nitely many values of given span? What about the Q polynomial or the skein,Kau�man polynomials (when �xing the span in both variables)?Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 21Remark (A. Stoimenow) It is true for the skein polynomial when boundingthe anonial genus (for whih the Alexander degree of the skein polynomialis a lower bound by Morton), in partiular it is true for the skein polynomialof homogeneous links [Cro89℄. It is true for the Jones, Q and Kau�man Fpolynomial of alternating links (for F more generally for adequate links). Oneannot bound the number of di�erent links, at least for the skein and Jonespolynomial, beause Kanenobu [Kan86℄ gave in�nitely many knots with thesame skein polynomial.Problem 1.14 (A. Stoimenow) Why are the unit norm omplex numbers �for whih the value QK(�) has maximal norm statistially onentrated arounde11�p�1=25 ?Remark (A. Stoimenow) The maximal point of jQK(e2�p�1t)j for t 2 [0; 1) isstatistially onentrated around t = 11=50. This was revealed by an experi-ment in an attempt to estimate the asymptotial growth of the oeÆients ofthe Q polynomial. There seems no di�erene in the behaviour of alternatingand non-alternating knots.Problem 1.15 (M. Kidwell, A. Stoimenow) Let K be a non-trivial knot, andlet WK be a Whitehead double of K. Is thendegm PWK (l;m) = 2degz FK(a; z) + 2 ?Remark (A. Stoimenow) It is true for K up to 11 rossings. degm PWK (l;m)is independent on the twist of WK if it is > 2 by a simple skein argument.Update Gruber [Gru03℄ showed that, if K is a prime alternating knot and WKis its untwisted Whitehead double, then degm PWK (l;m) � 2 degz FK(a; z)+2.Problem 1.16 (E. Ferrand, A. Stoimenow) Is for any alternating link L,�(L) � mindegl�PL(l;m)� � mindega�FL(a�1; z)� ?Remark (A. Stoimenow) The seond inequality is onjetured by Ferrand[Fer02℄ (see also omment on Problem 1.18), and related to estimates of the Ben-nequin numbers of Legendrian knots. As for the �rst inequality, by Cromwell[Cro89℄ we have mindegl�PL(l;m)� � 1��(L) and lassially �(L) � 1��(L).Problem 1.17 (A. Stoimenow) If rk is the oeÆient of zk in the Conwaypolynomial and (L) is the rossing number of a link L, is then��rk(L)�� � (L)k2k k! ?Geometry & Topology Monographs, Volume X (20XX)



22 Edited by T. OhtsukiRemark (A. Stoimenow) The inequality is non-trivial only for L of k+ 1; k �1; : : : omponents. It is also trivial for k = 0, easy for k = 1 (r1 is just thelinking number of 2 omponent links) and proved by Polyak-Viro [PoVi01℄ forknots and k = 2. There are onstants Ck with��rk(L)�� � Ck (L)k ;following from the proof (due to [Bar95, Sta97℄ for knots, due to [Sto01℄ forlinks) of the Lin-Wang onjeture ([LiWa96℄) for links, but determining Ck fromthe proof is diÆult. Can the inequality be proved by Kontsevih-Drinfel'd, sayat least for knots, using the desription of the weight systems of r of Bar-Natanand Garoufalidis [BaGa96℄? More spei�ally, one an ask whether the (2; n)-torus links (with parallel orientation) attain the maximal values of rk . Onean also ask about the shape of Ck for other families of Vassiliev invariants,like dkdtk VL(t)��t=1 .Problem 1.18 (A. Stoimenow) Does for any link L hold mindega�FL(a�1; z)�� 1��(L)? If u(K) is the unknotting number of a knot K , does for any knotK hold mindega�FK(a�1; z)� � 2u(K)?Remark (A. Stoimenow) For the ommon lower bound of 2u and 1 � � forknots, 2gs , there is a 15 rossing knot K with 2gs(K) < mindega�FK(a�1; z)� .Morton [Mor88℄ onjetured long ago that 1 � �(L) � mindegl�PL(l;m)� .There are reent ounterexamples, but only of 19 to 21 rossings. Ferrand[Fer02℄ observed that very often mindegl�PK(l;m)� � mindega�FK(a�1; z)�(he onjetures it in partiular always to hold for alternating K ), so replaing`mindega�F (a�1; z)�' for `mindegl�PK(l;m)�' enhanes the diÆulty of Mor-ton's problem (the ounterexamples are no longer suh).1.3 The volume onjetureIn [Kas95℄ R. Kashaev de�ned a series of invariants hLiN 2 C of a link L forN = 2; 3; � � � by using the quantum dilogarithm. In [Kas97℄ he observed, byformal alulations, that2� � limN!1 loghLiNN = vol(S3 � L)for L = K41 ;K52 ;K61 , where vol(S3 � L) denotes the hyperboli volume ofS3�L. Further, he onjetured that this formula holds for any hyperboli linkL. In 1999, H. Murakami and J. Murakami [MuMu01℄ proved that hLiN =Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 23JN (L) for any link L, where JN (L) denotes the N -olored Jones polynomial5of L evaluated at e2�p�1=N .Conjeture 1.19 (The volume onjeture, [Kas97, MuMu01℄) For any knotK , 2� � limN!1 log jJN (K)jN = v3jjS3 �Kjj; (2)where jj � jj denotes the simpliial volume and v3 denotes the hyperboli volumeof the regular ideal tetrahedron.Remark For a hyperboli knot K , (2) implies that2� � limN!1 log jJN (K)jN = vol(S3 �K):Remark ([MuMu01℄) Both sides of (2) behave well under the onneted sumand the mutation of knots. Namely,jjS3 � (K1#K2)jj = jjS3 �K1jj+ jjS3 �K2jj;JN (K1#K2) = JN (K1)JN (K2);and JN (K) and jjS3 �Kjj do not hange under a mutation of K . For detailssee [MuMu01℄ and referenes therein.Remark The statement of the volume onjeture for a link L should probablybe the same statement as (2) replaing K with L. It is neessary to assumethat L is not a split link, sine JN (L) = 0 for a split link L (then, the lefthand side of (2) does not make sense).Example It is shown [KaTi00℄ that for a torus link LlimN!1 loghLiNN = 0;whih implies that (2) is true for torus links.Remark Conjeture 1.19 has been proved for the �gure eight knot K41 (see[Mur01℄ for an exposition). However, we do not have a rigorous proof of thisonjeture for other hyperboli knots so far. We explain its diÆulty below,after a review of a proof for K41 .5This is the invariant obtained as the quantum invariant of links assoiated with the N -dimensional irreduible representation of the quantum group Uq(sl2).Geometry & Topology Monographs, Volume X (20XX)



24 Edited by T. OhtsukiWe sketh a proof of Conjeture 1.19 for the �gure eight knot K41 ; for a detailedproof see [Mur01℄. It is known thatJN (K41) = N�1Xn=0 (q)n(q�1)n; (3)where we put q = e2�p�1=N and(q)n = (1� q)(1� q2) � � � (1� qn); (q)0 = 1:As N tends to in�nity �xing n=N in �nite, the asymptoti behaviour of theabsolute value of (q)n is desribed bylog j(q)nj = nXk=1 log �2 sin �kN � = N� Z n�=N0 log(2 sin t)dt+O(logN)= �N2� Im�Li2(e2�np�1=N )�+O(logN);where Li2 denotes the dilogarithm funtion de�ned on C � fx 2 R j x > 1g byLi2(z) = 1Xn=1 znn2 = �Z z0 log(1� s)s ds:Noting that eah summand of (3) is real-valued, we have thatJN (K41) = X0�n<N exp�N2� Im�Li2(e�2�np�1=N )�Li2(e2�np�1=N )�+O(logN)�:The asymptoti behaviour of this sum an be desribed by the maximal pointz0 of Im�Li2(1=z)�Li2(z)� on the unit irle �z 2 C �� jzj = 1	. In fat this z0is a ritial point of Li2(1=z)�Li2(z) in C , and hene Im�Li2(1=z0)�Li2(z0)�gives the hyperboli volume of S3 � K41 . Therefore, the onjeture holds inthis ase.Next, we sketh a formal argument toward Conjeture 1.19 for the knot K52 .Following [Kas97℄, we have thatJN (K52) = X0�m�n<N (q)2n(q)�m q�m(n+1);where the asterisk implies the omplex onjugate. By applying the formalGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 25approximation6(q)n �? exp� N2�p�1�Li2(1)� Li2(e2�np�1=N )��; (4)(q)�n �? exp� N2�p�1�Li2(e�2�np�1=N )� Li2(1)��;we have thatJN (K52) �? X0�m�n<N exp� N2�p�1��22 � 2Li2(e2�np�1=N )� Li2(e�2�mp�1=N ) + 2�nN 2�mN ��:Further, by formally replaing7 the sum with an integral putting t = n=N ands = m=N , we have thatJN (K52) �?? N2 Z0�s�t�1 exp N2�p�1��22 � 2Li2(e2�p�1t)� Li2(e�2�p�1s) + 2�t � 2�s�dsdt (5)= �N24�2 Z exp N2�p�1��22 � 2Li2(z) � Li2( 1w )� log z logw�dww dzz ;where the seond integral is over the domain �(z; w) 2 C 2 �� jzj = jwj = 1; 0 �arg(w) � arg(z) � 2�	, and the equality is obtained by putting z = e2�p�1tand w = e2�p�1s . By applying the saddle point method8 the asymptoti be-haviour might be desribed by a ritial value of�22 � 2Li2(z)� Li2( 1w )� log z logw: (6)Sine a ritial value of this funtion gives a hyperboli volume of S3 � K52 ,this formal argument suggests Conjeture 1.19 for K52 .It was shown by Yokota [Yok00℄, following ideas due to Kashaev [Kas95℄ andThurston [Thu99b℄, that the hyperboli volume of the omplement of any hy-perboli knot K is given by a ritial value of suh a funtion as (6), whih isobtained from a similar omputation of JN (K) as above.6It might be diÆult to justify this approximation in a usual sense, sine the argument of(q)n , given by (q)n = j(q)nj � q�n(n+1)=2(�p�1)n , hanges disretely and quikly near thelimit.7It might be seriously diÆult to justify this replaement, sine there is a large parameterN in the power of the summand, whih exponentially ontributes the summand.8The saddle point method in multi-variables is not established yet. This might be a teh-nial diÆulty.Geometry & Topology Monographs, Volume X (20XX)



26 Edited by T. OhtsukiProblem 1.20 Justify the above arguments rigorously.Remark The asymptoti behaviour of JN (K) might be desribed by usingquantum invariants of S3�K . We have some ways to ompute the asymptotibehaviour of suh a quantum invariant, say, when K is a �bered knot (in thisase, S3 �K is homeomorphi to a mapping torus of a homeomorphism of apuntured surfae), and when we hoose a simpliial deomposition of (a losureof) S3 �K . For details, see remarks of Conjeture 7.12.The following onjeture is a omplexi�ation of the volume onjeture (Con-jeture 1.19).Conjeture 1.21 (H. Murakami, J. Murakami, M. Okamoto, T. Takata,Y. Yokota [MMOTY01℄) For a hyperboli link L,2�p�1 � limN!1 log JN (L)N = CS(S3 � L) +p�1vol(S3 � L)for an appropriate hoie of a branh of the logarithm, where CS and vol denotethe Chern-Simons invariant and the hyperboli volume respetively. Moreover,limN!1 JN+1(L)JN (L) = exp� 12�p�1�CS(S3 � L) +p�1vol(S3 � L)��: (7)Remark It is shown [MMOTY01℄, by formal alulations (suh as (4) and (5)),that Conjeture 1.21 is \true" for K52 ;K61 ;K63 ;K72 ;K89 and the Whiteheadlink.Remark The statement for non-hyperboli links should probably be the samestatement, replaing vol(S3 � L) with v3jjS3 � Ljj. Note that, if L is nothyperboli, then it is also a problem (see Problem 7.16) to �nd an appropriatede�nition of CS(S3�L), whih might be given by (7). It is neessary to assumethat L is not a split link, sine JN (L) = 0 for a split link L.Remark (H. Murakami) Zagier [Zag01℄ gave a onjetural presentation of theasymptoti behaviour of the following sum,JN (K31) = N�1Xk=0 (q)k �N!1 exp���p�112 (N�3+ 1N )�N3=2+Xk�0 bkk! ��2�p�1N �kfor some series bk . This suggests that lim log JN (K31 )N should be ��p�1=12.Problem 1.22 (H. Murakami) For a torus knot K , alulate CS(S3 � K)(giving an appropriate de�nition of it) and alulate lim log JN (K)N (�xing anappropriate hoie of a branh of the logarithm).Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 272 Vassiliev invariantsLet R be a ommutative ring with 1 suh as Z or Q . We denote by K the setof isotopy lasses of oriented knots. A singular knot is an immersion of S1 intoS3 whose singularities are transversal double points. We regard singular knotsas in RK by removing eah singularity linearly by= � :Let Fd(RK ) denote the submodule of RK spanned by singular knots with ddouble points, regarding them as in RK . Then, we have a desending series ofsubmodules, RK = F0(RK ) � F1(RK ) � F2(RK ) � � � � :An R-homomorphism v : RK ! R (or, a homomorphism ZK ! A for anabelian group A) is alled a Vassiliev invariant (or a �nite type invariant)of degree d if vjFd+1(RK) = 0. See [Bar.www℄ for many referenes of Vassilievinvariants.A trivalent vertex of a graph is alled vertex-oriented if a yli order of the threeedges around the trivalent vertex is �xed. A Jaobi diagram9 on an oriented1-manifold X is the manifold X together with a uni-trivalent graph suh thatunivalent verties of the graph are distint points on X and eah trivalentvertex is vertex-oriented. The degree of a Jaobi diagram is half the number ofunivalent and trivalent verties of the uni-trivalent graph of the Jaobi diagram.We denote by A(X;R) the module over R spanned by Jaobi diagrams on Xsubjet to the AS, IHX, and STU relations shown in Figure 6, and denote byA(X;R)(d) the submodule of A(X;R) spanned by Jaobi diagrams of degreed. There is a anonial surjetive homomorphismA(S1;R)(d)=FI! Fd(RK )=Fd+1(RK ); (8)where FI is the relation shown in Figure 6. This map is known to be anisomorphism when R = Q (due to Kontsevih). For a Vassiliev invariant v :RK ! R of degree d, its weight system A(S1;R)(d)=FI ! R is de�ned by themap (8).9A Jaobi diagram is also alled a web diagram or a trivalent diagram in some literatures.In physis this is often alled a Feynman diagram.Geometry & Topology Monographs, Volume X (20XX)



28 Edited by T. OhtsukiThe AS relation : = �The IHX relation : = �The STU relation : = �The FI relation : = 0Figure 6: The AS, IHX, STU, and FI relations2.1 Torsion and Vassiliev invariantsLet R be a ommutative ring with 1, say Z=nZ. Then, Q -, Z-, R-valuedVassiliev invariants and their weight systems and the Kontsevih invariant formthe following ommutative diagram.� Kontsevih invariantA(S1;Q)=FI K??yproj ??yA(S1;Q)(d)=FI isom����! Fd(QK )=Fd+1 (QK ) �����! QK =Fd+1 (QK ) ����! Qx??�
Q x??�
Q �
Qx?? �
Qx??A(S1;Z)(d)=FI surj����! Fd(ZK)=Fd+1 (ZK) �����! ZK=Fd+1 (ZK) ����! Z??yproj ??yproj proj??y proj??yA(S1;R)(d)=FI surj����! Fd(RK )=Fd+1 (RK ) �����! RK=Fd+1 (RK ) ����! RHere, the right horizontal maps are derived from Vassiliev invariants, and theompositions of horizontal maps are their weight systems.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 29Conjeture 2.1 ([Kir97, Problem 1.92 (N)℄) Fd(ZK)=Fd+1(ZK) is torsionfree for eah d.Remark (see [Kir97, Remark on Problem 1.92 (N)℄) Goussarov has hekedthe onjeture for d � 6. It has been heked that Fd(ZK)=Fd+1(ZK) has no2-torsion for d � 9 by Bar-Natan, and for d � 12 in [Kne97℄.Remark If this onjeture was true, then Z-valued and Q -valued Vassiev invari-ants arry exatly the same information about knots. Moreover, any (Z=nZ)-valued Vassiliev invariants would be derived from Z-valued Vassiliev invariants.Conjeture 2.2 A(S1;Z) is torsion free.Remark (T. Stanford) This onjeture would imply Conjeture 2.1 beauseof the Kontsevih integral. However, it is possible that there is torsion inA(S1;Z)(d) whih is in the kernel of the map (8).Conjeture 2.3 (X.-S. Lin [Lin.www℄) Let R be a ommutative ring with1, say Z=2Z. Every weight system A(S1;R)(d)=FI ! R is indued by someVassiliev invariant RK ! R.Remark If the map (8) is an isomorphism and Fd(RK )=Fd+1(RK ) is a diretsummand of RK=Fd+1(RK ), then this onjeture is true (see the diagram atthe beginning of this setion).Remark When R = Q , this onjeture is true, sine the omposition of theKontsevih invariant and a weight system gives a Vassiliev invariant, whihindues the weight system. If the Kontsevih invariant with oeÆients in Rwould be onstruted (see Problem 3.7), this onjeture would be true.Remark (T. Stanford) The hord diagram module A(##;Z) orresponds to�nite-type invariants of two-strand string links. Jan Kneissler and Ilya Dogo-lazky (see [Dog98℄) showed that there is a 2-torsion element in A(##;Z)(5)=FI(see Figure 7). I have done reent alulations (to be written up soon) whihshow that there is no Z=2Z-valued invariant of string links orresponding to thistorsion element. Thus there is a Z=2Z weight system A(##;Z=2Z)=FI! Z=2Zwhih is not indued by a Z=2Z-valued �nite-type invariant. So for string links,Conjeture 2.1 is false.Geometry & Topology Monographs, Volume X (20XX)



30 Edited by T. Ohtsuki�Figure 7: A 2-torsion element in A(##;Z) due to Dogolazky{Kneissler(T. Stanford) Note that the Kontsevih integral works (for rational invariants)for string links just as well as for knots. Sine this alulation shows that thereis no Z=2ZKontsevih integral for string links, it suggests that there is no Z=2ZKontsevih integral for knots.Question 2.4 (T. Stanford) The Dogolazky-Kneissler 2-torsion element inA(##;Z) (see Figure 7) an be embedded into a hord diagram in A(S1;Z) inmany ways. Suh an embedding will always produe an element x 2 A(S1;Z)with 2x = 0. Is it possible to produe suh an x whih is nontrivial? If so, thiswould give a ounterexample to Conjeture 2.3.2.2 Do Vassiliev invariants distinguish knots?Conjeture 2.5 Vassiliev invariants distinguish oriented knots. (See Conje-ture 3.2 for an equivalent statement of this onjeture.)Remark Two knots with the same Vassiliev invariant up to an arbitrarily givendegree an be obtained; see [Ohy95℄ and Goussarov-Habiro theory [Gou95,Gou99, Hab00℄. Hene, we need in�nitely many Vassiliev invariants to showthis onjeture.Problem 2.6 Does there exists a non-trivial oriented knot whih an not bedistinguished from the trivial knot by Vassiliev invariants? (See Problem 3.3for an equivalent problem.)Remark The volume onjeture (Conjeture 1.19) suggests that the answer isno; see [MuMu01℄.Conjeture 2.7 (see [Kir97, Problem 1.89 (B)℄) For any oriented knot K ,no Vassiliev invariants distinguish K from �K . (See Conjeture 3.4 for anequivalent statement of this onjeture.)Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 31Remark ([Kir97, Remark on Problem 1.89℄) The �rst oriented knot whih isdi�erent from its reverse is 817 . It is known that no Vassiliev invariants ofdegree � 9 an distinguish a knot from its reverse.Remark This onjeture is redued to the problem to �nd D 2 A(S1) withD 6= �D , where �D is D with the opposite orientation of S1 . If suh a Dexisted, the onjeture would fail. Suh a D has not been known so far.Remark Kuperberg [Kup96b℄ showed that all Vassiliev invariants either distin-guish all oriented knots, or there exist prime, unoriented knots whih they donot distinguish.2.3 Can Vassiliev invariants detet other invariants?(T. Stanford) Let hG(K) be the number of homomorphisms from the fun-damental group of the omplement of a knot K to a �nite group G. This isnot a Vassiliev invariant ([Eiser00℄). hS3(K) of the 3rd symmetri group S3is presented by the number of 3-olorings of K , and hD5(K) of the dihedralgroup D5 of order 10 is presented by the number of 5-olorings of K . Theseare determined by the Jones and Kau�man polynomials, respetively (see theremark of Problem 4.16), and therefore are determined by invariants of �nitetype. In fat, by the usual power-series expansions of the Jones and Kau�manpolynomials, we see that hS3 and hD5 are the (pointwise) limits of respetivesequenes of �nite-type invariants.Question 2.8 (T. Stanford) Can we approximate hG by Vassiliev invariantsfor other G than dihedral groups?Remark (T. Stanford) It is known (due to W. Thurston) that knot groups areresidually �nite. So if hG an be approximated by �nite-type invariants for all�nite groups G, then Vassiliev invariants would distinguish the unknot.Remark (T. Stanford) If p is a prime, then there exists a nontrivial p-oloringof a knot K , and hene a nontrivial representation of the fundamental groupof K into the dihedral group Dp of order 2p, if and only if �K(�1) is divisibleby p. Thus the Alexander polynomial ontains information about hDp , thoughit may not determine hDp ompletely. Suppose that G is a �nite, non-abeliangroup, not isomorphi to Dp . Even if we annot approximate hG by �nite-type invariants, it would at least be interesting to know whether �nite-typeinvariants provide any information at all about hG .Geometry & Topology Monographs, Volume X (20XX)



32 Edited by T. OhtsukiRemark Let hX(K) denote the number of homomorphisms from the knot quan-dle of a knot K to a �nite quandle X . The number hG(K) an be presented bythe sum of hX(K) for subquandles X of the onjugation quandle of G. In thissense, it is a re�nement of Question 2.8 to approximate hX of �nite quandles Xby Vassiliev invariants. It is known [Ino01℄ that hX(K) for ertain Alexanderquandles X an be presented by the ith Alexander polynomial of K .Problem 2.9 (X.-S. Lin [Lin.www℄) Is the knot signature the limit of a se-quene of Vassiliev invariants?Remark It is known [Dea94℄ that the signature of knots is not a Vassilievinvariant.2.4 Vassiliev invariants and rossing numbersLet v2 and v3 be R-valued Vassiliev invariants of degree 2 and 3 respetivelynormalized by the onditions that v2(K) = v2(K) and v3(K) = �v3(K) forany knot K and its mirror image K and that v2(K31) = v3(K31) = 1 for theright trefoil knot K31 . They are primitive Vassiliev invariants, and the imageof v2 � v3 is equal to Z� Z� R � R.Problem 2.10 (N. Okuda [Oku02℄) Desribe the setn�v2(K)n2 ; v3(K)n3 � 2 R � R ��� K has a knot diagram with n rossingso: (9)Remark Willerton [Wil01℄ observed that the set of (v2(K); v3(K)) for knotsK with a (ertain) �xed rossing number gives a �sh-like graph. This �sh-likegraph is disussed in [DLL01℄ from the point of view of the Jones polynomial.Remark (N. Okuda) It is shown by Okuda [Oku02℄ (the right inequality of(10) is due to [PoVi01℄) that, if a knot K has a diagram with n rossings, then� jn216k � v2(K) � jn28 k; (10)jv3(K)j � jn(n� 1)(n� 2)15 k; (11)where bx denotes the greatest integer less than or equal to x. It follows thatthe set (9) is inluded in the retangle [�1=16; 1=8℄ � [�1=15; 1=15℄. It is aproblem to desribe the smallest domain inluding this set. The plottings inGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 33
� 116 18

124

� 124Figure 8: The plottings of the set (9) for some family of knots [Oku02℄Figure 8 numerially desribe the set (9) for a large �nite subset of a ertainin�nite family of knots. Okuda [Oku02℄ identi�ed the boundary of the domaininluding this set for this in�nite family of knots. This boundary is given byurves parameterized by some polynomials of degree 2 (for the v2 -oordinate)and of degree 3 (for the v3 -oordinate). Further, the points (1=8;�1=24) arethe limits of the points given by the (2; n) torus knot and its mirror image.The point (�1=16; 0) is the limit of the points given by the knotsn=2 n=2for n divisible by 4, where eah twisting part has n=2 rossings. These knotsgives the bounds of (10), while the inequality in (11) might not be best possible(see Conjeture 2.11 below).Remark (O. Viro) The experimental data (in Figure 8) suggest that there mightexists an additional invariant(s) whih together with v2 , v3 , and n satisfy analgebrai equation(s) suh that the set (9) is the projetion of the algebrai setde�ned by the equation(s).Geometry & Topology Monographs, Volume X (20XX)



34 Edited by T. OhtsukiConjeture 2.11 (S. Willerton [Wil01℄) Let v3 be as above. If a knot Khas a diagram with n rossings, thenjv3(K)j � jn(n2 � 1)24 k:Remark It is shown in [Wil01℄ that the (2; n) torus knot gives the equality ofthis formula.2.5 Dimensions of spaes of Vassiliev invariantsWe denote by A(S1;R)onn the submodule of A(S1;R) spanned by Jaobi dia-grams with onneted uni-trivalent graphs. As a graded vetor spae A(S1;Q)is isomorphi to the symmetri tensor algebra of A(S1;Q)onn . A Vassiliev in-variant v is alled primitive if v(K1#K2) = v(K1) + v(K2) for any orientedknots K1 and K2 . The degree d subspae of A(S1;Q)onn is dual to the dthgraded vetor spae for Q -valued primitive Vassiliev invariants.Problem 2.12 Determine the dimension of the spae of primitive Vassilievinvariants of eah degree d. Equivalently, determine the dimension of the spaeA(S1;Q)(d)onn for eah d.d 0 1 2 3 4 5 6 7 8 9 10dim A(S1)(d)onn 0 1 1 1 2 3 5 8 12 18 27dim A(S1)(d) 1 1 2 3 6 10 19 33 60 104 184dim A(S1)(d)=FI 1 0 1 1 3 4 9 14 27 44 80d 11 12 13 14dim A(S1)(d)onn 39 55 � 78 � 108dim A(S1)(d) 316 548 � 932 � 1591dim A(S1)(d)=FI 132 232 � 384 � 659Table 1: Some dimensions given in [Broa97, Kne97℄Remark The dimension of A(S1;Q)(d)onn an partially be omputed as follows.Let B denote the vetor spae over Q spanned by vertex-oriented uni-trivalentgraphs subjet to the AS and IHX relations, and let B(d)onn denote the subspaeof B spanned by onneted uni-trivalent graphs with 2d verties.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 35It is known that A(S1;Q)(d)onn is isomorphi to B(d)onn by (21). Let B(d;u)onn bethe subspae of B(d)onn spanned by uni-trivalent graphs with u univalent verties(hene, with 2d � u trivalent verties), and �d;u its dimension. Then, thedimension of A(S1;Q)(d)onn is presented by Pu�2 �d;u .Bar-Natan [Bar96℄ gave a table of �d;u for d � 9 and for some other (d; u) byomputer.The series of �k;k is given as follows. The diret sum �kB(k;k)onn is isomorphi tothe polynomial ring Q[x2 ℄ as a graded vetor spae by (23); in other words, itis spanned by \wheels". Hene, the series of �k;k is presented by the followinggenerating funtion, Xk�0 �k;ktk = 11� t2 :That is, �k;k = 1 if k is even, and 0 otherwise.The series of �k+1;k is given as follows. The diret sum �kB(k+1;k)onn is isomor-phi to Q[�2 ; �23 ℄ as a graded vetor spae by (25), where �i denotes the i-thelementary symmetri polynomial in some variables. Hene, the series of �k+1;kis presented by the following generating funtion,Xk�0 �k+1;ktk = 1(1� t2)(1� t6) :The series of �k+2;k is presented byXk�0 �k+2;ktk = 1(1� t2)(1� t4)(1 � t6) ;sine �kB(k+2;k)onn is isomorphi, as a graded vetor spae, to Q[�2 ; �23 ; �4℄ withelementary symmetri polynomials in some variables by (27).It is onjetured [Das00℄ that the series of �k+3;k would be presented byXk�0 �k+3;ktk ?= 1 + t2 + t8 � t10(1� t2)(1 � t4)(1� t6)(1� t10) :It has been shown that �d;u = 0 for d � 9 and for d � u + 2. However, it isonjetured yet for other (d; u).A onjeture of a two-variable generating funtion for the series of �d;u withtwo parameters d and u is given in [Broa97℄.Geometry & Topology Monographs, Volume X (20XX)



36 Edited by T. Ohtsuki�d;u u = 2 u = 4 u = 6 u = 8 u = 10 u = 12 u = 14 totald = 1 1 1d = 2 1 1d = 3 1 1d = 4 1 1 2d = 5 2 1 3d = 6 2 2 1 5d = 7 3 3 2 8d = 8 4 4 3 1 12d = 9 5 6 5 2 18d = 10 6 8 8 4 1 27d = 11 8 10 11 8 2 39d = 12 9 13 15 12 5 1 55d = 13 � 11 � 16 � 20 � 18 � 10 3 � 78d = 14 � 13 � 19 � 25 � 26 � 17 7 1 � 108Table 2: A table of �d;u [Broa97, Kne97℄Remark An asymptoti evaluation of a lower bound of dimA(S1)(d)onn was givenin [ChDu99℄; dimA(S1)(d)onn grows at least as dlog d when d!1. Further, it wasimproved in [Das00℄; dimA(S1)(d)onn grows at least as epd for any  < �p2=3when d!1.Remark Upper bounds of dimA(S1)(d)onn were given dimA(S1)(d)onn � (d� 1)! in[ChDu94℄ and dimA(S1)(d)onn � (d � 2)!=2 (for d > 5) in [NgSt99℄. Stoimenow[Sto98℄ introdued the number �d of \regular linearized hord diagrams", andshowed that dimA(S1)(d)=FI � �d . Further, he showed that �d is asymptot-ially at most d!=1:1d , whih was improved by d!=(2 ln 2 + o(1)) in [BoRi00℄.Furthermore, Zagier [Zag01℄ showed that1Xn=0(1� q)(1� q2) � � � (1� qn) = 1Xd=0 �d(1� q)d 2 Z[[1� q℄℄; (12)and that �d � d!pd(�2=6)d �C0 + C1d + C2d2 + � � � �with C0 = 12p3��5=2e�2=12 � 2:704, C1 � �1:527, C2 � �0:269. It followsthat the asymptoti growth of dimA(S1)(d)=FI is at most O(d!pd(�2=6)�d).Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 37d 0 1 2 3 4 5 6 7 8 9 10dim A(S1)(d)=FI 1 0 1 1 3 4 9 14 27 44 80�d 1 1 2 5 15 53 217 1014 5335 31240 201608Table 3: Upper bounds �d of dimA(S1)(d)=FI (see [Sto98℄)2.6 Milnor invariants(T. Stanford) Fix k , and onsider k -strand string links. Let Vn be the sub-spae of rational-valued �nite-type invariants of order � n (of k -strand stringlinks). Let Mn � Vn be the subspae of Milnor invariants and produts ofMilnor invariants. It is known that in general Mn is a proper subspae of Vn .Question 2.13 (T. Stanford) Does Mn have an interesting omplementaryspae in Vn? Consider, for example, the spae Nn � Vn of invariants v withthe property that v(L) = 0 for any string link L suh that �1(B3 � L) is free.Is Nn nontrivial? Do Nn and Mn together span Vn?Here is some bakground and motivation.When onsidering �nite-type invariants of string links, the �rst ones that ometo mind are the Milnor invariants. These were de�ned by Milnor [Mil54℄ in 1954as numbers assoiated to links. They are not quite invariants of links, in theusual sense, beause of some indeterminay. They are, however, well-de�ned asinvariants of string links, and this point of view was taken by Habegger and Lin[HaLi90℄. After Vassiliev's work appeared, Bar-Natan [Bar95b℄ and Lin [Lin97℄showed (independently) that the Milnor invariants are �nite-type invariants.Habegger and Masbaum [HaMa00℄ showed that on the hord diagram level, theMilnor invariants (inluding produts of Milnor invariants) are exatly the onesthat vanish on Jaobi diagrams that ontain internal loops, and also that theMilnor invariants are the only rational-valued �nite-type invariants of stringlinks whih are also onordane invariants.String links may have loal knots in the strands, and suh knots are not detetedby Milnor invariants. If a string link L has loal knots, then �1(B3�L) is notfree. Hene the question as to whether �nite-type invariants an show that theomplement of a string link is not free.(M. Polyak) Let us review the onstrutions of Milnor �-invariant in [Co90℄.For a n-omponent link L = L1 [ � � � [Ln , regard the homotopy lass of Ln asGeometry & Topology Monographs, Volume X (20XX)



38 Edited by T. Ohtsukiin �1�S3� (L1[ � � � [Ln�1)�, and write it in terms of meridians m1; � � � ;mn�1of L1; � � � ; Ln�1 . Consider its Magnus expansion putting mi = 1+Xi for non-ommutative variables Xi . Then, Milnor's �-invariant �i1���ik;n(L) is de�ned tobe the oeÆient of Xi1 � � �Xik in the expansion, whih is an invariant underthe assumption that the lower �-invariants vanish. For example, �1;2 is equalto the linking number lk(L1; L2) of L1 and L2 . Further, if �i;j(L) = 0 forany i; j , then �12;3(L) = lk(L12; L3), where L12 denotes the link whih is theintersetion of Seifert surfaes of L1 and L2 . In general, under the vanishingassumption of the lower �-invariants, �12���n�1;n(L) = lk(L12���n�1; Ln) whereL12���k (for k = 2; 3; � � � ; n � 1) denotes the link whih is the intersetion ofSeifert surfaes of L12���k�1 and Lk .Problem 2.14 (M. Polyak) Milnor's �-invariants of string links an be de-�ned similarly as above (see [Pol99℄). Find a topologial presentation of a �-invariant of string links (not assuming the vanishing of the lower �-invariants).(1) Show that lk(L12���n�1; Ln) is well-de�ned in an appropriate sense.(2) Identify it with �12���n�1;n(L).2.7 Finite type invariants of virtual knotsA virtual knot ([Kau99℄) is de�ned by a knot diagram with virtual rossingsmodulo Reidemeister moves. Finite type invariants of virtual knots were studiedin [GPV00℄, where their weight systems are de�ned on the spae �!A(X;R)=�!FIof arrow diagrams. Here an arrow diagram ([Pol00℄) is a hord diagram withoriented hords, and �!A(X;R) denotes the module over a ommutative ring Rspanned by arrow diagrams on X subjet to the 6T relation, and �!FI denotesthe oriented FI relation (see Figure 9 for these relations). It is known [Pol00℄that �!A(X;R) is isomorphi to the module spanned by ayli oriented Jaobidiagrams on X subjet to the relations= 0 =and the �!AS, ��!IHX, and ��!STU relations (see Figure 9).Problem 2.15 Let I denote an oriented interval.(1) Determine the dimensions of �!A(S1;Q)(d) and �!A(I;Q)(d) for eah d.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 39
The 6T relation : + += + +The �!FI relation : = 0 =The weak �!FI relation : = ;=The �!AS relation : = �The ��!IHX relation : = �The ��!STU relation : = �Figure 9: The 6T and the oriented FI, AS, IHX, and STU relations. Here, a thikdashed line implies the sum of the two orientations, and orresponding thin dashedlines of pitures in the same formula have the same (arbitrarily given) orientation.
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40 Edited by T. Ohtsuki(2) Determine the dimensions of �!A(S1;Q)(d)=�!FI and �!A(I;Q)(d)=�!FI for eahd.(3) Determine the dimensions of �!A(S1;Q)(d)=(weak �!FI) and�!A(I;Q)(d)=(weak �!FI) for eah d.Remark It is shown by elementary omputation that �!A(S1;Q)(2)=FI = 0 andthat �!A(I;Q)(2)=FI is a 2-dimensional vetor spae spanned by; :Note that the dimensions of �!A(S1;Q)(d) and �!A(I;Q)(d) di�er unlike the un-oriented ase.Remark Construtive weight systems on �!A(X;R) an be de�ned by usingLie bialgebras (see, e.g., [Dri87, EiKa96℄, for Lie bialgebras), where the weightsystems of the following diagramsgx??g
 g g
 gx??gare de�ned to be the braket and the o-braket of a Lie bialgebra g. Suhweight systems are helpful when we estimate lower bounds of the dimensionsof the spaes A(X;R).Conjeture 2.16 (M. Polyak) The following two maps are injetive,A(I)(d) �! �!A(I)(d)A(I)(d)=FI �! �!A(I)(d)=�!FI;where they are de�ned by 7�! + :Remark If these maps are injetive, then weight systems on A(I)(d) and A(I)(d)=FIwould be deteted by weight systems on �!A(I)(d) and �!A(I)(d)=�!FI ; in otherGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 41words, the upper rightward map in the following diagram would be surjetive.� degree d weight systemsfor long virtual knots � ����! � degree d weight systemsfor lassial knots �x?? x??� degree d �nite type invariantsfor long virtual knots � ����! � degree d Vassiliev invariantsfor lassial knots �Hene, this onjeture follows from Conjeture 2.17 below, whih implies thatthe lower rightward map in the above diagram is surjetive.Conjeture 2.17 ([GPV00℄) Every Vassiliev invariant of lassial knots anbe extended to a �nite type invariant of long virtual knots. (See also Problem3.9.)2.8 Finite type invariants derived from loal movesOne aspet of the study of knot invariants is the study of the set of knots. Aloal move and �nite type invariants derived from it might give an approah ofthis study.A loal move is a move between two knots, whih are idential exept for a ball,where they di�er as shown in both sides of a move in Figure 10. Let R be aommutative ring with 1, and K the set of isotopy lasses of oriented knots,as before. For a loal move m, we de�ne Fd(RK ;m) as follows. Let K be anoriented knot with d disjoint balls B1; B2; � � � ; Bd suh that K is as shown inone side of m in eah Bi . For any subset S � f1; 2; � � � ; dg, we denote by KSthe knot obtained from K by applying m in eah Bi for i 2 S . We de�neFd(RK ;m) to be the submodule of RK spanned byXS (�1)#SKS (13)for any K with d balls, where #S denotes the number of elements of S , andthe sum runs over all subsets S of f1; 2; � � � ; dg. Then, we have a desendingseries of submodules,RK = F0(RK ;m) � F1(RK ;m) � F2(RK ;m) � � � � :Note that Fd(RK ) = Fd(RK ;�) for a rossing hange \�". An R-homomorphismv : RK ! R is alled a �nite type invariant of m-degree d, or an m �nite typeinvariant of degree d, if vjFd+1(RK;m) = 0.Geometry & Topology Monographs, Volume X (20XX)



42 Edited by T. Ohtsuki
A rossing hange \�" :  !A double rossing hange \��" :  !A # move :  !A pass move :  !A � move :  !A doubled delta move �� :  !An n-gon move :  !Figure 10: Some loal moves among oriented knots. The strands of both sides of a �move and an n-gon move have any orientations suh that orresponding strands fromopposite sides of the moves are oriented in the same way. Eah side of an n-gon movehas n strands.
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Problems on Invariants of Knots and 3-Manifolds 43It is a fundamental problem of �nite type invariants to alulate the orrespond-ing graded spaes, whih would enable us to identify �nite type invariants insome sense.Problem 2.18 Calulate Fd(ZK;m)=Fd+1(ZK;m), letting m be a loal movesuh as(1) a # move,(2) a pass move,(3) a � move,(4) an n-gon move.Remark It is known that rossing hange, double rossing hange, # move (see[Mur85℄), � move (see [MuNa89℄), n-gon move (see [Aid92℄) are unknottingoperations, i.e., any oriented knot an be related to the trivial knot by a se-quene of isotopies and eah of these moves. Hene, F0(ZK;m)=F1 (ZK;m) �= Zfor these moves m.It is known [Kau83℄ that Arf invariant gives the bijetionfknotsg=(pass move) �! Z=2Z:Hene, F0(ZK;pass move)=F1(ZK;pass move) �= Z� Z.Remark � �nite type invariants were introdued in [Mel20℄; see also [Sta00℄.Remark (K. Habiro) The following relations hold,F2d(ZK;�) � Fd(ZK;�) � F3d(ZK;�);Fd(ZK;�) � Fd(ZK;#) � Fd(ZK;�):These relations imply that m �nite type invariants are Vassiliev invariants, andVassiliev invariants are m �nite type invariants, for m = #;�. Further, therank of Fd(ZK;m)=Fd+1 (ZK;m) is �nite for these m.Remark For the Kontsevih invariant Z (introdued in Chapter 3), we havethatZ� ��Z� � = +� terms ofhigher degrees � ;Geometry & Topology Monographs, Volume X (20XX)



44 Edited by T. Ohtsukiwhere two tangles in the left hand side are related by a � move. Hene, theimage ofFd(QK ;�) �! F2d(QK ) �! F2d(QK )=F2d+1 (QK ) �= A(S1;Q)(2d)is equal to the subspae of A(S1;Q)(2d) spanned by Jaobi diagrams on S1whose uni-trivalent graphs are disjoint unions of d dashed Y graphs.Remark Finite type invariants derived from a double rossing hange wereintrodued in [App02℄, to study �nite type invariants of links with a �xed linkingmatrix. For knots, they are equal to Vassiliev invariants, that is, Fd(ZK;��) =Fd(ZK;�).
The surgery on is de�ned to be the surgery along :
Figure 11: De�nition of the surgery on a Y graph. Dotted lines imply strands possiblyknotting and linking. Three irles (partially dotted) in the left piture are alledleaves.(Y. Ohyama) In the ase all ars in a � move are ontained in the sameomponent, it is alled a self � move. If two links an be transformed intoeah other by a �nite sequene of self � moves, they are said to be � linkhomotopi.Problem 2.19 (Y. Ohyama) Find neessary and suÆient onditions for two�-omponent links (� > 2) to be � link homotopi.Remark (Y. Ohyama) For a �-omponent link K = K1 [K2 [ : : : [K� , letÆ1 = a��1(K) and Æ2 = a�+1(K)� a��1(K)� (P�i=1 a2(Ki) for the oeÆientai(K) of the term zi in the Conway polynomial of K .It is known [Mat87, MuNa89℄ that two knots (or links) an be transformedinto eah other by a �nite sequene of � moves if and only if they have thesame number of omponents, and, for properly hosen orders and orientations,Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 45they have the same linking numbers between the orresponding omponents. Inpartiular, if two links are � link homotopi, then their Æ1 oinide. Further,it is known [Nak99℄ that if two � omponent links are � link homotopi, thentheir Æ2 oinide. These are neessary onditions of this problem.Moreover, for 2-omponent links, a pair of Æ1 and Æ2 is a faithful invariantof � link homotopy. Namely, for two 2-omponent links, they are � linkhomotopi if and only if their Æ1 and Æ2 oinide ([NaOh01℄). This gives arequired ondition of this problem for 2-omponents links.2.9 Loop �nite type invariantsThe loop-degree of a Jaobi diagram on S1 is de�ned to be half of the numbergiven by the number of trivalent verties minus the number of univalent vertiesof the uni-trivalent graph of the Jaobi diagram. The �ltration of A(S1) givenby loop-degrees is related to a �ltration of QK through the Kontsevih invariant.The theory of the orresponding �ltration in Z(MK ) (given below) is developedin [GaRo00℄ (noting that this de�nition also appears in the September 1999version of [Kri00a℄).We denote by MK the set of pairs (M;K) suh that M is an integral homology3-sphere and K is an oriented knot in M . Consider a move between two pairs(M;K) and (M 0;K 0) in MK suh that (M 0;K 0) is obtained from (M;K) bysurgery on a Y graph (see Figure 11) embedded in M �K whose leaves havelinking number zero with K . We all this move a loop move. Finite typeinvariants of degree d derived from a loop move by (13) are alled loop �nitetype invariants of degree d, or �nite type invariants of loop-degree d. We denotethe orresponding submodule of R(MK ) by Fl(Z(MK ); loop).A doubled delta move �� (see Figure 10) was introdued by Naik-Stanford[NaSt99℄ as a move haraterizing S-equivalene lasses; two knots are S-equivalentif they are indistinguishable by Seifert matries. A doubled delta move �� anbe presented by a surgery on suh a Y graph as above. Thus, we have the mapFl(RK ;��) ! Fl(R(MK ); loop), taking a knot K to (S3;K) 2 MK . Hene, aloop �nite type invariant gives a �� �nite type invariant.Problem 2.20 Let R be a ommutative ring with 1, say, Z or Q .(1) Desribe the spaes Fl(R(MK ); loop)=Fl+1(R(MK ); loop).(2) Desribe the spaes Fl(RK ; ��)=Fl+1(RK ;��).(3) Desribe the image of the above map Fl(RK ;��)! Fl(R(MK ); loop).Geometry & Topology Monographs, Volume X (20XX)



46 Edited by T. OhtsukiRemark (A. Kriker) It follows by a short argument from [NaSt99℄ and [Mat87℄that the following map taking a pair (M;K) to a Seifert matrix of K in M isbijetive,MK =(loop move) =�! fS-equivalene lasses of Seifert matriesg: (14)(This implies that K and K 0 are related by a sequene of doubled deltamoves if and only if (S3;K) and (S3;K 0) are related by a sequene of loopmoves.) Hene, F0(Z(MK ); loop)=F1(Z(MK ); loop) is isomorphi to the moduleover Z freely spanned by S-equivalene lasses. Moreover, by (14), we havethat Z(MK ) = �sZ(MK s), where the sum runs over all S-equivalene lasses s.Further,Fl(Z(MK ); loop)=Fl+1(Z(MK ); loop) =Ms Fl(Z(MK s); loop)=Fl+1(Z(MK s); loop):Hene, the problem (1) splits into problems of desribing the diret summandson the right hand sides: desribe the spaes Fl(Z(MK s); loop)=Fl+1(Z(MK s); loop)for eah S-equivalene lass s. For the S-equivalene lass u inluding the un-knot, Fl(Q(MK u); loop)=Fl+1(Q(M K u); loop) is isomorphi to AZ[t�1℄(;;Q)(loop l)by the map (30) of the loop expansion of the Kontsevih invariant (see also[GaRo00℄); for the de�nition of the spae AZ[t�1℄(;;Q)(loop l) see Setion 3.9.Remark A surgery on a Y graph in the de�nition of loop �nite type invariantslifts to a surgery of the in�nite yli over of the knot omplement, whih doesnot hange its homology. Hene, it is shown, topologially, that all oeÆientsof the Alexander polynomial are �nite type invariants of loop-degree 0.It follows that all oeÆients of the Alexander polynomial are �nite type invari-ants of ��-degree 0. It an also be shown from the fat that the Alexanderpolynomial an be de�ned by the Seifert matrix of a knot, whih is unhangedby �nite type invariants of ��-degree 0 as shown in [NaSt99℄.The Alexander polynomial is universal among Vassiliev invariants whih are of�nite type of ��-degree 0; more preisely, log�K(e~) as a power series of ~is universal among Q -valued primitive Vassiliev invariants whih are of �nitetype of ��-degree 0. An equivalent statement has been shown in [MuOh01℄,using Vassiliev invariants of S-equivalene lasses of Seifert matries.Remark As shown in [NaSt99℄ we have a bijetion,fknotsg=�� =�! fS-equivalene lassesg;by taking a knot to its S-equivalene lass. Hene, F0(ZK;��)=F1(ZK;��) isisomorphi to the module over Z freely spanned by S-equivalene lasses.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 47Remark (A. Kriker) The dual spae ofFl(K 
 Q;��) \ Fd(K 
 Q;�)�(Fl+1(K 
 Q; ��) \ Fd(K 
 Q;�)� + �Fl(K 
 Q;��) \ Fd+1(K 
 Q;�)�is isomorphi to the subspae of B spanned by onneted uni-trivalent graphsof degree d and of loop-degree l , i.e., the spae B(d;d�l)onn in the notation givenin a remark in Problem 2.12.(A. Kriker)Let MK denote the set of pairs (M;K) suh that M is an integral homology3-sphere and K is an oriented knot in M , as before. A mod p loop move inMK is de�ned to be a surgery on a Y graph (see Figure 11) suh that eah leafhas linking number 0 modulo p with the knot. We onsider the question: whatare the mod p loop move equivalene lasses of knots?To state the onjeture below, we give some notation. Consider a pair (M;K) ofan integral homology 3-sphere M and a knot K in M . Let �p(M;K) be the p-foldbranhed yli over of (M;K), and assume that �p(M;K) is a rational homology3-sphere. Observe that there is an ation of Z=pZ on the homology groupH1(�p(M;K);Z) (indued from the overing transformations). Observe also thatthe linking pairing on the torsion of H1(�p(M;K);Z) (whih is the whole group)is invariant under the ation of Z=pZ. Here, the linking pairing on the torsion ofH1(N ;Z) of a 3-manifold N is the map Tor�H1(N ;Z)�
Tor�H1(N ;Z)�! Q=Ztaking � 
 � to 1=n times the algebrai intersetion of F and � , where F isa ompat surfae bounding n� for some non-zero integer n.Conjeture 2.21 (A. Kriker) Take (M1;K1) and (M2;K2) of the abovesort. Then, there exists a (Z=pZ)-equivariant isomorphism � : H1(�p(M1;K1);Z)!H1(�p(M2;K2);Z) preserving the linking pairing if and only if (M1;K1) is equiv-alent to (M2;K2) by a �nite sequene of mod p loop moves.Remark (A. Kriker) The ase of p = 1 would reover Matveev's theorem[Mat87℄: two losed 3-manifolds M and N are equivalent by a �nite sequeneof surgeries on Y graphs if and only if there is an isomorphism H1(M ;Z) !H1(N ;Z) preserving the linking pairing on the torsion.Also, the limit as p ! 1 should reover a theorem due to Naik-Stanford[NaSt99℄: two knots are equivalent by a �nite sequene of loop moves if andonly if they have isometri Blanh�eld pairings. (Reall that the Blanh�eldpairing is the equivariant linking pairing on the universal yli over.)Geometry & Topology Monographs, Volume X (20XX)



48 Edited by T. Ohtsuki2.10 Goussarov-Habiro theory for knotsRelated to Vassiliev invariants of knots, equivalene relations among knots havebeen studied by Goussarov [Gou95, Gou99℄ and Habiro [Hab00℄, whih is alledthe Goussarov-Habiro theory for knots. These equivalene relations are helpfulfor us to study strutures of the set of knots.The Cd -equivalene10 (d = 1; 2; 3; � � � ) among oriented knots is the equivalenerelation generated by either of the following relations,(1) Cd -move, i.e., surgery along a tree lasper with d trivalent verties whoseleaves are dis-leaves [Hab00℄,(2) relation on a ertain olletion of d rossing hanges (Goussarov's (d�1)-equivalene) [Gou94a, Gou94b, Gou99℄,(3) surgery by an element in the dth group in the lower entral series of purebraid group [Sta98℄,(4) apped grope obordism of lass d [CoTe00℄.It is known that these relations generate the same equivalene relation amongknots. The Cd -equivalene is de�ned among links, string links, � � � , in the sameway.It is known [Hab00℄ that there exists a natural surjetive homomorphismA(S1;Z)(d)onn �! fK �Cd Og= �Cd+1 (15)suh that the tensor produt of this map and Q is an isomorphism, where Odenotes the trivial knot. In partiular, fK �Cd Og= �Cd+1 forms an abelian groupwith respet to the onneted sum of knots, and hene, so does fknotsg= �Cd+1 .Conjeture 2.22 The map (15) is an isomorphism.This onjeture might be redued to Conjeture 2.2 and the following onje-ture.Conjeture 2.23 fK �Cd Og= �Cd+1 is torsion free for eah d.Remark Conjeture 2.2 implies this onjeture, sine the surjetive homomor-phism (15) gives a Q -isomorphism.10The Cd -equivalene is also alled the (d � 1)-equivalene (due to Goussarov) in someliteratures.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 49It is known [Gou95, Sta98, Hab00℄ that two knots K and K 0 are Cd -equivalentif and only if v(K) = v(K 0) for any A-valued Vassiliev invariant v of degree < dfor any abelian group A. In fat, a natural quotient map fknotsg ! fknotsg=�Cdis a Vassiliev invariant of degree < d, whih lassi�es Cd -equivalene lasses ofknots.Conjeture 2.24 (K. Habiro [Hab00℄, see also [Gou99, \Theorem 5"℄) Twom-strand string links L and L0 are Cd -equivalent if and only if v(L) = v(L0)for any A-valued �nite type invariant v of degree < d for any abelian groupA.Remark (M. Polyak) The orresponding assertion for links does not hold; notethat flinksg=�Cd does not (naturally) form a group. Reall that fknotsg=�Cdforms an abelian group, whih guarantees the orresponding assertion for knots,as mentioned above. The set fm-strand string linksg=�Cd forms a group withrespet to the omposition of string links, though it is not abelian.Problem 2.25 (M. Polyak) Establish the Goussarov-Habiro theory for vir-tual knots.Remark Polyak suggested that the following moves, !  ! ;(whih appear in [GPV00℄) might play a similar role as the C2 -move playsamong knots. They are related to the following diagrams respetively,; :Further, Habiro suggested that the move, ! ;should be added to the above moves. It is a problem to de�ne a sequene ofequivalene relations among virtual knots (an extension of the Cd -move) whihGeometry & Topology Monographs, Volume X (20XX)



50 Edited by T. Ohtsukiindues �nite type invariants of virtual knots. Are there surjetive homomor-phisms from ertain modules of arrow graphs (oriented Jaobi diagrams) to thegraded sets derived from suh equivalene relations?(K. Habiro) We denote by MK the set of pairs (M;K) suh that M is an inte-gral homology 3-sphere and K is an oriented knot in M . The HLd -equivalene(homology d-loop equivalene) in MK is the equivalene relation generated byeither of the following relations,(1) surgery on a tree lasper with d trivalent verties with null-homologousleaves,(2) surgery on a graph lasper with d trivalent verties with null-homologousleaves,(3) surgery by an element of the dth lower entral series subgroup of theTorelli group of ompat onneted surfaes embedded in a null-homologousway.Here, \null-homologous" means null-homologous in knots omplements. Theserelations generate the same equivalene relation in MK .Problem 2.26 (K. Habiro) Desribe the abelian groupf(M;K) �HLd (S3;unknot)g= �HLd+1 for eah d.Remark (K. Habiro) Two pairs (M;K) and (M 0;K 0) in MK are HLd -equivalentif and only if v(M;K) = v(M 0;K 0) for any A-valued loop �nite type invariantv of loop degree < d for any abelian group A. Thus, the HL-equivalene givesthe Goussarov-Habiro theory for loop �nite type invariants.The homotopy d-loop equivalene is de�ned by using \null-homotopi leaves"instead of \null-homologous leaves" in the de�nition of the HLd -equivalene.These equivalenes might be related to the rational Z invariant Zrat . Thehomotopy loop equivalene relates (ZHS, boundary link) to (ZHS, boundarylink). A high loop-degree part of Zrat might be invariant under the homotopyloop equivalene.The quotient set MK = �HL1 an be identi�ed with the ommutative monoid ofS-equivalene lasses of Seifert matries. (See a remark of Problem 2.20.)De�ne the equivalene relation HL0d among knots in S3 to be the equivalenerelation generated by surgery on a tree lasper with d trivalent verties withGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 51null-homologous leaves in the omplement of a knot suh that at least one leafbounds a dis with zero intersetion number with the knot. Then, there existsa split exat sequene,fknots in S3g= �HL0d�! MK = �HLd�! fZHS 'sg=�Yd ;where the �rst map takes a knot K to (S3;K) and the seond map is the mapforgetting knots.A re�nement of Problem 2.26 is to onsider the graded sets of the double se-quene given by the Cd -equivalene and the HLn -equivalene.2.11 Other problems(D. Bar-Natan)11Is there a Hilbert's Nullstellensatz for �nite type invariants of links?Let k be an algebraially losed �eld and let I be an ideal in the polynomialring k[x1; � � � ; xn℄. The Hilbert Nullstellensatz (see e.g. [Eisen94℄) says thatthe ideal of polynomials in k[x1; � � � ; xn℄ that vanish on the variety de�ned bythe ommon zeros of all polynomials in I is the radial of I .Problem 2.27 (D. Bar-Natan) Is there a similar statement for �nite typeinvariants of links? Let I be an ideal in the algebra V of �nite type invariantsof links. Let Z be the set of links that are annihilated by all members of I , andlet J be the ideal in V of all invariants that vanish on Z . Clearly, J alwaysontains the radial of I . Are they always equal?Example (D. Bar-Natan) Let I be the ideal generated by linking numbers. Inthis ase, Z is the set of algebraially split links. Is it true that every �nitetype invariant that vanishes on algebraially split links is a sum of multiples oflinking numbers? I believe it is true, and I believe it follows from the results ofAppleboim [App02℄, but I'm afraid Appleboim's paper is inomplete and whileI believe it I annot vouh for its validity.Remark (D. Bar-Natan) One may also ask, \what is the Zariski losure ofa given set of links?". I believe that in the light of the paragraphs above themeaning of this question should be lear. I know of at least one interestingexample: In [Ng98℄ Ng shows that the Zariski losure of the set of ribbon knotsis the set of knots whose Arf invariant vanishes.11This part is a quotation from http://www.ma.huji.a.il/~drorbn/Mis/Nullstellensatz/Geometry & Topology Monographs, Volume X (20XX)



52 Edited by T. OhtsukiIs the similarity index of two di�erent knots �nite?(M.-J. Jeong, C.-Y. Park)K. Habiro and T. Stanford independently showed that for eah positive integern, two knots K and L have the same values for any Vassiliev invariants of type< n if and only if they are LCSn-equivalent. Y. Ohyama introdued trivialityindex of knots and K. Taniyama extended this to the similarity index of links;see [Ohy95℄. Ohyama showed that if two knots are n-similar then they havethe same value for any Vassiliev invariants of type < n. It is not diÆult tosee that two knots are n-similar if they are LCSn -equivalent. D. Bar-Natangave a problem whether Vassiliev invariants an distinguish all of knots or not.This problem is equivalent to the problem, whether the similarity index of anytwo di�erent knots have �nite similarity index. We will give a new riterionto alulate the similarity index of knots and, based on this, raise problemsto alulate similarity index. For example, for two given knots, whih knotinvariants will give the best upper bound to alulate the similarity index ofknots, along our above new result? As a partial problem, an we show that thetriviality index of a non-trivial knot is �nite by using our results?Polynomial invariants and Vassiliev invariants(M.-J. Jeong, C.-Y. Park)In 1993, J. S. Birman and X.-S. Lin ([BiLi93℄) showed that, after a suitablehange of variables, eah oeÆient of the Jones, HOMFLY and Kau�manpolynomial is a Vassiliev invariant. So we an obtain various Vassiliev invariantsfrom the derivatives of knot polynomials.In 2001, by using some spei� kinds of tangles, we gave two operations � and� operations to get new polynomial invariants from a given Vassiliev invariant.These new polynomial invariants are also Vassiliev invariants. So we an obtainvarious Vassiliev invariants from the oeÆients of these polynomial invariants.Let Vn be the spae of Vassiliev invariants of degrees � n. For An � Vn , let(An) be the set of Vassiliev invariants obtained from An by using �nite numbersof � and � operations repeatedly.Question 2.28 (M.-J. Jeong, C.-Y. Park) Find a minimal �nite subset Anof Vn suh that span(An) = Vn .
Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 533 The Kontsevih invariantThe framed Kontsevih invariant Z(L) 2 A(tlS1;Q) of an oriented framedlink L with l omponents is de�ned by using monodromy along solutions ofthe formal version of the KZ equation. Forgetting its framing, the Kontsevihinvariant Z(L) of an oriented link L is de�ned in A(tlS1;Q)=FI . The Kont-sevih invariant is universal among quantum invariants in the sense that thequantum (g; R) invariant reovers from the Kontsevih invariant through theweight system substituting a Lie algebra g and its representation R into Ja-obi diagrams. Moreover, the Kontsevih invariant is universal among Vassilievinvariants in the sense that eah oeÆient of the Kontsevih invariant is aVassiliev invariant and any Vassiliev invariant an be presented by a linear sumof oeÆients of the Kontsevih invariant.3.1 Calulation of the Kontsevih invariantProblem 3.1 For eah oriented knot K , alulate the Kontsevih invariantZ(K) for all degrees.Remark For eah d the degree d part of Z(K) is a Vassiliev invariant. Hene,it is algorithmially possible to alulate it in a �nite proedure. It is a problemto alulate Z(K) for all degrees.Remark D. Bar-Natan, T. Le, and D. Thurston [BLT03℄ gave the followingpresentation of the Kontsevih invariant of the trivial knot O ,logt Z(O) = 12 log sinh(x=2)x=2 ; (16)where x is an element in B (see (22)), and B is a spae isomorphi to A(S1)(see (21)). The Kontsevih invariant of a able knot of a knot K an bealulated by applying a abling formula [BLT03℄ to the Kontsevih invariantof K . The Kontsevih invariant of the onneted sum of knots is given bythe onneted sum of the Kontsevih invariant of the knots. Hene, we analulate the Kontsevih invariant of knots obtained from the trivial knot by�nite sequenes of abling and onneted sum. To alulate the Kontsevihinvariant of other knots in a ombinatorial way, we probably need an assoiator,whose ombinatorial diret presentation for all degrees is not known yet (seeProblem 3.13).Geometry & Topology Monographs, Volume X (20XX)



54 Edited by T. Ohtsuki3.2 Does the Kontsevih invariant distinguish knots?Conjeture 3.2 The Kontsevih invariant distinguishes oriented knots. (SeeConjeture 2.5 for an equivalent statement of this onjeture.)Remark Kuperberg [Kup96b℄ showed that all �nite type invariants either dis-tinguish all oriented knots, or there exist prime, unoriented knots whih theydo not distinguish.Problem 3.3 Does there exists a non-trivial oriented knot K suh that Z(K) =Z(O) for the trivial knot O? (See Problem 2.6 for an equivalent problem.)Conjeture 3.4 Z(K) = Z(�K) for any oriented knot K , where �K de-notes K with the opposite orientation. (See Conjeture 2.7 for an equivalentstatement of this onjeture.)3.3 Charaterization and interpretation of the Kontsevih in-variantThe spae A(S1) is an algebra with the produt given by onneted sum ofJaobi diagrams on S1 . Sine the Kontsevih invariant Z(K) of a knot Kis group-like in A(S1), its logarithm logZ(K) belongs to A(S1)onn , whereA(S1)onn denotes the vetor subspae of A(S1) spanned by Jaobi diagramson S1 with onneted uni-trivalent graphs.Problem 3.5 Charaterize those elements of Â(S1)onn of the form logZ(K),or those elements of Bonn of the form logt Z(K).Remark If the Kontsevih invariant was injetive, this problem would be a stepof the lassi�ation problem of knots. It is known (see, for example, [Oht02℄)that those elements of A(S1)(�d)onn of the form of the degree � d part of logZ(K)forms a lattie, whih is isomorphi to the lattie in A(S1)onn spanned by Jaobidiagrams over Z, and that the oeÆients of logZ(K) are invariants whih areindependent to eah other. Hene, it would be meaningful to haraterize theform of in�nite sums of oeÆients of logZ(K), resp. logt Z(K).Wg;R�Z(K)� is a polynomial in q�1=2N for any simple Lie algebra g and itsrepresentation R, where N is the determinant of the Cartan matrix of g (see[Le00b℄), sine it is equal to the quantum (g; R) invariant of K . This somehowharaterizes the form of Z(K).Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 55The loop expansion haraterizes the in�nite sum of subsequenes of logt Z(K)in eah loop-degrees; see (24), (26), and (28) in the ases of low loop-degrees.Sine the image of the Kontsevih invariant is a ountable set, there should bemore restritive properties.Problem 3.6 (J. Roberts) Give a good topologial onstrution of the Kont-sevih integral.Remark (J. Roberts) The Kontsevih integral is, in my opinion, the deepestpart of the existing theory of quantum invariants, and it has two (onjeturally)equivalent formulations, eah with its mysteries.(a). In Kontsevih's original formulation of his integral, the part relating tobraids is reasonably well-understood: it an be desribed using on�gurationspaes of points in the plane, the Knizhnik-Zamolodhikov equation, 1-minimalmodels in rational homotopy theory, Chen's iterated integrals and Magnus ex-pansions. The fat that this atually extends to a knot invariant does not seemto appear naturally in these pitures, however. Passing from braids to (Mor-si�ed) knots suggests thinking about on�guration spaes of varying numbersof points in the plane, and allowing some kind of annihilation and reation ofpairs. Is there some way to utilise suh spaes? (A related question is Problem3.14.)(b). In the perturbative integral formulation, the diagrammati power series isintrodued as a formal devie for keeping trak of whih linear ombinations ofthe individual (non-invariant) oeÆient integrals give give knot invariants. Itisn't really lear from this point of view why this series should turn out to havegood properties suh as multipliativity, Kriker/Rozansky rationality, et. Isthere an \all-in-one" de�nition?3.4 The Kontsevih invariant in a �nite �eldProblem 3.7 Construt the Kontsevih invariant (i.e., a universal Vassilievinvariant) with oeÆients in a �nite �eld.Remark If we ould �nd a solution (R;�) of the pentagon and hexagon relationswith oeÆients in a �nite �eld, suh a solution would give a ombinatorialonstrution of the Kontsevih invariant with oeÆients in that �eld. In thisase we an not put R = exp� =2� unlike the ase of Q oeÆients, beausep�1 of the order p of the �eld appears in the expansion of the exponential.Geometry & Topology Monographs, Volume X (20XX)



56 Edited by T. Ohtsuki3.5 The Kontsevih invariant in arrow diagramsConjeture 3.8 (D. Bar-Natan, A. Haviv)��Z(O)� = losure exp�12� � ��! ;where Z(O) denotes the Kontsevih invariant of the trivial knot (see [BGRT00℄)and � is the map of Conjeture 2.16.Remark (D. Bar-Natan, A. Haviv) This onjeture is true in any semi-simpleLie algebra.Problem 3.9 (M. Polyak) Construt the \Kontsevih invariant" (i.e., a uni-versal �nite type invariant) of virtual knots in �!A(I). (See also Conjeture2.17.)Remark (M. Polyak) It is shown by Goussarov (see [GPV00℄) that there existsa Gauss diagram formula for any Vassiliev invariant of lassial knots. His proofis an algorithmial proof, assuming the existene of suh a Vassiliev invariant,and does not give a new proof of Kontsevih theorem \any weight system anbe integrated to an invariant of knots". It would be nie to have a new diretombinatorial proof, whih would imply Kontsevih theorem. Then, it wouldwork for virtual knots.Remark (M. Polyak) It is known (see, for example, [Oht02℄) that quantuminvariants of knots an be de�ned by using quasi-triangular quasi-Hopf algebraswith assoiators �. When � = 1, suh de�nition an naturally extend forvirtual knots. However, when � 6= 1 (as in the ombinatorial de�nition of theKontsevih invariant of lassial knots), this extension does not work.Problem 3.10 (D. Thurston) Construt a series of on�guration spae inte-grals whose value is in �!A(I) so that it gives all �nite type invariants of virtualknots.Remark (D. Thurston) A tehnial diÆulty is to kill the hidden strata of theon�guration spaes (see also Problem 3.11). A way to kill a hidden strata isGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 57to use an involution on the strata, but, in this ase, suh an involution takesthe following left diagram to the right diagram,; ;where the right diagram is equal to 0 by de�nition, while the left one is notneessarily equal to 0.(M. Polyak) Eah of the following three approahes gives all Vassiliev invari-ants.� Constrution of the Kontsevih invariant using monodromy along solu-tions of the KZ equation.� Con�guration spae integrals motivated by the perturbative Chern-Simonstheory.� Gauss diagram formulas, whih ount on�gurations of rossings of knotdiagrams.The invariants derived from these three approahes are expeted to be natu-rally equivalent in the following sense.12 13 The integral of the seond approahgives an integral presentation of the mapping degree of a ertain map on aon�guration spae, and it is shown in the degree 2 ase [PoVi01℄ that theinvariants of the �rst and third approahes an be obtained by loalizing theintegral presentation with respet to appropriate volume forms on the targetspae. A tehnial diÆulty to show this in a general degree is to ompute theloalization on the \hidden strata"; it is a part of the boundary of a on�gura-tion spae, whose ontribution to the derivative of the integral is killed by aninvolution on the strata.Problem 3.11 (M. Polyak) Find another way to kill the hidden strata, sothat the above three approahes an naturally present the mapping degree ofthe same map.12S. Poirier [Poi02℄ showed the equivalene between the invariants derived from the �rst andseond approahes, under the assumption of the vanishing of anomaly, by omparing theseinvariants for quasi-tangles (see Question 3.12).13D. Thurston suggests that Etingof{Kazhdan R matries [EiKa96℄ might be helpful torelate the invariants derived from the �rst and third approahes.Geometry & Topology Monographs, Volume X (20XX)



58 Edited by T. Ohtsuki3.6 The Chern-Simons series of on�guration spae integralsQuestion 3.12 (C. Lesop) Is the Kontsevih integral of a (zero-framed)knot equal to the Chern-Simons series of on�guration spae integrals of thesame knot (with Gauss integral 0)?The (normalized) Chern-Simons series of on�guration spae integrals is a uni-versal Vassiliev knot invariant that admits a natural and beautiful symmetride�nition that will be given below before desribing the present situation ofthis question that was �rst raised by Kontsevih in [Kon93℄.In 1833, Carl Friedrih Gauss de�ned the �rst example of a on�guration spaeintegral for an oriented two-omponent link. Let us formulate his de�nition ina modern language. Consider an embeddingL : S11 t S12 ,! R3of the disjoint union of two irles S1 = fz 2 C s.t. jzj = 1g into R3 . With anelement (z1; z2) of S11�S12 that will be alled a on�guration, we may assoiatethe oriented diretion 	((z1; z2)) of the vetor �������!L(z1)L(z2). 	((z1; z2)) 2 S2 .Thus, we have assoiated a map	 : S11 � S12 �! S2from a ompat oriented 2-manifold to another one with our embedding. Thismap has an integral degree deg(	) that an be de�ned in several equivalentways. For example, it is the number of preimages of a regular value of 	ounted with signs that an easily be omputed from a regular diagram of ourtwo-omponent link asdeg(	) = ℄ 1 2� ℄ 2 1 = ℄ 2 1� ℄ 1 2 :It an also be de�ned as the following on�guration spae integraldeg(	) = ZS1�S1 	�(!)where ! is the homogeneous volume form on S2 suh that RS2 ! = 1. It isobvious that this integral degree, that depends ontinuously on our embedding,is an isotopy invariant; and the reader has reognized that deg(	) is nothingbut the linking number of the two omponents of L.Setion 3.6 was written by C. Lesop.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 59We an again follow Gauss and assoiate the following similar Gauss integralI(K) to a C1 embedding K : S1 ,! R3 . Here, we onsider the on�gurationspae C = S1�℄0; 2�[, and the map	 : C �! S2that maps (z1; �) to the oriented diretion of ����������!K(z1)K(z1ei�), and we setI(K) = ZC 	�(!):This Gauss integral is NOT an isotopy invariant, and it an be seen as anexerise that it takes any real value on any given isotopy lass of knots.However, we an follow Guadagnini, Martellini and Minthev and assoiateon�guration spae integrals to our embedding K and to any Jaobi diagramon the irle � without small loop like . A on�guration of suh a diagramis an embedding  of the set U [ T of its verties into R3 whose restritionto the set U of univalent verties fators through the knot embedding K sothat the fatorization indues the yli order of U . Denote the set of theseon�gurations by C(K; �). C(K; �) is an open submanifold of (S1)U � (R3 )T .Denote the set of dashed edges of � by E , and �x an orientation for these edges.Then we an de�ne the map 	 : C(K; �)�! �S2�E whose projetion to the S2fator indexed by an edge from a vertex v1 to a vertex v2 is the diretion of������!(v1)(v2). This map 	 is again a map between two orientable manifolds thathave the same dimension, namely the number of dashed half-edges of �, andwe an write the on�guration spae integral:I(K; �) = ZC(K;�)	�(�E!):For example, if � denotes the Jabobi diagram , then I(K; �) = I(K). Bottand Taubes have proved that this integral is onvergent [BoTa94℄. Thus, thisintegral is well-de�ned up to sign. In fat, an orientation of the trivalent ver-ties of � provides I(K; �) with a well-de�ned sign14 suh that the produtI(K; �)[�℄ 2 A(S1;R) does not depend on the vertex orientation of �.14Sine S2 is equipped with its standard orientation, it is enough to orient C(K; �) �(S1)U � (R3 )T in order to de�ne this sign. This will be done by providing the set of thenatural oordinates of (S1)U � (R3 )T with some order up to an even permutation. This set isin one-to-one orrespondene with the set of dashed half-edges of �, and the vertex-orientationof the trivalent verties provides a natural preferred suh one-to-one orrespondene up to some(even!) yli permutations of three half-edges meeting at a trivalent vertex. Fix an order onE , then the set of half-edges beomes ordered by (origin of the �rst edge, endpoint of the �rstedge, origin of the seond edge, . . . , endpoint of the last edge), and this order orients C(L; �).As an exerise, hek that the sign of I(K; �)[�℄ does depend neither on our hoies nor onthe vertex orientation of �.Geometry & Topology Monographs, Volume X (20XX)



60 Edited by T. OhtsukiNow, the perturbative expansion of the Chern-Simons theory for knots in R3 isthe following sum running over all the Jaobi diagrams without small loops andwithout vertex orientation:ZCS(K) =X I(K; �)℄Aut� [�℄ 2 A(S1;R)where ℄Aut� is the number of automorphisms of � as a uni-trivalent graphwhose univalent verties are ylially ordered, but without vertex-orientationfor the trivalent verties. The degree one part of ZCS is I(K;�)2 and thereforeZCS is not invariant under isotopy. However, the evaluation15 of ZCS at rep-resentatives of knots with null Gauss integral is an isotopy invariant that is auniversal Vassiliev invariant of knots [BoTa94, AlFr97, Thu99a, Poi02℄. Now,the still open question raised by Kontsevih in [Kon93℄ is: Is the Kontsevihintegral of a zero framed representative of a knot K equal to the above series ofon�guration spae integrals of a representative of K with Gauss integral 0?This question has been redued by Sylvain Poirier [Poi02℄ to the omputationof the following onstant in A(S1;R) = A([0; 1℄;R) that is alled the Bott andTaubes anomaly. In order to de�ne the anomaly, replae the above knot Kby a straight line D , and onsider a Jaobi diagram � on the oriented line.De�ne C(D; �) and 	 as before. Let Ĉ(D; �) be the quotient of C(D; �)by the translations parallel to D and by the positive homotheties, then 	fators through Ĉ(D; �) that has two dimensions less. Now, allow D to runamong all the oriented lines through the origin of R3 and de�ne Ĉ(�) as thetotal spae of the �bration over S2 where the �ber over the diretion of D isĈ(D; �). 	 beomes a map between two smooth oriented16 manifolds of thesame dimension. Then we an again de�neI(�) = ZĈ(�)	�(�E!):Now, the anomaly is the following sum running over all Jaobi diagrams on theoriented lines (again without vertex-orientation and without small loop):� =X I(�)℄Aut�[�℄ 2 A([0; 1℄;R):15Atually, this evaluation is equal to ZCS(K) exp(� I(K;�)2 �) for any representative K ,where � 2 A([0; 1℄;R) is the Bott and Taubes anomaly.16 Ĉ(�) arries a natural smooth struture and an be oriented as follows: orient C(D; �)as before, orient Ĉ(D; �) so that C(D; �) is loally homeomorphi to the oriented produt(translation vetor of the oriented line, ratio of homothety) �Ĉ(D; �) and orient Ĉ(�) as theloal produt base � �ber.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 61Its degree one part is �1 = :It is not hard to see that for any integer n, �2n = 0. In [Poi02℄, Sylvain Poirierproved that if all �i vanish for i � 2, then the answer to the above Kontsevihquestion is YES, and he omputed �3 = 0. He also omputed �5 = 0 with thehelp of Maple. In [Les02℄, it is proved that � is a ombination of diagrams withtwo univalent verties. Poirier also gave an equivalent de�nition of the anomalythat allows one to see that, for any i > 1, �i is a ombination of diagrams withat least 6 univalent verties.As a orollary, all oeÆients of the HOMFLY polynomial properly normalizedthat are Vassiliev invariants of degree less than seven an be expliitly writtenas ombinations of the above on�guration spae integrals. A positive answerto the Kontsevih question would allow one to express any anonial Vassilievinvariant as an expliit ombination of the above on�guration spae integrals.G. Kuperberg and D. Thurston have onstruted a universal �nite type invariantfor homology spheres as a series of on�guration spae integrals similar to theabove Chern-Simons series in [KuTh99℄. Their onstrution yields two naturalquestions that are stated in Question 11.9.3.7 AssoiatorsAn assoiator � is de�ned to be an invertible group-like element in A(###; C )satisfying that "2� = 1 2 A(##; C ) and the following relations,= ;
= where we put H = :

Geometry & Topology Monographs, Volume X (20XX)



62 Edited by T. OhtsukiHere, �i and "i are the omultipliation and the ounit ating on the i-th solidline; see [Bar97℄ for these notations. An assoiator is derived from a Drinfel'dseries '(A;B) by � = '� ; � 2 A(###; C ); (17)where a Drinfel'd series is an invertible group-like power series '(A;B) of non-ommutative indeterminates A and B satisfying ertain relations.The Drinfel'd assoiator is given as follows. We onsider the di�erential equa-tion G0(z) = 12�p�1�Az + Bz � 1�G(z); (18)for an analyti funtion G of the variable z , where G(z) belongs to the formalpower series ring C hhA;Bii of non-ommutative indeterminates A and B . Thereexists unique solutions G(��)� and G�(��) of the above di�erential equation ofthe forms G(��)�(z) = f(z)zA=2�p�1G�(��)(z) = g(1 � z)(1� z)B=2�p�1where f(z) and g(z) are analyti funtions with f(0) = g(0) = 1 2 C hhA;Biide�ned in a neighborhood of 0 2 C . The power series 'KZ(A;B) 2 C hhA;Biiis de�ned by G(��)� = G�(��)'KZ(A;B). The assoiator derived from 'KZ(A;B)by (17) is alled the Drinfel'd assoiator.Problem 3.13 Find a ombinatorial diret presentation of an assoiator forall degrees, in partiular, an assoiator with rational oeÆients.Remark We still do not have a ombinatorial diret presentation of any asso-iator for all degrees. This implies that we still do not know a ombinatorialdiret presentation of the Kontsevih invariant of eah knot for all degrees (ex-ept for the trivial knot); see Problem 3.1 and its remarks. Bar-Natan [Bar97℄showed a ombinatorial degree-by-degree proof of the existene of solutions ofthe de�ning relations of a pair (R;�). Our de�nition of � follows from thede�ning relations when R is given by exp �12 �.Remark The only assoiator whose oeÆients an be diretly presented forall degrees so far is the Drinfel'd assoiator. We an present all degrees of theDrinfel'd assoiator by a limit of iterated integrals (see (19)) of by multipleGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 63zeta funtions (see (20)). It is known [LeMu95℄ that all assoiators are relatedto eah other by \twists", whih are some ations of symmetri elements inA(##; C ) on assoiators.Remark 'KZ(A;B) is presented by the following limit ,'KZ(A;B) = lim"!0 "�B=2�p�1G"(1� ")"A=2�p�1; (19)where we regard "x as"x = exp(x log ") = 1 + x log "+ x2 (log ")22 + � � � :Further, G" is a solution of (18) given byG"(1� ") = 1 + 1Xm=1Z"�t1�����tm�1�"w(tm) � � �w(t1)dt1 � � � dtm;putting w(t) = 12�p�1�At + Bt� 1�:Remark In [LeMu95℄, 'KZ(A;B) is presented by'KZ(A;B) = 1 + 1Xl=1 Xa;b;p;q(�1)jbj+jpj�(a+ p;b+ q)�a+ pp ��b+ qq ��Bjqj(A;B)(a;b)Ajpj; (20)where the seond sum runs over a;b;p;q suh that the sum of their length isequal to l and entries of them are non-negative integers. Here, the notationsare given by�(a;b) = �(1; 1; � � � ; 1| {z }a1�1 ; b1 + 1; 1; 1; � � � ; 1| {z }a1�1 ; b2 + 1; � � � ; 1; 1; � � � ; 1| {z }al�1 ; bl + 1);jaj = a1 + a2 + � � � + al;�ab� = �a1b1��a2b2� � � ��albl�;(A;B)(a;b) = Aa1Bb1 � � �AalBbl :for a = (a1; � � � ; al) and b = (b1; � � � ; bl), where the multiple zeta funtion isde�ned by �(a1; a2; � � � ; ak) = Xn1<n2<���<nk2Nn�a11 n�a22 � � �n�akk :Geometry & Topology Monographs, Volume X (20XX)



64 Edited by T. OhtsukiIn partiular,'KZ(A;B) = 1+ 124 [A;B℄� �(3)(2�p�1)3 ([A; [A;B℄℄+[B; [A;B℄℄)+� terms ofdegree � 4 � :Remark In [Bar97℄, an assoiator with rational oeÆients is given in low de-grees bylog'(A;B) = [A;B℄48 � 8[A; [A; [A;B℄℄℄ + [A; [B; [A;B℄℄℄11520+ [A; [A; [A; [A; [A;B℄℄℄℄℄60480 + [A; [A; [A; [B; [A;B℄℄℄℄℄1451520 + 13[A; [A; [B; [B; [A;B℄℄℄℄℄1161216+ 17[A; [B; [A; [A; [A;B℄℄℄℄℄1451520 + [A; [B; [A; [B; [A;B℄℄℄℄℄1451520� (interhange of A and B)+ (terms of degree � 8):Problem 3.14 (J. Roberts) Construt a rational Drinfel'd assoiator in theontext of rational homotopy theory.Remark (J. Roberts) The theory of 1-minimal models provides a representa-tion of the pure braid group, whih is the fundamental group of the on�gu-ration spae of distint ordered points in C , the \pure braid spae" for short.This is the representation oming from the Kontsevih integral. A better wayto desribe it is as a representation of the fundamental groupoid of the purebraid spae, using \basepoints at in�nity" desribed by assoiations (braket-ings) of the points. In this piture, the Drinfel'd assoiator is the image of aertain path whih hanges the basepoint. Is there a theory of 1-minimal mod-els for fundamental groupoids whih gives a straightforward onstrution of a(rational-valued) assoiator, as an alternative to the triky iterative proeduresof [Bar97℄?3.8 Graph ohomologyProblem 3.15 (J. Roberts) What is graph ohomology the ohomology of?Remark (J. Roberts) In the theory of quantum knot invariants suh as theJones polynomial, the topology and algebra (in this ase, the group SU(2)) areSetion 3.8 was written by J. Roberts.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 65entangled somewhat onfusingly. Passing to the theory of �nite type invariants,they beome separated: there is a purely topologial part (the Kontsevih in-tegral of a knot) and a purely algebrai part (the weight system assoiated toSU(2)) whose intermediary is the spae of Jaobi diagrams.Viewing this spae as (part of) Kontsevih's graph (o)homology [Kon94℄, wesee that quantum invariants arise from a pairing between elements of graphohomology and homology. But what atually is this ohomology? A good geo-metri interpretation of it might lead to better understanding of the topologialand algebrai onstrutions involving it, and their omposite.Most of the intuition about graph ohomology has been built up from the al-gebrai side: it has been portrayed primarily as a kind of universal invarianttheory for Lie algebras. Vogel has pursued this idea the furthest, but he alsoshowed [Vog96℄ that not all weight systems ome from lassial Lie algebras.In fat, the work of Rozansky and Witten [RoWi97℄ and Kapranov [Kap99℄demonstrates that ompat holomorphi sympleti manifolds an be used in-stead of Lie algebras to de�ne Vassiliev weight systems, and this gives quite adi�erent perspetive on graph ohomology, whih Simon Willerton and I havebeen studying [Rob01℄.In a similar vein, Bar-Natan, Le and Thurston [Thu00℄ have proved the so-alled\wheeling onjetures", diagrammati generalisations of the Duo isomorphismof Lie theory. Their theorem is far too striking for a purely ombinatorialinterpretation to be satisfatory. Does it have a geometri interpretation?Kontsevih [Kon94℄ has given three topologial interpretations of graph oho-mology. The �rst is that it is the twisted ohomology of \outer spae", thelassifying spae of the group of outer automorphisms of a free group. This isanalogous to the fat that a ertain omplex of fatgraphs gives the ohomologyof the moduli spae of Riemann surfaes. The answer is unsatisfying beausethe natural geometri model for the lassifying spae is, unlike the Riemannmoduli spae, not a smooth orbifold, and if we are seeking geometri onstru-tions underlying the various kinds of diagrammati operations we enounter,smoothness would seem to be an essential property. Is there is a better model?A seond approah omes from on�guration spaes of points in R3 . The om-plex of graphs (with distinguished legs) maps to the de Rham omplex of on-�guration spaes, and gives a model for its ohomology. This kind of viewpointwas exploited by Kontsevih (and Taubes, and Axelrod and Singer) in de�ningthe perturbative invariants of 3-manifolds, and by Bott and Taubes [BoTa94℄for knots.Geometry & Topology Monographs, Volume X (20XX)



66 Edited by T. OhtsukiIn this ontext, Lie algebra weight systems are funtionals on the ohomologyof the on�guration spaes, and might be thought of as homology lasses, oreven yles. Hene the following problem, posed by Raoul Bott:Problem 3.16 (R. Bott) Give a geometri onstrution of these homologylasses oming from Lie algebras.The third and urrently best interpretation of graph ohomology is that it is theohomology of an in�nite-dimensional Lie algebra of formal Hamiltonian vetor�elds. Kontsevih uses this to explain (and vastly generalise) Rozansky-Wittenweight systems in terms of Gelfand-Fuhs ohomology. Can this interpretationbe employed on the topologial rather than algebrai side? In other words, isthere a onstrution involving knots and algebras of formal vetor �elds whihyields the Kontsevih integral?3.9 The loop expansion of the Kontsevih invariantThe loop expansion is the series of the rational presentations of the Kontsevihinvariant in loop-degrees. It was onjetured by [Roz99℄; the existene of therational presentations in all loop-degrees has been proved by Kriker [Kri00b℄,and its anoniality by Garoufalidis-Kriker [GaKr01℄.We have three isomorphi algebrasA(S1) �= B �= Bt; (21)where the �rst isomorphism is the formal Poinare-Birkho�-Witt isomorphism,and B has the produt struture related, by the isomorphism, to the produtstruture of A(S1) given by onneted sum. Further, the seond isomorphismis the wheeling isomorphism [BGRT00℄ between B and Bt , where Bt is B asa spae and has the produt given by the disjoint union of uni-trivalent graphs.We denote by Bonn the vetor subspae of Bt spanned by onneted uni-trivalent graphs, and denote by B(loop l)onn the vetor subspae of Bonn spannedby onneted uni-trivalent graphs of loop-degree l , where the loop-degree of auni-trivalent graph is de�ned to be half of the number given by the number oftrivalent verties minus the number of univalent verties. Then,Bonn = 1Ml=0 B(loop l)onn :Eah B(loop l)onn an be presented by using the polynomial rings in H1(G) fortrivalent graphs G of loop-degree l subjet to Aut(G) and the AS and IHXGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 67relations. We will present B(loop l)onn for l = 0; 1; 2 in this way, to state the loopexpansion in these loop-degrees.When l = 0, we have the mapQ[x℄ �! B(loop 0)onn ; xn 7�! ; (22)regarding x as a basis of H1(irle). Sine the orientation-reversing automor-phism of S1 takes xn to �xn by the AS relation, the above map dedues thefollowing isomorphism, B(loop 0)onn �= Q[x2 ℄: (23)For a knot K ,� logt Z(K)�(loop 0) = 12 log sinh(x=2)x=2 � 12 log�K(ex); (24)where logt is the logarithm in Bt regarding Z(K) as in Bt , and the lefthand side is the summand of logt Z(K) 2 Bonn in B(loop 0)onn . This developmentfollows from the theory of [BaGa96℄. See also [Kri00b, GaKr01℄ (and referenestherein) for a reent diret alulation.When l = 1, we have the mapQ[x1 ; x2; x3℄ �! B(loop 1)onn ; xn11 xn22 xn33 7�! ;regarding H1(�-graph) as the vetor spae spanned by x1 , x2 , x3 subjet tothe relation x1 + x2 + x3 = 0. Sine Aut(�-graph) �= S2 � S3 , the above mapdedues B(loop 1)onn �= Q[x1 ; x2; x3℄=(S2 �S3; x1 + x2 + x3 = 0)�= �Q[x1 ; x2; x3℄=(x1 + x2 + x3 = 0)�S2�S3�= �Q[�1 ; �2; �3℄=(�1 = 0)�(even) �= Q[�2 ; �23 ℄; (25)where �i denotes the i-th elementary symmetri polynomial in x1 , x2 , and x3 .(To ompute B(loop 1)onn in a preise argument, we must also onsider the spaeGeometry & Topology Monographs, Volume X (20XX)



68 Edited by T. Ohtsukiof \dumbbell diagram" with legs. Sine this spae is injetively mapped to theright hand side of the above formula, we omit its omputation here.) For aknot K there exists a polynomial P �K(t1; t2; t3), alled the 2-loop polynomial,satisfying that � logt Z(K)�(loop 1) = P �K(ex1 ; ex2 ; ex3)�K(ex1)�K(ex2)�K(ex3) : (26)The 2-loop polynomial P �K(t1; t2; t3) in t1; t2; t3 satisfying t1t2t3 = 1 is uniquelydetermined by eah knot K . It is an invariant of K satisfying thatP �K(t�1i ; t�1j ; t�1k ) = P �K(t1; t2; t3) for any signs and any fi; j; kg = f1; 2; 3g.Problem 3.17 Find a topologial onstrution of the 2-loop polynomial P �K .Remark As in (24) the loop-degree 0 part of the Kontsevih invariant is pre-sented by the Alexander polynomial, whih an be onstruted from the homol-ogy of the in�nite yli over of the knot omplement. It is shown, in [GaRo00℄,that the \�rst derivative" of the 2-loop polynomial is given in terms of linkingfuntions assoiated to the in�nite yli over of the knot omplement. It isexpeted [GaRo00℄ that the 2-loop polynomial would be desribed in terms ofinvariants of the in�nite yli over of the knot omplement.Remark A table of the 2-loop polynomial for knots with up to 7 rossings is givenby Rozansky [Roz03℄. See also a omputer program [Roz℄, whih alulates the2-loop polynomial of eah knot. For example,12P �31 (t1; t2; 1t1t2 ) = �t21t2 + t21;12P �41 (t1; t2; 1t1t2 ) = 0;12P �51 (t1; t2; 1t1t2 ) = 2t41t22 � 2t41t2 + 2t41 � t21t2 + t21:The following problem is a step to Problem 3.17.Problem 3.18 (A. Kriker) Let KT be the knot obtained from a tangle Tas shown in Figure 12. Find a presentation of the 2-loop polynomial P �KT ofKT by using the Kontsevih invariant Z(T ) of T .Remark (A. Kriker) P �KT might be presented by the degree � 3 part of Z(T ).Generalize the presentation �K(t) = det(t1=2S � t�1=2ST ) of the Alexanderpolynomial �K(t) by a Seifert matrix S of K .Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 69
T KTFigure 12: The knot KT is obtained from the 2-parallel of a 2-strand tangle T byadding the tangle depited in solid lines in the right piture. The dotted lines implystrands possibly knotted and linked in some fashion.When l = 2, we have the map

xn11 xn22 � � � xn66 7�! ;
whih dedues the following isomorphism,B(loop 2)onn �= Q[x1 ; x2; � � � ; x6℄=(S4; x1 + x2 + x3 = x1 + x6 � x5 = 0x2 + x4 � x6 = x3 + x5 � x4 = 0):Corresponding to faes of a tetrahedra, we put y1 = x1 � x2 � x6 ,y2 = x2 � x3 � x4 , y3 = x3 � x1 � x4 , and y4 = x4 + x5 + x6 . Then,B(loop 2)onn �= Q[y1 ; y2; y3; y4℄=(S4; y1 + y2 + y3 + y4 = 0)�= �Q[y1 ; y2; y3; y4℄=(y1 + y2 + y3 + y4 = 0)�S4 ;where the ation of � 2 S4 takes a polynomial p(y1; y2; y3; y4) to(sgn�)p(y�(1); y�(2); y�(3); y�(4)). Hene,B(loop 2)onn �= �Q[�2 ; �3; �4℄�(even) �= Q[�2 ; �23 ; �4℄; (27)Geometry & Topology Monographs, Volume X (20XX)



70 Edited by T. Ohtsukiwhere �i is the i-th elementary symmetri polynomial in y1 , y2 , y3 , andy4 . (To ompute B(loop 2)onn in a preise argument, we need some more om-putations, whih are omitted here.) For a knot K there exists a polynomialP 0K(t1; t2; � � � ; t6) satisfying that� logt Z(K)�(loop 2) = P 0K(ex1 ; ex2 ; � � � ; ex6)�K(ex1)�K(ex2) � � ��K(ex6) : (28)P 0K(ex1 ; ex2 ; � � � ; ex6) is uniquely determined by a knot K (hene, is an invariantof K ) in the ompletion of Q[�2 ; �23 ; �4℄.Problem 3.19 Find a topologial onstrution of the polynomial P 0K givenabove. == = = a + bFigure 13: The multi-linear relations. Here, f(t); g(t) 2 S , and a , b are salars.
=Figure 14: The push relationThe loop expansion in a general loop-degree is desribed as follows. Let R bea �eld, say Q , and let S be a subring of R(t) whih is invariant under theinvolution t 7! t�1 , where t is an indeterminate. A labeled Jaobi diagram on; is a vertex-oriented trivalent graph, whose edges are labeled by pairs of loalorientations and elements of S . We de�ne AS(;;R) to be the vetor spae overR spanned by labeled Jaobi diagrams on ; subjet to the AS, IHX, multilinear,and push relations (see Figures 13 and 14). The loop-degree of a labeled JaobiGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 71diagram is half the number of trivalent verties of the Jaobi diagram. For apolynomial A(t) with A(1) = 1 and A(t) = A(t�1), we have a mapAQ[t�1;1=A(t)℄(;;Q) �! B; (29)de�ned by 7�! 0 + 1 + 2 + � � � + n + � � � ;where f(t) 2 Q[t�1 ; 1=A(t)℄ is written f(eh) = P1k=0 khk . In partiular, themap AQ[t�1℄(;;Q) �! B (30)is de�ned by 7�! + + 12 + � � � + 1n! + � � � :The loop expansion of the Kontsevih invariant is desribed by the rational Zinvariant Zrat(K) 2 AQ[t�1;1=�K(t)℄(;;Q) whih is taken to logt Z(K) by themap (29). In partiular, when �K(t) = 1, Zrat(K) 2 AQ[t�1℄(;;Q). (The exis-tene of Zrat(K) has been shown in [Kri00b℄, and the anoniality of Zrat(K)has been shown in [GaKr01℄.)Problem 3.20 Find a topologial onstrution of the loop-degree l part of therational Z invariant Zrat(K) 2 AQ[t�1;1=�K(t)℄(;;Q) of a knot K , for eah l .Problem 3.21 Find a basis of the spae AQ[t�1;1=A(t)℄(;;Q)(loop l) , for eah l ,where A(t) is a polynomial with A(1) = 1 and A(t) = A(t�1). In partiular,�nd a basis of the spae AQ[t�1℄(;;Q)(loop l) .Conjeture 3.22 ([Roz99, GaKr01℄) The map (29) is injetive. In partiular,the map (30) is injetive.Remark If this onjeture is true, Zrat(K) is determined by the Kontsevihinvariant.Geometry & Topology Monographs, Volume X (20XX)



72 Edited by T. Ohtsuki3.10 The Kontsevih invariant of links in �� [0; 1℄Let � be a losed oriented surfae. We denote by A� the algebra of horddiagrams on �. It is de�ned to be the vetor spae over C spanned by thehomotopy lasses of ontinuous maps from hord diagrams to � modulo 4Trelations.Problem 3.23 (T. Kohno) Construt expliitly a universal invariant of �nitetype for links in �� [0; 1℄ with values in A� .In the ase of genus 0 the above problem is solved by Kontsevih integral. Inhigher genus ase a suggestion for a onstrution of a universal invariant wasgiven by Deligne at Oberwolfah meeting 1995. In the ase of a punturedsurfae the problem was solved by Andersen, Mattes and Reshetikhin.Let G be a simple Lie group andMG(�) the moduli spae of G at onnetionson �. The spae of smooth funtions on MG(�) denoted by C(MG(�)) has astruture of a Poisson algebra oming from a sympleti struture on MG(�).The algebra A� has also a Poisson algebra struture (see [AMR96℄). If eahomponent of A� is olored by a representation of G, then there is a naturalPoisson algebra homomorphism� : A� ! C(MG(�)):Problem 3.23 is related to the following problem.Problem 3.24 (T. Kohno) Give a deformation quantization of the Poissonalgebra A� whih desends to a deformation quantization of C(MG(�)).The above problem will give a new insight on quantization of MG(�). Itwould also be interesting to investigate a relation to the geometri quantizationof MG(�).Problem 3.25 (T. Kohno) Clarify the relation between a deformation quan-tization of C(MG(�)) at a speial parameter and the spae of onformal bloksin WZW models.Problem 3.26 (T. Kohno) Determine the image and the kernel of the abovemap � .Setion 3.10 was written by T. Kohno.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 73The spae of onformal bloks in WZW model is de�ned as the spae of oin-variant tensors in the following way. Let p1; � � � ; pn be marked points on �and H1; � � � ;Hn be representations of the aÆne Lie algebra bg. The spae ofonformal bloks is de�ned to be the set of linear forms� : H1 
 � � � 
Hn �! Cinvariant under the ation of meromorphi funtions with values in g with polesat most at p1; � � � ; pn , where the ation is de�ned by the Laurent expansion atthese points. There is a twisted version of the above onstrution, where theabove meromorphi funtions are replaed by meromorphi setions of a g loalsystem.Problem 3.27 (T. Kohno) Compute the holonomy of the spae of onformalbloks of the twisted WZW model. In partiular, determine the ation of thebraid group of � on the spae of onformal bloks for eah G at onnetionon �.There is also a notion of the algebra of hord diagrams on n strings withhorizontal hord on �, whih we shall denote by An(�).Problem 3.28 (T. Kohno) Let Pn(�) denote the pure braid group of � withn strings. Does there exist an injetive multipliative homomorphism� : Pn(�)! An(�)de�ned over Q ?

Geometry & Topology Monographs, Volume X (20XX)



74 Edited by T. Ohtsuki4 Skein modulesSkein module is an algebrai objet assoiated to a manifold, usually on-struted as a formal linear ombination of embedded (or immersed) subman-ifolds, modulo loally de�ned relations. In a more restrited setting a skeinmodule17 is a module assoiated to a 3-dimensional manifold, by onsideringlinear ombinations of links in the manifold, modulo properly hosen (skein)relations. It is a main objet of the algebrai topology based on knots. In thehoie of relations one takes into aount several fators:(i) Is the module we obtain aessible (omputable)?(ii) How preise are our modules in distinguishing 3-manifolds and links inthem?(iii) Does the module reet topology/geometry of a 3-manifold (e.g. surfaesin a manifold, geometri deomposition of a manifold)?(iv) Does the module admit some additional struture (e.g. �ltration, grada-tion, multipliation, Hopf algebra struture)? Is it leading to a Topo-logial Quantum Field Theory (TQFT) by taking a �nite dimensionalquotient?One of the simplest skein modules is a q -deformation of the �rst homologygroup of an oriented 3-manifold M , denoted by S2(M ; q). It is based on theskein relation (between oriented framed links in M ): = q ; it alsosatis�es the framing relation = q , where the diagrams in eah formulaimply framed links, whih are idential exept in a ball, where they di�er asshown in the diagrams. Already this simply de�ned skein module \sees" non-separating surfaes in M . These surfaes are responsible for torsion part of theskein module [Prz98b℄.There is more general pattern: most of analyzed skein modules reet varioussurfaes in a manifold.The best studied skein modules use skein relations whih worked suessfully inthe lassial knot theory (when de�ning polynomial invariants of links in R3 ).The original version of Chapter 4 was written by J. H. Przytyki. It was revised by T.Ohtsuki following suggestions given by the referee. Based on it, Przytyki wrote this hapter.17Alexander �rst wrote down the skein relation for his polynomial. Conway redisovered therelation and plaed in the abstrat setting of "linear skein". He predited the orrespondingskein module for a tangle. General skein modules of 3-manifolds were �rst onsidered in 1987by Przytyki and Turaev independently [Prz91℄, [Tur88℄.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 754.1 The Kau�man braket skein moduleLet M be an oriented 3-manifold, and put R = Z[A�1℄. The Kau�man braketskein module S2;1(M) of M is de�ned to be the R module spanned by unori-ented framed links in M (inluding the empty link) subjet to the relations= A +A�1 ;= �A2 �A�2;where three diagrams in the �rst formula imply three framed links, whih areidential exept in a ball, where they di�er as shown in the diagrams. The Kau�-man braket gives an isomorphism between S2;1(S3) and R. Thus, S2;1(M)is a generalization of the Jones polynomial (in its Kau�man braket interpreta-tion). The Kau�man braket skein module is best understood among the Jonestype skein modules. It an be interpreted as a quantization of the o-ordinatering of the harater variety of SL(2; C ) representations of the fundamentalgroup of the manifold M , [Bul97b, PrSi98, BFK99, PrSi00℄.Problem 4.1 Calulate S2;1(M) for eah oriented 3-manifold M . Find aonvenient methodology to alulate it.Remark It is known that S2;1(L(p; q)) of the lens spae L(p; q) is a freeR module with [p=2℄ + 1 generators [HoPr93℄, and that S2;1(S1 � S2) �=R �L1i=1R=(1 � A2i+4) [HoPr95a℄. The Kau�man braket skein modulesare also alulated for I -bundles over surfaes [HoPr89, Prz91℄, the exteriors of(2; n) torus knots [Bul95℄, and Whitehead manifolds [HoPr95b℄. A onnetedsum formula is given in [Prz00℄. Skein modules at the 4th roots of unity arealulated in [Sik00℄. It is shown in [Lof99℄ that S2;1(M1[F M2 ) for orientable3-manifolds M1 and M2 with a ommon boundary F is expressed as a quotientmodule of a diret sum of tensor produts of relative skein modules of M1 andM2 .Problem 4.2 (J. Przytyki) Inompressible tori and 2-spheres in M yieldtorsion in S2;1(M) [Prz99℄. It is a question of fundamental importane whetherother surfaes an yield torsion as well.Conjeture 4.3 If every losed inompressible surfae in M is parallel to �M ,then S2;1(M) is torsion free.Geometry & Topology Monographs, Volume X (20XX)



76 Edited by T. OhtsukiRemark The Kau�man braket skein module of the 3-manifold obtained by anintegral surgery along the trefoil knot is �nitely generated if and only if the3-manifold ontains no essential surfae [Bul97a℄.The test ase for the onjeture is the manifold M = F0;3 � S1 , where F0;3 isa 2-sphere with 3 holes, beause it ontains immersed �1 -injetive torus.Problem 4.4 (J. Przytyki) Compute S2;1(F0;3 � S1).Problem 4.5 Let F be a surfae and I an interval. Desribe the algebraS2;1(F � I).Remark S2;1(F � I) is an algebra (usually nonommutative). It is �nitelygenerated algebra for a ompat F [Bul99℄, and has no zero divisors [PrSi00℄.The enter of the algebra is generated by boundary omponents of F [BuPr00,PrSi00℄.Problem 4.6 Calulate the skein homology based on the Kau�man braketskein relation.Remark The skein homology were introdued in [BFK98℄ (see also [KPS00℄).Problem 4.7 We de�ne the sl3 skein module Ssl3(M) of an oriented 3-manifoldM by the de�ning relations of the sl3 linear skein [Kup94, OhYa97℄. CalulateSsl3(M) of eah 3-manifold M .Remark The quantum sl3 invariant of links gives an isomorphism betweenSsl3(S3) and the oeÆient ring; see, e.g., [Oht02℄. Thus, Ssl3(M) gives ageneralization of the quantum sl3 invariant of links.4.2 The Homypt skein moduleLet M be an oriented 3-manifold, and put R = Z[v�1; z�1℄. The Homyptskein module S3(M) of M is de�ned to be the R module spanned by orientedlinks in M subjet to the relationv�1 � v = z ;Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 77where three diagrams in the formula imply three oriented links, whih are iden-tial exept in a ball, where they di�er as shown in the diagrams. The Homyptpolynomial gives an isomorphism between S3(S3) and R. The Homypt skeinmodules generalize skein modules based on Conway relation whih were hintedby Conway. S3(M) is related to the algebrai set of SL(n; C ) representationsof the fundamental group of the manifold M [Sik01℄.Problem 4.8 Calulate S3(M) for eah oriented 3-manifold M . Find a on-venient methodology to alulate it.Remark It is known that S3(F � I) is an in�nitely generated free module[Prz92b℄, and that S3(S1 � S2) is isomorphi to the diret sum of R and anR-torsion module [GiZh01a℄. A onneted sum formula is given in [GiZh01b℄.Problem 4.9 Let F be a surfae and I an interval. Desribe the algebraS3(F � I).Remark S3(F � I) is a Hopf algebra (usually neither ommutative nor o-ommutative) [Tur91, Prz92b℄. S3(F�I) is a free module (as mentioned above)and an be interpreted as a quantization [Tur88, HoKi90, Tur91, Prz92a℄.4.3 The Kau�man skein moduleLet M be an oriented 3-manifold, and put R = Z[a�1; x�1℄. The Kau�manskein module S3;1(M) of M is de�ned to be the R module spanned by unori-ented framed links in M subjet to the relations+ = x + ! ; (31)= a ; (32)where the diagrams in eah formula imply framed links, whih are identialexept in a ball, where they di�er as shown in the diagrams.Problem 4.10 Calulate S3;1(M) for eah oriented 3-manifold M . Find aonvenient methodology to alulate it.Geometry & Topology Monographs, Volume X (20XX)



78 Edited by T. OhtsukiRemark S3;1(F � I) is known to be a free module. The ase of F being atorus was solved by Hoste, Kidwell and Turaev. It is alulated in [Lie99℄ for asurfae F with boundary. S3;1(S1�S2) is alulated in [ZhLu02℄. A onnetedsum formula is given in [Zho02℄.Problem 4.11 Calulate the higher skein modules based on the Kau�manskein relation W 3;1i (M) and Ŵ 3;1(M) (see below for their de�nitions).Remark The higher skein modules were introdued in [Prz94℄. They aredisussed (in the ase of the Conway skein triple) in [Ron97, LiRo98℄ and[AnTu99, AnTu01℄. In the ase of the Kau�man skein relation, de�nitionsare as follows: Let RL denote the free R module spanned by the ambient iso-topy lasses of unoriented framed links in an oriented 3-manifold M modulo theframing relation (32), where R = Z[a�1; x�1℄. We regard singular links with a�nite number of double points as elements in RL by replaing a double pointwith the di�erene of the two sides of (31). We introdue a (singular links)�ltration RL = C0 � C1 � C2 � C3 � � � � , where the module Ci is generatedby singular links with i double points. We de�ne the ith higher Kau�manskein module as: W 3;1i (M) = RL=Ci+1 and the ompleted higher Kau�manskein module, Ŵ 3;1(M), as the ompletion of RL with respet to the �ltrationfCig.Problem 4.12 Construt invariants of 3-manifolds via a linear skein theorybased on the Kau�man skein module.Remark It is known that quantum invariants of 3-manifolds an be onstrutedvia linear skein theories based on the Kau�man braket skein modules (see[Li97a℄) and the Homypt skein modules ([Yok97℄).Update Beliakova and Blanhet did it [BeBl01℄.4.4 The q-homotopy skein moduleLet M be an oriented 3-manifold, and put R = Z[q�1; z℄. The q -homotopy skeinmodule HSq(M) of M is de�ned to be the R module spanned by oriented linksin M subjet to the link homotopy relation = for self-rossingsand the skein relation q�1 � q = z for \mixed rossings",Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 79i.e., we assume that the two strings of (or ) of the skein relationbelong to di�erent omponents of the link.We have an isomorphism between HSq(S3) and Z[q�1; t; z℄, regarding tk as thetrivial link with k omponents, and this isomorphism is given by the linkingnumbers [Prz01℄.Problem 4.13 Calulate HSq(M) for eah 3-manifold M .Remark HSq(F �I) is a quantization [HoPr90, Tur91, Prz01℄, and as noted byKaiser it an be almost ompletely understood using singular tori tehnique ofX.-S. Lin. HSq(M) is free if and only if �1(M) is abelian and 2b1(M) = b1(�M)[Kai01℄.4.5 The (4;1) skein moduleWe generalize the Kau�man braket and Kau�man skein modules by onsider-ing the general, unoriented skein relation b0L0+ b1L1+ � � �+ bn�1Ln�1+ b1L1(see Figure 15). The �rst new ase to analyze, n = 4, is desribed in thissetion. We all it the (4;1) skein module and denote by S4;1(M ;R). Thisproblem is very interesting even for M = S3 .The de�nitions are as follows. Let M be an oriented 3-manifold, Lfr theset of unoriented framed links in M (inluding the empty knot, ;) and R anyommutative ring with unity. We �x a; b0; b3 to be invertible elements in R and�x b1; b2; b1 to be elements of R. Then we de�ne the (4;1) skein module as:S4;1(M ;R) = RLfr=I(4;1) , where I(4;1) is the submodule of RLfr generatedby the following two relations:the (4;1) skein relation: b0L0 + b1L1 + b2L2 + b3L3 + b1L1 = 0;the framing relation: L(1) = aL;where L0; � � � ; L1 are framed links whih are idential exept in a ball, wherethey di�er as shown in Figure 15, and L(1) denotes a link obtained from L byadding +1 framing to some omponent of L.Problem 4.14 (J. Przytyki)(i) Find generators of S4;1(S3; R).(ii) For whih parameters of the (4;1) skein and framing relations, triviallinks are linearly independent in S4;1(S3;R)?Geometry & Topology Monographs, Volume X (20XX)



80 Edited by T. Ohtsuki
Figure 15: L3; � � � ; L0; L1 are framed links whih are idential exept in a ball, wherethey di�er as shown in the pitures. Links Lk for k = 4; 5; � � � are similarly de�ned.(iii) For whih parameters of the (4;1) skein and framing relations, the trivialknot is not representing a torsion element of S4;1(S3; R)?A generalization of the Montesinos-Nakanishi onjeture [PrTs01℄ said thatS4;1(S3; R) is generated by trivial links and that the (4;1) skein module (suit-ably de�ned) for n-tangles is generated by Qn�1i=1 (3i+1) ertain basi n-tangles.This would give a generating set for the (4;1) skein module of S3 or D3with 2n boundary points (for n-tangles). However, the Montesinos-Nakanishi3-move onjeture has been disproved by M.Dabkowski and J.H.Przytyki inFebruary 2002 [DaPr02℄ and [Prz02℄. Therefore Qn�1i=1 (3i +1) is only the lowerbound for the number of generators.In [PrTs01℄ we extensively analyze the possibilities that trivial links are linearlyindependent; if b1 = 0, then this may happen only if b0b1 = b2b3 . These leadsto the following onjeture (ases (1){(2)):Conjeture 4.15 (J. Przytyki, see [Mor00℄)(1) There is a polynomial invariant of unoriented links, P1(L) 2 Z[x; t℄ whihsatis�es:(i) Initial onditions: P1(Tn) = tn , where Tn is a trivial link of nomponents.(ii) Skein relation P1(L0) + xP1(L1) � xP1(L2) � P1(L3) = 0 whereL0; L1; L2; L3 is a standard, unoriented skein quadruple (Li+1 isobtained from Li by a right-handed half twist on two ars involvedin Li ; ompare Figure 15.)(2) There is a polynomial invariant of unoriented framed links, P2(L) 2Z[A�1; t℄ whih satis�es:(i) Initial onditions: P2(Tn) = tn ,Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 81(ii) Framing relation: P2(L(1)) = �A3P2(L) where L(1) is obtained froma framed link L by a positive half twist on its framing.(iii) Skein relation: P2(L0) +A(A2 +A�2)P2(L1) + (A2 +A�2)P2(L2) +AP2(L3) = 0.(3) There is a rational funtion invariant of unoriented framed links, P3(L) 2Z[a�1; x; y; (x + y + xy + y2)�1℄ whih satis�es:(i) Initial onditions: P3(Tn) = (�a3(x+y+xy+x2)+a7(x+y+1)2�a�1x+y+xy+y2 )n�1 ,(ii) Framing relation: P3(L(1)) = aP3(L),(iii) Skein relation: P3(L0)+axP3(L1)+a2yP3(L2)�a3(x+y+1)P3(L3) =0.(4) The invariant predited in (1) (respetively (2) and (3)) is not uniquelyde�ned (if it exists).Note that a solution to (3) beomes a solution to (1) under the substitutiona = 1, x = �y and that a solution to (3) beomes a solution to (2) under thesubstitution a = �A3 , x = �1�A�4 , y = A�4+A�8 . As for the uniqueness of(4), note that all suh invariants agree on trivial links and therefore they agreeon the spae spanned by trivial links in the related ubi skein module.The above onjetures assume that b1 = 0 in our skein relation. Let onsiderthe possibility that b1 is invertible in R. Using the \denominator" of our skeinrelation (the �rst line of Figure 16) we get the relation whih allows to omputethe e�et of adding a trivial omponent to a link L (we write tn for the triviallink Tn ): (a�3b3 + a�2b2 + a�1b1 + b0 + b1t)L = 0: (33)When onsidering the \numerator" of the relation and its mirror image (Figure16) we obtain formulas for Hopf link summands, and beause unoriented Hopflink is amphiheiral we an eliminate it from our equations to get the formula(34):b3(L#H) + (ab2 + b1t+ a�1b0 + ab1)L = 0:b0(L#H) + (a�1b1 + b2t+ ab3 + a2b1)L = 0:((b0b1 � b2b3)t+ (a�1b20 � ab23) + (ab0b2 � a�1b1b3) + b1(ab0 � a2b3))L = 0:(34)It is possible that (33) and (34) are the only relations in the module. Preisely,we ask whether S4;1(S3;R) is the quotient ring R[t℄=(I) where ti representsthe trivial link of i omponents and I is the ideal generated by (33) and (34) forGeometry & Topology Monographs, Volume X (20XX)



82 Edited by T. Ohtsuki

Figure 16:L = t. The substitution whih realizes the relations is: b0 = b3 = a = 1, b1 =b2 = x, b1 = y . This may lead to the polynomial invariant of unoriented linksin S3 with values in Z[x; y℄ and the skein relation L3+xL2+xL1+L0+yL1 = 0.Problem 4.16 (J. Przytyki) For whih oeÆients of the (4;1) skein rela-tion is the number of Fox 7-olorings measured by the (4;1) skein module?Remark We denote by Colp(L) the (Z=pZ)-linear spae (for p prime) of Foxp-olorings of a link L (for its de�nition, see [Prz98a℄) and olp(L) denotesthe ardinality of the spae. It is known that Colp(L) an be identi�ed withH1�M2(L);Z=pZ�, where M2(L) denotes the double over of S3 branhedalong L. Sine the double overs of tangles de�ning L0; L1; � � � ; Lp�1; L1give all subspaes of H1(T 2;Z=pZ) respetively (where T 2 is the double overof (S2; 4 points)), olp of those links are equal exept for olp of one linkwhih is equal to p times the others [Prz98a℄. This leads to the relationof type (p;1). A relation between the Jones polynomial (or the Kau�manbraket) and ol3(L) has the form: ol3(L) = 3jVL(e�p�1=3)j2 and a for-mula relating the Kau�man polynomial and ol5(L) has the form: ol5(L) =5jFL(1; e2�p�1=5+e�2�p�1=5)j2 . This seems to suggest the existene of a similarformula18 for ol7(L).18Fran�ois Jaeger told Przytyki that he knew how to get the spae of Fox p-olorings froma short skein relation (of type ( p+12 ;1)). Fran�ois died prematurely in 1997 and his proofhas never been reorded.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 834.6 Other problemsWe extend the family K of oriented knots in a 3-manifold M by singular knots,and resolve a singular rossing by = � . These allows usto de�ne the Vassiliev-Goussarov �ltration: RK = C0 � C1 � C2 � C3 � � � ,where R is a ommutative ring with unity and Ck is generated by knots with ksingular points. Regarding the quotient Wk(M) = RK=Ck+1 as an invariant ofM , we all it the k th Vassiliev-Goussarov skein module of M . The ompletionof the spae of knots with respet to the Vassiliev-Goussarov �ltration, R̂K ,is a Hopf algebra (for M = S3 ). Funtions dual to Vassiliev-Goussarov skeinmodules are alled �nite type or Vassiliev invariants of knots; see [Prz94℄.Problem 4.17 Calulate Wk(M) for eah 3-manifold M .Remark When M = S3 , and oeÆients are from Q then the graded spaeCk=Ck+1 an be desribed by hord diagrams of degree k ; see Chapter 2.Problem 4.18 De�ne a skein module of 3-manifolds, and alulate it.Remark The quantum Hilbert spae (or the spae of onformal bloks) of(S2; 4 points) is known to be �nite dimensional. This is a reason why aquantum invariant of links satis�es a skein relation; it is a linear relation oftangles bounded by (S2; 4 points) whose invariants are linearly dependent inthe quantum Hilbert spae. The quantum Hilbert spae of a losed surfae,say, a torus, is also known to be �nite dimensional. Hene, a quantum invari-ant of 3-manifolds satis�es a \skein relation"; it should be a linear relation of3-manifolds bounded by a surfae. A skein module of 3-manifolds might bede�ned to be a module spanned by losed oriented 3-manifolds subjet to asuitably hosen \skein relation" among 3-manifolds. It is a problem to de�nesuh a skein module whih an be alulated.
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84 Edited by T. Ohtsuki5 QuandlesA quandle is a set X equipped with the binary operation � satisfying thefollowing 3 axioms.(1) x � x = x for any x 2 X .(2) For any y; z 2 X there exists a unique x 2 X suh that z = x � y .(3) (x � y) � z = (x � z) � (y � z) for any x; y; z 2 X .The notions of subquandle, homomorphism, isomorphism, automorphism areappropriately de�ned. Eah x in a quandle X de�nes a map Sx : X ! Xby Sx(y) = y � x. This map is an automorphism of X by the axioms (2) and(3). The inner automorphism group is a group of automorphisms generated bySx (x 2 X ). An orbit under the ation of the inner automorphism group ona quandle X is simply alled an orbit of X . This forms a subquandle of X .A quandle is alled onneted19 if the ation of its inner automorphism groupis transitive on it (i.e., if X has only one orbit). A quandle is alled simple ifevery surjetive homomorphism from the quandle is either an isomorphism orthe onstant map to the one-element quandle. The dual quandle of X is theset X with the dual binary operation given by x�y = S�1y (x).The onjugation quandle of a group is the group with the binary operationx � y = y�1xy . This kind of quandles is a prototype of quandles; the de�ningrelations of a quandle are relations satis�ed by the onjugation of a group. Anyonjugay lass of a group is a subquandle of the onjugation quandle of thegroup. The dihedral quandle Rn of order n is the subquandle of the onjuga-tion quandle of the dihedral group of order 2n, onsisting of reetions. AnAlexander quandle is a quotient module Z[t�1℄=J , where t is an indeterminateand J is an ideal of the Laurent polynomial ring Z[t�1℄, equipped with thebinary operation x � y = tx+ (1� t)y . The dihedral quandle Rn is isomorphito Z[t�1℄=(n; t+ 1).5.1 Classi�ation of quandlesIt was a lassial problem in group theory to lassify the isomorphism lassesof groups of order n for eah n. The following problem is a orrespondingproblem for onneted quandles.Chapter 5 was written by T. Ohtsuki, following suggestions and omments given by S.Kamada and M. Saito.19We all this property onneted here following [Joy82℄. This is also alled weakly homoge-neous in some literatures.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 85Problem 5.1 Classify the isomorphism lasses of onneted quandles of ordern for eah positive integer n.See Table 4 for a list of onneted quandles of order n for some n.n # Conneted quandles of order nSelf-dual Not self-dual1 1 A trivial quandle2 03 1 R34 1 �2=(t2 + t+ 1)5 3 R5 �5=(t� 2), its dual6 2 2 subquandles of Conj(S4)7 5 R7 �7=(t� 2), �7=(t� 3), their duals8 � 3 An abelian extension �2=(t3 + t+ 1), its dualof �2=(t2 + t+ 1)9 8 R9, �3=(t2 � t+ 1), �9=(t� 2), �3=(t2 + t� 1),R3 �R3, �3=(t2 + 1) their duals10 � 1 A subquandle of Conj(S5)11 9 R11 �11=(t� a) (a = 2; 3; � � � ; 9)12 � 2 R3 � ��2=(t2 + t+ 1)�,An iosahedral quandle13 11 R13 �13=(t� a) (a = 2; 3; � � � ; 11)14 � 015 � 4 R3 �R5, R3 � ��5=(t� 2)�, its dualA subquandle of Conj(S5)...Prime p p� 2 Rp �p=(t� a) (a = 2; 3; � � � ; p� 2)Table 4: A table of some onneted quandles. The seond olumn shows the numbersof isomorphism lasses of onneted quandles of order n . We denote Z[t�1℄=(n) by�n . Conj(Sm) denotes the onjugation quandle of the mth symmetri group Sm . Aniosahedral quandle is a quandle whose elements are the verties of an iosahedron suhthat Sx of eah element x is given by a rotation of the iosahedron entered at x .Remark (M. Gra~na) It is shown, in [EGS01℄ in terms of set theoretial solutionsof the quantum Yang-Baxter equation, that a onneted quandle of prime orderp is isomorphi to the Alexander quandle Z[t�℄=(p; t�a) for some a. It is shownin [AnGr02, Nel02℄ that two onneted Alexander quandles are isomorphi ifGeometry & Topology Monographs, Volume X (20XX)



86 Edited by T. Ohtsukiand only if they are isomorphi as Z[t�1℄-modules. These give the lassi�ationof onneted quandles of prime order shown in Table 4.Remark (M. Gra~na) It is shown in [AnGr02℄ that a simple quandle of primepower order is an Alexander quandle; it is a �nite �eld F suh that t ats bymultipliation by some primitive element w (i.e., w generates F as an algebra).Further, it is shown in [Gra02b℄ that a onneted quandle of prime square orderis an Alexander quandle. This gives the lassi�ation of onneted quandles oforder 9 shown in Table 4.Remark S. Yamada made the list of isomorphism lasses of quandles (and raks)of order � 7 by omputer searh. The list of onneted quandles of order � 7in Table 4 follows from it. S. Nelson [Nel02℄ lassi�es the Alexander quandlesof order � 15; onneted ones among them are listed in Table 4.Remark The following modi�ation of Problem 5.1 gives an algorithm to listup onneted quandles: lassify the isomorphism lasses of onneted quandles�xing the onjugay lass of the union of Sx and an identity map. For a quandleX we denote by SX the set of Sx (x 2 X ), whih is regarded as a subset of Snwhen X is of order n. The map X ! Sn , taking x 7! Sx , is often injetive,though in general the map X ! SX is a quotient map, and the order of SXdivides n when X is onneted. Let us investigate this problem in some simpleases.Let X be a onneted quandle of order n whose SX inludes (12) 2 Sn . Then,for any i there is a sequene 1 = a0; a1; � � � ; ak = i suh that (a0a1); (a1a2); � � � 2SX sine X is onneted. Further, sine SX is losed with respet to onjuga-tion, SX inludes (1i) 2 Sn , and hene any (ij) 2 Sn . Therefore, n = 3, andX is isomorphi to the dihedral quandle R3 .Let X be a onneted quandle of order n whose SX inludes (123) 2 Sn .Suppose that SX further inluded (145) 2 Sn . Then, sine SX is losedwith respet to onjugation, SX would inlude (ijk) 2 Sn for any fi; j; kg �f1; 2; 3; 4; 5g. This would ontradit, sine the order of SX is at most n. Hene,n = 4, and X is isomorphi to the onjugation subquandle of A4 onsisting of(123), (134), (142), and (243), whih is isomorphi to Z[t�1℄=(2; t2 + t+ 1).Let X be a onneted quandle of order n whose SX inludes (1234) 2 Sn .If SX further inluded (1567) 2 Sn , a ontradition would follow from a sim-ilar argument as above. Hene, it is suÆient to onsider the ases that SXinlude (1234) and either of (1256), (2156), (1526), (1536), or (ijk5) for anyfi; j; kg = f1; 2; 3g. It follows from some onrete omputations that suh aGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 87X is isomorphi to either of the Alexander quandle Z[t�1℄=(5; t � 2), its dualquandle, or the onjugation subquandle of S4 inluding (1234).5.2 Representations of knot quandlesConsider the onjugation quandle of the fundamental group �1(S3 �K) of theomplement of a knot K . The redued knot quandle Q̂(K) is its subquandlegenerated by meridians of K . A knot quandle20 Q(K) is a quandle generatedby meridians of K (for its preise de�nition, see [Joy82℄) whih is almost equalto Q̂(K); to be preise, there is a surjetive (almost, bijetive) homomorphismQ(K)! Q̂(K).Homomorphisms to a �xed group/quandle are often alled representations. Itwas said, before quantum invariants were disovered, that to ount the numbersof representations of knot groups to a �xed �nite group was a most powerfulmethod to distinguish two given knots. The following problem is a re�nementof it. A motivation is to onstrut a methodology to ount the number ofrepresentations of a knot quandle to a �xed quandle of �nite order.Problem 5.2 Desribe (the number of) representations of a knot quandle to a�xed onneted quandle of �nite order, say, by using knot invariants known sofar, or by reduing the problem to the ase of smaller target quandles.Remark Sine a knot quandle is onneted, the image of a representation toa quandle X is inluded in an orbit of X , whih forms a subquandle of X .Hene, the number of representations to X is equal to the sum of the numbersof representations to the quandles whih are obtained as orbits of X . Repeatingthis proedure, the number of representations to X an be presented by thesum of the numbers of representations to ertain onneted quandles. Hene,it is suÆient to onsider this problem when a target quandle is onneted.21Remark The problem to ount the number of representations of a knot groupto a �xed �nite group an be redued to Problem 5.2. Beause it is equal tothe number of representations of a knot quandle to the onjugation quandle ofthe group, and the problem to ount it an be redued to Problem 5.2 by theabove remark.20Knot quandle was introdued by Joye [Joy82℄ and independently by Matveev [Mat82℄;see [FeRo92℄ for an exposition.21This argument is not available for the link ase, sine a link quandle is not onneted.Geometry & Topology Monographs, Volume X (20XX)



88 Edited by T. OhtsukiRemark The number of representations of a knot quandle to an Alexanderquandle an be presented by using the ith Alexander polynomials of the knot[Ino01℄. In partiular, the number of representations to a dihedral quandle anbe obtained as its orollary.Remark Let X be a onneted �nite quandle, and let hX(K) denote the num-ber of representations of the knot quandle of a knot K to X . Then, hX ismultipliative with respet to onneted sum of knots. It is known (see, for ex-ample, [Oht02℄) that any Q -valued Vassiliev invariant is equal to a polynomialin some primitive Vassiliev invariants, where primitive Vassiliev invariants areadditive with respet to onneted sum of knots. Hene, hX is not a Vassilievinvariant, unless it is onstant. (See also [Alt96℄ for another proof.)Conjeture 5.3 Let hX be as above. Then, log hX is not a Vassiliev invariant,unless it is onstant.5.3 (Co)homology of quandlesSeond ohomology lasses of a quandle are used in order to de�ne quandleoyle invariants of knots. They are introdued as follows. Let A be an abeliangroup, written additively, and let Cn(X;A) be the abelian group onsisting ofmaps Xn ! A, where Xn denotes the diret produt of n opies of X . WeputC1Q(X;A) = C1(X;A);C2Q(X;A) = ff 2 C2(X;A) j f(x; x) = 0 for any x 2 Xg;C3Q(X;A) = fg 2 C3(X;A) j g(x; x; y) = 0 and g(x; y; y) = 0 for any x; y 2 Xg:The oboundary operators di : CiQ(X;A)! Ci+1Q (X;A) are given byd1f(x; y) = f(x)� f(x � y);d2g(x; y; z) = g(x; z) � g(x; y) � g(x � y; z) + g(x � z; y � z);for f 2 C1Q(X;A) and g 2 C2Q(X;A). We de�ne the seond quandle ohomol-ogy group by H2Q(X;A) = (kernel d2)=(image d1). It is known that H2Q(X;A)is isomorphi to Hom�HQ2 (X);A� by the universal oeÆient theorem, notingthat HQ1 (X) is free abelian (see [CJKS01b℄). Here, HQ2 (X) denotes the se-ond homology group of the dual omplex of fC?Q(X;Z); d?g. See [CJKS01b℄for the de�nition of the nth quandle (o)homology group. Therefore, to obtainH2Q(X;A) for any A, it is suÆient to ompute HQ2 (X).Geometry & Topology Monographs, Volume X (20XX)
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Conneted quandle X Order HQ2 (X) HQ3 (X)R3 3 0 Z=3ZZ[t�1℄=(2; t2 + t+ 1) 4 Z=2Z Z=2Z�Z=4ZR5 5 0 Z=5ZZ[t�1℄=(5; t� 2) 0 0R7 0 Z=7ZZ[t�1℄=(7; t� 2) 7 0 0Z[t�1℄=(7; t� 3) 0 0Z[t�1℄=(2; t3 + t+ 1) 8 0 Z=2ZR9 0 Z=9ZZ[t�1℄=(9; t� 2) 0 Z=3ZZ[t�1℄=(3; t2 + 1) 9 Z=3Z (Z=3Z)3Z[t�1℄=(3; t2 � t+ 1) Z=3Z Z=3Z�Z=9ZZ[t�1℄=(3; t2 + t� 1) 0 0Z[t�1℄=(p; t� a) p 0for any prime p and any a 6= 0; 1 2 Z=pZTable 5: The ohomologies of the quandles, exept for the last one, in the table aredue to [LiNe01℄. From a table in [LiNe01℄ we omit one of two dual quandles andquandles that are not onneted (see remarks on Problem 5.6). The 2nd homology ofZ[t�1℄=(p; t�a) is due to [Mo01℄. See [LiNe01, Mo01℄ for omputations of ohomologygroups of some more quandles.
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90 Edited by T. OhtsukiProblem 5.4 Compute HQ2 (X) for eah onneted quandle X . More generally,�nd a onvenient methodology to ompute quandle (o)homology groups.See Table 5 for some quandle homology groups given in [LiNe01℄; see also[Mo01℄ for omputations of quandle ohomology groups of many Alexanderquandles. There are maple programs [JeSa℄ for omputing quandle ohomologygroups.Remark We onsider only onneted quandles in this problem, sine ompu-tations of quandle oyle invariants of knots an be redued to the ases ofonneted quandles (see a remark on Problem 5.6).Remark Rak (o)homology groups (see [CJKS01b℄) of X are isomorphi to(o)homology groups of the rak spae (see [FRS95℄) of X , whih an be givenby a ell omplex whose n-ells orrespond to Xn and whose (o)boundaryoperator orresponds to the (o)boundary operator of the quandle (o)homologygroups. Quandle (o)homology groups of a quandle X are isomorphi to the(o)homology groups of the quandle spae of X (a subspae of the rak spaeof X ). The rak spae and the quandle spae are lassifying spaes of X inertain senses.Problem 5.5 (J. S. Carter) Compute HQi (Smn ) of Smn whih denotes thequandle of the nth symmetri group with the binary operation given by x�y =y�mxym .5.4 Quandle oyle invariantThe quandle oyle invariant, introdued in [CJKLS99, CJKLS99℄, is de�nedas follows. For � 2 H2(X;A) we hoose a 2-oyle � representing �. Anyrepresentation of a knot quandle Q(K) to X is presented by a oloring of aknot diagram of K , where a oloring of an oriented knot diagram is a map ofthe set of over-ars of it to X satisfying the ondition depited in the pituresof (35) at eah rossing of the knot diagram. We de�ne the weight of a rossingof a olored diagram byW� x x�yy � = �(x; y) 2 A; W� yx x�y � = �(x; y)�1 2 A;(35)Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 91where we write A multipliatively here. The quandle oyle invariant of aknot K is de�ned by ��(K) =XC Y� W (�; C) 2 Z[A℄;where the sum runs over all oloring C of a diagram of K , and the produtruns over all rossing � of the diagram, and Z[A℄ denotes the group ring of A.��(K) only depends on K and �.Problem 5.6 Compute the quandle oyle invariant ��(K) of eah knot Kfor a seond ohomology lass � of a onneted quandle.Remark When X = R4 (whih is not onneted), it is shown as follows (seealso [CJKS01a℄ for numerial omputation) that ��(K) = 4 for any K and �,though R4 has non-trivial ohomology groups sine HQ2 (R4) = Z2� (Z=2Z)2.The quandle R4 has two orbits, whih form subquandles isomorphi to T2 ,where Tn denotes the trivial quandle (i.e., x � y = x for any x; y) of order n.Further, T2 has two orbits, whih form subquandles isomorphi to T1 . SineQ(K) is onneted, any representation of Q(K) to R4 is trivial (i.e., a onstantmap). Hene, any oloring is trivial (i.e., olored by a single element of X ).Sine �(x; x) = 0 for any 2-oyle �, ��(K) = 4 by de�nition.When X = Z[t�1℄=(9; t � 4) (whih is not onneted), it follows from a similarargument (see also [CJKS01a℄ for numerial omputation) that ��(K) = 9 forany K and �, noting that this X has three orbits, whih form subquandlesisomorphi to T3 .In general, let X1;X2; � � � be the orbits of X . These form subquandles of X .We denote by ik : Xk ! X the inlusions. Then, it follows from a similarargument as above that ��(K) =Pk �i?k�(K). Repeating this proedure, theomputations of ��(K) of a knot K an be redued to those for onnetedquandles.22Remark The ohomology group H2Q(X ;A) of the dual quandle X of a quandleX is isomorphi to H2Q(X;A) by an isomorphism taking a 2-oyle � to �where �(x; y) = �(x � y; y). It follows that ��(K) = ��(K), where K de-notes the mirror image of K . Therefore, the omputations of quandle oyleinvariants for X an be redued to those for X .22This argument is not available for the link ase, sine a link quandle is not onneted.Geometry & Topology Monographs, Volume X (20XX)



92 Edited by T. OhtsukiRemark When � = 0, by de�nition ��(K) is equal to the number of represen-tations Q(K)! X . In partiular, when X is an Alexander quandle, it an bepresented by using the ith Alexander polynomials, as mentioned in a remarkof Problem 5.2.Remark ([CJKS01a℄) When X = Z[t�1℄=(2; t2+ t+1), H2Q(X;Z=2Z) = Z=2Z.For its non-trivial ohomology lass �,
��(K) = 8>>>>>>>>><>>>>>>>>>:

4(1 + 3u) for K = 31; 41; 72; 73; 81; 84; 811; 813, and9 ertain knots with 9 rossings;16(1 + 3u) for K = 818; 940,16 for K = 85; 810; 815, 819{821, and16 ertain knots with 9 rossings;4 for the other knots K with at most 9 rossings;where u denotes the generator of Z=2Z. See [CJKS01a℄ for details.When X = Z[t�1℄=(3; t2 + 1), H2Q(X;Z=3Z) = Z=3Z. For a non-trivial oho-mology lass � of it,��(K) = 8>>>>>><>>>>>>:9(1 + 4u+ 4u2) if K = 41; 52; 83; 817; 818; 821, and9 ertain knots with 9 rossings;27(11 + 8u+ 8u2) if K = 940,81 if K = 63; 82; 819; 824; 912; 913; 946,9 for the other knots K with at most 9 rossings;where u denotes a generator of Z=3Z. See [CJKS01a℄ for details.Remark It is known, see [CENS01℄, that eah � 2 H2Q(X;A) gives an abelianextension A ! Y p! X , where Y = A � X , whih forms a quandle with thebinary operation given by (a1; x1) � (a2; x2) = �a1 + �(x1; x2); x1 � x2� using a2-oyle � representing �, and p denotes the natural projetion.Let a1; a2; � � � ; aN be a sequene of generators of Q(K) assoiated with overpaths of a diagram of K whih are hosen as going around K . Adjaentgenerators a1 and a2 are related by a1 � b = a2 (or a1 = a2 � b) for somegenerator b. Let g�(b) be a pre-image of �(b) under the projetion p. Then,Sg�(b) (resp. S�1g�(b) ) indues a map p�1(a1)! p�1(a2), whih does not depend onthe hoie of a pre-image of �(b). Composing suh maps, we have a sequene ofmaps p�1(a1) ! p�1(a2) ! � � � ! p�1(aN ) ! p�1(a1). The omposite map ofGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 93these maps an be expressed a 7! a+m(�) (a 2 A) for some m(�) 2 A. Then,the quandle oyle invariant an be presented by ��(K) = P�m(�) 2 Z[A℄,where the sum runs over all representations � of Q(K) to X .In partiular, as shown in [CENS01℄, the number of representations Q(K)! Xthat an lift to representations Q(K) ! Y is equal to the oeÆient of theunit of A in ��(K). For example, when A = Z=2Z, it follows that, writing��(K) = a+ bt (where t is the generator of Z=2Z), a is equal to the numberof representations Q(K)! X that an lift to representations Q(K)! Y , andb is equal to the number of those that do not.In this way we an ompute ��(K) in terms of the abelian extension assoiatedto �.Problem 5.7 Find relations between quandle oyle invariants and knot in-variants known so far, suh as quantum invariants.Remark When � = 0 and X is an Alexander quandle, ��(K) an be presentedby using the ith Alexander polynomial, as mentioned in a remark of Problem5.6.Remark (M. Gra~na) The quandle oyle invariants an be presented by knotinvariants derived from ertain ribbon ategories [Gra02a℄.A entral extension of a group G gives an abelian extension of the onjugationquandle of G. It is known that an abelian extension of a group G an beharaterized by the ohomology group H2(G;A) for a G-module A. Motivatedby this ohomology group we introdue H2Q(X;A) of a quandle X for an \X -module" A as follows. We all an abelian group A an X -module of a quandleX if there is a map � : X ! Aut(A) satisfying that �(x � y) = �(y)�1�(x)�(y)for any x; y 2 X . For simpliity, we often write �(x)�1a as x�1a omitting �.Let CiQ(X;A) be as before. We give the oboundary operators byd1f(x; y) = y�1�f(x) + xf(y)� f(y)�� f(x � y);d2g(x; y; z) = (y � z)�1g(x; z) � z�1g(x; y) + (y � z)�1�(x � z)� 1�g(y; z)� g(x � y; z) + g(x � z; y � z);for f 2 C1Q(X;A) and g 2 C2Q(X;A). We de�ne the seond quandle ohomol-ogy group by H2Q(X;A) = (kernel d2)=(image d1).Geometry & Topology Monographs, Volume X (20XX)



94 Edited by T. OhtsukiProblem 5.8 Compute H2Q(X;A) for eah X -module A.Remark This ohomology group might be isomorphi to the ohomology groupof a quandle spae of X (see a remark on Problem 5.4) with oeÆients in theloal system orresponding to the X -module A.For an X -module A, eah � 2 H2Q(X;A) gives an extension A ! Y ! X ,where Y = A�X , whih forms a quandle with the binary operation given by(a1; x1) � (a2; x2) = �x�12 (a1 + x1a2 � a2) + �(x1; x2); x1 � x2� using a 2-oyle� representing �.Problem 5.9 Let the notation be as above. Then, extending the de�nition ofthe quandle oyle invariant, de�ne a knot invariant assoiated with �, whihis, roughly speaking, an invariant obtained by ounting representations of aknot quandle Q(K) to X with information whether eah representation anlift to a representation Q(K)! Y .5.5 Other problemProblem 5.10 (M. Polyak) De�ne a quantum quandle.Remark A quantum group is a quantization of a group, in the sense that it anbe regarded as a non-ommutative perturbation of a (ertain) funtion algebraon a group. It is a problem to formulate an appropriate quantization of aquandle.
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Problems on Invariants of Knots and 3-Manifolds 956 Braid group representationsFor n = 1; 2; : : : , the braid group Bn is the group generated by �1; : : : ; �n�1modulo the relations:� �i�j = �j�i if ji� jj > 1,� �i�j�i = �j�i�j if ji� jj = 1.6.1 The Temperley-Lieb algebraFor � 2 C , the Temperley-Lieb algebra TLn(�) is the assoiative C -algebragenerated by 1; e1; : : : ; en�1 modulo the relations:� eiej = ejei if ji� jj > 1,� eiejei = ei if ji� jj = 1,� eiei = �ei .We will simply write TLn , where � is understood. There is a map from Bn toTLn given by �i 7�! A+A�1ei;��1i 7�! A�1 +Aei;where A 2 C is suh that � = �A2 �A�2 .These de�nitions an be motivated in terms of tangle diagrams in R� I . Theseare similar to knot diagrams, exept that they an inlude ars with endpointson R � f0; 1g. Two tangles are onsidered the same if they are related by asequene of isotopies and Reidemeister moves of the seond and third type. Thegenerators of Bn and TLn an be de�ned to be the tangle diagrams suggestedby Figure 17. The ars of these diagrams have endpointsf1; 2; : : : ; ng � f0; 1g:The produt ab of two suh diagrams a and b is obtained by plaing a on topof b and then shrinking the result vertially to the required height. The thirdrelation in the Temperley-Lieb algebra allows one to delete a losed loop at theexpense of multiplying by � . Using these de�nitions, the map from Bn to TLnis given by resolving all rossings using the Kau�man skein relation.Chapter 6 was written by S. J. Bigelow.Geometry & Topology Monographs, Volume X (20XX)



96 Edited by T. Ohtsuki
Figure 17: The generator �3 of B5 (the left piture) and the generator e3 of TL5 (theright piture).Problem 6.1 ([Jon00, Problem 3℄) Is the representation of the braid groupinside the Temperley-Lieb algebra faithful?Remark We are mostly interested in the ase � is a transendental. The answeris yes for n � 3, and unknown for all other values of n.The Jones polynomial of the losure of a braid � is a ertain trae funtion ofthe image of � inside the Temperley-Lieb algebra. If � 2 Bn n f1g maps to theidentity in TLn , and  2 Bn is any braid whose losure is the unknot, then thelosure of � would have Jones polynomial one. It should be easy to arrangefor this to be a non-trivial knot. Thus a negative answer to Problem 6.1 wouldalmost ertainly lead to a solution to Problem 1.1.6.2 The Burau representationFor k = 0; 1; : : : ; bn2 , let V nn�2k be the vetor spae spanned by tangle diagramsin R � I with no rossings and endpointsf(1; 0); (2; 0); : : : ; (n� 2k; 0)g [ f(1; 1); (2; 1); : : : ; (n; 1)gmodulo the relations:� a tangle is zero if it ontains an edge with both endpoints on R � f0g,� a losed loop may be removed at the expense of multiplying by � .Let TLn at on V nn�2k by staking tangle diagrams in the usual way. For generivalues of � , TLn is semisimple and these are its irreduible representations.We obtain irreduible representations of Bn by taking its indued ation onV nn�2k . By a result of Long [Lon86℄, the representation of Bn inside TLn isfaithful if and only if eah of these irreduible representations is faithful. Notethat the ation of Bn on the one-dimensional spae V nn is never faithful forn > 2. Also if n > 2 is even then the ation of Bn on V n0 is easily shown to beunfaithful. The ation of Bn on V nn�2 is the famous Burau representation.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 97Problem 6.2 Is the Burau representation of B4 faithful?Remark The Burau representation of Bn is known to be faithful for n � 3 andnot faithful for n � 5 [Big99℄.The representation of B4 in TL4 is faithful if and only if the Burau represen-tation of B4 is faithful.Remark The Burau representation of B4 is faithful if and only if a ertain pairof three-by-three matries generate a free group. The matries given in [Bir74℄ontain a misprint, but their desription as words in the generators is orret.The Burau representation of B4 is faithful if and only if a ertain intersetionpairing detets intersetion of ars in the four-times puntured disk [Big99℄.Cooper and Long have expliitly alulated the kernel of the Burau represen-tation modulo the primes 2, 3 and 5 [CoLo98℄.Problem 6.3 (S.J. Bigelow) Is the ation of B6 on V 62 faithful?Remark The Burau representation of B6 is unfaithful [LoPa93℄. Thus therepresentation of B6 in TL6 is faithful if and only if the ation of B6 on V 62 isfaithful.No approah to this problem is known exept for a brute fore omputer searh.However suh a searh might �nd an example more easily than any of the moresubtle approahes to the Burau representation of B4 .Remark We ould also ask whether the ation of B5 on V 51 is faithful. Aomputer searh of this representation would be easier beause the matriesinvolved are smaller (�ve-by-�ve instead of nine-by-nine). On the other hand,this representation is more likely to be faithful, sine if the representation ofB6 in TL6 is faithful then so is the representation of B5 in TL5 .6.3 The Heke and BMW algebrasWe now introdue two algebras whih an be de�ned in a similar way to theTemperley-Lieb algebra. The Heke algebra is the set of formal linear ombina-tions of braids modulo the relation:A �A�1 = (A2 �A�2) ;Geometry & Topology Monographs, Volume X (20XX)



98 Edited by T. Ohtsukiwhere A 2 C . The BMW algebra is the set of formal linear ombinations oftangles whose edges have endpoints f1; 2; : : : ; ng�f0; 1g, modulo the relations:+ = m0B� + 1CA= l ;where m; l 2 C . See [Mur87℄ and [BiWe89℄ for an analysis of the BMW algebra.The Temperley-Lieb algebra an be embedded into the Heke algebra, whih inturn an be embedded into the BMW algebra.These algebras are semisimple for generi values of their parameters. The irre-duible representations of the BMW algebra orrespond to partitions of n� 2kfor k = 0; 1; : : : ; bn2 . The irreduible representations of the Heke algebra orre-spond to partitions of n. The irreduible representations of the Temperley-Liebalgebra orrespond to partitions of n into two parts.Lawrene [Law96℄ has used a topologial onstrution to obtain the irreduiblerepresentations of the Heke algebra. The onstrution uses the de�nition ofthe braid group as the mapping lass group of a puntured disk to obtain anation on the homology of a related spae.Problem 6.4 (S.J. Bigelow) Generalise Lawrene's onstrution to obtainthe irreduible representations of the BMW algebra.Remark Zinno [Zin01℄ has shown how to obtain the representation of the BMWalgebra orresponding to the partition of n� 2 into one part.Problem 6.5 (S.J. Bigelow) Find a larger family of irreduible representa-tions of Bn whih inludes those oming from the BMW algebra.Remark This might be de�ned using tangles and some more ompliated rela-tions, or by generalising Lawrene's approah.6.4 Other problemsProblem 6.6 Classify all irreduible representations of Bn .Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 99Remark This is probably impossibly hard. However it seems that interest-ing partial results are possible. Formanek [For96℄ has lassi�ed all irreduibleomplex representations of Bn having degree at most n� 1.Problem 6.7 (S.J. Bigelow) Is there a faithful representation of Bn into agroup of matries over �Q ?Remark There is a faithful representation of B3 into GL(2;Z). The problemis open for all n � 4.There is a faithful representation of Bn into a group of matries over Z[q�1; t�1℄.Krammer's proof of this fat [Kra02℄ works when t is assigned any value between0 and 1. However it is not known whether there is an algebrai value of q forwhih the representation remains faithful.
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100 Edited by T. Ohtsuki7 Quantum and perturbative invariants of 3-manifolds7.1 Quantum invariantsWitten [Wit89℄ proposed that, for a semi-simple ompat Lie group G and apositive integer k , a topologial invariant of a losed oriented 3-manifold M isgiven by the path integralZGk (M) = Z e2�p�1kCS(A)DA; (36)whih is a formal integral over gauge equivalene lasses of onnetions A onthe trivial G bundle on M . Here, the Chern-Simons funtional CS : A ! R isde�ned by CS(A) = 18�2 ZM trae(A ^ dA+ 23A ^A ^A); (37)for a onnetion A, regarding it as a g-valued 1-form on M , where g denotesthe Lie algebra of G.This invariant had been reonstruted in mathematially rigorous ways, �rst byReshetikhin and Turaev [ReTu91℄, and by many researhers; we denote it by thequantum G invariant �Gr (M) putting r = k+h_ with the dual Coxeter numberh_ of g. For example, when M is obtained from S3 by integral surgery alonga framed knot K with a positive framing, �SU(2)r (M) for r � 3 and �SO(3)r (M)for odd r � 3 are given by�SU(2)r (M) = � r�1Xn=1[n℄Qsl2;Vn(U+)��1 r�1Xn=1[n℄Qsl2;Vn(K)���q=exp(2�p�1=r);�SO(3)r (M) = � X0<n<rr is odd[n℄Qsl2;Vn(U+)��1 X0<n<rr is odd[n℄Qsl2;Vn(K)���q=exp(2�p�1=r);where [n℄ = (qn=2 � q�n=2)=(q1=2 � q�1=2), and U+ denotes the trivial knotwith +1 framing, and Qsl2;Vn(K) denotes the quantum invariant of K assoi-ated with the irreduible n-dimensional representation of the quantum groupUq(sl2); for details see [KiMe91℄ (see also [Oht02℄ for the notation). It is known[KiMe91℄ that�SU(2)r (M) = (�SU(2)3 (M)�SO(3)r (M) if r � 3 mod 4;�SU(2)3 (M)�SO(3)r (M) if r � 1 mod 4;where �SU(2)3 (M) is an invariant determined by the ohomology ring and thelinking pairing of M , whih is equal to zero for some M (see (38)). For detailson quantum G invariants, see e.g. [Oht02℄ and referenes therein.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 101Problem 7.1 (see [Kir97, Problem 3.108℄) Does there exist a losed 3-manifold M , other than S3 , suh that �SO(3)r (M) = �SO(3)r (S3) for all oddr � 3?Remark (see [Kir97, Remark on Problem 3.108℄) Suppose that �SO(3)r (M) =�SO(3)r (S3) for a losed 3-manifold M and all odd r � 3. If the Betti numberof M was positive, �SO(3)r (M) is divisible by q � 1. Hene, M is a rationalhomology 3-sphere. We have that �SO(3)(M) = �SO(3)(S3). Sine the leadingtwo oeÆients of �SO(3)(M) are given by the order of the �rst homology groupand Casson invariant of M , M is an integral homology 3-sphere with Cassoninvariant zero.Note that �SO(3)r �L(65; 8)� = �SO(3)r �L(65; 18)� for all odd r � 3; see [Yam95℄.Remark There is a enter in the mapping lass group of the losed surfae ofgenus 2, shown below.
A mutation of a 3-manifold M is de�ned to be a 3-manifold obtained from Mby utting along a separating losed surfae of genus 2 in M and by gluingagain after twisting by the above map. It is shown in [Kaw94℄ that �SO(3)r (M)does not depend on a hange by any mutation of M .Problem 7.2 (S. K. Hansen, T. Takata) Find pairs of non-homeomorphirational homology 3-spheres that an be distinguished by their quantum Ginvariants �Gr or their quantum PG invariants �PGr for some level r and somesimply onneted ompat simple Lie group G but not by their LMO invariants.Remark (S. K. Hansen, T. Takata) For example, the LMO invariants of the lensspaes L(25; 4) and L(25; 9) are equal ([BaLa00℄), but their quantum SU(2)invariants for r = 5 are not equal.Problem 7.3 (S. K. Hansen, T. Takata) Do the family of quantum G in-variants �Gr or the family of quantum PG invariants �PGr , G running throughall simply onneted ompat simple Lie groups and r running through all al-lowed levels, separate rational homology 3-spheres? How well do these familiesof invariants separate losed oriented 3-manifolds?Geometry & Topology Monographs, Volume X (20XX)



102 Edited by T. OhtsukiRemark (S. K. Hansen, T. Takata) It is well known that the LMO invariantis a weak invariant outside the lass of rational homology 3-spheres; see thelast remark on Problem 11.1. On the ontrary there are 3-manifolds witharbitrary high �rst Betti number and non-trivial quantum SU(2) invariants asthe example of Seifert manifolds shows. We note that the non-triviality of theinvariants of Seifert manifolds e.g. follows from the fat that these invariantshave non-trivial asymptoti expansion in the limit of large quantum level; see[Roz97℄, [Han99℄, and Setion 7.2. It is likely to believe, e.g. from the asymptotiexpansion onjeture of Andersen, see Conjeture 7.7, that the quantum Ginvariants are quite strong invariants also outside the lass of rational homology3-spheres. It is known, however, that the family of quantum SU(n) invariants,n running through all integers > 1, is not a omplete invariant, that is to saythat this family of invariants an not separate all losed oriented 3-manifolds,f. [Li97b℄. It is still an open question if this is also the ase if we inludethe quantum invariants for all the other simply onneted ompat simple Liegroups.Problem 7.4 Find a 3-dimensional topologial interpretation of quantum in-variants of 3-manifolds.Remark Certain speial values have some interpretations. For a losed oriented3-manifold M ,�SU(2)3 (M) = (0 if there exists � 2 H1(M ;Z=2Z) with �3 6= 0,p2rankH1(M ;Z=2Z)e��(M)�p�1=4 otherwise, (38)where �(M) denotes the Brown invariant. Further, for a losed oriented 3-manifold M , �SU(2)4 (M) =X� e��(M;�)�3�p�1=8;where the sum runs over all spin strutures � of M and �(M;�) denotes theRohlin invariant of a spin struture � of M . For details, see [KiMe91℄.It is known [Mur95℄ that, for any rational homology 3-sphere M and any primep > jH1(M ;Z)j,jH1(M ;Z)j � �SO(3)p (M) � � jH1(M ;Z)jp ��1 + 6�(M)(� � 1)�mod (� � 1)2 in Z[�℄, putting � = e2�p�1=p , where �(M) denotes the Casson-Walker invariant of M and � �p� denotes the Legendre symbol.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 103Remark The Chern-Simons path integral (36) by Witten [Wit89℄ gives a 3-dimensional physial interpretation of a quantum invariant of 3-manifolds. His-torially speaking, the quantum invariants of 3-manifolds were introdued, mo-tivated by Witten's Chern-Simons path integral.Conjeture 7.5 ([GP98℄) For non-vanishing �Gr (M), the absolute valuej�Gr (M)j only depends on the fundamental group �1(M).7.2 The asymptoti expansion onjetureThe perturbative expansion of the Chern-Simons path integral (36) is given bythe semi-lassial approximation and its higher loop perturbations. Roughlyspeaking, the semi-lassial approximation is obtained from the path integralby ignoring the ontribution from the third order term of the Chern-Simonsfuntional, and the higher loop perturbation ontributions are the orretionsto this semi-lassial ontribution.To the best of our knowledge, there is today, no omplete perturbative treatmentof the Chern-Simons quantum �eld theory available, even from a mathematialphysis point of view. In the following few paragraphs we shall try to outlinethe main ativities seen so far in this diretion.The the �rst formula for the semi-lassial approximation of the Chern-Simonspath integral was given by Witten in [Wit89℄, desribing it as a sum of ontri-butions, one for eah gauge equivalene lasses of at onnetion, involving theChern-Simons value, the Reidemeister torsion and a ertain spetral ow foreah suh gauge equivalene lass. To test this predition, Freed and Gompf[FrGo91℄ made for ertain Seifert �bered manifolds some omputer studies ofthe large k behavior of ZSU(2)k (M) and based on these alulations and fur-ther disussion of the semi-lassial approximation of the path integral, theyproposed the following formula for the semi-lassial approximation (r = k+2)ZSU(2)k (M) �r!1e�3�p�1(1+b1(M))=4�X[A℄ e2�p�1rCS(A)r(h1A�h0A)=2e�2�p�1(IA=4+h0A=8)�M (A)1=2;The �rst version of Setion 7.2 was written by T. Ohtsuki, following seminar talks givenby J.E. Andersen. Based on it, J.E. Andersen wrote this setion.Geometry & Topology Monographs, Volume X (20XX)



104 Edited by T. Ohtsukiwhere the sum is over the gauge equivalene lasses of at onnetions A. Letus explain the quantities involved in this expression and in whih ases one anmake sense of this expression as it stands.For any at onnetion A, we have the ohomology groups Hi(M;dA) of theovariant derivative omplex dA : 
?(M ; g) ! 
?+1(M ; g) given by dAf =df + [A; f ℄, and hiA is the dimension of Hi(M;dA). Further assoiated to thisomplex we have the Reidemeister torsion �M(A) 2 
i�detHi(M;dA)�(�1)i �=�detH0(M;dA) 
 �detH1(M;dA)���2 (by Poinar�e duality). If one now as-sumes that all the gauge equivalene lasses of at onnetions A are isolated,in fat Freed and Gompf assumed H1(M;dA) = 0, so that the above sum is�nite and suh that the square root of the Reidemeister torsion �M (A)1=2 isa well-de�ned number (one a volume on H0(M;dA) has been �xed, but forirreduible onnetions H0(M;dA) = 0).The quantity IA 2 Z=8Zdenotes the spetral ow of the operator �?dAt �dAt?dAt? 0 �on 
1(M ; g) 
 
3(M ; g), where At is a path of onnetions running from thetrivial onnetion to A. They also looked at some examples where H1(M;dA) 6=0 and heked the overall growth predited by the above formula.Following this Je�rey [Jef92℄ proposed the following more general interpretationof the square root of Reidemeister torsion in the ases where the onnetionsare not isolated: Assume that the moduli spae of at onnetions M on M issmooth and that the tangent spae at eah equivalene lass of at onnetionA equals H1(M;dA). Sine H0(M;dA) � g the invariant inner produt we havehosen on g indues a volume element on H0(M;dA). In total this means thatthe square root of the Reidemeister torsion indues a measure on the modulispae when we pair it with the indued volume element on H0(M;dA) dividedby the order of the enter of G and one arrives at (r = k + h_ )ZGk (M) �r!1e��p�1(dim G)(1+b1(M))=4� Z[A℄2M e2�p�1rCS(A)r(h1A�h0A)=2e�2�p�1(IA=4+(h0A+h1A)=8)�M (A)1=2:For some mapping tori of genus 1 surfaes and lens spaes, Je�rey veri�ed thisform of the semi-lassial approximation. Garoufalidis [Gar92℄ independentlyproved the semi-lassial approximation for lens spaes and studied in vari-ous examples the growth rate predited by these approximations. Rozansky[Roz95a℄ proposed a further re�ned version of the above semi-lassial approxi-mation, and o�ered alulations for a very large lass of Seifert �bered manifoldsGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 105as evidene. He proposed to divide the volume element on H0(M;dA) by thevolume of the stabilizer of A, and to use the resulting quantity paired with thesquare root of the Reidemeister torsion as the measure on M (generalizing thedivision by the order of the enter above). This gave a natural explanation offators not aounted for in both the work of Freed and Gompf and the work ofJe�rey. He also proposed orretions to the formula for the growth rate of theinvariant (i.e. the power of r in the above), in ases where not all diretions inH1(M;dA) are tangent to paths of at onnetions (see [Roz95a℄ and [Roz95b℄).Axelrod and Singer [AxSi92, AxSi94℄ (see also [Kon94℄) onsidered the higherloop ontributions in the perturbation expansion and proposed the following:ZGk (M) �k!1 Z[A℄2M� semi-lassialapproximation ��exp0� 1Xl=1 lk�l(2l)!(3l)! Xe(�)=�lZ�(M;A)jAut(�)j 1A ;(39)for some salar , where the right sum runs over onneted trivalent graphs �whose Euler number is equal to �l , and jAut(�)j denotes the order of the groupof automorphisms of �. Further, in the ase where A is ayli or when A 2Mis ontained in a smooth omponent, Axelrod and Singer was able to onstrutZ�(M;A) as a topologial invariant of (M;A); roughly speaking, it is given asfollows in the ayli ase. We identify the set of onnetion around A with
1(M; g). The seond order part of the Chern-Simons funtional gives a bilinearform on 
1(M; g)
2 , and it determines a 2-form L 2 
2(M �M; g
 g) and its\inverse". Further, the third order part of the Chern-Simons funtional gives atrilinear form T on 
1(M; g)
3 . We obtain Z�(M;A) by ontrating L
(3l) byT
(2l) \along the trivalent graph �" (roughly regarding L as in 
1(M; g)
2 );we determine the ation of T
(2l) on L
(3l) 2 
1(M; g)
(6l) by putting opiesof L on 3l edges of � and putting opies of T on 2l verties of �. For a preise(mathematial) onstrution (and its topologial invariane) of Z�(M;A), see[AxSi92, AxSi94℄.From the mathematial viewpoint we regard ZGk (M) asZGk (M) = �Gk+h_ (M)�Gk+h_ (S1 � S2)for the quantum G invariant �Gr (M). Then, the asymptoti expansion ofZGk (M) is predited by the semi-lassial approximation and its higher looporretions stemming from a perturbative expansion of the Chern-Simons pathintegral, explained above in some ases. This leads us to the following somewhatvague onjeture.Geometry & Topology Monographs, Volume X (20XX)



106 Edited by T. OhtsukiConjeture 7.6 (The perturbative expansion onjeture) The asymptotiexpansion of ZGk (M) of a losed oriented 3-manifold M is given byZGk (M) �k!1 e��p�1(dim G)(1+b1(M))=4� Z[A℄2Me2�p�1rCS(A)r(h1A�h0A)=2e�2�p�1(IA=4+(h0A+h1A)=8)�M (A)1=2� exp0� 1Xl=1 lk�l(2l)!(3l)! Xe(�)=�lZ�(M;A)jAut(�)j 1A ;putting r = k + h_ , where the right hand side an be given in the mathemat-ial viewpoint in ertain ases, as mentioned above, but whih needs furtherinterpretation in general.Remark The semi-lassial approximation stated above (the upper two lines inthe above formula), has been on�rmed for lens spaes (�rst partially [FrGo91℄)and then by [Jef92, Gar92℄, for ertain mapping tori of di�eomorphisms of atorus [Jef92℄, and for all �nite order mapping tori of automorphisms of anylosed orientable surfae of genus at least 2 [And95℄. For a large lass ofSeifert �bered manifolds [Roz95b℄ and [Roz97℄ o�ered alulations whih pro-vided evidene that the phases in the semi-lassial approximation is given bythe Chern-Simons invariants and the measure is given by the square root of theReidemeister torsion as explained above. Also, expressions for the higher looporretions was o�ered. Later the neessary analyti estimates was provided in[Han99℄ so as to on�rm this. See also the disussion below. For now, there areno examples of hyperboli manifolds, where parts of the above onjeture hasbeen on�rmed.For other versions of Conjeture 7.6, see [Kir97, Problem 3.108℄, [Gar98℄.The formula in Conjeture 7.6 might not give an exat desription of the asymp-toti behavior of ZGk (M) even in the semi-lassial part, neither is it in all aseswell-de�ned. Moreover, it might be diÆult at present to alulate the onretevalue of the higher loop orretions in the asymptoti expansion of Conjeture7.6 for given M , A, and �. Nor do we have de�nitions for these terms, whihhas been proven to be well de�ned topologial invariants in all ases.The following onjeture o�ers a kind of reverse viewpoint on Conjeture 7.6,avoiding suh ambiguities and diÆulties.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 107Conjeture 7.7 (The asymptoti expansion onjeture, J.E. Andersen [And95℄)Let f0 = 0; 1; � � � ; mg be the set of values of the Chern-Simons funtionalof at G onnetions on a losed oriented 3-manifold M . There exist dj 2 Q ,~Ij 2 Q=Z, vj 2 R+ , and aej 2 C for j = 0; 1; � � � ;m and e = 1; 2; 3; � � � suhthat (r = k + h_ )ZGk (M) �r!1 mXj=0 e2�p�1rjrdje�p�1~Ij=4vj�1 + 1Xe=1 aejr�e�;that is, for all E = 0; 1; 2; : : : , there exists a onstant E suh that���ZGk (M)� mXj=0 e2�p�1rjrdje�p�1~Ij=4vj�1 + EXe=1 aejr�e���� � Erd�E�1for all r = 2; 3; 4; � � � . Here, d = maxfd0; � � � ; dmg.Remark (J.E. Andersen) If suh an expansion in the above onjeture exists,then j , dj , ~Ij , vj , and aej are uniquely determined by ZGk+2(M) for k =0; 1; 2; 3; 4; � � � .Problem 7.8 (J.E. Andersen) If suh an expansion exists, understand howit is related to the expansion of Ohtsuki and the expansion of Habiro.It will of ourse be important to establish, that an expansion of this type ex-ists, however, of far greater importane will be to give independent topologialmeaning to the many resulting new invariants, e.g. to prove that the phases arethe Chern-Simons values j . From the disussion above on the semi-lassialapproximation we derive the following onjeture:Conjeture 7.9 (Topologial interpretations of the dj 's) Let Mj be theunion of omponents of the moduli spae of at onnetions M whih hasChern-Simons value j . Thendj = 12 maxA2Mj(h1A � h0A);where max here means the maximum value that (h1A�h0A) assumes on a Zariskiopen subset of Mj .Note that this onjeture might be rather optimisti, and may only hold in thenon-degenerate ases. However, we do not know of any ases where it fails (see[Gar98℄).Geometry & Topology Monographs, Volume X (20XX)



108 Edited by T. OhtsukiRemark (J.E. Andersen) The speial max proposed in Conjeture 7.9 is er-tainly needed, as shown by the example of the mapping torus of the di�eomor-phism �Id of a torus. The quantum SU(2) invariant of this manifold is easilyseen to be r� 1, sine �Id is represented trivially for all levels, however, thereare at SU(2) onnetions for whih (h1A � h0A) > 2.The Conjeture 7.9 implies the following growth rate.Conjeture 7.10 (The growth rate onjeture) Let d = maxfd0; : : : ; dng:Then jZGr (M)j = O(rd):It is well known that the quantum invariants only grows like r to some power.The power is bounded from above by some simple funtion (depending on G)of the Heegaard genus of the manifold.Remark (J.E. Andersen)1. Suppose that M is a losed 3-manifold satisfying that �Gr (M) = �Gr (S3) forall r . If the growth rate onjeture 7.10 is true for the group G, then there isno non-entral representation of �1(M) to G.2. Kronheimer and Mrowka have proposed a program using Seiberg-Wittentheory and Floer homology to establish that any 3-manifold M obtained fromS3 by +1 surgery along a non-trivial knot K has a non-trivial (and thereforenon-abelian) representation of �1(M) to SU(2). Suppose that this is the aseand the growth rate onjeture 7.10 is true. Then, JK; = JU; for all  =1; 2; � � � if and only if K is the trivial knot U , where JK; denotes the oloredJones polynomial of a knot K with a olor .At this time we do not know of a topologial interpretation of the values of ~Ijand vj whih makes sense in all ases. Let us simply just propose the followingConjeture 7.11 There is a onstrut of the right measure, say �M (A)1=2 forA 2 Mi , from the square root of the Reidemeister torsion generalizing thenon-degenerate ase explained above and suh thate�p�1~Ij=4vj = ZA2Mi e�p�1(�2IA+h0A+h1A)=4�M (A)1=2:Conjetures 7.7 and 7.9 together with Conjeture 7.11 were �rst proved formapping tori of all �nite order di�eomorphisms of all surfaes of genus at leasttwo in [And95℄. Reently, Conjeture 7.7 was proved for all Seifert �beredspaes in [Han99℄ by supplementing the alulations in [Roz95b℄ and [Roz97℄with the need analyti estimates.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 109Example Let us illustrate the asymptoti behavior of the quantum SU(2) in-variant of the lens spae L(5; 1) of type (5; 1). For simpliity, we let r be anodd prime. Sine �SU(2)3 �L(5; 1)� = 1, putting � = exp(2�p�1=r), we havethat �SU(2)r �L(5; 1)� = �SO(3)r �L(5; 1)� = �5r� ��3�5? �10? � ��10?�2? � ��2? ;where k? denotes the inverse of k in Z=rZ. Sine �SU(2)r (S1�S2) =p r2= sin(�r ),we have thatZSU(2)r�2 �L(5; 1)� = �SU(2)r �L(5; 1)��SU(2)r �S1 � S2� =r2r sin �r �5r� ��3�5? �10? � ��10?�2? � ��2? :(40)On the other hand, as in [Jef92℄, the semi-lassial approximation is given asfollows. The lens spae L(5; 1) has three at onnetions An (n=0,1,2); eahAn is determined by the representation of �1�L(5; 1)� �= Z=5Z to SU(2) whihtakes a generator of Z=5Z to  e2�p�1n=5 00 e�2�p�1n=5!. As in [Jef92℄, wehave that CS(An) = n2=5, h0An = 1, h1An = 0, �M (An)1=2 = 4p2p5 sin2 2�n5 , andIn(mod 4) = 1 if n < 5=2, and �1 if n > 5=2. Hene,ZSU(2)r�2 �L(5; 1)� �r!1 2r�25r Xn=0;1;2 e2�p�1rn2=5 sin2 2�n5 ; (41)noting that the notatin of lens spaes in [Jef92℄ is equal to the notation of theirmirror images in [KiMe91, Gar92℄.The sequene of �SU(2)r �L(5; 1)� for odd primes r splits into four subsequenesaording to r � �1;�3 mod 10, and eah subsequene an be approximatedby a funtion of a polynomial order. Let us desribe the subsequene, say, withr � �1 mod 10, as follows. Sine 10? = (r + 1)=10, we alulate (40) asZSU(2)r�2 �L(5; 1)� =r2r sin �r e�6�p�1=5r e�p�1=5r � !�1e��p�1=5re�p�1=r � e��p�1=r�r!1 1� !�1p�2 r�1=2;putting ! = exp(2�p�1=5). On the other hand, the right hand side of (41) isalulated as2r�25r �e�2�p�1=5 sin2 2�5 + e2�p�1=5 sin2 4�5 � = ! � 1p�2 r�1=2;Geometry & Topology Monographs, Volume X (20XX)



110 Edited by T. Ohtsukinoting that p5 = 1 + 2! + 2!�1 (Gaussian sum). Therefore, it was veri�edthat the semi-lassial approximation is orret for this subsequene.This is related to the perturbative invariant�SO(3)�L(5; 1)� = q�3=5 q1=10 � q�1=10q1=2 � q�1=2 2 Q[[q � 1℄℄as follows. We regard it as a holomorphi funtion of q in a suitable domain.The asymptoti behavior of �SO(3)r �L(5; 1)� , say, for the above mentioned sub-sequene, an be presented by using this holomorphi funtion around q1=5 = ! .Example It is known, see [LaZa99, Le00℄, that�SO(3)r ��(2; 3; 5)� = 11� � r�1Xn=0 �n(1� �n+1)(1 � �n+2) � � � (1� �2n+1)for Poinare homology 3-sphere �(2; 3; 5), where we put � = exp(2�p�1=r).It is an exerise to ompute the asymptoti behaviour of ZSU(2)r�2 ��(2; 3; 5)�as r ! 1 related to Conjeture 7.7, and to formulate a relation with theperturbative invariant given by�SO(3)��(2; 3; 5)� = 11� q 1Xn=0 qn(1 � qn+1)(1 � qn+2) � � � (1� q2n+1):
7.3 The volume onjetureIt is known (see Conjeture 7.10 and its remark) that the asymptoti behaviourof the quantum SU(2) invariant �SU(2)N (M) as N !1 is a polynomial growthin N . Nevertheless, this asymptoti behaviour might be regarded as an expo-nential growth in the sense of the following onjeture, whih is a 3-manifoldversion of the volume onjeture (Conjeture 1.19).Conjeture 7.12 (H. Murakami [Mur00b℄) For any losed 3-manifold M ,2�p�1 � o-limN!1 log �SU(2)N (M)N = CS(M) +p�1vol(M);Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 111where vol(M) and CS(M) denote the hyperboli volume23 and the Chern-Simons invariant24 of M respetively, and o-lim denotes the \optimisti limit"introdued in [Mur00b℄.Remark As mentioned in [Mur00b℄ the \de�nition" of the optimisti limit is notrigorous yet, beause there is some ambiguity in the present de�nition, whereformal approximation, suh as (4) and (5), are used. It is a problem to �nd arigorous formulation of the optimisti limit.Remark It is shown [Mur00b℄, by using formal approximations, that Conjeture7.12 is \true" for losed 3-manifolds obtained from S3 by surgery along the�gure-eight knot.Remark R. Benedetti gave another formulation of the volume onjeture byusing quantum hyperboli invariants; see Conjeture 7.25.Remark The statement of Conjeture 7.12 should extend for knot (link) om-plements M , whih should be related to the volume onjeture for knots (Con-jeture 1.21).Remark By formally applying the (in�nite dimensional) saddle point method tothe Chern-Simons path integral, the value (42) appears at a ritial point of theChern-Simons funtional. This might give a physial explanation of Conjeture7.12. Can we justify it in mathematis? There is an approah, by using knottedtrivalent graphs (see Conjeture 12.7), to justify the Chern-Simons path integralmathematially, whih might be helpful to apply the saddle point method to itrigorously.Problem 7.13 (H. Murakami) Calulate o-lim log �SU(2)N (M)N for Seifert �bered3-manifolds M .Remark When M is a mapping torus of a homeomorphism of a surfae, aquantum invariant of M an be presented by the trae of the linear map on thequantum Hilbert spae assoiated to the homeomorphism. Suh a presentationmight be useful to ompute the asymptoti behaviour of �SU(2)N (M).23When M is not hyperboli, we de�ne vol(M) to be v3jjM jj , where jjM jj is the simpliialvolume and v3 is the hyperboli volume of the regular ideal tetrahedron.24It is also onjetured (see Problem 7.16) that there exists an appropriate de�nition ofCS(M) of any losed 3-manifold M , though CS(M) is de�ned only for hyperboli 3-manifoldsM at present.Geometry & Topology Monographs, Volume X (20XX)



112 Edited by T. OhtsukiRemark When we hoose a simpliial deomposition of M , (the absolute valueof) its quantum invariant an be expressed by using quantum 6j -symbols. Theomputation of the asymptoti behaviour of �SU(2)N (M) might be redued to theomputation of limits of quantum 6j -symbols. J. Roberts [Rob99℄ showed thata limit of lassial 6j -symbols is given by the Eulidean volume of a tetrahedron.Further, J. Murakami and M. Yano [MuYa01℄ reently showed that a limit ofquantum 6j -symbols is related to the hyperboli volume of a tetrahedron viaformal approximation suh as (4) and (5).Problem 7.14 (D. Thurston) Find a series of invariants of a 3-manifold (de-pending on roots of unity) that grows as its hyperboli volume (or its simpliialvolume).Problem 7.15 (D. Thurston) Find a orret generalization of the volumeonjeture to other non-ompat Lie groups.Remark The volume onjeture is related to the SL(2; C ) Chern-Simons theory,whih (formally) dedues the hyperboli volume and the Chern-Simons invari-ant. It is a problem to �nd (or formulate) suh invariants of 3-manifolds forother non-ompat Lie groups.The Chern-Simons funtional CS(A) 2 C of a SL(2; C ) onnetion A on alosed 3-manifold M is de�ned by the formula (37), where we regard A in theformula as a sl(2; C )-valued 1-form on M in this ase. Sine a gauge transfor-mation of A hanges CS(A) by an integer, CS([A℄) of the gauge equivalenelass of A is de�ned to be in C =Z. The Chern-Simons invariant CS(M) 2 R=Zand the volume vol(M) 2 R>0 of a losed hyperboli 3-manifold M is givenby25 CS([A0℄) = CS(M) +p�1vol(M); (42)where [A0℄ is the gauge equivalene lass of a SL(2; C ) at onnetion A0 asso-iated to the onjugay lass of a holonomy representation �1(M) ! SL(2; C )of the hyperboli struture on M . Further, when M is the omplement of ahyperboli knot (link) in a losed 3-manifold, CS(M) an be de�ned similarly.25The Chern-Simons invariant was introdued by Chern and Simons [ChSi71℄ as an invariantof ompat (4n � 1)-dimensional Riemannian manifolds. For hyperboli 3-manifolds, Meyer-ho� [Mey86℄ extended CS(M) for M with usps. See also [Neu98, CGHN00℄ for CS(M) ofhyperboli 3-manifolds M as a ounterpart of vol(M).Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 113Problem 7.16 (S. Morita [KoNe87℄) De�ne the Chern-Simons invariantCS(M) as a topologial invariant of any losed oriented 3-manifold M , andof any knot (link) omplement M in a losed 3-manifold.This problem inludes two problems: to de�ne CS(M) (topologially or om-binatorially) as a topologial invariant, and to de�ne it for non-hyperboli 3-manifolds.Remark The hyperboli volume (whih is a ounterpart of the Chern-Simonsinvariant) has a de�nition as a onstant multiple of the simpliial volume, whihis ombinatorial, and an be applied, not only for hyperboli 3-manifolds, butalso for any other 3-manifolds.Remark (S. Kojima) The Chern-Simons invariant CS(M) of non-hyperboli3-manifolds M should be de�ned satisfying the following two requirements.One is that CS(�M) = �CS(M), where �M denotes M with the oppositeorientation. The other is the requirement explained as follows. Let K be ahyperboli knot in a 3-manifold N . Then, it is known that NK;(p;q) has ahyperboli struture exept for �nitely many (p; q), where NK;(p;q) denotes the3-manifold obtained from N by Dehn surgery along the slope of type (p; q), andthat suh hyperboli strutures an be obtained in a deformation spae of thehyperboli strutures of N�K parameterized by a natural omplex parameter,whih an be presented by two real parameters p and q . Moreover, the funtionCS(M) +p�1vol(M) (43)is a holomorphi funtion of the omplex parameter. Note that vol(M) anextend for non-hyperboli 3-manifolds M by rede�ning it to be a onstantmultiple of the simpliial volume jjM jj. CS(M) should be de�ned suh that,for appropriate26 knots K in any losed 3-manifold N , the funtion (43) onthe family fNK;(p;q)gp;q an extend to a holomorphi funtion of a omplexparameter presented by p and q appropriately.Problem 7.17 (T. Ohtsuki) Give a \omplex struture" to the set of 3-manifolds. More preisely, �nd an embedding (or, an immersion) of the setof 3-manifolds to some omplex variety suh that its restrition to the setfNK;(p;q) j p2 + q2 >> 0g an be extended to a holomorphi map of the abovementioned omplex parameter for any (hyperboli) knot K in any 3-manifoldN .26These knots should inlude, not only all hyperboli knots, but also other knots. Theymight not inlude the trivial knot.Geometry & Topology Monographs, Volume X (20XX)



114 Edited by T. OhtsukiWe would expet some strutures of the set of 3-manifolds suh as mentioned inProblems 7.17 and Problem 10.16. Suh strutures would yield new viewpointsin the study of (the set of, and invariants of) 3-manifolds.Remark As mentioned above, the set fNK;(p;q) j p2+q2 >> 0g an be embeddedin C , on whih the funtion (43) is holomorphi. In this sense, the in�nitefamily of NK;(p;q) has a \omplex struture" around the in�nity point of (p; q).The volume onjeture says that the funtion (43) would be obtained as aertain limit of some series of quantum invariants. This suggests that the above\omplex struture" would extend to the whole set of 3-manifolds.7.4 Quantum hyperboli invariants of 3-manifoldsThe main referenes for this setion are [Bas01, BaBe01a, BaBe01b℄, a reviewbeing [BaBe02℄. In [BaBe01b℄ the ideas of setions 7-9 in [BaBe01a℄ are devel-opped with some important di�erenes in the way they are onretized.Let W be a ompat losed oriented 3-manifold, L �W be a non-empty link,� be a at prinipal B -bundle on W ; B is the upper triangular Borel subgroupof SL(2; C ). In [BaBe01a℄ one onstruts a family of \quantum hyperboliinvariants" (QHI) KN (W;L; �) 2 C , where N > 1 is any odd integer. Thisonsists of two main steps:(1) For every triple (W;L; �), the onstrution of so-alled D -triangulationsT = (T;H;D), where: (T;H) is a (singular) triangulation of (W;L) suhthat eah edge has distint verties and H ontains all the verties of T ;the \deoration" D is made of a full simpliial B -1-oyle representing� on W , a branhing (for instane one indued by a total ordering of theverties of T ), and an integral harge. For these notions, see [BaBe02℄.(2) The proof that a suitable state sum HN (T ) does not depend on the hoieof the D -triangulation T up to multipliation by N -th roots of unity, sothat KN (W;L; �) = KN (T ) = HN (T )N atually de�nes an invariant.The proof of the existene of D -triangulations is diÆult essentially due tostrong global onstraints in D . The main building-bloks of the state sumsHN (T ) are the \quantum-dilogarithm" 6j -symbols of the N -dimensional ylirepresentations of a quantum Borel subalgebra of U!(sl(2; C )), where ! =exp(2�i=N). Kashaev proposed in [Kas94℄ a onjetural purely topologialSetion 7.4 was written by S. Baseilha and R. Benedetti.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 115invariant KN (W;L) whih should have been expressed by a state sum of thiskind (although in his proposal there were no at bundles and no notion ofD -triangulation); in fat, KN (W;L) appears as a speial ase of KN (W;L; �)when � is the trivial at B -bundle on W . The algebrai properties of the6j -symbols ensure the invariane of KN (T ) up to ertain elementary moves onD -triangulations. Then, the proof of the full invariane of KN (T ) onsists inonneting by suh elementary moves any two D -triangulations of (W;L; �),whih is not so easy to ahieve.Problem 7.18 (S. Baseilha, R. Benedetti) Generalize the onstrution ofthe QHI for at prinipal G-bundles, for Lie groups G di�erent from B .Remark A basi ingredient of the B -QHI is the relationship between the ylirepresentation theory of a quantum Borel subalgebra of U!(sl(2; C )), and atB -bundles enoded by simpliial full 1-oyles. This relationship relies onthe theory of quantum oadjoint ation of [DePr93℄, whih holds for other Liegroups suh as G = SL(2; C ).Problem 7.19 (S. Baseilha, R. Benedetti) Fix (W;L) and vary �. StudyKN as a funtion of the bundle, that is as a funtion de�ned on the haratervariety of W with respet to B : regularity, �bers, and so on.Remark Denote by z the B -1-oyle in T that represents �. The state sumKN (T ) is a rational funtion of the upper diagonal entries of the whole set ofvalues of z . Moreover, the 6j -symbols are rational funtions of the moduli ofthe idealized triangulation bF (T ) de�ned below.Every � 2 H1(W ; C ) leads to two at B -bundles �� and �0� de�ned as fol-lows. The �rst one is obtained via the natural identi�ation of (C ;+) with theparaboli subgroup Par(B) of B . The seond one is obtained by means of theexponential map of (C ;+) onto the multipliative C � , and the identi�ation ofC � with the diagonal Cartan subgroup C(B) of B . Similarly, every lass inH1(W ;Z=pZ) leads to a B -bundle by the natural embedding of Z=pZ into thegroup S1 � C � .Problem 7.20 (S. Baseilha, R. Benedetti) Speialize Problem 7.19 to bun-dles oming from the ordinary ohomology as above. For real additive ones,analyze the behaviour of the QHI with respet to Thurston's norm. Are theyonstant on the faes of the orresponding unit sphere ?Geometry & Topology Monographs, Volume X (20XX)



116 Edited by T. OhtsukiRemark The \projetive invariane" property of the QHI (see [BaBe01a, BaBe02℄)implies in partiular that they are onstant on the rays of H1(W ;R).Problem 7.21 (S. Baseilha, R. Benedetti) Understand the `phase fator'(i.e. the ambiguity due to N -th roots of unity) of the state sum HN (T ).Possibly derive from it an invariant for (W;L; �) endowed with some extra-struture, thus re�ning KN (W;L; �).Remark The phase fator uniquely depends on the branhing and the integralharge in the deoration D . On one hand, it is known that branhings an beused to enode, for instane, ombings, framings, spin strutures and so on.On another hand, ombings indue the extra-struture that allows Turaev'sre�nement of Reidemeister torsions.Problem 7.22 (S. Baseilha, R. Benedetti) Determine a suitable (2 + 1)`deorated' obordism theory supporting a (non purely topologial) QFT on-taining the already de�ned QHI. Study in partiular the behaviour of the QHIwith respet to onneted sums.Problem 7.23 (S. Baseilha, R. Benedetti) Develop a 4-dimensional theoryof QHI based on Turaev's shadow theory.Remark A �rst step should be to determine the right notion of D -shadowtogether with a geometri interpretation. In this diretion, F. Costantino isompleting his PhD thesis at Pisa, where he shows in partiular that `branhedshadows' do enode Spin strutures.Problem 7.24 (S. Baseilha, R. Benedetti) Determine the atual relationshipbetween KN (S3; �) and the oloured Jones polynomial JN (�) (evaluated at ! =exp(2i�=N) and normalized by JN (unknot) = 1), as funtions of links.Remark (1) In [MuMu01℄ it is shown that JN may be de�ned by means ofusual (1; 1)-tangle presentations (as for the Alexander polynomial), using anenhaned Yang-Baxter operator whose R-matrix is derived from the quantum-dilogarithm 6j -symbols. This suggests that there ould be a relationship be-tween KN (S3; �) (neessarily assoiated to the trivial at B -bundle on S3 ) andJN (�)N . The most immediate guess would be that KN (S3; L) = JN (L)N foreah L. In fat, one an give an R-matrix formulation of KN (S3; �) involvingR-matries depending on parameters. These parameters are spei�ed in termsof the deorations of speial D -triangulations adapted to planar link diagramsGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 117[BaBe01℄. So KN (S3; �) an be omputed by using suitably deorated linkdiagrams, and the deoration must satisfy non trivial global onstraints. Inthis setup, (1; 1)-tangle presentations do not play any role. On another side,the onstant R-matrix used for JN orresponds to one �xed partiular hoiein the parameters. This is not enough to on�rm the above guess.(2) A motivation of Problem 7.24 is also to make working for JN a theory ofsissors ongruene lasses, as desribed below for the QHI.The so-alled Volume Conjetures onern the asymptoti behaviour of theinvariants onstruted on the base of the quantum dilogarithm 6j -symbols,that is of KN (W;L; �) or JN (L) (for L � S3 ), when N ! 1. They areoriginally motivated by the asymptoti behaviour of the quantum dilogarithm6j -symbols, whose dominant term involves dilogarithm funtions that may beused to ompute the volume of oriented ideal hyperboli tetrahedra. In thease of JN (L) there are also some numerial omputations (sometimes usingformal manipulations) - see for instane the �rst setion of the present volumefor details. In the ase of QHI, we develop in [BaBe01a, BaBe01b℄ (see also[BaBe02℄) a theory of sissors ongruene lasses for triples (W;L; �) whihgives a natural framework for a formulation of a volume onjeture.This goes roughly as follows. One onstruts a `Bloh-like' group P(D) basedon D -deorated tetrahedra, whih maps via an expliit idealization map bF ontoan enrihed version P(I) of the lassial Bloh group, built on hyperboli idealtetrahedra. Any D -triangulation T of (W;L; �) leads to elements D(W;L; �) 2P(D) and I(W;L; �) = bF (D(W;L; �)) 2 P(I). They are respetively alledthe D - and I -sissors ongruene lasses of (W;L; �). The QHI essentiallydepend on the D -lass, and for any given D -triangulation T the 6j -symbolsouring in HN(T ) depend on the moduli of the hyperboli tetrahedra of theidealization bF (T ) of T . By using the lassial Rogers dilogarithm one an alsode�ne a dilogarithmi invariant R(W;L; �) whih only depends on the I -lass.Conjeture 7.25 (S. Baseilha, R. Benedetti) (Real Volume Conjeture forQHI) For any triple (W;L; �) one has:limN!1 (2�=N2) log(jKN (W;L; �)j) = Im R�I(W;L; �)� :Remark From the expliit formula of HN (T ) one easily shows that the left-handside of Conjeture 7.25, if it exists, only depends on the moduli of the hyperbolitetrahedra of bF (T ). A natural problem is to �nd a geometri interpretationof the dilogarithmi invariant. Indeed, for sissors ongruene lasses builtGeometry & Topology Monographs, Volume X (20XX)



118 Edited by T. Ohtsukiwith ideal triangulations of genuine (non-ompat �nite volume) hyperboli3-manifolds M , a similar dilogarithmi invariant gives i(Vol(M) + iCS(M)),where Vol is the Volume and CS is the Chern-Simons invariant (see [Neu92℄).In [BaBe02℄ one proposes a omplex version of Conjeture 7.25, for the wholeKN (not only its modulus).7.5 Perturbative invariantsThe perturbative SO(3) invariant �SO(3)(M) =P1d=0 �d(q� 1)d 2 Q[[q � 1℄℄ ofa rational homology 3-sphere M is the invariant haraterized by the propertythat Pkd=0 �d(e2�p�1=r � 1)d for any k is ongruent to � jH1(M ;Z)jr � �SO(3)r (M)modulo r for in�nitely many primes r ; for a detailed de�nition see [Oht96b,Oht02℄. (It is known, see [Roz98, Hab02℄, that �SO(3)(M) 2 Z[[q� 1℄℄ for anyintegral homology 3-sphere M .) The perturbative PG invariant �PG(M) of arational homology 3-sphere M , say, for G = SU(N), is de�ned in Q[[q � 1℄℄similarly, related to the quantum invariant �PGr (M); see [Le00a, Le00℄.Problem 7.26 For eah rational homology 3-sphere M , alulate �SO(3)(M)and �PSU(N)(M) for all degrees.Remark The value of �SO(3)r �L(a; b)� of the lens spae L(a; b) is onretelyalulated in [Jef92, Gar92℄. It follows from those values that�SO(3)�L(a; b)� = q�3s(b;a) q1=2a � q�1=2aq1=2 � q�1=2 ;where we regard it as in Q[[q � 1℄℄ and s(b; a) denotes the Dedekind sum.Conrete presentations of �SO(3)(M) for Seifert �bered 3-manifolds M are givenin [LaRo99℄.Lawrene [Law97℄ has given holomorphi expression for the perturbative SO(3)invariants of rational homology 3-spheres obtained by integral surgery along(2; n) torus knot.Habiro's expansion (45) gives a presentation of �SO(3)(M). See examples ofProblem 7.31, for presentations of �SO(3)��(2; 3; 5)� and �SO(3)��(2; 3; 7)� ,whih are due to [Le00℄. See also [LaZa99℄ for a omputation of �SO(3)��(2; 3; 5)� .Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 119Remark From the value of �PSU(N)r �L(a; b)� of the lens spae L(a; b) alulatedin [Tak96℄, we obtain�PSU(N)�L(a; b)� = q�N(N2�1)s(b;a)=2 [1=a℄N�1[2=a℄N�2 � � � [(N � 1)=a℄[1℄N�1[2℄N�2 � � � [N � 1℄ ;where we regard it as in Q[[q � 1℄℄ putting [�℄ = (q�=2 � q��=2)=(q1=2 � q�1=2).Takata [Tak97℄ omputed the quantum PSU(N) invariant of Seifert �beredmanifolds M . Conrete presentations of �PSU(N)(M) might follow from theomputation.Remark �PSU(N)(M) is reovered from the LMO invariant by�PSU(N)(M) = jH1(M ;Z)j�n(n�1)=2Ŵsln�ẐLMO(M)�:In partiular, noting PSU(2) = SO(3),�SO(3)(M) = jH1(M ;Z)j�1Ŵsl2�ẐLMO(M)�:For details see [Oht02℄. In this sense Problem 7.26 is related to Problem 11.1.Problem 7.27 (J. Roberts) Explain the appearane of modular forms in theWitten invariants.Remark (J. Roberts) Lawrene and Zagier disovered in [LaZa99℄ that theperturbative series for the Poinar�e homology sphere was lose to a modularform. Is this a random oinidene, or is there a more systemati explanation?Does suh a relation ever hold for a hyperboli 3-manifold?Problem 7.28 Charaterize those elements of Z[[q�1℄℄ of the form �SO(3)(M)of integral homology 3-spheres M .Remark The degree � d part of �SO(3)(M) an have any value in the degree� d part of Z[[q� 1℄℄. Hene, it is meaningful to onsider this problem for theform �SO(3)(M) for all degrees.Remark Problem 7.28 is related to Problem 7.31, whih is on the harateriza-tion of Habiro's expansion (45). See examples of Problem 7.31, for alulationsof Habiro's expansions of �SO(3)��(2; 3; 5)� and �SO(3)��(2; 3; 7)� .Geometry & Topology Monographs, Volume X (20XX)



120 Edited by T. OhtsukiLet q be an indeterminate, and let � be an r-th root of unity. SetR1 = lim �n Z[q; q�1℄=�(q � 1)(q2 � 1) � � � (qn � 1)�:For an integral homology 3-sphere M , relations between �SU(2)r (M) (whihequals �SO(3)r (M) for odd r , in this ase) and �SO(3)(M) an be desribed inthe following ommutative diagram.Isl2(M) 2 R1 injetion�����! Z[[q� 1℄℄ � Q[[q � 1℄℄ 3 �SO(3)(M)put q = �??y ??yput q = ��SU(2)r (M) = �SO(3)r (M) 2 Z[�℄ injetion�����! Zr[�℄ (44)Here, the two horizontal maps are de�ned to be natural injetions, and the twovertial maps are de�ned by substituting q = � .It was onjetured by Lawrene [Law95℄, and proved by Rozansky [Roz98℄,that �SO(3)(M) 2 Z[[q� 1℄℄ for any integral homology 3-sphere M , and thatthe images of �SO(3)(M) and �SO(3)r (M) oinide in Zr[�℄ in the above diagramfor any odd prime power r . See [Roz98℄ for their numerial examples.Habiro [Hab02℄ showed27 that there exists an R1 -valued invariant Isl2(M) of anintegral homology 3-sphere M whose images in Q[[q�1℄℄ and Z[�℄ in the abovediagram are equal to �SO(3)(M) and �SU(2)r (M) respetively for any positiveinteger r . (Here we set �SU(2)r (M) = 1 for r = 1; 2.) This gives another proofof the above mentioned onjeture of Lawrene for integral homology 3-spheres.This also implies that �SO(3)(M) an be presented by�SO(3)(M) = 1Xn=0�0n(q � 1)(q2 � 1) � � � (qn � 1) (45)with some �0n 2 Z[q; q�1℄ (in the above sense) suh that�SU(2)r (M) = X0�n<r �0n(� � 1)(�2 � 1) � � � (�n � 1):Note that the presentation (45) is not unique.(K. Habiro) Let g be a �nite dimensional simple omplex Lie algebra. Letd 2 f1; 2; 3g be suh that d = 1 in the ADE ases, d = 2 in the BCF ases27Hene, �SO(3)(M) is as powerful as the set of �SU(2)r (M) for any integer r � 3, and aspowerful as the set of �SO(3)r (M) for any odd r � 3, for any integral homology 3-sphere M .Further, the LMO invariant dominates �SU(2)r (M) for any integer r � 3.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 121and d = 3 in the G2 ase. If M is a losed 3-manifold and if � is a root ofunity of order r divisible by d, then the quantum g invariant �g� (M) 2 Q[�℄ ofM at � is de�ned.Conjeture 7.29 (K. Habiro, T. Le) For eah g as above, there is a (unique)invariant Ig(M) 2 R1 of an integral homology 3-sphere M suh that for eahroot of unity � of order r divisible by d we haveIg(M)��q=� = �g� (M):Remark When (r;det(aij)) = 1, where (aij) is the Cartan matrix of the Liealgebra g, the projetive g-invariant �Pg� (M) an be de�ned [Le00℄. ThenHabiro and Le also onjeture that Ig(M)jq=� = �Pg� (M), if (r;det(aij)) = 1.Note that for an integral homology 3-sphere, �Pg� (M) = �g� (M) when both arede�ned (i.e., when r is divisible by d and (r;det(aij)) = 1). If this is the ase,then we have i�Ig(M)� = �g(M)where �g(M) 2 Q[[q � 1℄℄ is the perturbative g invariant of M [Le00℄, andi : R1 ! Z[[q� 1℄℄ is the upper injetion in (44).Remark The above onjeture implies that the quantum g invariant �g� (M) ofan integral homology sphere M takes values in the ring of ylotomi integersZ[�℄, and also that the perturbative invariant �g(M) takes values in Z[[q� 1℄℄.Update Habiro and Le [HaLe03℄ proved Conjeture 7.29.Conjeture 7.30 (K. Habiro) Suppose that Conjeture 7.29 would hold. Fora new indeterminate t, setR01 = lim �n R1[t℄=((t� q)(t� q2) � � � (t� qn))Then there exists an invariant Isl(M) 2 R01 of an integral homology 3-sphereM suh that Isl(M)jt=qn = Isln(M) for any n � 1, where we set Isl1(M) = 1.Problem 7.31 Charaterize those elements of Habiro's expansion (45) of�SO(3)(M) of integral homology 3-spheres M .Geometry & Topology Monographs, Volume X (20XX)



122 Edited by T. OhtsukiExample For the Poinare homology 3-sphere �(2; 3; 5) (obtained by surgeryon a left-hand trefoil with framing �1) and the Brieskorn sphere �(2; 3; 7)(obtained by surgery on a right-hand trefoil with framing �1), it is omputedin [Le00℄ that�SO(3)��(2; 3; 5)� = 11� q 1Xn=0 qn(1� qn+1)(1� qn+2) � � � (1� q2n+1);�SO(3)��(2; 3; 7)� = 11� q 1Xn=0 q�n(n+2)(1� qn+1)(1� qn+2) � � � (1� q2n+1):See also [LaZa99℄ for a omputation of �SO(3)��(2; 3; 5)� .Remark Suh an in�nite sum as (45) would be interesting from the numbertheoretial viewpoint. For example,1 + 1Xn=1 qn(q � 1)(q2 � 1) � � � (qn � 1) =Xk2Zk 6=0(�1)k+1q 32k2� 12k�1:A similar in�nite sum appears in (12); see also [Sik01℄.
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Problems on Invariants of Knots and 3-Manifolds 1238 Topologial quantum �eld theoryThe notion of topologial quantum �eld theory (TQFT) was introdued in[Ati89, AHLS88℄, motivated by the operator formalism of a partition funtionin a quantum �eld theory whih does not depend on the metri of the spae.In the mathematial viewpoint, any quantum invariant of 3-manifolds an beformulated by a TQFT, whih enables us to ompute the invariant by the ut-and-paste method.A TQFT is a funtor whih takes an oriented losed surfae � to a �nite dimen-sional omplex vetor spae V (�), and takes an oriented ompat 3-manifoldM with boundary � to a vetor Z(M) 2 V (�), satisfying the following 5axioms.(1) V (��) = V (�)? , where �� denotes � with the opposite orientation andV (�)? denotes the dual vetor spae of V (�).(2) V (�1 t�2) = V (�1)
 V (�2), where �1 t�2 denotes the disjoint unionof two surfaes �1 and �2 .(3) V (;) = C , where ; denotes the empty surfae.(4) For 3-obordisms M1 and M2 with �M1 = (��1) t �2 and �M2 =(��2)t�3 we have that Z(M1 [�2M2) = Z(M2)ÆZ(M1) as linear maps28V (�1)! V (�3).(5) Z(�� I) is equal to the identity map of V (�).To be preise, in many (but not in all) examples we need \extended 3-manifolds"instead of 3-manifolds to formulate a TQFT, where an extended 3-manifold isa 3-manifold M equipped with some kind of framing, e.g. a p1 -struture � onM (see [BHMV95℄)29. Namely, we extend the above de�nition of TQFT to afuntor from the ategory of extended 3-obordisms in an appropriate way (see[BHMV95℄). Then, eah quantum invariant an be formulated as a TQFT ofthe ategory of extended 3-obordisms. In the remaining part of this setionwe all suh a TQFT simply a TQFT.The �rst version of the introdutory part of Chapter 8 and Setions 8.1{8.4 was writtenby T. Ohtsuki, following seminar talks given by G. Masbaum. Based on it, G. Masbaum wrotethis introdutory part and these setions. Setion 8.5 was written by T. Kerler.28For a 3-obordism M with �M = (��1)t�2 the vetor Z(M) belongs to V (��1t�2) =V (��1)
V (�2) = V (�1)?
V (�2) by the axioms (1) and (2). Hene, Z(M) an be regardedas a linear map V (�1)! V (�2).29There is another formulation of a \framing" of a 3-manifold using signature oyle; see[Tur94℄.Geometry & Topology Monographs, Volume X (20XX)



124 Edited by T. Ohtsuki8.1 Classi�ation and haraterization of TQFT'sTo understand TQFT's is an important problem in order to investigate the 3-obordism ategory, similarly as the representation theory is important in orderto investigate groups and algebras.Problem 8.1 Find (and lassify) all TQFT's.Remark The operator formalism of the Chern-Simons path integral suggests theexistene of many TQFT's. It is known, see [Tur94, BaKi01℄, that a modularategory is derived from a quantum group at a root of unity and a TQFT isderived from a modular ategory. The underlying 3-manifold invariant is alledthe Reshetikhin-Turaev invariant. Some other TQFT's might be obtained fromquantum groupoids [NTV00℄. A TQFT for the LMO invariant is disussed in[MuOh97℄.Another major onstrution of TQFT's is derived from sets of 6j -symbols;for the onstrution see [TuVi92, BaWe96℄. When a set of 6j -symbols arisesfrom a subfator, the underlying 3-manifold invariant is alled the Turaev-Viro-Oneanu invariant (see Setion 9.4). Further, when a set of 6j -symbols omesfrom a quantum group, suh a TQFT is isomorphi to a tensor produt of twoTQFT's derived from the quantum group [Tur94℄. See Problems in Chapter 9for onrete problems for TQFT's derived from 6j -symbols.There are TQFT's derived from �nite groups, whose invariants are alled theDijkgraaf-Witten invariants [DiWi90℄. Suh TQFT's an alternatively be for-mulated by using ertain sets of 6j -symbols.It is known [Ati90a℄ that the vetor spae V (�) of a TQFT (V;Z) derived froma quantum group is isomorphi to the spae of onformal bloks of a onformal�eld theory (CFT) of the Wess-Zumino-Witten model. Some other (possibly,\new") TQFT's might be obtained from the orbifold onstrution of CFT. It isa problem to understand TQFT's derived from the Rozansky-Witten invariant(see [RSW01℄); their isomorphism types might be desribed by known TQFT's,or they might be \new" TQFT's.The following problem is a part of Problem 8.1 in the sense that some TQFT'sare derived from modular ategories, as mentioned in a remark after Problem8.1.Problem 8.2 Find (and lassify) all modular ategories.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 125For a TQFT (V;Z), put P(V;Z)(t) =P1g=0 �dimV (�g)�tg , where �g denotes alosed surfae of genus g . The following problem is a re�nement of Problem8.1.Problem 8.3(1) Charaterize the power series of the form P(V;Z)(t).(2) For eah power series P (t) (satisfying the haraterization of (1)), lassifyall TQFT's (V;Z) suh that P(V;Z)(t) = P (t).Remark A onrete form of suh a power series for a TQFT derived froma quantum group is given by Verlinde formula [Ver88℄. For example, suh apower series of the TQFT derived from Uq(sl2) at level k is presented by1Xg=0 tg�k + 22 �g�1 k+1Xj=1 � sin �jk + 2�2�2g:8.2 Spin TQFT'sThere are some re�nements of TQFT's.A spin TQFT is a TQFT on the ategory of spin 3-obordisms, whose invariantsdepend on spin strutures; suh a TQFT an be formulated by extending thede�nition of a usual TQFT (see [BlMa96℄). It is shown [BlMa96℄ that a spinTQFT an be obtained from the modular ategory of Uq(sl2) at level k � 2(mod 4).Problem 8.4 Find other spin TQFT's.Remark Some examples of spin TQFT's an be onstruted from the re�nedquantum invariants of [BeBl01, Theorem 6.2℄.Remark A spin TQFT is expeted to be a re�nement of a usual TQFT in thesense that a spin TQFT (V s; Zs) should be related to a usual TQFT (V;Z) suhthat V (�) for onneted � an be desribed by the diret sum of V s(�; ��)over the spin strutures �� on � (see [BlMa96℄) and Z(M) of a losed manifoldM an be desribed by the sum of Zs(M;�M ) over the spin strutures �M onM .Geometry & Topology Monographs, Volume X (20XX)



126 Edited by T. OhtsukiA spin TQFT should be a TQFT on the ategory of spin 3-obordisms, whoseinvariants depend on spin strutures.Problem 8.5 Formulate and �nd spin TQFT's.Remark The Seiberg-Witten invariant (for its exposition see, e.g., [Mar99℄)and the torsion invariant � (see [Tur01℄) are de�ned for losed 3-manifoldswith spin strutures. Are there TQFT's whih are related to these invariants?8.3 Homotopy QFT'sV. Turaev [Tur99, Tur00℄ introdued and developed HQFT (homotopy QFT)with a target spae X in dimension d+ 1.Problem 8.6 (V. Turaev)(1) Extend HQFT's to spin and spin settings.(2) Find algebra strutures behind spin and spin HQFT's in dimension 1+1.Problem 8.7 (V. Turaev) Study (spin and spin) HQFT's with the targetspae K(H; 2) in dimensions 1 + 1; 2 + 1, and 3 + 1 for H = ZN .Remark It is shown by V. Turaev that HQFT's with the target spae K(�; 1) indimension 1+1 an be desribed by rossed � -algebras, and that any modularG-ategory gives rise to a HQFT with the target spae K(G; 1) in dimension2 + 1 [Tur00℄. HQFT's with the target spae K(H; 2) in dimension 1 + 1 werestudied and lassi�ed by M. Brightwell and P. Turner [BrTu00℄.8.4 Geometri onstrution of TQFT'sAssume that the surfae � is equipped with the struture of a smooth algebraiurve over C . We denote by H0(M�;L
k) the spae of setions of L
k onM� ,where M� is the moduli spae of semi-stable rank N bundles with trivialdeterminant over �, and L is the determinant line bundle on M� . It is knownthat H0(M�;L
k) is isomorphi to V (�) of a TQFT (V;Z) derived fromthe quantum group Uq(slN ) at a (k + N)-th root of unity. In this sense,H0(M�;L
k) gives a geometri onstrution of suh a V (�).Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 127Problem 8.8 Find a geometri onstrution of a TQFT based on H0(M�;L
k).Namely, �nd a geometri way to assoiate a vetor in H0(M�;L
k) to a 3-manifold M with �M = �.Remark In physis suh a vetor is obtained by applying an in�nite dimensionalformal analogue of the geometri invariant theory and the sympleti quotientto the Chern-Simons path integral; see [Ati90a℄. It is a problem to justify thisargument in some mathematial sense.Here is a onrete problem whih may be of interest in studying the relationshipbetween V (�) and H0(M�;L
k). The group J (N)(�) of N -torsion points onthe Jaobian J(�) ats on M� by tensoring. This gives an ation of a entralextension E(�) of J (N)(�) on H0(M�;L
k).Problem 8.9 (G. Masbaum) Study this ation of the �nite group E(�) onH0(M�;L
k), and desribe the indued deompositions of this vetor spaeaording to the haraters of E(�). Also relate these deompositions to de-ompositions of V (�) for the TQFT (V;Z) derived from the quantum groupUq(sl2) at a (k +N)-th root of unity.Remark This was done for N = 2 in [AnMa99℄.Remark The group J (N)(�) is isomorphi to H1(�;Z=N) and the extensionE(�) is desribed using the Weil pairing, whih orresponds to the intersetionform on H1(�;Z=N). For N = 2, an ation of E(�) on the vetor spae V (�)is desribed in [BHMV95, Setion 7℄, and it was shown in [AnMa99℄ that V (�)and H0(M�;L
k) are isomorphi as representations of E(�); here the torsionpoints on the Jaobian J(�) orrespond to simple losed urves on the surfae�. For example, if k � 2 mod 4, one obtains deompositions indexed by spinstrutures (theta-harateristis) on �. For N � 3, the ation of E(�) and thespin deompositions of V (�) were onstruted in [Bla01℄.Let Mg denote the mapping lass group of a losed surfae �g of genus g ,and let ~Mg denote its entral extension (see [Ati90b, MaRo95℄) arising in theategory of extended 3-obordisms.Problem 8.10 For a given TQFT (V;Z), determine whether the image of ~Mgin End�V (�g)� is �nite.Geometry & Topology Monographs, Volume X (20XX)



128 Edited by T. OhtsukiRemark Using physial arguments, Bantay [Ban01℄ (see also referenes therein)showed that for every CFT the image of ~M1 in End�V (S1�S1)� is �nite. Thishad been rigorously proved by Gilmer [Gil99℄ for the SU(2) ase.In higher genus, it is known [Fun99, Masb99℄ that the image of Mg (g � 2) isin�nite in general.Problem 8.11 (G. Masbaum) Is there a relation between the Nielsen-Thurstonlassi�ation of mapping lasses of �g and their images on V (�g) for TQFT's(V;Z)?Remark The Nielsen-Thurston lassi�ation says that any mapping lass of asurfae is either �nite order, reduible, or pseudo-Anosov (see, e.g., [CaBl88℄).It is known that a Dehn twist is taken to a matrix of �nite order by any TQFTderived from a modular ategory of a quantum group. On the other hand, it isshown in [Masb99℄ that a ertain produt of two non-ommuting Dehn twistsis taken to a matrix of in�nite order in the SU(2) TQFT at level k unlessk = 1; 2; 4; 8.8.5 Half-projetive and homologial TQFT'sIn [Gil01℄ it is shown that, for a restrited set of obordisms, the Reshetikhin-Turaev TQFT at a prime p-th root of unity �p an be de�ned, at least ab-stratly, as a funtor Vp : Cob ! Z[�p℄-mod, meaning the ategory of free Z[�p℄-modules. Note that there is a well de�ned ring epimorphism Z[�p℄�� Fp [y℄=yp�1 ,whih sends �p 7! 1 + y and maps integer oeÆients anonially onto the �-nite �eld Fp = Z=pZ. Thus an endomorphism, whih for a hoie of basisof the free Z[�p℄-modules is given by a matrix with entries in Z[�p℄, will berepresented by the same matrix with redued oeÆients now in Fp [y℄=yp�1 .Colleting the oeÆients for eah degree we an thus reexpress suh a matrixas a sum of matries over Fp multiplied with powers of y, or, more suintly,use Mat(Fp [y℄=yp�1) = Mat(Fp)[y℄=yp�1 . This means that in the ring-redutionthe TQFT assigns to obordisms a polynomial Vp(M) = Pp�2j=0 yj � V [j℄p (M),where eah V [j℄p (M) is a matrix over Fp and is well de�ned for given bases.Reall also the notion of a half-projetive TQFT with respet to an elementx 2 R in the base ring, introdued in [Ker98℄. It is de�ned, by perturbing fun-toriality into V(N ÆM) = x�(M;N)V(N)V(M), where �(M;N) = rank�H1(N ÆM) Æ! H0(N \M)�.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 129Problem 8.12 (T. Kerler) [Cylotomi integer TQFT's℄(1) Find expliit/omputable bases for the Vp(�g) as free modules over Z[�p℄.(2) Show that Vp an be extended to all obordisms as a half-projetiveTQFT with x = (�p � 1) p�32 2 R = Z[�p℄.(3) Determine the struture of the V [j℄p (M) and in how far they have liftsfrom Fp to Z, analogous to the Ohtsuki invariants for losed 3-manifolds.(4) Find a universal TQFT that ombines all Vp , at least perturbatively, intoone.In the ase of p = 5 the program for items (1){(3) has been mostly arried outin [Ker02b℄, for primes p � 7 not muh is known though. Some expliit baseshave been found for genus g = 1 by Gilmer, but the situation for higher generag � 3 is unknown. An immediate appliation of item (2) is that the quantumorder, as introdued in [CoMe01℄, is also an upper bound for the ut-number of a3-manifold. A losely related statement for (2) would also yield a very di�erentproof for the fat that the Ohtsuki invariants are of �nite type. In item (3) the\lift" must depend on p sine the dimensions of the vetor spaes do, and mustalso involve further quotients that arise sine the irreduible TQFT's over Zdo not math the required dimensions either, but they beome reduible whenredued to Fp . Item (4) is rather vague at this point, indiating for some sortof in�nite �ltered spae with �nite graded omponents.Any TQFT V : Cob ! R-mod implies a sequene of representation V[g℄ : �g !GLR(V(�g)) of the mapping lass groups. We say that a TQFT is homologialif eah of these representations fators through the quotient �g�� Sp(2g;Z)(given by the ation on H1(�g)), and we say it is stritly homologial if eahof the Sp(2g;Z)-representations is algebrai, i.e., either faithful or zero. Apartiular example of stritly homologial TQFT's over R = Z are the Lefshetzomponents V(j) of the Frohman-Nias TQFT, see [FrNi92, Ker00℄. From thesewe an generate a larger family Q0 of suh TQFT's by taking all diret sums ofV(j) 's. For example all the TQFT's onstruted in [Don99℄ lie in Q0 . An evenlarger family Q� is found by taking also tensor produts and their irreduiblesummands.Problem 8.13 (T. Kerler) [Homologial TQFT's℄(1) Find the irreduible omponents and ring struture (w.r.t � and 
) ofQ� .(2) Determine whether all stritly homologial TQFT's lie in Q� .Geometry & Topology Monographs, Volume X (20XX)



130 Edited by T. Ohtsuki(3) Identify the homologial TQFT's that arise from the gauge theory ofhigher rank groups (suh as PSU(n) in [FrNi94℄) with elements in Q� .(4) Identify the irreduible fators of the onstant orders V [0℄p of the ylo-tomi integer expansion of the Reshetikhin-Turaev theory with elementsin Q� .The �rst item is in some sense about �nding the representation ring of Sp(2;Z)�Sp(4;Z)� : : :� Sp(2g;Z)� : : : equipped with further generators and relationsgiven by the standard handle attahments. The onstraints given by the lattermay be just good enough to ensure that the answer to item (2) is positive. Theappliation of (3) is a better understanding and possibly a losed form for thepolynomials from [FrNi94℄ that express the PSU(n)-invariants in terms of theoeÆients of the Alexander polynomial. Evidene seems to suggest that theTQFT's from (4) stem from p�32 -fold symmetri produts of elements in Q0 .A plausible orollary would be that for a losed manifold with b1(M) � 1 wehave Vp(M) = (�p � 1) p�32 P p�32 (�CWL(M)) + O((�p � 1) p�12 ) ; (46)where �CWL is the Casson-Walker-Lesop invariant, and Pj is a polynomial ofdegree j with integer oeÆients. (Note our normalization Vp(S3) = 1). Asremarked in [Ker02a℄ the identity in (46) is true for p = 5 and general M withb1(M) � 1. Moreover, work in progress shows that (46) holds also for generalp if M is a torus-bundle over a irle.The homologial TQFT's are the starting point for a more general, pertur-bative view point on TQFT's that should parallel and extend that of the �-nite type theory of homology-3-spheres. At least for �xed p one an under-stand, for example, the Reshetikhin-Turaev theory as deformation of the Q� -theories. The notion that is somewhat parallel to that of �nite type for losed3-manifolds is what we shall all �nite length. More preisely, the representa-tions V[g℄ : �g ! GLR(V(�g)) of the mapping lass groups extend linearly tohomomorphisms V[g℄ : Z[�g℄! EndR(V(�g)). Denote by IIg � Z[�g℄ the aug-mentation ideal of the Torelli group. The length of V is the maximal L 2 N suhthat V[g℄((IIg)L+1) = 0. Clearly, the L = 0-theories are just the homologialones. The L = 1-theories an be thought of as elements of some Ext(V;W) withV; W 2 Q� . Restrited to representations of the �g 's they fator (in har 6= 2)through the Johnson-Morita-homomorphism �g ! V3H1(�g) o Sp(2g;Z), forwhih suh extension are expliitly onstrutible [Ker01b℄.Problem 8.14 (T. Kerler) [Length = 1 TQFT's℄Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 131(1) Desribe and onstrut algebrai L = 1-extensions of �g -representationsto TQFT's, preferably as \simple" generalizations of the Frohman-Nias-U(1)-theory.(2) Produe a lassi�ation of L = 1-TQFT's in the sense of an extensiontheory of Q� .(3) Identify the �g -representations on relative SU(2)-moduli spae from [CLM00℄with these TQFT's, and �nd similar, higher rank theories.(4) Identify the V [0℄p as L = 1-theories, if possible.The oneivable generalizations of the TQFT onstrution of Frohman andNias desribed in (1) inlude using di�erent, possibly non-ompat gaugegroups instead of U(1) and using more re�ned versions of intersetion homolo-gies for strati�ed moduli spaes. Given the theory for Q� the solution to item(2) will lead to well de�ned problems in sp-invariant theory. Construtions ofL = 1-theories follow the shemes from (1) and (3). The identi�ation in (4) isarried out for p = 5 in [Ker01b℄.The notion of �nite length an be re�ned into the notion of q=l-solvable in-trodued in [Ker02a℄, indiating a TQFT over R = M [y℄=yl+1 suh that theonstant order TQFT over the ground ring M is of length q . This, learly,de�nes a speial ase of a TQFT of length � (q � l+ q + l) . Murakami's result[Mur95℄ an be restated as saying that the Reshetikhin-Turaev theory gives riseto a 1/1-solvable TQFT V [�1℄p with ground ring Fp (i.e., a TQFT of length 3over Fp [y℄=y2 ) suh thatV [�1℄p (M) = 1 + y16�CWL(M) (47)for any losed homology sphere M . Following Ohtsuki's work Murakami's iden-tity (with some extra renormalizations by the order of H1(M)) extends also torational homology spheres. Let us all a theory with this property a TQFT ofCasson type.Reall, that the similar relation (46) for �CWL for manifolds with b1(M) � 1is already ontained in the information of a homologial (L = 0) TQFT, and isindeed a speial evaluation of the Turaev-Milnor Torsion, see [Ker02a℄. Giventhe riher struture of a 1/1-solvable TQFT we will expet new invariants �that are re�nements of �CWL and the torsion invariants.To be more preise, note that for a pair (M;'), where ' : �1(M)!! Z de�nesa yli over, any TQFT V yields an invariant V(M;') = trae(V(C�)) whereC� = M � � : � ! � and � � M is any surfae dual to '. In this way theGeometry & Topology Monographs, Volume X (20XX)



132 Edited by T. OhtsukiFrohman Nias theories V(j) yields the oeÆients of the Alexander Polynomial,and, as shown in [Ker02a℄, thus also �CWL .A more re�ned invariant, whih, roughly speaking, generalizes the Alexandermodule, is the Turaev-Viro module MTV (M;'). It is desribed by Gilmerin [Gil97℄. MTV (M;') is given, up to onjugay, by V(�)Æker(V(C�)N )(with N large enough) together with the ation of V(C�) on it. The traes ofV(C�) or its powers are the most obvious well de�ned numerial invariants ofMTV (M;'). The dimension of the module is yet another suh invariant.For a 1/1-solvable theory V the invariant V(M;') takes values in M [y℄=y2 andan hene be written as V(M;') = �V'(M) + y � �V'(M), where �V and �Vare now M -valued invariants. If y oinides with the half projetive parameter�V does not depend on ', and we expet it to be some funtion of �CWL .Moreover, if V desends from a 1/2-solvable TQFT with the same propertyalso �V would be independent of '.For the modular TQFT over F5 [y℄=y2 obtained from the Reshetikhin Turaevtheory this invariant has already been de�ned in [Ker02a℄, and we may expetit to lift, similarly, to an invariant �Z over Z. For p > 5 we expet, as in thease of �CWL , the next order terms in the expansions (46) of the ReshetikhinTuraev theories to be polynomial expressions in �CWL and �Z.Problem 8.15 (T. Kerler) [q=l-solvable and Casson TQFT's℄(1) Lift the 1/1-solvable TQFT's of Casson type over Fp to a universal 1/1-solvable TQFT's of Casson type over Z.(2) Desribe the resulting invariant �Z for 3-manifolds with b1(M) � 1.(3) Develop a perturbation theory for general q=l-solvable TQFT's.(4) Relate those with the various, standard resolutions of �g .(5) Relate them also to the traditional �nite type theory for losed 3-manifolds.(6) Desribe the Reshetikhin-Turaev theories in this pattern.Preparations for item (1) an be found in [Ker02a℄ in whih formulae for theCasson invariant over Z are derived that have the same form as general TQFTformulae. Item (2) is immediate from the preeding disussion. The remainingitems are logial ontinuations.The ategory of 3-dim obordisms Cob� between ompat, oriented surfaeswith one boundary omponent has a natural struture of a braided tensor at-egory. Another, ategory Alg an be de�ned entirely algebraially in terms ofGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 133generators and relations with respet to a tensor produt and a ompositionprodut. On the level of objets it has exatly one generator, say A, so that allother objets are of the form A
g with 1 = A
0 . The morphisms are given byall words that an be generated by taking omposition and tensor produts ofelementary morphisms m : A
A! A, � : A! A
A, e : 1! A, " : A! 1,. . . , that appear in the de�nition of a braided, ribbon Hopf algebra with in-tegrals and a non-degenerate pairing. For example, in [Ker01a℄ a surjetivefuntor Alg�� Cob� is onstruted, whih, in the genus one restrition in fatan isomorphism.Problem 8.16 (T. Kerler) [3-dim obordisms from Hopf algebras℄(1) Find further relations on Alg , besides the ones arising from the axiomat-is of Hopf algebras, that would make Alg ! Cob� an isomorphism.(2) Find relations on Alg suh that the maps AutAlg(A
g)! �g �= AutCob�(�g;1)are isomorphisms.(3) Relate this to obstrutions, suh as Steinberg and Whitehead groups, viastrati�ed funtion spaes.(4) What are the analogous algebrai strutures in higher dimensions.The �rst problem is easily stated, but presumably very diÆult as it implies afaithful translation of 3-dimensional topology into an algebrai gadget. In thisrespet it is vaguely parallel to the geometrization and Poinar�e onjetures.The easier problem stated in item (2) an, in theory, be attaked head-on,given the known presentations of the mapping lass groups. The third pointhints to the fat that the generators in Alg orrespond to Morse-theoretiallyelementary obordisms, and the relations an be interpreted, similarly, in termsof handle slides and anellation. This is, thus, reminisent of the de�nitions of,e.g., Steinberg groups of 3-manifolds. The problem in item (4) is, again, easilystated but even in 4 dimensions lingers in almost omplete total darkness. Itis not hard to understand that higher ategory theory has to be invoked andnot just one \objet" A suÆes as a \generator". Any partial answers mayopen the possibility of onstruting funtorial 4-manifold invariants by \linearrepresentation" of suh strutures.In [KeLy01℄ ETQFT's V are de�ned as double funtors from the double ate-gory of relative, 2-framed 1+1+1-dim obordisms Cob� to the double ategoryof linear, abelian ategories over a perfet �eld. (The \E" stands for \extendedto surfaes with boundaries"). Applied to a single irle, thought of as a 0-objet in Cob� , it yields an abelian ategory CV = V (S1), whih we all theGeometry & Topology Monographs, Volume X (20XX)



134 Edited by T. Ohtsukiassoiated irle ategory. The main result of [KeLy01℄ is a onstrution of aV C , for eah given modular tensor ategory C (meaning a bounded, ribbon,braided tensor ategory with some additional properties) suh that CV C = C .The onstrution is made for all semisimple C , and is extended, in the ase ofnon-semisimple C , to both to the situation of onneted surfaes with boundaryas well as disonneted, losed surfaes using the previously mentioned notionof half-projetive TQFT's.Problem 8.17 (T. Kerler) [Extended and half-projetive TQFT's℄(1) Desribe in how far an ETQFT V with irle ategory C an di�er fromV C , thus introduing a equivalene notion that would establish a bijetiveorrespondene between the lass of ETQFT's and the lass of modulartensor ategories.(2) Find an extended notion of half-projetivity that inludes also surfaesthat are both disonneted and have boundary.(3) Find onstrutions and axioms of ETQFT's that apply to more relaxednotions of boundedness or modularity.The funtor Alg ! Cob� already imposes that a irle ategory CV must ful�llabout all axioms of a modular tensor ategory, and ontain a Hopf algebraobjet with properties. Given some rigidity assumption it atually must be thesame hosen in the onstrution of V C . What may still di�er is the hoieof algebra strutures of the same objet in the same ategory, whih is thusthe main soure of possible ambiguities. Already in [KeLy01℄ it is lear thatthere are several hoies. The orret axiomatis for item (2) should followfrom a areful analysis of the double omposition laws for surgery tangles from[KeLy01℄ and generalization of [Ker98℄. Item (3) is relevant to inlude moregeneral notions of TQFT's as they would be of interest in the theory of �nitetype invariants.The Reshetikhin-Turaev theory typially starts with non-semisimple modularategory C , typially the representation ategory of a non-semisimple quantumgroups Uq(g), and then onsiders a anonial semisimple sub-quotient C , see[Ker92℄. Thus VC yields a semisimple TQFT. It is known that this is di�erentfrom the non-semisimple TQFT VC , whih in the ase of a quantum group isobtained via the Hennings algorithm.TQFT's an also be generated from a rigid, monoidal ategory B without anybraiding. One way is to take the Drinfel'd double D(B), whih is then a modularategory for some hoie of ribbon element, and use VD(B) . For semisimple BGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 135one an also extrat the 6j-symbol data and follow the Turaev-Viro onstrutionto obtain a TQFT WB .Problem 8.18 (T. Kerler) [Non-semisimple vs. semisimple TQFT's, thedouble onjeture℄(1) Clarify the di�erene in the ontent of VC and VC ! Are there homologialTQFT's H suh that VC is in some essential way equivalent to VC 
H?(2) Find a onstrution of WB that generalizes the Turaev-Viro TQFT's tonon-semisimple B 's, similar to the way [KeLy01℄ generalized the Reshetikhin-Turaev onstrution. In the ase of quantum groups and losed 3-manifoldsthis should reprodue a version of the Kuperberg invariant.(3) What is the relation between WB and VD(B)? Are they in some senseisomorphi TQFT's?For the ase of Uq(sl2) there is evidene from the genus=1 ase that suh an His indeed given by the Frohman-Nias-U(1)-theory. Item (2) is rather naturalas a problem. As is apparent in [Kup96℄ one may expet tehnial hallengesrequiring \minimal" ell deompositions of obordisms, as opposed to generaltriangulations, as well as \ombings" instead of framings.The last onjeture appears also as Question 5 in [Ker97℄ whih was motivatedby works of and disussions with D. Kazhdan and S. Gelfand in 1994. Sineit is a rather nearby onjeture from a formal point of view it may have beenposed already earlier. For ategories arising from subfators and losed man-ifolds results answering this onjeture have been obtained in [KSW02℄. Asoutlined in [Ker97℄ further, more general results in this diretion should yielda deeper understanding of both TQFT onstrutions involved as well as entaila topologial piture for the Drinfel'd double onstrution.
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136 Edited by T. Ohtsuki9 The state-sum invariants of 3-manifolds derivedfrom 6j-symbolsTuraev and Viro [TuVi92℄ introdued a formulation of a state-sum invariant of3-manifolds as a state-sum on triangulations of 3-manifolds derived from ertain6j -symbols. After that, Oneanu gave a general formulation of this state-sumfor general 6j -symbols and onstruted 3-manifold invariants from subfatorsbased on this formulation. This general formulation was also given by Barrettand Westbury [BaWe96℄.9.1 Monoidal ategories, 6j -symbols, and subfatorsConsider a olletion, fVigi2I , of (irreduible) modules over C (of a quantumgroup or a subfator) whih is losed under tensor produt, i.e., for any i; j 2 I ,Vi 
 Vj �= �k2IHki;j 
 Vk for some Nki;j dimensional vetor spae Hki;j , whihexpresses the multipliity of Vk in Vi 
 Vj . Suh a olletion (with a ertainproperty) is alled a monoidal ategory, where eah Vi is alled a simple objetof the ategory (for details see [BaKi01℄). A monoidal ategory is provided bya ertain set of representations of a quantum group (see, e.g., [Kas94℄), andalso by a ertain set of N -N bimodules arising from a subfator N � M (asexplained below). The algebra spanned by I with the multipliation given bya � b =P2I N a;b for a; b 2 I is alled the fusion rule algebra.Let fVigi2I be a monoidal ategory (with a �nite set I ) provided by a quantumgroup (at a root of unity) or a subfator (of �nite depth). Fix the abovementioned isomorphism Vi 
 Vj �= �k2IHki;j 
 Vk for eah i; j . Then, we havetwo bases of the vetor spae Hom(Vl; Vi
Vj 
 Vk) for eah i; j; k; l as follows.Consider the maps Vl �! Vn 
 Vk �! (Vi 
 Vj)
 Vkdetermined by basis vetors A 2 Hln;k and B 2 Hni;j . The omposition of thesemaps gives a vetor of Hom(Vl; Vi 
 Vj 
 Vk). Thus, we obtain a basis of thisvetor spae onsisting of vetors labeled by triples (n;A;B). Moreover, weobtain another basis onsisting of vetors labeled by triples (m;C;D), whereC 2 Hli;m , D 2 Hmj;k , by onsidering the following maps,Vl �! Vi 
 Vm �! Vi 
 (Vj 
 Vk):The introdutory part of eah setion of Chapter 9 was written by T. Ohtsuki, followingsuggestions given by Y. Kawahigashi and J. Roberts.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 137The olletion of the entries of the matrix whih relates these two bases is a typ-ial example of a set of 6j -symbols, where a set of 6j -symbols is de�ned to be asolution of ertain polynomial equations: the tetrahedral symmetry, the unitar-ity, and the pentagon relation. Eah 6j -symbol is labeled by i; j; k; l;m; n 2 I ,and A 2 Hln;k , B 2 Hni;j , C 2 Hli;m , and D 2 Hmj;k . This 6j -symbol will beassoiated to a tetrahedron labeled by them.A subfator is a pair of in�nite dimensional algebras N and M with an inlusionrelation N �M satisfying some property. A major lass of subfators is a lassof WZW model subfators of level k = 1; 2; � � � , whih are related to quantumgroups. Another well-known lass is a lass of subfators of the Jones index< 4; they are lassi�ed to be of types An;D2n; E6 , or E8 . A left X right Ymodule Z is alled a X -Y bimodule, and is written XZY . For a subfatorN � M , onsider irreduible N -N bimodules appearing as diret summandsof N -N bimodules in the following sequene,NNN ; NMM 
M MMN ; NMM 
M MMN 
N NMM 
M MMN ; � � � :The olletion of (isomorphism lasses of) suh irreduible modules provides amonoidal ategory fVigi2I . It is known that I is a �nite set when the subfatoris of �nite depth (this always holds when its index < 4). For a fusion rulealgebra with a set of 6j -symbols there exists a subfator (if quantum dimensionsare positive) suh that the diagram in Figure 18 ommutes. For details of thisparagraph see [GHV89, EvKa98℄.Thus, the following lassi�ation problems are almost equivalent. Eah of themis fundamental, but probably impossibly hard. (See also Problem 8.2.)Problem 9.1(1) Find (and lassify) all semi-simple monoidal ategories (with �nitely manyisomorphism lasses of simple objets).(2) Find (and lassify) (�nite dimensional) fusion rule algebras and sets of6j -symbols.(3) Find (and lassify) all subfators (of �nite depth).Remark Major sets of 6j -symbols, what we all quantum 6j -symbols, are thesets of 6j -symbols derived from quantum groups, resp. WZW model subfators.Geometry & Topology Monographs, Volume X (20XX)



138 Edited by T. OhtsukiQuantum groups, quantum groupoids(at roots of unity)?Choose ertain sets ofrepresentationsSemi-simple monoidal ategories(with �nitely many isomorphismlasses of simple objets) -Take a ertain matrixrelated to assoiativity (Finite dimensional)fusion rule algebrasand sets of 6j -symbols���IChoose ertainbimodules ���	Subfators (of �nite depth)Figure 18: 6j -symbols and related objetsAnother lass of 6j -symbols is derived from �nite groups; for a 3-oyle � ofa �nite group G, a set of 6j -symbols is given byW� � = (�(g1; g2; g3) if g12 = g1g2; g23 = g2g3, and g123 = g1g2g3,1 otherwise,where the tetrahedra is given a trivial fae oloring. There are still other in-�nitely many sets of 6j -symbols arising from subfators; see Table 6. These6j -symbols might have a universal presentation given by a tetrahedron in thetheory of knotted trivalent graphs (see Setion 12.4).9.2 The state-sum invariants derived from monoidal ategoriesA state-sum invariant of 3-manifolds is de�ned by using suh a set of 6j -symbolswith a monoidal ategory fVigi2I , as follows. Choose a simpliial deompositionof a losed 3-manifold M , and �x a total order of its verties, whih induesorientations of edges. Further, hoose an edge oloring �, whih is a map of30To be preise, the even part of the subfator of type D2n is braided, and its S -matrix isnon-degenerate.31This is trivially braided.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 139subfator monoidal S-matrixategoryWZW model subfators of level k = 1; 2; � � � braided non-degenerateSU(N)k, SO(N)k, Sp(N)k, � � �subfators of type An (= SU(2)n) braided non-degenerateindex < 4 type D2n braided30 non-degenerate30type E6; E8 not braided nonesubfators of (generalized) Haagerup, not braided noneindex > 4: Asaeda-Haagerup, � � �exoti subfators, quantum doubles of braided non-degenerate� � � Haagerup subfator, � � �subfators 3-oyles of �nite groups not braided nonefrom | representations of �nite groups braided31 degenerateTable 6: Subfators, their monoidal ategories, and S -matriesthe set of edges to I , and hoose a fae oloring ', whih is a olletion of suhassignments that a basis vetor of Hki;j is assigned to a trianglewith an edge oloring. To a tetrahedron � with an edge oloring � and a faeoloring ', we assoiate the above mentioned 6j -symbol, whih we denote byW (�;�; '). Then, a state-sum invariant of M is de�ned byZ(M) = w�vX� �YE ��(E)�X' Y� W (�;�; '); (48)where the sums of � and ' run over all edge olorings and all fae olorings, andthe produts of E and � run over all edges and all tetrahedra of the simpliialdeomposition of M , and �i is a onstant, whih orresponds to a \quantumdimension", and w =Pi2I �2i , and v is the number of verties of the simpliialdeomposition. It is known (see [BaWe96℄, [EvKa98, Chapter 12℄) that theinvariant (48) is a topologial invariant of M . The de�nition of the invariant(48) an naturally be extended to an invariant of 3-manifolds with boundaries,and a TQFT an be formulated based on it.In partiular, for the set of 6j -symbols arising from representations of the quan-tum group Uq(Sl2) at a root of unity, the invariant (48) is alled the Turaev-Viroinvariant [TuVi92℄. In its de�nition it is not neessary to introdue fae ol-orings (beause Nki;j is always equal to 0 or 1 for any i; j; k in this ase) andorientations of edges (beause eah representation of Uq(sl2) is self-dual).The monoidal ategory of a set of quantum 6j -symbols is a modular ategory,Geometry & Topology Monographs, Volume X (20XX)



140 Edited by T. Ohtsukiand we an onstrut the Reshetikhin-Turaev invariant from it (see Setion 9.3).The square of the absolute value of the invariant is equal to the value of thestate-sum invariant derived from these 6j -symbols.The state-sum invariant derived from the set of 6j -symbols given by a 3-oyle� of a �nite group G is alled the Dijkgraaf-Witten invariant [DiWi90℄. Inpartiular, when � = 1, it is equal to the number of onjugay lasses ofrepresentations �1(M) ! G. It is further equal to the state-sum invariantderived from the set of 6j -symbols obtained from the representations of the�nite group G.When a set of 6j -symbols arises from a subfator, the state-sum invariantderived from these 6j -symbols is alled the Turaev-Viro-Oneanu invariant.There are in�nitely many subfators other than the above ases as shown inTable 6. The Turaev-Viro-Oneanu invariants derived from suh subfatorsmight be new invariants of 3-manifolds.Problem 9.2 (Y. Kawahigashi) Suppose we have a three-dimensional TQFT.Can we determine whether it arises from a fusion rule algebra and 6j -symbols?If yes, an we desribe all fusion rule algebras with 6j -symbols produing theTQFT?Remark (Y. Kawahigashi) By a result of Oneanu, we have at most only�nitely many suh fusion rule algebras with 6j -symbols, up to equivalene of6j -symbols.Problem 9.3 (Y. Kawahigashi) Suppose we have two fusion rule algebraswith 6j -symbols and that two TQFT's arising from them are isomorphi. Whatrelation do we have for the two sets of 6j -symbols?Remark (Y. Kawahigashi) Are they equivalent in the sense of [Sat97℄?Problem 9.4 (Y. Kawahigashi) Suppose we have a TQFT arising from afusion rule algebra with 6j -symbols. Using a fusion rule subalgebra and 6j -symbols restrited on it, we an onstrut another TQFT. What relation do wehave for these TQFT's?Remark (Y. Kawahigashi) How about the ase where the fusion rule subalgebraarises from �-indution? The �-indution produes a fusion rule algebra with6j -symbols from a semisimple ribbon ategory with �nitely many isomorphismlasses of simple objets and a spei� hoie of an objet satisfying ertainaxioms. See [BEK01℄, [KiOs02℄ and their referenes. If the original ribbonategory is modular, we have some answer in [BEK01℄, so it is partiularlyinteresting when the S -matrix is not invertible.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 1419.3 The state-sum invariants derived from ribbon ategoriesA ribbon ategory is a monoidal ategory fVigi2I equipped with a braidingV 
W ! W 
 V and a twist V ! V for any objets V and W whih aremaps satisfying ertain properties. We obtain an invariant of framed links froma ribbon ategory by assoiating a braiding to a rossing of a link diagram anda twist to a full-twist of a framing of a link. A monoidal ategory is alled semi-simple if any objet is isomorphi to a diret sum of simple ones. The S-matrixS = (Sij)i;j2I of a semi-simple ribbon ategory fVigi2I is de�ned by putting Sijto be the invariant of the Hopf link whose omponents are assoiated with Viand Vj . A modular ategory is a semi-simple ribbon ategory with �nitely manyisomorphism lasses of simple objets whose S-matrix is invertible. We obtainthe Reshetikhin-Turaev invariant of 3-manifolds and its TQFT from a modularategory by using surgery presentations of the 3-manifolds. See [BaKi01℄ fordetails of this paragraph.Monoidal ategory =) State-sum invariant of 3-manifolds and its TQFT?+ braiding+ twistRibbon ategory =) Invariant of framed links?+ semi-simple+ �niteness of I+ invertibility of SModular ategory =) Reshetikhin-Turaev invariant of 3-manifolds and its TQFTFigure 19: Monoidal, ribbon, modular ategories and their onsequenesThe quantum 6j -symbols are typial 6j -symbols whih indue modular ate-gories. The square of the absolute value of the Reshetikhin-Turaev invariantderived from a modular ategory is equal to the value of the state-sum invari-ant derived from the ategory. It is suggested by Oneanu that the monoidalategory of the quantum double of eah of suh subfators would be braided,and that the Reshetikhin-Turaev invariant derived from this quantum doublewould be equal to the Turaev-Viro-Oneanu invariant derived from the originalsubfator.Problem 9.5 (Y. Kawahigashi) Suppose we have a semisimple ribbon at-egory C with �nitely many isomorphism lasses of simple objets. If the S -Geometry & Topology Monographs, Volume X (20XX)



142 Edited by T. Ohtsukimatrix is invertible, we an onstrut the Reshetikhin-Turaev invariant andthe state-sum invariant from C and the latter is the square of the absolutevalue of the former. If the S -matrix is not invertible, do we still have a similardesription of the state-sum invariant?Remark See also Problem 9.11 for a similar problem for the Turaev-Viro-Oneanu invariants.Problem 9.6 (Y. Kawahigashi) Suppose we have a semisimple ribbon at-egory C1 with �nitely many isomorphism lasses of simple objets, but theS -matrix is not invertible. Then we an onstrut a new modular ategoryC2 ontaining C1 as a full subategory by the \quantum double" onstrution[On94, On01, Izu94℄, but there may be another extension of C1 to a modularategory. Theorem 2.13 in [On94℄ laims that we have a \minimal" exten-sion in an \essentially unique" way. Do we indeed have existene and ertainuniqueness of suh an extension? If so, what is the relation between the twoTQFT's arising from C1 and its minimal extension?Problem 9.7 (Y. Kawahigashi) Suppose we have a semisimple ribbon at-egory C1 with a degenerate S -matrix as in Problem 9.6. By the method in[M�ug00℄, we an also make a modular tensor ategory C2 from C1 . What isthe relation between the two TQFT's arising from C1 and C2?Problem 9.8 (Y. Kawahigashi) There are some fusion rule algebras with6j -symbols that do not seem to arise from quantum groups in [AsHa99℄ andmore onjetured andidates of suh examples in [Haa94℄. What are the or-responding TQFT's? Espeially if the series onjetured in [Haa94℄ does exist,it would give a parametrized family of TQFT's. Does a di�erentiation by aparameter (after a ertain reparametrization) give a more interesting invariant,possibly of Vassiliev type?9.4 The Turaev-Viro-Oneanu invariantsThe state-sum invariant of 3-manifolds derived from 6j -symbols is alled theTuraev-Viro-Oneanu invariant when the set of 6j -symbols arises from a sub-fator. There are in�nitely many subfators other than those derived fromquantum groups or �nite groups. The Turaev-Viro-Oneanu invariants derivedfrom suh subfators might be new invariants of 3-manifolds.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 143(N. Sato)The Haagerup subfator of Jones index 5+p132 has the smallest index among�nite depth subfators with Jones index bigger than 4 and it is expeted to havesome \exoti" properties from the subfator theoretial viewpoint. However, itdoes not seem so sensitive to lassify 3-manifolds. The Turaev-Viro-Oneanu in-variant onstruted from the Haagerup subfator annot distinguish lens spaesL(5; 1) and L(5; 2), as well as L(7; 1) and L(7; 2). On the other hand, general-ized E6 -subfators with the group symmetries Z=3Z and Z=5Z an distinguishL(3; 1) and L(3; 2), L(5; 1) and L(5; 2), respetively.Problem 9.9 (N. Sato) Find a subfator whih an distinguish lens spaesL(7; 1) and L(7; 2). Moreover, �nd a subfator to lassify 3-manifolds as wellas possible.In the lattie �eld theory, Ponzano and Regge [PoRe68℄ onstruted a state summodel for SU(2) and investigated an asymptoti behavior of the model.Some in�nite depth subfators are manageable in the sense of growth rate(amenability). Suh subfators are alled strongly amenable. The strong amenabil-ity ondition might be enough to ontrol the asymptoti behavior of the statesum model onstruted from a strongly amenable subfator.Problem 9.10 (N. Sato) Construt a well-de�ned state sum type invariantfrom a strongly amenable subfator.Note that, unlike the Ponzano-Regge model, we do not have an asymptotidesription of the quantum 6j -symbols in general. (Reall that 6j -symbols ofSU(2) have an asymptoti desription.)Let us onsider the Turaev-Viro-Oneanu invariant for a losed 3-manifoldonstruted from a subfator. Then, this invariant an be onsidered as aReshetikhin-Turaev type invariant onstruted from a subfator by passing theinitial subfator through the Longo-Rehren onstrution. If we start with asubfator whih has a non-degenerate braiding in partiular, then this Turaev-Viro-Oneanu invariant splits into a Reshetikhin-Turaev invariant and its om-plex onjugate. The following question will open a way to establish a theory ofthe minimal non-degenerate extension of a degenerate braiding.Problem 9.11 (N. Sato) Let us onsider the Turaev-Viro-Oneanu invariantfrom a subfator with a degenerate braiding. Then, �nd a desription of thisinvariant as a Reshetikhin-Turaev invariant.Geometry & Topology Monographs, Volume X (20XX)



144 Edited by T. OhtsukiRemark See also Problem 9.5 for a similar problem for the state-sum invariantsderived from ribbon ategories.
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Problems on Invariants of Knots and 3-Manifolds 14510 Casson invariant and �nite type invariants of 3-manifolds10.1 Casson and Rohlin invariantsIt is known as Rohlin theorem that the signature of a spin smooth losed 4-manifold is divisible by 16, whih dedue the following de�nition of the Rohlininvariant. For a losed 3-manifold M and a spin struture � on M , the Rohlininvariant �(M;�) 2 Z=16Z is de�ned to be the signature of any smooth ompatspin 4-manifold with spin boundary (M;�). In partiular, for a Z=2Z homology3-sphere M , the Rohlin invariant �(M) 2 Z=16Z is de�ned to be the signatureof any smooth ompat spin 4-manifold with boundary M , noting that thereexists a unique spin struture on suh a M . Casson invariant is a Z-valuedlift of the Rohlin invariant of integral homology 3-spheres. Further, it is known[Wal92℄ that�(M) � 4jH1(M ;Z)j2�CW(M) � 8jH1(M ;Z)j�CWL(M) (mod 16)for any Z=2Z homology 3-sphere, where �CW denotes the Casson-Walker invari-ant32 [Wal92℄ and �CWL denotes the Casson-Walker-Lesop invariant33 [Les96℄.For expositions of Casson and Rohlin invariants, see [KiMe91, Les96, Sav99℄.Problem 10.1 Can Casson invariant of an integral homology 3-sphere M beharaterized by the signature of a ertain 4-manifold bounded by M ?Remark It is shown in [FMM90℄ that Casson invariant of the Seifert �beredhomology 3-sphere �(�1; � � � ; �n) is equal to 1=8 times the signature of itsMilnor �ber.The Casson-Walker-Lesop invariant of losed 3-manifolds with positive Bettinumber an be omputed from the torsion invariant � of V. Turaev. He [Tur01℄gave a surgery formula for � , whih implies a surgery formula for the Casson-Walker-Lesop invariant.Problem 10.2 (V. Turaev) Relate this surgery formula for the Casson-Walker-Lesop invariant with that of Lesop [Les96℄.32The normalization here is that �CW(M) = 2�C(M) for an integral homology 3-sphereM .33The normalization here is that �CWL(M) = �jH1(M ;Z)j=2��CW(M) for a rational ho-mology 3-sphere M .Geometry & Topology Monographs, Volume X (20XX)



146 Edited by T. Ohtsuki(C. Lesop) In 1984, Casson de�ned his invariant of integral homology 3-spheres as an integer that \ounts" the SU(2)-representations of their funda-mental group in an appropriate way (see [AkM90, GuMa92℄). Cappell, Lee andMiller [CLM90℄ showed that the Casson way of ounting SU(2)-representationsof the �1 works for any ompat Lie group and provides other invariants of in-tegral homology spheres.Question 10.3 (C. Lesop) Are the Cappell-Lee-Miller Casson-type SU(n)-invariants of �nite type? If so, what are their degrees and their weight systems?Problem 10.4 (M. Polyak) De�ne an invariant � of a pair (M;�) of a losed3-manifold M and a spin struture � on M suh that�CWL(M) =X� �(M;�)for any losed 3-manifold M , where the sum runs over all spin strutures � onM .Note that the set of spin strutures on M is a torsor over H1(M ;Z=2Z) inthe sense that di�erenes of spin strutures an be deteted by ohomologylasses in H1(M ;Z=2Z), while the set of spin strutures on M is a torsor overH1(M ;Z) in a similar sense.Remark It is shown [OzSz00℄ that there exists an invariant �̂ of a rationalhomology 3-sphere M assoiated with a spin struture � on M suh that12 jH1(M;Z)j�CW(M) =X� �̂(M;�)for any rational homology 3-sphere M , where the sum runs over all spin stru-tures � on M . It is onjetured [OzSz00℄ that �̂ is equal to Seiberg-Witteninvariant for all rational homology 3-spheres.Remark (M. Polyak) Casson invariant is a lift of Rohlin invariant. We expetthat �(M;�) of Problem 10.4 should be a lift of �(M;�). How is P� �(M;�) 2Z=16Z related to �CWL(M)?It is known that this sum vanishes in Z=16Z when b1(M) > 3, while it is known[Les96℄ that �CWL(M) = 0 when b1(M) > 3.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 147Remark (C. Lesop) Let M be the 3-manifold obtained by surgery along aframed link L, and let W be the 4-manifold assoiated to the surgery presenta-tion. Then, 24�CWL(M)�3jH1(M ;Z)jsignW an be presented by a formula ofAlexander polynomial oeÆients and linking numbers of L ([Les96, Formula6.3.1℄), whih might be helpful.Note that the list of �(M;�) for a given M is riher than their sumP� �(M;�).For example, �(RP 3 ; �) = 1, �1 and �(RP 3#(Poinare sphere); �) = 7, 9,while their sums are equal in Z=16Z.Remark The invariant of Problem 10.4 should be related to the Goussarov-Habiro theory for spin 3-manifolds [Mass01℄. Reall that the Rohlin and Cas-son invariants an be haraterized as invariants under Y2 -equivalene and Y3 -equivalene among ZHS 's respetively. It was shown [Mass01℄ that Rohlininvariant of spin losed 3-manifolds is the invariant under spin Y2 -equivaleneamong spin losed 3-manifolds. What is the invariant under spin Y3 -equivalene?Remark Casson-Walker invariant an be haraterized as the �rst oeÆient ofthe perturbative expansion of the quantum SO(3) invariant �SO(3)(M) ([Mur95℄).We have a spin re�nement �SU(2)r (M;�) of the quantum SU(2) invariant �SU(2)r (M)for r � 0 mod 4 suh that�SU(2)r (M) =X� �SU(2)r (M;�);where the sum runs over all spin strutures � on M ([KiMe91℄). We expetthat �(M;�) of Problem 10.4 should be related to the �rst oeÆient of theperturbative expansion of �SU(2)r (M;�).When r � 2 mod 4, we have another re�nement �SU(2)r (M; �) for � 2 H1(M ;Z=2Z)suh that �SU(2)r (M) =X� �SU(2)r (M; �);when the sum runs over all ohomology lasses in H1(M ;Z=2Z). The �rst oef-�ient of the perturbative expansion of �SU(2)r (M; �) was disussed in [Mur99,Mur00a℄. It might be a problem to �nd a re�nement �(M; �) of �CW(M) forsome ohomology lass � .Remark Problem 10.4 is related to Problem 11.7, whih is a problem to �nda spin re�nement of the LMO invariant, noting that the �rst oeÆient of theLMO invariant is given by the Casson-Walker-Lesop invariant.Geometry & Topology Monographs, Volume X (20XX)



148 Edited by T. OhtsukiQuestion 10.5 (M. Polyak) Is there a \Rohlin invariant" of a pair (M;�) ofa losed 3-manifold M and a spin struture � on M ? (See Question 10.21.)Problem 10.6 (M. Polyak) By presenting 3-manifolds by surgery alongframed links in S3 , we an regard an invariant of 3-manifolds as an invari-ant of framed links. Establish a Gauss diagram formula for the link invariantderived from eah �nite type invariant of 3-manifolds.Remark (M. Polyak) The �rst step is to �nd a Gauss diagram formula forCasson invariant. The Casson-Walker invariant as an invariant of 2-omponentlinks is studied in [KiLi97℄.If we would obtain a Gauss diagram formula for the Casson-Walker-Lesopinvariant, then a spin re�nement of it (of Problem 10.4) would be obtained bydeorating the Gauss diagram formula by harateristi sublinks, noting thatthe spin strutures on the 3-manifold obtained by surgery along a framed linkL an be presented by harateristi sublinks of L (see [KiMe91℄).10.2 Finite type invariantsA link in an integral homology 3-sphere is alled algebraially-split if the linkingnumber of any pair of its omponents vanishes, and is alled boundary if all itsomponents bound disjoint surfaes. A framed link is alled unit-framed if theframings of its omponents are �1. Let M be the set of (homeomorphism lassesof) oriented integral homology 3-spheres, and let R be a ommutative ring with1. For an algebraially-split unit-framed link L in an integral homology 3-sphereM , we put [M;L℄ = XL0�L(�1)#L0ML0 2 RM ;where the sum runs over all sublinks L0 of L, and #L0 denotes the numberof omponents of L0 , and ML0 denotes the 3-manifold obtained from M bysurgery along L0 . Let Fasd (RM ) [Oht96a℄ (resp. Fbd (RM ) [Gar96℄) denote thesubmodule of RM spanned by [M;L℄ suh that M is an integral homology 3-sphere and L is a unit-framed algebraially-split link L with d omponents inM (resp. a unit-framed boundary link L in M ). Let FYd (RM ) [GGP01℄ denotethe submodule of RM spanned by [M;G℄ suh that M is an integral homology3-sphere and G is a olletion of d disjoint Y-graphs (see Figure 11) in M ,where [M;G℄ is de�ned similarly as [M;L℄ (see [GGP01℄).34 A homomorphism34FYd (RM ) an alternatively be de�ned by using blinks [GaLe97℄; see [GGP01℄.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 149v : RM ! R is alled a �nite type invariant of Fas? -degree d (resp. Fb? -degree d,or FY? -degree d) if v vanishes on Fasd+1(RM ) (resp. Fbd+1(RM ), or FYd+1(RM )).It is known [GaOh98℄ thatFas3d(QM ) = Fas3d�1(QM ) = Fas3d�2(QM )and that there is an isomorphismA(;;Q)(d) �! Fas3d(QM )=Fas3d+3(QM )between vetor spaes [GaOh98, Le97℄. It is known [GGP01℄ thatFbd (ZM ) � FY2d(ZM ); Fas3d(ZM ) � FY2d(ZM );Fas3d(RM ) = Fbd (RM ) = FY2d(RM );FY2d�1(RM ) = FY2d(RM )if 1=2 2 R.10.2.1 Torsion and �nite type invariantsConjeture 10.7 Fasd (ZM )=Fasd+1(ZM ) (resp. Fbd (ZM )=Fbd+1(ZM )) is torsionfree for eah d.Remark (K. Habiro) The group FYd (ZM )=FYd+1(ZM ) has 2-torsion for eahd > 0.Conjeture 10.8 A(;;Z) is torsion free.10.2.2 Do �nite type invariants distinguish homology 3-spheres?Conjeture 10.9 Finite type invariants distinguish integral homology 3-spheres.(See Conjeture 11.2.)10.2.3 Dimensions of spaes of �nite type invariantsA �nite type invariant v is alled primitive if v(M1#M2) = v(M1) + v(M2)for any integral homology 3-spheres M1 and M2 . We denote by A(;;R)onnthe submodule of A(;;R) spanned by Jaobi diagrams with onneted trivalentgraphs. As a graded vetor spae A(;;Q) is isomorphi to the symmetri tensoralgebra of A(;;Q)onn .Geometry & Topology Monographs, Volume X (20XX)



150 Edited by T. Ohtsukid 0 1 2 3 4 5 6 7 8 9 10prime diag. 0 1 0 0 1 0 1 1 1dim A(;)(d)onn 0 1 1 1 2 2 3 4 5 6 8dim A(;)(d) 1 1 2 3 6 9 16 25 42 65 105d 11 12 13 14prime diag.dim A(;)(d)onn 9 �11 �13 �15dim A(;)(d) 161 �254 �386 �595Table 7: Some dimensions for Problem 10.10Problem 10.10 Determine the dimension of the spae of primitive �nite typeinvariants of integral homology 3-spheres of eah degree d. Equivalently, deter-mine the dimension of the spae A(;;Q)(d)onn for eah d.Remark A(;;Q)(d)onn is isomorphi to B(d+1;2)onn mentioned in a remark of Problem2.12, by the isomorphism taking a trivalent graph to a uni-trivalent graph ob-tained from the trivalent graph by utting a middle point of an edge. Hene, thedimension of A(;;Q)(d)onn is equal to the dimension �d+1;2 of B(d+1;2)onn . Therefore,we obtain the row of A(;;Q)(d)onn in Table 7 from a olumn of Table 2.Remark A(;)onn is an algebra with the produt given by onneted sum ofJaobi diagrams. Let us look for prime diagrams with respet to the onnetedsum; they generate the algebra A(;)onn . By the AS and IHX relations, we anremove a triangle, and we an break a polygon with odd edges. Hene, primediagrams are given byp1 = ; p4 = ; p6 = ;
p7 = ; p8 = ; � � � :They have the relation p1p7 = p24 , sine p1p7 = p1(x3p4) = (x3p1)p4 = p24 ,where x3 is the element of Vogel's algebra � given in (49) below, whih atsGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 151on A(;)onn . It is a problem to �nd a omplete list of generators and relationsof the algebra A(;)onn .Remark A(;;Q)onn is a �-algebra, where � is Vogel's algebra given below,whose generators and relations have been known in degree � 10; see a remarkon Problem 10.11. It is a problem to �nd generators and relations of A(;;Q)onnas a �-algebra.10.2.4 Vogel's algebraVogel's algebra [Vog96℄ is de�ned as follows. For �xed 3 points, we denoteby A(3 points)onn the module over Q spanned by vertex-oriented onneteduni-trivalent graphs whose univalent verties are the �xed 3 points subjet tothe AS and IHX relations. The symmetri group S3 ats on A(3 points)onnby permutation of 3 points. The module � is de�ned to be the submodule ofA(3 points)onn onsisting of all elements u satisfying that �(u) = sgn(�) � ufor any � 2 S3 . It is well de�ned to insert u 2 � in a vertex-oriented trivalentvertex as 7�! :Moreover, this insertion is independent, modulo the AS and IHX relations, ofa hoie of a trivalent vertex as follows. By the AS and IHX relations,� = = �
= � ;

Geometry & Topology Monographs, Volume X (20XX)



152 Edited by T. Ohtsukiwhere the middle equality is derived from the anti-symmetry of u. By the �=4and ��=4 rotations of the above formula, we have that� = �= � :Hene, the left hand side of the above formula is equal to 0. This implies thatthe insertion of u is independent of a hoie of a trivalent vertex. The module� is an algebra, alled Vogel's algebra, whose produt of x; y 2 � is de�ned tobe the element of � obtained by inserting x in a trivalent vertex of y . It is aommutative algebra. Some generators of � in low degrees are given by1 = ; t = ; x3 = ; (49)and further, xn = ;having n horizontal lines between the vertial line and the irle. It is knownthat the even xn 's an be presented by odd xn 's.Problem 10.11 Desribe Vogel's algebra �, say, by giving omplete sets ofgenerators and relations of �.Remark Vogel [Vog99℄ onjetured that the homomorphism ' : R0 ! � givenin [Vog99℄ was bijetive, where R0 is the subalgebra of a polynomial algebra in3 variables, generated by elements given in [Vog99℄. As mentioned in [Vog99℄,' has been known to be bijetive in degree � 10, and injetive in degree � 15.Reently (in June, 2001), Vogel found a polynomial in R0 whose image in �vanishes; this implies that ' is not injetive. Surjetivity of ' (whih impliesthat � is generated by t; x3; x5; x7; � � � ) is still an open problem.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 153Vogel [Vog℄ further found a divisor of zero in �. It is given as follows. Putting
U = ;

we de�ne W 2 A(;) and � 2 � byW =X� sign(�) = ;where the sum of � runs over all permutations � 2 S6 , and � is obtainedfrom W by removing a neighborhood of a trivalent vertex. Vogel showed thatt� = 0 2 � and � 6= 0 2 �.10.2.5 Other problemsProblem 10.12 Find a onstrutive ombinatorial presentation of eah �nitetype invariant of integral homology 3-spheres, and, in partiular, of Cassoninvariant, by loalizing on�gration spae integrals.Remark The perturbative expansion of the path integral of the Chern-Simons�eld theory suggests that eah Vassiliev invariant of knots an be obtained asa mapping degree of a ertain map on a on�guration spae, whose loaliza-tion dedues a Gauss diagram formula of this Vassiliev invariant; see ommentsbefore Problem 3.11. In the 3-manifold ase G. Kuperberg and D. Thurston[KuTh99℄ gave a presentation of eah �nite type invariant by using on�gura-tion spae integrals, whose loalization might dedue a ombinatorial formula,similarly as a Gauss diagram formula. It would be a diÆult point of suhloalization to deal with \hidden strata" (anomaly faes).Problem 10.13 (J. Roberts) What is the spae of 3-manifolds?Remark (J. Roberts) Vassiliev invariants are usually haraterised in purelyombinatorial terms, but it is worth remembering that Vassiliev was led toGeometry & Topology Monographs, Volume X (20XX)



154 Edited by T. Ohtsukithis de�nition by onsidering the natural strati�ation of the spae of smoothmaps S1 ! R3 . The ombinatorial theory of �nite type invariants of homologyspheres is now equally well-developed but there remains no natural justi�ationfor onsidering the relations introdued by Ohtsuki, other than that these turnout to interat very well with the perturbative expansion of the Witten invari-ants. One would like to �nd a strati�ed spae of integer homology spheres, inwhih rossing a odimension 1 stratum orresponds to doing �1 surgery ona knot. Now the spae of smooth maps f : Sn+3 ! Sn is a natural hoie fora \spae of framed 3-manifolds", via the Pontrjagin-Thom onstrution (takethe preimage of a �xed point in Sn ). But this spae gives the wrong �ltration,and it's not lear how to alter it to implement (for example) onstraints on thehomology of the preimages. See Shirokova [Shir00℄.10.3 Goussarov-Habiro theory10.3.1 Goussarov-Habiro theory for 3-manifoldsRelated to �nite type invariants of 3-manifolds, equivalene relations among 3-manifolds have been studied by Goussarov [Gou95, Gou99℄ and Habiro [Hab00℄,whih is alled the Goussarov-Habiro theory for 3-manifolds. These equivalenerelations are helpful for us to study strutures of the set of 3-manifolds.The Yd -equivalene35 among oriented 3-manifolds is the equivalene relationgenerated by either of the following relations,(1) surgery on a tree lasper with d trivalent verties [Hab00℄,(2) Goussarov's d-variation (whih generates Goussarov's notion of (d � 1)-equivalene) [Gou95, Gou99℄,(3) surgery by an element in the dth lower entral series subgroup of theTorelli group of a ompat onneted surfae.It is known [Hab00℄ that these relations generate the same equivalene rela-tion among ZHS 's. Two losed 3-manifolds M and M 0 are Y1 -equivalent ifand only if there is an isomorphism H1(M ;Z)! H1(M 0;Z) whih indues anisomorphism between their linking pairings ([Mat87℄).It is known [Hab00℄ that fintegral homology 3-spheres (ZHS 's)g=�Y2�= Z=2Zand that fZHS 'sg=�Y3�= Z, whih dedue the Rohlin and Casson invariants35The Yd -equivalene is also alled the (d � 1)-equivalene (due to Goussarov) in someliteratures.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 155respetively. Further, it is known [Hab00℄ that fM �Y2d�1 S3g=�Y2d= 0 for d > 1and that there exists a natural surjetive homomorphismA(;;Z)(d)onn �! fM �Y2d S3g= �Y2d+1 (50)suh that the tensor produt of this map and Q is an isomorphism. In partiular,fM �Y2d S3g= �Y2d+1 forms an abelian group with respet to the onneted sum ofZHS 's, and hene, so does fZHS 'sg= �Y2d+1 .Conjeture 10.14 The map (50) is an isomorphism.This onjeture might be redued to Conjeture 10.8 and the following onje-ture.Conjeture 10.15 fM �Y2d S3g= �Y2d+1 is torsion free for eah d.Remark Conjeture 10.8 implies this onjeture, sine the surjetive homomor-phism (50) gives a Q -isomorphism.Remark (K. Habiro) It is also a problem to desribe the graded set fM �YdM0g= �Yd+1 for an arbitrarily given 3-manifold M0 . For d = 0, the quotientset f3-manifoldsg=�Y1 an be identi�ed with the set of isomorphism lasses ofH1(M ;Z) and their linking pairings (as mentioned above). For d > 0, there isa surjetive map to this graded set from a ertain module of Jaobi diagrams(subjet to the AS and IHX relations).Problem 10.16 (T. Ohtsuki) De�ne a produt M1 ÆM2 of integral homol-ogy 3-spheres M1 and M2 whih is related, by (50), to the produt of Jaobidiagrams given by their onneted sum.Remark A(;)onn is an algebra with the produt given by onneted sum ofJaobi diagrams. The onneted sum of Jaobi diagrams on ; is well de�nedby the AS and IHX relations. The sum of A(;)onn orresponds, by (50), tothe onneted sum of integral homology 3-spheres. The problem is to de�nea produt among integral homology 3-spheres orresponding to the produt ofA(;)onn by (50).Geometry & Topology Monographs, Volume X (20XX)



156 Edited by T. OhtsukiIt is known [Gou95, Hab00℄ that two integral homology 3-spheres M and M 0are Yd -equivalent if and only if v(M) = v(M 0) for any A-valued �nite typeinvariant36 v of FY? -degree < d for any abelian group A. In fat, a naturalquotient map fZHS 'sg ! fZHS 'sg=�Yd is a �nite type invariant of FY? -degree< d, whih lassi�es Yd -equivalene lasses of integral homology 3-spheres.For an oriented ompat surfae F , a homology ylinder over F is a homologyF � I whose boundary is parameterized by �(F � I).Conjeture 10.17 (M. Polyak, see [Gou99, \Theorem 4"℄) Let F be anoriented ompat surfae. Two homology ylinders C and C 0 over F are Yd -equivalent if and only if v(C) = v(C 0) for any A-valued �nite type invariant vof FY? -degree < d for any abelian group A.Remark (M. Polyak) The orresponding assertion for losed 3-manifolds doesnot hold; note that flosed 3-manifoldsg=�Yd does not (naturally) form a group.Reall that fZHS 'sg=�Yd forms an abelian group, whih guarantees the orre-sponding assertion for ZHS 's, as mentioned above. The set fhomology ylinderson F g=�Yd forms a group with respet to the omposition of homology ylinders,though it is not abelian.10.3.2 Goussarov-Habiro theory for spin and spin 3-manifoldsAs shown in [Mass01℄, we have a natural spin (resp. spin struture) on the3-manifold obtained from a spin (resp. spin) 3-manifold by surgery along a Ygraph (or a tree lasper). We de�ne the Y sd -equivalene (spin Yd -equivalene)(resp. Y d -equivalene (spin Yd -equivalene)) to be the equivalene relationamong spin (resp. spin) 3-manifolds given by the Yd -equivalene. It is known[Mass01℄ that the quotient set fspin losed 3-manifoldsg=�Y s1 an be identi�edwith the isomorphism lasses of pairs of H1(M ;Z) and ertain quadrati forms�M;� : TorH1(M ;Z)! Q=Z, or equivalently, the isomorphism lasses of triplesof H1(M ;Z) and linking pairings �M : �TorH1(M ;Z)�
2 ! Q=Z and the mod8 redution of the Rohlin invariant �(M;�). Further, it is known [DeMa02℄ the36 For an abelian group A , a homomorphism v : ZM ! A is alled a �nite typeinvariant of FY? -degree d if v vanishes on FYd+1(ZM ).The �rst version of Setion 10.3.2 was written by T. Ohtsuki, following a report of F.Deloup. Based on it, F. Deloup wrote this setion.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 157quotient set fspin losed 3-manifoldsg=�Y 1 an be identi�ed with the set of theisomorphism lasses of pairs of H1(M ;Z) and ertain quadrati forms q� . Thisset would be well desribed by the lassi�ation of the following problem.Problem 10.18 (F. Deloup) Classify the monoid (for orthogonal sum) ofisomorphism lasses of quadrati forms q� .Remark The quotient set flosed 3-manifoldsg=�Y1 an be identi�ed with the setof the isomorphism lasses of pairs of H1(M ;Z) and linking pairings. This setan be well desribed by the lassi�ation of linking pairings given in [KaKo80℄.Problem 10.19 (G. Massuyeau) Desribe the quotient setfspin losed 3-manifoldsg=�Y sd , in partiular, for d = 2; 3.Problem 10.20 (F. Deloup, G. Massuyeau) Desribe the quotient setfspin losed 3-manifoldsg=�Y d , in partiular, for d = 2; 3.Remark There is a unique spin (resp spin) struture on a ZHS. Hene,fspin ZHS 'sg=�Y sd (resp. fspin ZHS 'sg=�Y sd ) is equal to fZHS 'sg=�Yd . Thisquotient set an be desribed by Jaobi diagrams (see Conjeture 10.15).Remark The above two problems are related to spin and spin re�nements ofthe Casson-Walker-Lesop invariant; see Problem 10.4.Deloup and Massuyeau [DeMa02℄ obtained a omplete system of invariants forquadrati funtions on �nite abelian groups whih involves the Gauss-Browninvariant (q) =Px2G e2�p�1q(x) of a quadrati form q . In the ase q� omesfrom a usual spin struture, q� is homogeneous37 and the argument of (q�) isjust the mod 8 redution of the Rohlin invariant. (Here we take the lassialRohlin invariant of a spin struture on M to be the signature mod 16 of an ori-ented smooth simply-onneted 4-manifold bounded by M .) Thus, in general,arg (q�) 2 Q=Z may be viewed as mod 8 generalization of Rohlin invariant for37A quadrati funtion q is a a map suh that q(x+ y) � q(x)� q(y) is bilinear in x andy . It is alled homogeneous if q(nx) = n2q(x) for any n 2 Z and x 2 G . In fat, there is aanonial map � 7! q� from spin strutures to quadrati funtions and q� is homogeneousif and only if � atually omes from a spin struture. Note that not all spin strutures omefrom spin strutures.Geometry & Topology Monographs, Volume X (20XX)



158 Edited by T. Ohtsukispin strutures. In the ontext of spin Goussarov-Habiro theory, Massuyeauproved that the Rohlin invariant is a �nite type invariant of degree 1. Thissuggests the following question.Question 10.21 (F. Deloup) Is there a lift of arg (q�) to a mod 16 invariant?This would give a �nite type invariant of degree 1 in the spin Goussarov-Habirotheory.

Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 15911 The LMO invariantThe LMO invariant ZLMO(M) 2 A(;) of losed oriented 3-manifolds was in-trodued in [LMO98℄. The LMO invariant of rational homology 3-spheres wasreformulated by Aarhus integral [BGRT02℄. The LMO invariant is a universalperturbative invariant of rational homology 3-spheres (see [Oht00, BGRT02,Oht02℄), and a universal �nite type invariant of integral homology 3-spheres[Le97℄.11.1 Calulation of the LMO invariantProblem 11.1 For eah rational homology 3-sphere M , alulate ZLMO(M)for all degrees.Remark Bar-Natan and Lawrene [BaLa00℄ showed a rational surgery formulafor the LMO invariant. By using it, they obtainedẐLMO�L(p; q)� = h
x;
�1x 
x=pix exp �s(q; p)48 � (51)for the lens spae L(p; q) of type (p; q), where s(q; p) denotes the Dedekindsum. For the notation h
x;
�1x 
x=pix see [BaLa00℄.Remark The degree 1 part of ZLMO(M) is given by Casson-Walker invariantof M ([LMO98℄). Further, the degree � d part of ZLMO(M) of integral ho-mology 3-spheres are given by �nite type invariants of degree � d. Hene, itis algorithmially possible to alulate the degree � d part of ZLMO(M) of anintegral homology 3-sphere for eah d. It is meaningful to alulate ZLMO(M)for all degrees.Remark It is meaningful to alulate ZLMO(M) when M is a rational homology3-sphere. Otherwise, it is known that ZLMO(M) an be given by some \lassi-al" invariants. When b1(M) = 1, the value of ZLMO(M) an be presented byusing the Alexander polynomial of M ([GaHa00, Lie00℄). When b1(M) = 2,the value of ZLMO(M) an be presented by using the Casson-Walker-Lesopinvariant of M ([HaBe00℄). When b1(M) = 3, the value of ZLMO(M) an bepresented by using the ohomology ring of M ([Habe96℄). When b1(M) > 3,we always have that ZLMO(M) = 1 ([Habe96℄).Geometry & Topology Monographs, Volume X (20XX)



160 Edited by T. Ohtsuki11.2 Does the LMO invariant distinguish integral homology 3-spheres?Conjeture 11.2 The LMO invariant distinguishes integral homology 3-spheres.(See Conjeture 10.9.)Remark Bar-Natan and Lawrene [BaLa00℄ showed (as a orollary of theiralulation (51)) that the LMO invariant does not separate lens spaes. Theyalso showed in [BaLa00℄ that the LMO invariant separates integral homologySeifert �bered spaes.Problem 11.3 Does there exist an integral/rational homology 3-sphere Msuh that ZLMO(M) = ZLMO(S3)?11.3 Charaterization of the image of the LMO invariantProblem 11.4 Charaterize those elements of Â(;)onn of the form logZLMO(M)for integral/rational homology 3-spheres.Remark Sine �SO(3)(M) an be obtained from ZLMO(M) by applying theweight system Wsl2 , some haraterization of this problem might be obtainedfrom the haraterization of the form �SO(3)(M) (Problem 7.28), say, from theintegrality of the oeÆients of �SO(3)(M) for integral/rational homology 3-spheres M . Some other haraterization of this problem might by obtainedfrom the loop expansion of the Kontsevih invariant.11.4 Variations of the LMO invariantProblem 11.5 Construt the LMO invariant with oeÆients in a �nite �eld.Remark If the Kontsevih invariant with oeÆients in a �nite �eld would beonstruted (see Problem 3.7), then it would be helpful for this problem.Problem 11.6 Construt the LMO invariant (or the theory of �nite type in-variants) in arrow diagrams.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 16111.5 Re�nements of the LMO invariant(T. Le) As mentioned in a remark in Problem 11.1, the LMO invariant is aweak invariant when b1(M) > 0; in partiular, ZLMO(M) = 1 when b1(M) > 3.The following two problems might give re�nements of ZLMO(M) whih wouldbe stronger than ZLMO(M), in partiular, when b1(M) > 0.Problem 11.7 (T. Le, V. Turaev) De�ne the LMO invariant ZLMO(M;�)of the pair of a losed 3-manifold M and a spin struture � of M suh thatZLMO(M) = P� ZLMO(M;�), where the sum runs over all spin strutures onM . There is also a similar problem for spin strutures.Remark The quantum SU(2) invariant of (M;�) satis�es that �SU(2)r (M) =P� �SU(2)r (M;�) for r divisible by 4 (see [KiMe91℄). The ZLMO(M;�) shouldbe de�ned suh that �SU(2)r (M;�) an be reovered from ZLMO(M;�) in anappropriate sense, and suh that the oeÆients of ZLMO(M;�) are \�nite typeinvariants" of (M;�) under an appropriate de�nition of �nite type invariantsof (M;�).The set of spin struture is a torsor over H1(M ;Z=2Z) in the sense that thedi�erene of two spin strutures is an element in H1(M ;Z=2Z), and everyelement of H1(M ;Z=2Z) is the di�erene of some spin struture and a �xedone. Similarly, the set of all spin struture is a torsor over H1(M;Z). In thissense the previous problem might be related to the following problem.Problem 11.8 (T. Le, V. Turaev) For every element � 2 H1(M;Z) onstrutan extension of ZLMO(M; �) of the LMO invariant suh that when � = 0 onereovers the usual LMO invariant.The idea is that the usual LMO invariant orresponds only to the trivial oho-mology lass, and for manifolds with high Betti number, it is equal to 0. K.Habiro has an extension of the LMO invariant that might be a solution to thisproblem.Remark For a �nite abelian group A and � 2 H1(M;A), let �(M; �) be theinvariant of (M; �), de�ned from a modular A-ategory, and let �(M) be theinvariant of M derived from a modular ategory forgetting A-grading. Then,�(M) = P� �(M; �). (For details, see [LeTu01℄.) The ZLMO(M; �) should bede�ned suh that a suitable �(M; �) an be reovered from ZLMO(M; �) in anappropriate sense, and suh that the oeÆients of ZLMO(M; �) are \�nite typeinvariants" of (M; �) under an appropriate de�nition of �nite type invariantsof (M; �).Geometry & Topology Monographs, Volume X (20XX)



162 Edited by T. Ohtsuki11.6 Other problemsQuestion 11.9(1) Find a surgery formula for the Kuperberg-Thurston invariant [KuTh99℄in terms of the Chern-Simons series of Question 3.12(2) Compare the Kuperberg-Thurston invariant to the LMO invariant.Problem 11.10 (D. Thurston) Do on�guration spaes of [KuTh99℄ havetorsion in Z-homology? Does suh torsion dedue a torsion invariant of homol-ogy 3-spheres?
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Problems on Invariants of Knots and 3-Manifolds 16312 Other problems12.1 (Pseudo) Legendrian knot invariantsLet W be a ompat losed oriented 3-manifold. (K; v) is said a pseudo Leg-endrian pair in W if K � W is a knot, v is a non singular vetor �eld on Wand K is transverse to v . K is simply said a (pL)-knot. (Kt; vt), t 2 [0; 1℄, isa pseudo Legendrian isotopy if Kt is an ambient isotopy of knots, vt is a homo-topy of �elds and (Kt; vt) is a (pL)-pair for every t 2 [0; 1℄. Every (pL)-knotis naturally a framed knot, and every (pL)-isotopy is in partiular a framedknots isotopy. If � is a transversely oriented ontat struture on and K is � -Legendrian in the lassial sense, then K is a (pL)-knot w.r.t. any �eld v whihis positively transverse to � . Every Legendrian isotopy between � -Legendrianknots indues a (pL)-isotopy. So we have 3 ategories of knots, related bynatural forgetting maps:fLegendrian knotsg f1! f(pL)-knotsg f2! fframed knotsg:Note that, for eah one of these ategories, C say, also the C -homotopy immer-sion lass of any C -knot is naturally de�ned, this ontains the C -isotopy lassand is preserved by the forgetting maps.In [BePe01a℄ one has introdued the Reidemeister-Turaev torsions of (pL)-knots; one has realized that torsions inlude a orret lifting to the (pL)-ategory of the lassial Alexander invariant; moreover, in many ases (forinstane when W is a Z-homology sphere), they an distinguish (pL)-knotswhih are isotopi as framed knots.Question 12.1 (R. Benedetti) Are torsions atually sensitive only to the(pL)-homotopy immersion lasses of (pL)-knots?If one �x a C - homotopy immersion lass of knots, say � , then one an de�nethe set of �nite type invariants F(�) of the C -isotopy lasses ontained in �. If�0 is a lass of Legendrian knots, one an take �1 = f1(�0) and �2 = f2(�1);a �nite type invariant for �i lifts to a �nite type invariant for �i�1 . So one hasnatural maps F(�2) f�2! F(�1) f�1! F(�0):It is known [FuTa97℄ that, under ertain hypotheses on W (for instane whenW is a Z-homology sphere), f�1 Æ f�2 is a bijetion. On the oder hand, oneSetion 12.1 was written by R. Benedetti.Geometry & Topology Monographs, Volume X (20XX)



164 Edited by T. Ohtsukian �nd in [Th03℄ examples where f�1 Æ f�2 is not surjetive and Legendrian�nite type invariants an eventually distinguish some Legendrian knots whihare isotopi as framed knots. In fat one an realize that for these examplesf�2 is already not surjetive and that (pL)-�nite type invariants an eventuallydistinguish some (pL)-knots whih are isotopi as framed knots. The followingonjeture is not in ontradition with all these known results on the subjet.Conjeture 12.2 (R. Benedetti) For every W , for every (pL)-lass �1 asabove, f�1 is an isomorphism. This means, in partiular, that �nite type invari-ants of Legendrian knots should be de�nitely not sensitive to geometri (rigid)properties of the ontat strutures like \tightness".See also [BePe01b℄ for a more detailed disussion and related questions.12.2 Knots and �nite groupsKnot groups are known to be residually �nite, that is, any non-trivial elementan be deteted by a homomorphism to some �nite group.Now by Dehn's lemma and the loop theorem a knot is trivial if and only ifits longitude represents the trivial element of the knot group. Consequentlyfor eah non-trivial knot there is a homomorphism to some �nite group whiharries the longitude to a non-trivial element.Problem 12.3 (H. R. Morton) From a knot diagram �nd an expliit suhhomomorphism to some permutation group or establish that the knot is trivial.Re�nements.1. Give an upper bound in terms of the diagram for the order of the permu-tation groups whih need to be onsidered.2. See what happens if the meridians (whih are all onjugate) are restritedto map to permutations of some spei�ed yle type, for example, single trans-positions.Remark Every �nite group is the subgroup of a permutation group, so norestritions are implied here.The language of quandles ould be adopted for 2 when referring to the hosenmeridian onjugay lass.Setion 12.2 was written by H. R. Morton.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 165It is possible to represent some knot groups onto a �nite non-yli group withthe longitude mapping trivially. This always happens when n-olouring a knot,as the knot group is mapped onto the dihedral group Dn , and the longitudegoes into its ommutator subgroup. The problem here fousses on the strongerquestion of representing the longitude non-trivially.12.3 The numbers of 3-, 5-olorings and some loal movesA p-oloring of a link L is a homomorphism of the link quandle of L to thedihedral quandle Rp of order p (or, alternatively, a homomorphism of �1(S3�L)to the dihedral group of order 2p whih takes eah meridian to a reetion).38Let Colp(L) denote the number of p-olorings of L (see the remark of Problem4.16). The following onjeture implies that the 3-move (see Figure 20) wouldtopologially haraterize the partition of the set of links given by Col3(L);note that Col3(L) is unhanged under the 3-move.Conjeture 12.4 (3-move onjeture, Y. Nakanishi [Nak94℄) Any link an berelated to a trivial link by a sequene of 3-moves.Remark Col3(L) is equal to 3n+1 , where n is the rank of H1(M2(L);Z=3Z) andM2(L) denotes the double over of S3 branhed along L. Further, Col3 of thetrivial link with n omponents is equal to 3n . Hene, if a link L is related to atrivial link by 3-moves, then suh a trivial link has log3 Col3(L) omponents.Remark ([Kir97, Remark on Conjeture 1.59 (1)℄) Sine Bn=h�3i i is �nitefor n � 5, the proof of this onjeture for losures of braids of at most 5strands is redued to verifying �nitely many ases. Aording to Y. Nakanishi,the smallest known obstrution of this onjeture is the 2-parallel of a set ofBorromean rings.Remark ([Sto03℄) This onjeture is true for weak genus two knots.Update Dabkowski and Przytyki [DaPr02℄ showed that some links annot beredued to trivial links by 3-moves, whih are ounterexamples to this onje-ture.38The original de�nition of a 3-oloring by Fox (see [CrFo63, Chapter VI, Exerise 6℄) is (anequivalent notion of) a non-trivial homomorphism of the link quandle of L to the dihedralquandle R3 . Przytyki [Prz98a℄ studied the number of 3-olorings. His de�nition allows trivialhomomorphisms.Geometry & Topology Monographs, Volume X (20XX)



166 Edited by T. OhtsukiIt is shown in [HaU93℄ that Col5(L) is invariant under the (2,2)-move (seeFigure 20). The following onjeture implies that the (2,2)-move would topo-logially haraterize the partition of the set of links given by Col5(L).Conjeture 12.5 (Y. Nakanishi, T. Harikae [Kir97, Conjeture 1.59 (6)℄)Any link an be related to a trivial link by a sequene of (2,2)-moves.Remark This onjeture holds for algebrai links; see [Kir97, Conjeture 1.59(6)℄, [Prz98a℄, and referenes therein.The 3-move :  !The (2,2)-move :  !Figure 20: The 3-move and the (2,2)-move12.4 Knotted trivalent graphsD. Bar-Natan and D. Thurston [BaTh01a, BaTh01b, Thu01℄ developed thetheory of knotted trivalent graphs and their algebra, related to shadow surfaesof V. Turaev [Tur94℄ and Lie groups/algebras.A knotted trivalent graph (KTG) is a (framed) embedding of a (ribbon) trivalentgraph � into S3 , where framing is an integer of a half integer (hene, the ribbonof a trivalent graph is not neessarily orientable). There are four operations ofKTG's: onneted sum, unzip, bubbling and unknot; see Figure 21. Any KTG(in partiular, any link) an be obtained from opies of tetrahedron and M�obiusstrip with �1=2 framing by applying KTG operations. Further, two sequenesof KTG operations give the same KTG, if and only if they are related byertain (�nitely many) relations inluding the pentagon and hexagon relations(see [BaTh01b℄). Thus, the theory of KTG's is �nitely presented in this sense.The Kontsevih invariant of framed links have an extension for KTG's (see[MuOh97℄) and the extended Kontsevih invariant is well-behaved under theSetion 12.4 was written by T. Ohtsuki, following seminar talks given by D. Thurston.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 167Conneted sum : �!Unzip : �!Bubbling : �!Unknot : ; �!Figure 21: Four operations of KTG's [BaTh01b℄. The left hand side of the onnetedsum denotes a disjoint union of two separate graphs.KTG operations suh that they give another onstrution of the Kontsevihinvariant starting from the invariants of tetrahedron and M�obius strip.Problem 12.6 Find a new proof of the existene of a universal Vassiliev in-variant of knots, presenting them by KTG's and their operations.Conjeture 12.7 (D. Bar-Natan, D. Thurston) For eah ompat Lie groupG, level k , and every KTG K : � ! R3 , there exists a olletion of measures�K on the spae of gauge equivalene lasses of G-onnetions on � satisfyingthe following onditions.� It is well-behaved under KTG operations.� It is \loalized" near onnetions that extend to S3 �K .� A half-twist framing hange ats by ep�1H~=2 , where H is the Shr�odingeroperator on G.� It reovers quantum invariants byIR(K) = Z hR(A)d�K (A);where hR(A) denotes the holonomy of A in R. Here, R is a set ofrepresentations of G assoiated to edges of � and appropriate intertwinersassoiated to verties of �.Geometry & Topology Monographs, Volume X (20XX)



168 Edited by T. OhtsukiRemark ([Bar00, BaTh01a℄) The physial presentation of the quantum in-variant of a knot K assoiated with a representation R of G is given by theChern-Simons path integral,Zk(S3;K) = Z hR(A)e2�p�1kCS(A)DA;where CS(A) denotes the Chern-Simons funtional of A and the integral is aformal integral over the in�nite dimensional spae of all G onnetions on S3 .It is a motivation of Conjeture 12.7 that a olletion of �K should play a role ofe2�p�1kCS(A)DA. It is expeted [Bar00, BaTh01a℄ that the olletion of mea-sures �K of Conjeture 12.7 would prove the asymptoti expansion onjeture(Conjeture 7.6).Problem 12.8 Construt an invariant of KTG's from on�guration spae in-tegrals in a natural way.Turaev [Tur94℄ introdued a presentation of 3-manifolds as S1 -bundles over\shadow surfaes", as follows (for details see [Tur94, BaTh01b, Thu01℄). Afake surfae is a singular surfae suh that a neighborhood of eah point ishomeomorphi to an open subset of the one over a tetrahedron. A S1 -bundleover a fake surfae an appropriately be de�ned and its isomorphism lass isdetermined by the Chern number, whih is an integer or half-integer assoiatedto eah fae; we all the Chern number the gleam. A shadow surfae is a fakesurfae with gleams assoiated to the faes. Every (losed) 3-manifold an bepresented by a S1 -bundle over a (losed) shadow surfae. The pentagon andhexagon relations (see [Tur94, Figure 1.1 of Chapter VIII℄) are moves amongshadow surfaes whih present a homeomorphi 3-manifold, though they arenot enough to haraterize a homeomorphism lass of 3-manifolds.Exerise 12.9 Find a omplete set of moves among shadow surfaes whihpresent a homeomorphi 3-manifold.We obtain a shadow surfae as a time evolution of a sequene of KTG's givenby KTG operations. Thus, we have relations among links, 3-manifolds, KTG'sand shadow surfaes as in the ommutative diagram in Figure 22; for detailedstatements see [BaTh01b, Thu01℄.Motivated by a omplexity of 3-manifolds disussed in [Mat90, MaPe01, MaPe01℄,D. Thurston introdued the shadow number of 3-manifolds. The shadow num-ber is de�ned to be the minimal number of verties of a shadow surfae. AllGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 169Framed links -exterior Framed link exteriors -surgery Closed 3-manifoldspresentation 6 by makingS1 -bundle6 by makingS1 -bundle6Certain sequenesof KTG's -timeevolution Collapsibleshadow surfaes -ap o� � Closed shadow surfaesFigure 22: Links, 3-manifolds, KTG's, and shadow surfaesgraph manifolds have shadow number 0 and all surgeries on the Borromeanrings have shadow number 1. The volume onjeture might be related to thefollowing onjeture.Conjeture 12.10 (D. Thurston) The shadow number of a 3-manifold isquasi-linear in its Gromov norm. That is, there exist onstants 1 and 2 suhthat 1jjM jj � (shadow number of M ) � 2jjM jjfor any 3-manifold M , where jjM jj denotes the Gromov norm of M .Remark (D. Thurston) It is easy to bound the Gromov norm in terms of theshadow number (i.e., to prove the left inequality for some 1 ).Remark (D. Thurston) It is shown by W. Thurston that the hyperboli volumeof a hyperboli 3-manifold is quasi-linear in the minimal number of ideal tetra-hedra in a \spun triangulation" (i.e., the minimal number of ideal tetrahedra insome link omplement in the 3-manifold). It is shown by J. Brok [Bro01℄ thatthe volume of a mapping torus is quasi-linear in the pants translation distane(for �xed genus).Lakenby [La00℄ showed that alternating knot diagrams give good informationabout the hyperboli volume. Knot diagrams are a speial ase of shadowdiagrams, but shadow diagrams an be muh more eÆient. This suggests thefollowing problem:Problem 12.11 (D. Thurston) Find a ondition on shadow diagrams whihis satis�ed by shadow diagrams from alternating knots; and gives a lower boundon the hyperboli volume.Geometry & Topology Monographs, Volume X (20XX)



170 Edited by T. OhtsukiClosed shadow surfaeswith 0 gleams���	by making I -bundlesand ap o� boundary ���Rby making S1 -bundlesClosed 3-manifolds Certain losed 3-manifolds-M 7�! M#M#(S2 � S1)'sFigure 23: Two ways to obtain 3-manifolds from shadow surfaesThe Reshetikhin-Turaev invariant and the Turaev-Viro-Oneanu invariant anbe desribed in terms of the KTG algebra, via I -bundles and S1 -bundles overshadow surfaes respetively. The relation between the two invariants is derivedfrom the relation between the two onstrution of 3-manifolds shown in Figure23.Problem 12.12 Construt a universal Reshetikhin-Turaev invariant and a uni-versal Turaev-Viro-Oneanu invariant of losed 3-manifolds, in terms of theKTG algebra.Remark The LMO invariant and the even degree part of it might be a universalReshetikhin-Turaev invariant and a universal Turaev-Viro-Oneanu invariantof rational homology 3-spheres, respetively.12.5 Quantum groupsProblem 12.13 (J. Roberts) What are quantum groups?Remark (J. Roberts) A naive answer is to simply de�ne them by means of gen-erators and relations, but this is appallingly unsatisfying. Better is Drinfel'd'soriginal onstrution [Dri87℄, whih begins with the geometri onstrution ofquasi-quantum groups using the monodromy of the KZ equation. He then usesompletely algebrai results about uniqueness of deformations to obtain fromeah one a quantum group, whose ategory of representations is equivalent tothat of the quasi-quantum group, though the �rst has a trivial assoiator anda ompliated R-matrix, the seond vie versa. (In partiular, the braid grouprepresentation assoiated to a quantum group is loal in the sense that theR-matrix implementing the ation of a braid generator on a tensor produt ofGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 171representations of the quantum group involves only the tensor fators assoiatedto the two strings onerned. This is ertainly not true for the KZ equation. Isthere any way to understand this using geometry?)These onstrutions are very subtle and ompliated. What really is a quan-tum group, in fat? I believe that algebraists have some reasonably geometridesriptions of piees of them in terms of perverse sheaves, et., but I do notpretend to understand these. Atiyah made the very interesting suggestion thatquantum groups might be in some sense the \quaternioni�ations" of ompatLie groups. Literal quaternioni�ation does not make sense, but substitutesmight be available, in the sense that hyperk�ahler geometry provides a workingsubstitute for the non-existent quaternioni version of omplex manifold the-ory. Some evidene for this point of view is presented in Atiyah and Bielawski[AtBi02℄.12.6 Other problemsProblem 12.14 (N. Askitas) Can a knot of 4-genus gs always be slied (madeinto a slie knot) by gs rossing swithes?Remark (A. Stoimenow) Clearly (at least) gs rossing swithes are needed,but sometimes more are needed to unknot the knot.Update Livingston [Liv02℄ showed that the knot 74 provides a ounterexampleto this problem; gs(74) = 1 but no rossing hange results in a slie knot.Problem 12.15 (M. Boileau [Kir97, Problem 1.69 (C)℄) Are there mutantsof distint unknotting numbers?Remark (A. Stoimenow) There are mutants of distint genera (Gabai [Gab84℄)and slie genera (Livingston [Liv83℄).Let G be the graph suh that its verties are isotopy lasses of unorientedknots, and two verties are adjaent if the orresponding knots di�er by asingle rossing hange.Conjeture 12.16 (X.-S. Lin [Lin.www℄) Any automorphism of G is eitherthe identity or the mirror map, that is, any automorphism of G is indued bya di�eomorphism of the ambient spae.Geometry & Topology Monographs, Volume X (20XX)



172 Edited by T. OhtsukiProblem 12.17 (X.-S. Lin [Lin.www℄) What is the homotopy type of thespae L(K) of long ropes (as shown in the piture below) with the �xed knottype K ?
Remark ([Lin.www℄) A onjeture would be that, if K is a prime knot, L(K)is homotopy equivalent to the irle if and only if K is non-trivial, with thefundamental group generated by the obvious loop in L(K) shown in the abovepiture. This question is motivated by the paper [Mos02℄. If the onjetureholds, the homotopy type of the spae of short ropes studied by Mostovoy wouldbe lear. A paper of Hather [Hat99℄ seems to be related with this problem.Problem 12.18 (J. Roberts) Extend Kuperberg's work on webs.Remark (J. Roberts) Kuperberg posed in [Kup96a℄ the question of giving apresentation, as a tensor ategory, of the representation ategory of a ompatLie group or quantum group. The generators should be (roughly) the funda-mental modules and their bilinear and trilinear invariants; more ompliatedmorphisms in the ategory an be built out of these aording to a graphialalulus (essentially Penrose's tensor alulus) of \webs". The �rst main prob-lem is to desribe a set of elementary linear relations (skein relations) amongsuh pitures whih generates all the relations among morphisms in the at-egory. The seond is to desribe a anonial basis of any invariant spae interms of anonial pitures in the dis. Kuperberg solved both these problemsfor groups of ranks one (in whih ase the pitures are just Temperley-Liebdiagrams) and two and, with Khovanov in [KhKu99℄, made tantalising but im-preise onjetures about how in the higher-rank ase the pitures might berelated to the geometry of the weight lattie. These ideas are losely related tothe work of Vaughan Jones [Jon99℄ on planar algebra, whih is a similar kindof alulus desribing the ategory of bimodules over a subfator. (Aside: Is itpossible to �nd a bimodule ategory whose intertwining rules are desribed byquasiperiodi Penrose tiles?)Problem 12.19 (J. Roberts) Extend the theory of measured laminations tohigher rank groups.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 173Remark (J. Roberts) Let � be a losed oriented surfae of genus g , andlet C(�) be its set of multiurves (isotopy lasses of olletions of disjointsimple losed urves). Let T (�) be its Teihm�uller spae; that is, the spae ofhyperboli strutures, onsidered up to di�eomorphisms isotopi to the identity.Topologially, T (�) is an open ball of dimension 6g � 6.Eah of C(�); T (�) has a natural embedding in the spae of funtions C(�)!R�0 : one sends a multiurve to its assoiated minimal geometri intersetionnumber funtion, and a metri to its assoiated geodesi length funtion. It is aremarkable fat that the R+ -projetive boundaries of these sets oinide. Theyde�ne the spae of measured laminations, whih ompati�es T (�) into a losedball and is of great importane in Thurston's theory of surfae automorphisms.For further details see for example Penner and Harer [PeHa92℄.Now T (�) may also be desribed algebraially as a ertain omponent of thespae of at SL(2;R) onnetions on � (that is, homomorphisms �1(�) !SL(2;R)), and in this ontext the geodesi length funtion is replaed by atrae-of-holonomy funtion. Is there a generalisation of the above piture to ahigher rank group suh as SL(n;R)?Hithin [Hit92℄ proves that in fat the spae of at SL(n;R) onnetions hasa speial \Teihm�uller omponent", whih is topologially an open ball, so wehave a andidate for T (�).(Aside: he asks whether there is an interpretationof the points of the Teihm�uller omponent in terms of some kind of geometristrutures on �. Choi and Goldman showed that for n = 3 they parametriseonvex real projetive strutures, but no general answer is known.)A andidate for C(�) might be the set of Kuperberg-style (losed) webs drawnon the surfae, for there is then a natural holonomy-type map T (�)�C(�)! Rwhih is a substitute for the geodesi length funtion. (In the SL(2) ase, thisC(�) is just the set of multiurves, as it should be.) What might replae the ge-ometri intersetion number, and lead to some notion of \measured lamination"for higher-rank groups, is unlear.Problem 12.20 (J. Roberts) What is the generating funtion for q -spin netevaluations?Remark (J. Roberts) A q -spin net is a trivalent planar graph whose edges arelabelled by irreduible representations of SU(2). By plaing idempotents fromthe Temperley-Lieb algebra on its edges and joining up their external stringsin a planar fashion at the verties, one forms an evaluation in Z[q�1℄. The goalis to �nd a power series in variables assoiated to the edges whih serves as aGeometry & Topology Monographs, Volume X (20XX)



174 Edited by T. Ohtsukigenerating funtion for the evaluations orresponding to all possible labellingsof a given graph. Suh a formula is known for any graph at the lassial valueq = 1, and Westbury [Wes98℄ found a generating funtion for the tetrahedralgraph (the quantum 6j -symbol). A general formula is, however, unknown, andWestbury also shows that the naive guess (simply replaing fatorials in theq = 1 formula by quantum fatorials) is wrong.Problem 12.21 (Y. Shinohara [Shin71℄) If n = 4k + 1 with k > 0, is therea knot with determinant n and signature 4?Remark (A. Stoimenow) The form 4k+1 follows from Murasugi [Mur65℄, andthe ondition k 6= 0 from a signature theorem for even unimodular quadratiforms over Z. If a ounterexample for n > 1 exists, then all prime divisors of nare of the form 24k+1 and not smaller than 2857. If �4+8l;8l+5 is the elementarysymmetri polynomial of degree 4 + 8l in 8l + 5 variables, then all values of�4+8l;8l+5 on positive odd arguments are no ounterexamples, so the problemould \redue" to showing that some of the �4+8l;8l+5 realizes almost all n onpositive odd arguments. This appears number theoretially hard, however.The set of onordane lasses of 2-strand string links forms a group C2 . Stan-ford showed that C2 is not nilpotent, in partiular not abelian.Problem 12.22 (T. Stanford) Is C2 solvable? Does C2 ontain a free group?Problem 12.23 (A. Stoimenow) Do positive links of given signature � havebounded (below) maximal Euler harateristi �?Remark (A. Stoimenow) So far for general positive links only � > 0 is known[Rud82, CoGo88℄, and for positive knots � � 4 if 2g = 1�� � 4 (it follows from[Tan89℄). For positive braid links the answer is positive, and also for speialalternating links by Murasugi [Mur65℄.Problem 12.24 (A. Stoimenow) If a prime knot K an be transformed intoits mirror image by one rossing hange, is K ahiral or (algebraially?) slie?Remark (A. Stoimenow) Smoothing out this rossing gives a link of zeroTristram-Levine-signatures [Tri69, Lev69℄ and zero Alexander polynomial. Manysuh links are slie, and then K would be slie also. But unlikely.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 175Problem 12.25 (A. Stoimenow) Let n be an odd natural number, di�erentfrom 1, 9, and 49, suh that n is the sum of two squares. Is there a primealternating ahiral knot of determinant n?Remark (A. Stoimenow) If there is an ahiral knot of determinant n, then nis the odd sum of two squares [HaKa79℄. The onverse is also true, and theahiral knot of determinant n an be hosen to be alternating or prime, butnot always both. For n = 1, 9, and 49, there is no prime alternating ahiralknot of determinant n. If there is another suh n, then n > 2000 and n is nota square. See [Sto00℄.Conjeture 12.26 (V. Turaev) A pair (a �nitely generated abelian groupH of rank 1, an element �(t) 2 Z[H=TorsH℄ = Z[t�1℄) (where t is a generatorof H=TorsH ) an be realized as the pair (H1(M), the Alexander polynomial�M of M ) for a losed onneted oriented 3-manifold M if and only if �(t) =tk�(t�1) with even k 2 Z and �(1) = �jTorsHj.Remark (V. Turaev) Both onditions are known to be neessary. They arepresumably suÆient. This is known for H = Z and for H = Z� (Z=nZ) withn � 2. When M is obtained from S3 by 0-surgery along a knot K , H1(M) = Zand �M (t) = �K(t). It is known that a Laurent polynomial f(t) 2 Z[t�1℄ isrealized as the Alexander polynomial of a knot if and only if f(t) = tkf(t�1)with even k and f(1) = 1. Using surgery on a 2-omponent link in S3 withlinking number 0 and framing numbers 0; n, respetively, one an prove (f.[Lev67℄) the onjeture for H = Z� (Z=nZ).
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