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C Invariants of Knots and 3-Manifolds )
Preface Kyoto 2001

The workshop and seminars on “Invariants of knots and 3-manifolds” was held
at Research Institute for Mathematical Sciences, Kyoto University in September
2001. There were 25 talks in the workshop in September 17-21, and there
were 27 talks in the seminars in the other weeks of September. Each speaker
was requested to give his/her open problems in a short problem session after
his/her talk, and many interesting open problems were given and discussed by
the speakers and participants in the workshop and the seminars. Contributors
of the open problems were also requested to give kind expositions of history,
background, significance, and/or importance of the problems. This problem list
was made by editing these open problems and such expositions.!

The logotype of the workshop and the seminars was illustrated by N. Okuda.

!Open problems on the Rozansky-Witten invariant were written in a separate manuscript
[RoSa02]. Some fundamental problems are quoted from other problem lists such as [Jon00],
[Kir97], [Lin.www], [Mor88], [Mor00], [Tur94, Pages 571-572].
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2 Edited by T. Ohtsuki

Since the interaction between geometry and mathematical physics in the 1980s,
many invariants of knots and 3-manifolds have been discovered and studied.
The discovery and analysis of the enormous number of these invariants yielded
a new area: the study of invariants of knots and 3-manifolds (from another
viewpoint, the study of the sets of knots and 3-manifolds). Recent works have
almost completed the topological reconstruction of the invariants derived from
the Chern-Simons field theory, which was one of main problems of this area.
Further, relations among these invariants have been studied enough well, and
these invariants are now well-organized. For the future developments of this
area, it might be important to consider various streams of new directions;? this
is a reason why the editor tried to make the problem list expository. The editor
hopes this problem list will clarify the present frontier of this area and assist
readers when considering future directions.

The editor will try to keep this problem list up to date at his web site.® If the
reader knows a (partial) solution of any problem in this list, please let him®
know it.

February, 2003
T. Ohtsuki

2For example, directions related to other areas such as hyperbolic geometry via the volume
conjecture and the theory of operator algebras via invariants arising from 6j-symbols.

3http://www.kurims.kyoto-u.ac.jp/ tomotada/projo1/

4Email address of the editor is: tomotada@kurims.kyoto-u.ac.jp
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0 Introduction

The study of quantum invariants of links and three-manifolds has a strange
status within topology. When it was born, with Jones’ 1984 discovery of his
famous polynomial [Jon85], it seemed that the novelty and power of the new
invariant would be a wonderful tool with which to resolve some outstanding
questions of three-dimensional topology. Over the last 16 years, such hopes
have been largely unfulfilled, the only obvious exception being the solution of
the Tait conjectures about alternating knots (see for example [MeTh93]).

This is a disappointment, and particularly so if one expects the role of the quan-
tum invariants in mathematics to be the same as that of the classical invariants
of three-dimensional topology. Such a comparison misses the point that most of
the classical invariants were created specifically in order to distingush between
things; their definitions are mainly intrinsic, and it is therefore clear what kind
of topological properties they reflect, and how to attempt to use them to solve
topological problems.

Quantum invariants, on the other hand, should be thought of as having been
discovered. Their construction is usually indirect (think of the Jones polyno-
mial, defined with reference to diagrams of a knot) and their existence seems to
depend on very special kinds of algebraic structures (for example, R-matrices),
whose behaviour is closely related to three-dimensional combinatorial topology
(for example, Reidemeister moves). Unfortunately such constructions give lit-
tle insight into what kind of topological information the invariants carry, and
therefore into what kind of applications they might have.

Consequently, most of the development of the subject has taken place in direc-
tions away from classical algebraic and geometric topology. From the earliest
days of the subject, a wealth of connections to different parts of mathematics
has been evident: originally in links to operator algebras, statistical mechanics,
graph theory and combinatorics, and latterly through physics (quantum field
theory and perturbation theory) and algebra (deformation theory, quantum
group representation theory). It is the investigation of these outward connec-
tions which seems to have been most profitable, for the two main frameworks
of the modern theory, that of Topological Quantum Field Theory and Vassiliev
theory (perturbation theory) have arisen from these.

The TQFT viewpoint [Ati89] gives a good interpretation of the cutting and
pasting properties of quantum invariants, and viewed as a kind of “higher di-
mensional representation theory” ties in very well with algebraic approaches

Chapter 0 was written by J. Roberts.

Geometry & Topology Monographs, Volume X (20XX)
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to deformations of representation categories. It ties in well with geometric
quantization theory and representations of loop groups [Ati90a]. In its physical
formulation via the Chern-Simons path-integral (see Witten [Wit89]), it even
offers a conceptual explanation of the invariants’ existence and properties, but
because this is not rigorous, it can only be taken as a heuristic guide to the
properties of the invariants and the connections between the various approaches
to them.

The Vassiliev theory (see [Bar95a, Kon94, Thu00]) gives geometric definitions
of the invariants in terms of integrals over configuration spaces, and also can be
viewed as a classification theory, in the sense that there is a universal invariant,
the Kontsevich integral (or more generally the Le-Murakami-Ohtsuki invariant
[LMO98]), through which all the other invariants factor. Its drawback is that
the integrals are very hard to work with — eight years passed between the
definition and calculation [Thu00] of the Kontsevich integral of the unknot!

These two frameworks have revealed many amazing properties and algebraic
structures of quantum invariants, which show that they are important and in-
teresting pieces of mathematics in their own right, whether or not they have
applications in three-dimensional topology. The structures revealed are pre-
cisely those which can, and therefore must, be studied with the aid of three-
dimensional pictures and a topological viewpoint; the whole theory should
therefore be considered as a new kind of algebraic topology specific to three
dimensions.

Perhaps the most important overall goal is simply to really understand the
topology underlying quantum invariants in three dimensions: to relate the “new
algebraic topology” to more classical notions and obtain good intrinsic topologi-
cal definitions of the invariants, with a view to applications in three-dimensional
topology and beyond.

The problem list which follows contains detailed problems in all areas of the
theory, and their division into sections is really only for convenience, as there are
very many interrelationships between them. Some address unresolved matters
or extensions arising from existing work; some introduce specific new conjec-
tures; some describe evidence which hints at the existence of new patterns or
structures; some are surveys on major and long-standing questions in the field;
some are purely speculative.

Compiling a problem list is a very good way to stimulate research inside a
subject, but it also provides a great opportunity to “take stock” of the overall

Geometry & Topology Monographs, Volume X (20XX)
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state and direction of a subject, and to try to demonstrate its vitality and worth
to those outside the area. We hope that this list will do both.

Geometry & Topology Monographs, Volume X (20XX)
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1 Polynomial invariants of knots

1.1 The Jones polynomial

The Kauffman bracket of unoriented link diagrams is defined by the following
recursive relations,

O )=4) Qe 0X)

< O D> = (—A2 — A72)(D) for any diagram D,

(the empty diagram @) = 1,

where three pictures in the first formula imply three links diagrams, which are
identical except for a ball, where they differ as shown in the pictures. The Jones
polynomial Vi,(t) of an oriented link L is defined by

Vi(t) = (=A% — A72)7 (=A%)~ ()(D) € n[t'/? /7,

A2=t—1/2

where D is a diagram of L, w(D) is the writhe of D, and (D) is the Kauffman
bracket of D with its orientation forgotten. The Jones polynomial is an isotopy
invariant of oriented links uniquely characterized by

VL (1) — Vi () = (82 — 172V, (8), (1)
VO(t) = 1a

where O denotes the trivial knot, and Ly, L_, and Ly are three oriented links,
which are identical except for a ball, where they differ as shown in Figure 1. It
is shown, by (1), that for any knot K, its Jones polynomial Vi (t) belongs to

Zt,t71].
ASIEASIPA

Figure 1: Three links L, ,L_, Lg

Geometry & Topology Monographs, Volume X (20XX)



10 Edited by T. Ohtsuki

1.1.1 Does the Jones polynomial distinguish the trivial knot?

Problem 1.1 ([Jon00, Problem 1]) Find a non-trivial knot K with Vi (t) =
1.

Remark 1t is shown by computer experiments that there are no non-trivial
knots with Vi () = 1 up to 17 crossings of their diagrams [DaHo97], and up to
18 crossings [Yam00]. See [Big02] (and [Big.www]) for an approach to find such
knots by using representations of braid groups.

Remark Two knots with the same Jones polynomial can be obtained by mu-
tation. A mutation is a relation of two knots, which are identical except for a
ball, where they differ by 7 rotation of a 2-strand tangle in one of the following
ways (see [APR89] for mutations).

For example, the Conway knot and the Kinoshita-Terasaka knot are related by
a mutation.

They have the same Jones polynomial, because their diagrams have the same
writhe and the Kauffman bracket of the tangle shown in the dotted circle can
be presented by

with some scalars ¢ and y.
Remark The Jones polynomial can be obtained from the Kontsevich invariant

through the weight system Wy, y for the vector representation V' of sly (see,
e.g., [Oht02]). Problem 1.1 might be related to the kernel of Wy, v .

Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 11

Remark Some links with the Jones polynomial equal to that of the correspond-
ing trivial links are given in [EKTO03]. For example, the Jones polynomial of
the following link is equal to the Jones polynomial of the trivial 4-component
link.

Remark (X.-S. Lin [Lin.www]) Use Kontsevich integral to show the existence of
a non-trivial knot with trivial Alexander-Conway polynomial. This might give
us some hints to Problem 1.1.

1.1.2 Characterization and interpretation of the Jones polynomial

Problem 1.2 ([Jon00, Problem 2]) Characterize those elements of Z[t,t}]
of the form Vi (t).

Remark ([Jon00]) The corresponding problem for the Alexander polynomial
has been solved; it is known that a polynomial f(t) € Z[t,t ] is equal to the
Alexander polynomial of some knot K if and only if f(1) = 1 and f(¢) =
f(t1). The formulas Vi (1) = 1 and Vi (exp %) = 1 are obtained by the
skein relation (1). These formulas give weak characterizations of the required
elements.

Remark (X.-S. Lin [Lin.www]) The Mahler measure (see [Eve98] for its exposi-
tion) of a polynomial F(z) = a][;(z — a;) € Clz] is defined by

1
m(F) =log |a| + Zlog max{1, ||} = /0 log | F (2™ =10)|do.
i

The Mahler measure can be defined also for a Laurent polynomial similarly. Is
it true that m(Vg) > 0 for the Jones polynomial Vi of a knot K, if K is a
non-trivial knot?

Problem 1.3 Find a 3-dimensional topological interpretation of the Jones poly-
nomial of links.

Geometry & Topology Monographs, Volume X (20XX)



12 Edited by T. Ohtsuki

Remark The Alexander polynomial has a topological interpretation such as
the characteristic polynomial of H;(S% — K;Q) of the infinite cyclic cover of
the knot complement S — K, where H;(S3 — K;Q) is regarded as a Q[t,t7!]-

—_

module by regarding ¢ as the action of the deck transformation on S3 — K.

Remark In the viewpoint of mathematical physics, Witten [Wit89] gave a 3-
dimensional interpretation of the Jones polynomial of a link by a path integral
including a holonomy along the link in the Chern-Simons field theory.

Remark Certain special values of the Jones polynomial have some interpreta-
tions. The formulas V7(1) = (—2)#L~! and Vi (exp 2”3£) = 1 are shown by
the skein relation (1), where #L denotes the number of components of L. It is
known that |Vz(—1)| is equal to the order of H;(M> 1) if its order is finite, and
0 otherwise. Here, M> ; denotes the double branched cover of S3 branched
along L. Tt is shown, in [Mur86], that Vi (v/—1) = (—v2)#L-1(=1)Af(L) if
Arf(L) exists, and 0 otherwise. It is shown, in [LiMi86], that Vi (exp Y5) =

:l:\/—_l#L_l\/—_3dimH1(M2’L;Z/3Z). If w is equal to a 2nd, 3rd, 4th, 6th root of
unity, the computation of Vz(w) can be done in polynomial time of the number
of crossings of diagrams of L by the above interpretation of Vi (w). Otherwise,
V1 (w) does not have such a topological interpretation, in the sense that com-
puting Vy(w) of an alternating link L at a given value w is #P-hard except
for the above mentioned roots of unity (see [JVW90, Wel94]).

Problem 1.4 (J. Roberts) Why is the Jones polynomial a polynomial?

Remark (J. Roberts) A topological invariant of knots should ideally be de-
fined in an intrinsically 3-dimensional fashion, so that its invariance under
orientation-preserving diffeomorphisms of $2 is built-in. Unfortunately, almost
all of the known constructions of the Jones polynomial (via R-matrices, skein
relations, braid groups or the Kontsevich integral, for example) break the sym-
metry, requiring the introduction of an axis (Morsification of the knot) or plane
of projection (diagram of the knot). I believe that the “perturbative” construc-
tion via configuration space integrals [Thu99a], whose output is believed to be
essentially equivalent to the Kontsevich integral, is the only known intrinsic
construction.

In the definitions with broken symmetry, it is gen?rally easy to see that the
result is an integral Laurent polynomial in ¢ or g2. In the perturbative ap-
proach, however, we obtain a formal power series in A, and although we know

Geometry & TJopology Monographs, Volume X (20XX)
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that it ought to be the expansion of an integral Laurent polynomial under the
substitution ¢ = e”, it seems hard to prove this directly. A related observation
is that the analogues of the Jones polynomial for knots in 3-manifolds other
than S® are not polynomials, but merely functions from the roots of unity to
algebraic integers. What is the special property of S® (or perhaps R?) which
causes this behaviour, and why does the variable ¢ seem natural only when one
breaks the symmetry?

The typical raison d’etre of a Laurent polynomial is that it is a character of the
circle. (In highbrow terms this is an example of “categorification”, but it is also
belongs to a concrete tradition in combinatorics that to prove that something
is a non-negative integer one should show that it is the dimension of a vector
space.) The idea that the Jones polynomial is related to K -theory [Wil02] and
that it ought to be the S'-equivariant index of some elliptic operator defined
using the special geometry of R? or S3 is something Simon Willerton and I
have been pondering for some time. As for the meaning of ¢, Atiyah suggested
the example in equivariant K -theory

Kso(3)(5%) = K1 (pt) = Z[¢™),

in to make the first identification requires a choice of axis in R*. (This would
suggest looking for an SO(3)-equivariant S?-family of operators.)

Problem 1.5 (J. Roberts) Is there a relationship between values of Jones
polynomials at roots of unity and branched cyclic coverings of a knot?

Problem 1.6 (J. Roberts) Is there a relationship between the Jones polyno-
mial of a knot and the counting of points in varieties defined over finite fields?

Remark (J. Roberts) These two problems prolong the “riff in the key of ¢”:
the amusing fact that traditional, apparently independent uses of that letter,
denoting the number of elements in a finite field, the deformation parameter
g = e", the variable in the Poincaré series of a space, the variable in the theory
of modular forms, etc. turn out to be related.

The first problem addresses a relationship which holds for the Alexander poly-
nomial. For example, the order of the torsion in H; of the n-fold branched
cyclic cover equals the product of the values of the Alexander polynomial at all
the nth roots of unity. It’s hard not to feel that the variable ¢ has some kind
of meaning as a deck translation, and that the values of the Jones polynomial
at roots of unity should have special meanings.

Geometry & Topology Monographs, Volume X (20XX)
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The second has its roots in Jones’ original formulation of his polynomial using
Hecke algebras. The Hecke algebra H,(q) is just the Hall algebra of double
cosets of the Borel subgroup inside SL(n,F,); the famous quadratic relation
02 = (g —1)o + q falls naturally out of this. Although the alternative definition
of H,(q) using generators and relations extends to allow ¢ to be any complex
number (and it is then the roots of unity, at which H,(g) is not semisimple,
which are the obvious special values), it might be worth considering whether

Jones polynomials at prime powers ¢ = p® have any special properties.

Ideally one could try to find a topological definition of the Jones polynomial
(perhaps only at such values) which involves finite fields. The coloured Jones
polynomials of the unknot are quantum integers, which count the numbers of
points in projective spaces defined over finite fields; might those for arbitrary
knots in S? count points in other varieties? Instead of counting counting points,
one could consider Poincaré polynomials, as the two things are closely related
by the Weil conjectures.

One obvious construction involving finite fields is to count representations of a
fundamental group into a finite group of Lie type, such as SL(n,F,;). Very much
in this vein, Jeffrey Sink [Sin00] associated to a knot a zeta-function formed from
the counts of representations into SL(2,Fps), for fixed p and varying s. His
hope, motivated by the Weil conjectures, was the idea that the SU(2) Casson
invariant might be related to such counting. For such an idea to work, it is
probably necessary to find some way of counting representations with signs, or
at least to enhance the counting in some way. Perhaps the kind of twisting used
in the Dijkgraaf-Witten theory [DiWi90] could be used.

Problem 1.7 (J. Roberts) Define the Jones polynomial intrinsically using
homology of local systems.

Remark (J. Roberts) The Alexander polynomial of a knot can be defined using
the twisted homology of the complement. In the case of the Jones polynomial,
no similar direct construction is known, but the approach of Bigelow [Big01b]
is tantalising. He shows how to construct a representation of the braid group
By, on the twisted homology of the configuration space of n points in the 2n-
punctured disc, and how to use a certain “matrix element” of this representation
to obtain the Jones polynomial of a knot presented as a plait. Is there any way
to write the same calculation directly in terms of configuration spaces of n
points in the knot complement, for example?

Problem 1.8 (J. Roberts) Study the relation between the Jones polynomial
and Gromov-Witten theory.

Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 15

Remark (J. Roberts) The theory of pseudo-holomorphic curves or “Gromov-
Witten invariants” has been growing steadily since around 1985, in parallel
with the theory of quantum invariants in three dimensional topology. During
that time it has come to absorb large parts of modern geometry and topol-
ogy, including symplectic topology, Donaldson/Seiberg-Witten theory, Floer
homology, enumerative algebraic geometry, etc. It is remarkable that three-
dimensional TQFT has remained isolated from it for so long, but finally there
is a connection, as explained in the paper by Vafa and Gopakumar [GoVa00]
(though prefigured by Witten [Wit95]), and now under investigation by many
geometers. The basic idea is that the HOMFLY polynomial can be reformu-
lated as a generating function counting pseudo-holomorphic curves in a certain
Calabi-Yau manifold, with boundary condition a Lagrangian submanifold as-
sociated to the knot. (This is the one place where the HOMFLY and not the
Jones polynomial is essential!) The importance of this connection can hardly be
overestimated, as it should allow the exchange of powerful techniques between
the two subjects.

Figure 2: The upper pictures show the distribution of zeros of the Jones polynomial for
alternating knots of 11 and 12 crossings [Lin.www]. The lower picture shows the distri-
bution of zeros of the Jones polynomial for 12 crossing non-alternating knots [Lin.www].
See [Lin.www] for further pictures for alternating knots with 10 and 13 crossings.

Geometry & Topology Monographs, Volume X (20XX)
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Figure 3: The upper pictures show the distribution of zeros of the Jones polynomial for
n-twist knots, with n from 1 to 50 and from 51 to 100, respectively [Lin.www]. The lower
pictures show the distribution of zeros of the Jones polynomial for (2,2n — 1) torus
knots, with n from 1 to 50 and from 51 to 100, respectively [Lin.www]. See [Lin.www]
for further pictures for (3,3n + 1) and (3,3n + 2) torus knots.
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1.1.3 Numerical experiments

The following problem might characterize the form of the Jones polynomial of
knots in some sense.

Problem 1.9 (X.-S. Lin) Describe the set of zeros of the Jones polynomial
of all (alternating) knots.

Remark (X.-S. Lin) The plottings in Figure 2 numerically describe the set of
zeros of the Jones polynomial of many knots. Similar plottings are already pub-
lished in [WuWa01] for some other infinite families of knots for which the Jones
polynomial is known explicitly. See also [ChSh01] for some other plottings.

Remark (X.-S. Lin) It would be a basic problem to look into the zero distri-
bution of the family of polynomials with bounded degree such that coefficients
are all integers and coefficients sum up to 1, and compare it with the zero dis-
tribution of the Jones polynomial on the collection of (alternating) knots with
bounded crossing number. The paper [OdPo93] discusses the zero distribution
of the family of polynomials with 0,1 coefficients and bounded degree. It is
particularly interesting to compare the plotting shown in this paper with the
plottings in Figures 2 and 3 for the zeros of the Jones polynomials.

Problem 1.10 (N. Dunfield) Describe the relationship between the hyper-
bolic volume of knot complements and log Vi (—1) (resp. log Vi (—1)/log degVk (t) ).

Remark (N. Dunfield [Dun.www|) Vg (—1) is just Ag(—1), which is the order
of the torsion in the homology of the bouble cover of S® branched over K.
log Vi (—1) is one of the first terms of the volume conjecture (Conjecture 1.19).
Figure 4 suggests that for alternating knots with a fixed number of crossings,
log Vik(—1) is almost a linear function of the volume.

Figure 5 suggests that there should be an inequality

log Vi (—1)

—_— -vol(S® — K) +b
log degVi (t) <a-vol )+

for some constants a and b. For 2-bridge knots, Agol’s work on the volumes of 2-

bridge knots [Ago99] can be used to prove such an inequality with a = b = 2/v3
(here, vs is the volume of a regular ideal tetrahedron).
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13 crossing alternating knots
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Figure 4: The distribution of pairs of the hyperbolic volume of knot complements and
mlog Vi (—1) for alternating knots with 13 crossings [Dun.www].

1.1.4 Categorification of the Jones polynomial

Khovanov [Kho00, Kho02] defined certain homology groups of a knot whose
Euler characteristic is equal to the Jones polynomial, which is called the cat-
egorification of the Jones polynomial. See also [Bar02] for an exposition of
it.

Problem 1.11 Understand Khovanov’s categorification of the Jones polyno-
mial.

Problem 1.12 Categorify other knot polynomials.

Remark (M. Hutchings) There does exist a categorification of the Alexander
polynomial, or more precisely of Ay (t)/(1 — t)?, where Ak (t) denotes the
(symmetrized) Alexander polynomial of the knot K. It is a kind of Seiberg-
Witten Floer homology of the three-manifold obtained by zero surgery on K.
One can regard it as Z x Z/2Z graded, although in fact the column whose Euler
characteristic gives the coefficient of t* is relatively Z/2kZ graded.
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Alternating knots through 16 crossings

9 T T T
"12_alt.data" +
"13_alt.data”,
"14_alt.ds *
"1 wa' o
8 . i
271 E
2
=3
[
Z
[
o
=6r i
N
3
>
o
X
a5 _
4 o
#
3 : L L L L L L
0 5 10 15 20 25 30 35
Volume of complement
All knots through 13 crossings
8 T
3_alt.data +
data”
_alt.data’ *
7 " non_altdata” ©

o
T

w
T

Pi*log(J(-1))/log(deg(J))
D

Volume of complement

Figure 5: The distributions of pairs of the hyperbolic volume of knot complements and
mlog Vi (—1)/logdegVk (t). The upper picture is for all alternating knots with 12 and
13 crossings and samples of alternating knots with 14, 15, and 16 crossings, and the
lower picture is for all knots with 13 or fewer crossings [Dun.www].
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1.2 The HOMFLY, Q, and Kauffman polynomials

The skein polynomial (or the HOMFLY polynomial) Pp(l,m) € Z[I*!,m*'] of
an oriented link L is uniquely characterized by

7P, (I,m) — 1P (I, m) = mPp,(l,m),

PO(la m) =1,
where O denotes the trivial knot, and Ly, L_, and Ly are three oriented links,
which are identical except for a ball, where they differ as shown in Figure 1.
For a knot K, Pg(l,m) € Z[I*?,m]. The Kauffman polynomial Fr(a,z) €
Zla*!, z*1] of an oriented link L is defined by F(a,z) = a *P)[D] for an
unoriented diagram D presenting L (forgetting its orientation), where [D] is

uniquely characterized by
AL X=X

O] =)}

(0] =1.

For a knot K, Fi(a,z) € Z[a™!,z]. The Q polynomial Qr(x) € Z[z*'] of an
unoriented link L is uniquely characterized by

o X )+l X )=+ (a( ) (e X))

Q(0) =1.
It is known that
Vi(t) = Pr(t, Y2 — t7V/2) = pp (=314 (/4 4 =14,
AL(t) = Py (1,12 — =1/2)
QrL(z) = Fr(1, 2),
where Ap(t) denotes the Alexander polynomial of L. The variable m of

Pr(l,m) is called the Alezander variable. See, e.g., [Kaw+90, Lic97a], for de-
tails of this paragraph.

+ +

Let the span of a polynomial denote the maximal degree minus the minimal
degree of the polynomial.

Problem 1.13 (A. Stoimenow) Does the Jones polynomial V' admit only
finitely many values of given span? What about the () polynomial or the skein,
Kauffman polynomials (when fixing the span in both variables)?
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Remark (A. Stoimenow) It is true for the skein polynomial when bounding
the canonical genus (for which the Alexander degree of the skein polynomial
is a lower bound by Morton), in particular it is true for the skein polynomial
of homogeneous links [Cro89]. It is true for the Jones, Q and Kauffman F
polynomial of alternating links (for F more generally for adequate links). One
cannot bound the number of different links, at least for the skein and Jones
polynomial, because Kanenobu [Kan86] gave infinitely many knots with the
same skein polynomial.

Problem 1.14 (A. Stoimenow) Why are the unit norm complex numbers «

for which the value Qx («) has maximal norm statistically concentrated around
Pl1myV/=1/25 7

Remark (A. Stoimenow) The maximal point of |Q (2™ ~1)| for t € [0,1) is
statistically concentrated around ¢ = 11/50. This was revealed by an experi-
ment in an attempt to estimate the asymptotical growth of the coefficients of
the @ polynomial. There seems no difference in the behaviour of alternating
and non-alternating knots.

Problem 1.15 (M. Kidwell, A. Stoimenow) Let K be a non-trivial knot, and
let Wx be a Whitehead double of K. Is then

deg,, Pw, (I,m) = 2deg, Fx(a,z) +27

Remark (A. Stoimenow) It is true for K up to 11 crossings. deg,, Pw, (I, m)
is independent on the twist of Wi if it is > 2 by a simple skein argument.

Update Gruber [Gru03] showed that, if K is a prime alternating knot and Wg
is its untwisted Whitehead double, then deg,, Pw, (I, m) < 2deg, Fk (a,z) + 2.

Problem 1.16 (E. Ferrand, A. Stoimenow) Is for any alternating link L,
o(L) > mindeg)(Pr(l,m)) > mindeg, (F(a ', z))?

Remark (A. Stoimenow) The second inequality is conjectured by Ferrand
[Fer02] (see also comment on Problem 1.18), and related to estimates of the Ben-
nequin numbers of Legendrian knots. As for the first inequality, by Cromwell
[Cro89] we have mindeg;(Py(l,m)) < 1—x(L) and classically (L) < 1—x(L).

Problem 1.17 (A. Stoimenow) If V}, is the coefficient of z¥ in the Conway
polynomial and ¢(L) is the crossing number of a link L, is then
k
(L),
2k k1

IVe(L)| <
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Remark (A. Stoimenow) The inequality is non-trivial only for L of k+ 1,k —
1,... components. It is also trivial for k& = 0, easy for k =1 (V; is just the
linking number of 2 component links) and proved by Polyak-Viro [PoVi01] for
knots and k = 2. There are constants C} with

|Vi(L)] < Cr (L),

following from the proof (due to [Bar95c, Sta97] for knots, due to [Sto01] for
links) of the Lin-Wang conjecture ([LiWa96]) for links, but determining C}, from
the proof is difficult. Can the inequality be proved by Kontsevich-Drinfel’d, say
at least for knots, using the description of the weight systems of V of Bar-Natan
and Garoufalidis [BaGa96]7? More specifically, one can ask whether the (2,n)-
torus links (with parallel orientation) attain the maximal values of Vj. One
can also ask about the shape of C} for other families of Vassiliev invariants,
like LV (1)],_, -

Problem 1.18 (A. Stoimenow) Does for any link L hold mindeg, (Fi(a™", 2))
<1—x(L)? If u(K) is the unknotting number of a knot K , does for any knot
K hold mindeg, (Fk(a™',2)) <2u(K)?

Remark (A. Stoimenow) For the common lower bound of 2u and 1 — x for
knots, 2gs, there is a 15 crossing knot K with 2¢,(K) < mindeg, (Fx (a1, 72)).
Morton [Mor88] conjectured long ago that 1 — x(L) > mindeg;(Pr(l,m)).
There are recent counterexamples, but only of 19 to 21 crossings. Ferrand
[Fer02] observed that very often mindeg;(Pg(l,m)) > mindeg,(Fk(a™',z2))
(he conjectures it in particular always to hold for alternating K), so replacing
‘mindeg, (F(a !,2))’ for ‘mindeg;(Pk (I, m))’ enhances the difficulty of Mor-
ton’s problem (the counterexamples are no longer such).

1.3 The volume conjecture

In [Kas95] R. Kashaev defined a series of invariants (L)y € C of a link L for
N = 2,3,--- by using the quantum dilogarithm. In [Kas97] he observed, by
formal calculations, that

log(L) N

27 - lim = vol(S® — L)

N—0

for L = K4,,Ks,, Ks,, where vol(S® — L) denotes the hyperbolic volume of
S3 — L. Further, he conjectured that this formula holds for any hyperbolic link
L. In 1999, H. Murakami and J. Murakami [MuMu01] proved that (L)y =
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Jn (L) for any link L, where Jy (L) denotes the N-colored Jones polynomial®
of L evaluated at ¢2™V=1/N

Conjecture 1.19 (The volume conjecture, [Kas97, MuMu0l]) For any knot
K,
log |Jn (K)|

2m - i = v3||S* — K 2
wo tim BN i5 ey 2
where ||-|| denotes the simplicial volume and vs denotes the hyperbolic volume

of the regular ideal tetrahedron.

Remark For a hyperbolic knot K, (2) implies that

. log|Jn (K))| 3
or - lim 2V _ o188 — K).
TN T N vol(§” — K)

Remark ([MuMuO1]) Both sides of (2) behave well under the connected sum
and the mutation of knots. Namely,

1% — (K1 #K>)|| = [|1S° — K1 + ||5% — Ko,
In(K1#K2) = In (K1) JIn(K2),

and Jy(K) and ||S® — K|| do not change under a mutation of K. For details
see [MuMu01] and references therein.

Remark The statement of the volume conjecture for a link L should probably
be the same statement as (2) replacing K with L. It is necessary to assume
that L is not a split link, since Jy(L) = 0 for a split link L (then, the left
hand side of (2) does not make sense).

Ezample It is shown [KaTi00] that for a torus link L

lim 8LV _
N—oo N

which implies that (2) is true for torus links.

Remark Conjecture 1.19 has been proved for the figure eight knot Ky, (see
[Mur01] for an exposition). However, we do not have a rigorous proof of this
conjecture for other hyperbolic knots so far. We explain its difficulty below,
after a review of a proof for Ky, .

5This is the invariant obtained as the quantum invariant of links associated with the N-
dimensional irreducible representation of the quantum group Uy (sl2).
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We sketch a proof of Conjecture 1.19 for the figure eight knot Ky, ; for a detailed
proof see [Mur01]. It is known that

N-1

In(Ks) = 3 (@nla™ s (3)

n=0
where we put ¢ = 2™ =1/N and

@n=0-q)1=¢")---(1=¢"), (9o=1

As N tends to infinity fixing n/N in finite, the asymptotic behaviour of the
absolute value of (¢), is described by

n N nw/N
log [(q)n| = kzllog (2 sin %) = /0 log(2sint)dt + O(log N)

- —%Im(Lig(ezmﬁ/N )) + O(log N),

where Liy denotes the dilogarithm function defined on C —{z € R | z > 1} by
0 z
) 2" log(1 — s)
L = E — =— | ————ds.
ig(2) 2 3 /0 . s
Noting that each summand of (3) is real-valued, we have that
N
In(Ey) = Y exp (2—Im(Li2(e_2mV_1/N)—Lig(e%”‘/_l/N))—i—O(logN)).
s
0<n<N

The asymptotic behaviour of this sum can be described by the maximal point
zo of Im(Liz(1/2) — Liz(z)) on the unit circle {z € C | |z| = 1}. In fact this zo
is a critical point of Liy(1/2) — Lis(2) in C, and hence Im(Lix(1/20) — Liz(20))
gives the hyperbolic volume of S® — Ky, . Therefore, the conjecture holds in
this case.

Next, we sketch a formal argument toward Conjecture 1.19 for the knot Ks, .
Following [Kas97], we have that

Tn(Ks,) = @n -m(n+1)
0<m<n<N m

where the asterisk implies the complex conjugate. By applying the formal
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approximation®
N . . 9mna/
(q)nr;JeXp(QW\/__l(ng(l)—le(e? ), (4)
N

- (LiQ(e—an\/—_l/N) _ Lig(l))),

we have that

N 2
In(Ks) > 3 exp (5= (G = 2Lia(eXY TN
T 0<m<n<N 2my/—=1" 2

. = 2mn 2mm
- L12(€ 27rm\/_1/N) + T—N ))
Further, by formally replacing’ the sum with an integral putting t = n/N and
s =m/N, we have that

N 2
I (K, ~N2/ ex — — 2Liy(e2™V
N( 52) 7 0<s<i<i p 27“/_—1( 2 2( )
— Lig(e 2™=1%) 4 2rt - 2ms)dsdt (5)
N? N 2 . .1 dw dz
= —4—71_2 /exp m(7 - 2L12(Z) - LIQ(E) - ].OgZ].Og'U))E;,
where the second integral is over the domain {(z,w) € C? ‘ |z| = Jw| =1, 0 <

arg(w) < arg(z) < 27}, and the equality is obtained by putting z = 2™V -1t
and w = 2™V 15, By applying the saddle point method® the asymptotic be-

haviour might be described by a critical value of

2
1
% — 2Liz(2) — Li2(;)
Since a critical value of this function gives a hyperbolic volume of S3 — K3, ,
this formal argument suggests Conjecture 1.19 for Ks, .

—log z log w. (6)

It was shown by Yokota [Yok00], following ideas due to Kashaev [Kas95] and
Thurston [Thu99b], that the hyperbolic volume of the complement of any hy-
perbolic knot K is given by a critical value of such a function as (6), which is
obtained from a similar computation of Jy(K) as above.

5Tt might be difficult to justify this approximation in a usual sense, since the argument of
(@)n, given by (¢)n = |(@)n] - ¢ """+ 1/2(—y/=1)", changes discretely and quickly near the
limit.

"It might be seriously difficult to justify this replacement, since there is a large parameter
N in the power of the summand, which exponentially contributes the summand.

8The saddle point method in multi-variables is not established yet. This might be a tech-
nical difficulty.
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Problem 1.20 Justify the above arguments rigorously.

Remark The asymptotic behaviour of Jy(K) might be described by using
quantum invariants of S — K. We have some ways to compute the asymptotic
behaviour of such a quantum invariant, say, when K is a fibered knot (in this
case, S® — K is homeomorphic to a mapping torus of a homeomorphism of a
punctured surface), and when we choose a simplicial decomposition of (a closure
of) $% — K. For details, see remarks of Conjecture 7.12.

The following conjecture is a complexification of the volume conjecture (Con-
jecture 1.19).

Conjecture 1.21 (H. Murakami, J. Murakami, M. Okamoto, T. Takata,
Y. Yokota [MMOTY01]) For a hyperbolic link L,

1 L

27y/—1 - lim %N()

= CS(S® — L) + vV—1vol(S® — L)

N—o0

for an appropriate choice of a branch of the logarithm, where CS and vol denote

the Chern-Simons invariant and the hyperbolic volume respectively. Moreover,

. JIngi(L) 1 3 3

lim XS — exp ( CS(8* - L) + V=Twol(s* — 1)) ). (T

N 3o Jn (L) P 27r\/—_1( ( )+ vol( )) (7)

Remark It is shown [MMOTY 01], by formal calculations (such as (4) and (5)),

that Conjecture 1.21 is “true” for Ks,, Ks,, Ke¢,, K7,, Kz, and the Whitehead
link.

Remark The statement for non-hyperbolic links should probably be the same
statement, replacing vol(S® — L) with v3||S® — L||. Note that, if L is not
hyperbolic, then it is also a problem (see Problem 7.16) to find an appropriate
definition of CS(S® — L), which might be given by (7). It is necessary to assume
that L is not a split link, since Jy (L) = 0 for a split link L.

Remark (H. Murakami) Zagier [ZagOl] gave a conjectural presentation of the
asymptotic behaviour of the following sum,

N-1
In(K3,) = Z(Q)k ~ exp (—Wl—\/;_l(N_g_,_%))N:&m_i_z%(_2wf)k
k=0 & H

for some series by. This suggests that lim % should be —my/—1/12.

Problem 1.22 (H. Murakami) For a torus knot K, calculate CS(S® — K)
(giving an appropriate definition of it) and calculate lim% (fixing an

appropriate choice of a branch of the logarithm).
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2 Vassiliev invariants

Let R be a commutative ring with 1 such as Z or Q. We denote by K the set
of isotopy classes of oriented knots. A singular knot is an immersion of S' into
S3 whose singularities are transversal double points. We regard singular knots
as in RK by removing each singularity linearly by

X K- X

Let F4(RK) denote the submodule of RK spanned by singular knots with d
double points, regarding them as in RK. Then, we have a descending series of
submodules,

RK = Fy(RK) D F(RK) D F(RK) D ---

An R-homomorphism v : RK — R (or, a homomorphism ZK — A for an
abelian group A) is called a Vassiliev invariant (or a finite type invariant)
of degree d if v|z,  (rx) = 0. See [Bar.www] for many references of Vassiliev
invariants.

A trivalent vertex of a graph is called vertez-oriented if a cyclic order of the three
edges around the trivalent vertex is fixed. A Jacobi diagram® on an oriented
1-manifold X is the manifold X together with a uni-trivalent graph such that
univalent vertices of the graph are distinct points on X and each trivalent
vertex is vertex-oriented. The degree of a Jacobi diagram is half the number of
univalent and trivalent vertices of the uni-trivalent graph of the Jacobi diagram.
We denote by A(X; R) the module over R spanned by Jacobi diagrams on X
subject to the AS, THX, and STU relations shown in Figure 6, and denote by
A(X; R) the submodule of A(X;R) spanned by Jacobi diagrams of degree
d. There is a canonical surjective homomorphism

A(S"; R) D [FT — Fy(RK)/Fyr1 (RK), (8)

where FI is the relation shown in Figure 6. This map is known to be an
isomorphism when R = Q (due to Kontsevich). For a Vassiliev invariant v :
RK — R of degree d, its weight system A(S'; R)(¥) /FI — R is defined by the
map (8).

9A Jacobi diagram is also called a web diagram or a trivalent diagram in some literatures.
In physics this is often called a Feynman diagram.
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The AS relation : P P
The IHX relation : : = _ ‘,2‘."
The STU relation : H = b _

The FI relation

Figure 6: The AS, THX, STU, and FI relations

2.1 Torsion and Vassiliev invariants

Let R be a commutative ring with 1, say Z/nZ. Then, Q-, Z-, R-valued
Vassiliev invariants and their weight systems and the Kontsevich invariant form
the following commutative diagram.

Kontsevich invariant

A(S'; Q) /FI K

proj
A(SL Q)@ JFT 222 £(QK)/ Fagr (QK) —S— QK/Fap1 (QK) —— Q
-®Q T@Q -®Q ~®QT

A(S2) D /FT s Fy(@R) [ Fu (28) —— ZK/Fu (2K) —— Z

proj lprOJ proj Projl

A(S%; R)D /FT ", Fy(RK)/Fp41 (RK) —— RE/Fyur(RK) —— R

Here, the right horizontal maps are derived from Vassiliev invariants, and the
compositions of horizontal maps are their weight systems.
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Conjecture 2.1 ([Kir97, Problem 1.92 (N)]) F4(ZK)/Fy41(ZK) is torsion
free for each d.

Remark (see [Kir97, Remark on Problem 1.92 (N)]) Goussarov has checked
the conjecture for d < 6. It has been checked that Fy(ZK)/Fg+1(ZK) has no
2-torsion for d < 9 by Bar-Natan, and for d < 12 in [Kne97].

Remark If this conjecture was true, then Z-valued and Q-valued Vassiev invari-
ants carry exactly the same information about knots. Moreover, any (Z/nZ)-
valued Vassiliev invariants would be derived from Z-valued Vassiliev invariants.

Conjecture 2.2 A(S';7) is torsion free.

Remark (T. Stanford) This conjecture would imply Conjecture 2.1 because
of the Kontsevich integral. However, it is possible that there is torsion in
A(S",2)D which is in the kernel of the map (8).

Conjecture 2.3 (X.-S. Lin [Lin.www]) Let R be a commutative ring with
1, say 7./27. Every weight system A(S'; R)Y/FI — R is induced by some
Vassiliev invariant RK — R.

Remark If the map (8) is an isomorphism and Fy(RK)/Fy+1 (RK) is a direct
summand of RK/Fy;1(RK), then this conjecture is true (see the diagram at
the beginning of this section).

Remark When R = Q, this conjecture is true, since the composition of the
Kontsevich invariant and a weight system gives a Vassiliev invariant, which
induces the weight system. If the Kontsevich invariant with coefficients in R
would be constructed (see Problem 3.7), this conjecture would be true.

Remark (T. Stanford) The chord diagram module A(||,Z) corresponds to
finite-type invariants of two-strand string links. Jan Kneissler and Ilya Dogo-
lazky (see [Dog98]) showed that there is a 2-torsion element in A(]{,7)®) /FI
(see Figure 7). I have done recent calculations (to be written up soon) which
show that there is no Z/2Z-valued invariant of string links corresponding to this
torsion element. Thus there is a Z/2Z weight system A(|,Z/2Z)/F1 — Z/2Z
which is not induced by a Z/2Z-valued finite-type invariant. So for string links,
Conjecture 2.1 is false.
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Y

Figure 7: A 2-torsion element in A({l;Z) due to Dogolazky—Kneissler

(T. Stanford) Note that the Kontsevich integral works (for rational invariants)
for string links just as well as for knots. Since this calculation shows that there
is no Z /27 Kontsevich integral for string links, it suggests that there is no Z /2%
Kontsevich integral for knots.

Question 2.4 (T. Stanford) The Dogolazky-Kneissler 2-torsion element in
A(},2Z) (see Figure 7) can be embedded into a chord diagram in A(S',Z) in
many ways. Such an embedding will always produce an element = € A(S',7)
with 2z = 0. Is it possible to produce such an x which is nontrivial? If so, this
would give a counterexample to Conjecture 2.3.

2.2 Do Vassiliev invariants distinguish knots?

Conjecture 2.5 Vassiliev invariants distinguish oriented knots. (See Conjec-
ture 3.2 for an equivalent statement of this conjecture.)

Remark Two knots with the same Vassiliev invariant up to an arbitrarily given
degree can be obtained; see [Ohy95] and Goussarov-Habiro theory [Gou9s,
Gou99, Hab00]. Hence, we need infinitely many Vassiliev invariants to show
this conjecture.

Problem 2.6 Does there exists a non-trivial oriented knot which can not be
distinguished from the trivial knot by Vassiliev invariants? (See Problem 3.3
for an equivalent problem.)

Remark The volume conjecture (Conjecture 1.19) suggests that the answer is
no; see [MuMuO1].

Conjecture 2.7 (see [Kir97, Problem 1.89 (B)]) For any oriented knot K,

no Vassiliev invariants distinguish K from —K. (See Conjecture 3.4 for an
equivalent statement of this conjecture.)
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Remark ([Kir97, Remark on Problem 1.89]) The first oriented knot which is
different from its reverse is 817. It is known that no Vassiliev invariants of
degree <9 can distinguish a knot from its reverse.

Remark This conjecture is reduced to the problem to find D € A(S') with
D # —D, where —D is D with the opposite orientation of S'. If such a D
existed, the conjecture would fail. Such a D has not been known so far.

Remark Kuperberg [Kup96b] showed that all Vassiliev invariants either distin-
guish all oriented knots, or there exist prime, unoriented knots which they do
not distinguish.

2.3 Can Vassiliev invariants detect other invariants?

(T. Stanford) Let hg(K) be the number of homomorphisms from the fun-
damental group of the complement of a knot K to a finite group G. This is
not a Vassiliev invariant ([Eiser00]). hg,(K) of the 3rd symmetric group &3
is presented by the number of 3-colorings of K, and hp,(K) of the dihedral
group Ds of order 10 is presented by the number of 5-colorings of K. These
are determined by the Jones and Kauffman polynomials, respectively (see the
remark of Problem 4.16), and therefore are determined by invariants of finite
type. In fact, by the usual power-series expansions of the Jones and Kauffman
polynomials, we see that he, and hp, are the (pointwise) limits of respective
sequences of finite-type invariants.

Question 2.8 (T. Stanford) Can we approximate hg by Vassiliev invariants
for other G than dihedral groups?

Remark (T. Stanford) It is known (due to W. Thurston) that knot groups are
residually finite. So if hg can be approximated by finite-type invariants for all
finite groups G, then Vassiliev invariants would distinguish the unknot.

Remark (T. Stanford) If p is a prime, then there exists a nontrivial p-coloring
of a knot K, and hence a nontrivial representation of the fundamental group
of K into the dihedral group D, of order 2p, if and only if Ag(—1) is divisible
by p. Thus the Alexander polynomial contains information about hp,, though
it may not determine hp, completely. Suppose that G is a finite, non-abelian
group, not isomorphic to D). Even if we cannot approximate hg by finite-
type invariants, it would at least be interesting to know whether finite-type
invariants provide any information at all about hg.
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Remark Let hx(K) denote the number of homomorphisms from the knot quan-
dle of a knot K to a finite quandle X . The number hg(K) can be presented by
the sum of hy (K) for subquandles X of the conjugation quandle of G. In this
sense, it is a refinement of Question 2.8 to approximate hx of finite quandles X
by Vassiliev invariants. It is known [Ino01] that hy (K) for certain Alexander
quandles X can be presented by the ith Alexander polynomial of K.

Problem 2.9 (X.-S. Lin [Lin.www]|) Is the knot signature the limit of a se-
quence of Vassiliev invariants?

Remark It is known [Dea94] that the signature of knots is not a Vassiliev
invariant.

2.4 Vassiliev invariants and crossing numbers

Let vy and vy be R-valued Vassiliev invariants of degree 2 and 3 respectively
normalized by the conditions that v(K) = ve(K) and v3(K) = —wv3(K) for
any knot K and its mirror image K and that vy(Kj ) = v3(K3,) = 1 for the
right trefoil knot K3z . They are primitive Vassiliev invariants, and the image

of vy X v3 isequal to Z X Z C R x R.

Problem 2.10 (N. Okuda [Oku02]) Describe the set
{(02(1() v3(K)

nz2 ' n3

) ER X R ‘ K has a knot diagram with n crossings}. (9)

Remark Willerton [Wil01] observed that the set of (ve(K),v3(K)) for knots
K with a (certain) fixed crossing number gives a fish-like graph. This fish-like
graph is discussed in [DLLO1] from the point of view of the Jones polynomial.

Remark (N. Okuda) It is shown by Okuda [Oku02] (the right inequality of
(10) is due to [PoVi0Ol]) that, if a knot K has a diagram with n crossings, then

2 n2

| o) < |5, (10)

16 8
()] < |20V =) (1)

15

where |2 denotes the greatest integer less than or equal to z. It follows that
the set (9) is included in the rectangle [—1/16,1/8] x [—1/15,1/15]. It is a
problem to describe the smallest domain including this set. The plottings in
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Figure 8: The plottings of the set (9) for some family of knots [Oku02]

Figure 8 numerically describe the set (9) for a large finite subset of a certain
infinite family of knots. Okuda [Oku02] identified the boundary of the domain
including this set for this infinite family of knots. This boundary is given by
curves parameterized by some polynomials of degree 2 (for the vy-coordinate)
and of degree 3 (for the vz-coordinate). Further, the points (1/8,4+1/24) are
the limits of the points given by the (2,n) torus knot and its mirror image.
The point (—1/16,0) is the limit of the points given by the knots

for n divisible by 4, where each twisting part has n/2 crossings. These knots
gives the bounds of (10), while the inequality in (11) might not be best possible
(see Conjecture 2.11 below).

Remark (O. Viro) The experimental data (in Figure 8) suggest that there might
exists an additional invariant(s) which together with v, v3, and n satisfy an
algebraic equation(s) such that the set (9) is the projection of the algebraic set
defined by the equation(s).
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Conjecture 2.11 (S. Willerton [Wil01]) Let vs be as above. If a knot K
has a diagram with n crossings, then

n(n? —1)
o< | =)
oa(a)] < |2
Remark It is shown in [Wil01] that the (2,m) torus knot gives the equality of
this formula.

2.5 Dimensions of spaces of Vassiliev invariants

We denote by A(S'; R).onn the submodule of A(S'; R) spanned by Jacobi dia-
grams with connected uni-trivalent graphs. As a graded vector space A(S'; Q)
is isomorphic to the symmetric tensor algebra of A(S';Q)com.. A Vassiliev in-
variant v is called primitive if v(K1#K3) = v(K;) + v(K2) for any oriented
knots K; and K,. The degree d subspace of A(S'; Q). is dual to the dth
graded vector space for Q-valued primitive Vassiliev invariants.

Problem 2.12 Determine the dimension of the space of primitive Vassiliev
invariants of each degree d. Equivalently, determine the dimension of the space
A(SY; Q) 9D for each d.

conn

| d [of1[2]3[4]5[6]7[8]9 [10]
dim ASH@ Tol[1|1]|1]2]3]5 |8 [12] 18] 27

dim A(S1)@ 11(2(3[6]10[19 33|60 | 104 | 184

dim ASH@W/FI || 1[0 1|13 4] 9 |14]27| 44 | 80
\ d 11|12 13 | 14
dim A(SH)@ |39 | 55 | >78 | >108
dim A(S)@ 316 | 548 | > 932 | > 1591
dim A(SH)(@/FI || 132 | 232 | >384 | > 659

Table 1: Some dimensions given in [Broa97, Kne97]

Remark The dimension of A(S'; Q)@  can partially be computed as follows.

conn

Let B denote the vector space over Q spanned by vertex-oriented uni-trivalent
graphs subject to the AS and IHX relations, and let Bgd) denote the subspace

onn

of B spanned by connected uni-trivalent graphs with 2d vertices.
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by (21). Let B4 be

conn

It is known that A(S'; Q)@  is isomorphic to B,
the subspace of B spanned by uni-trivalent graphs with u univalent vertices
(hence, with 2d — u trivalent vertices), and [, its dimension. Then, the

dimension of A(S';Q)(? is presented by Eu22 Ba,u -

Bar-Natan [Bar96] gave a table of 4, for d <9 and for some other (d,u) by
computer.

The series of S j is given as follows. The direct sum @kb’gf{;’j) is isomorphic to
the polynomial ring Q[z?] as a graded vector space by (23); in other words, it
is spanned by “wheels”. Hence, the series of Sj ; is presented by the following

generating function,
1
k _
> Brat’ = g

k>0

That is, B = 1 if k is even, and 0 otherwise.

The series of 1 is given as follows. The direct sum @rBE+LE) s isomor-
phic to Q[oa, 03] as a graded vector space by (25), where o; denotes the i-th
elementary symmetric polynomial in some variables. Hence, the series of (1 &

is presented by the following generating function,

1
k _

k>0

The series of (12 is presented by

1
2 izt = (1 —2)(1 —tH(1 — 1)

k>0

since @pBE+2E) ig isomorphic, as a graded vector space, to Q[@,ag,m] with

conn

elementary symmetric polynomials in some variables by (27).

It is conjectured [Das00] that the series of (3 would be presented by

5 2 1+%+1% —¢1°
ST T A= S (- )

It has been shown that B4, = 0 for d < 9 and for d < u + 2. However, it is
conjectured yet for other (d,u).

A conjecture of a two-variable generating function for the series of 34, with
two parameters d and u is given in [Broa97].
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‘ Bau H u =2 ‘ u:4‘u:6 ‘ u=_8 ‘ u =10 ‘ u =12 ‘ u =14 H total ‘

d=1 1 1
d=2 1 1
d=3 1 1
d=4 1 1 2
d=5 2 1 3
d=6 2 2 1 5
d=7 3 3 2 8
d=28 1 4 3 1 12
d=9 5 6 5 2 18
d=10] 6 8 8 4 27
d=11 8 10 11 8 39
d=12| 9 13 15 12 5 1 55
d=13 | >11 | >16 | >20 | >18 | > 10 3 > 78
d=14 | >13 | >19 | >25 | >26 | >17 7 1 > 108

Table 2: A table of 34, [Broad7, Kne97]

Remark An asymptotic evaluation of a lower bound of dimA(S')(4)  was given
in [ChDu99]; dim.A(S")(@ grows at least as d'°8? when d — co. Further, it was

conn

improved in [Das00]; dimA(S")(@  grows at least as eVd for any ¢ < T/2/3
when d — oo.

Remark Upper bounds of dimA(S'){@)  were given dimA(S')¥ < (d—1)! in

[ChDu94] and dimA(S")@ < (d —2)!/2 (for d > 5) in [NgSt99]. Stoimenow
[Sto98] introduced the number &; of “regular linearized chord diagrams”, and
showed that dimA(S')@ /FI < ¢;. Further, he showed that &; is asymptot-
ically at most d!/1.1¢, which was improved by d!/(21n2 + o(1)) in [BoRi00].

Furthermore, Zagier [Zag01] showed that

YA-ql—¢*) - (1=q") =) &ll—q)" € Z[[1-q]], (12)
and that i
! e
de%(CO‘FYI—Fd—;—F'”)

with Cp = 1231 5/2e™/12 ~ 2,704, C; ~ —1.527, Cy ~ —0.269. It follows
that the asymptotic growth of dimA(S')(@ /FI is at most O(d!Vd(w?/6)~%).
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\ d Jo[t]2]3]4]5]6 ] 7 | 8 | 9 | 10
dim ASSHW/FI{[1{0|1|1]| 3| 4| 9 14 | 27 44 80
€4 L|1]2|5|15(53|217 | 1014 | 5335 | 31240 | 201608

Table 3: Upper bounds &; of dimA(S')(® /FI (see [Sto98])

2.6 Milnor invariants

(T. Stanford) Fix k, and consider k-strand string links. Let V,, be the sub-
space of rational-valued finite-type invariants of order < n (of k-strand string
links). Let M, C V, be the subspace of Milnor invariants and products of
Milnor invariants. It is known that in general M,, is a proper subspace of V,,.

Question 2.13 (T. Stanford) Does M, have an interesting complementary
space in V,, ? Consider, for example, the space N, C V,, of invariants v with
the property that v(L) = 0 for any string link L such that 71 (B3 — L) is free.
Is N, nontrivial? Do N,, and M, together span V,?

Here is some background and motivation.

When considering finite-type invariants of string links, the first ones that come
to mind are the Milnor invariants. These were defined by Milnor [Mil54] in 1954
as numbers associated to links. They are not quite invariants of links, in the
usual sense, because of some indeterminacy. They are, however, well-defined as
invariants of string links, and this point of view was taken by Habegger and Lin
[HaLi90]. After Vassiliev’s work appeared, Bar-Natan [Bar95b] and Lin [Lin97]
showed (independently) that the Milnor invariants are finite-type invariants.
Habegger and Masbaum [HaMa00] showed that on the chord diagram level, the
Milnor invariants (including products of Milnor invariants) are exactly the ones
that vanish on Jacobi diagrams that contain internal loops, and also that the
Milnor invariants are the only rational-valued finite-type invariants of string
links which are also concordance invariants.

String links may have local knots in the strands, and such knots are not detected
by Milnor invariants. If a string link L has local knots, then (B3 — L) is not
free. Hence the question as to whether finite-type invariants can show that the
complement of a string link is not free.

(M. Polyak) Let us review the constructions of Milnor fz-invariant in [Coc90].
For a n-component link L = Ly U---U Ly, regard the homotopy class of L, as
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in 1 (S3 —(LyU---U Ln—l)) , and write it in terms of meridians my,--- ,mpy_1
of Ly, -+, L,_1. Consider its Magnus expansion putting m; = 1 + X; for non-
commutative variables X;. Then, Milnor’s fi-invariant 7;, ...;, ,,(L) is defined to
be the coefficient of X" --- X" in the expansion, which is an invariant under
the assumption that the lower fi-invariants vanish. For example, u2 is equal
to the linking number 1k(Li, L) of L and Ly. Further, if p; (L) = 0 for
any 1,7, then pip3(L) = lk(L12,L3), where Lo denotes the link which is the
intersection of Seifert surfaces of Ly and Ls. In general, under the vanishing
assumption of the lower fi-invariants, fiys..,,_1 (L) = lk(Lig.., 1, L) where
Lig. (for kK = 2,3,--- ;n — 1) denotes the link which is the intersection of
Seifert surfaces of Lio...,—1 and Ly.

Problem 2.14 (M. Polyak) Milnor’s f-invariants of string links can be de-
fined similarly as above (see [Pol99]). Find a topological presentation of a fi-
invariant of string links (not assuming the vanishing of the lower [i-invariants).

(1) Show that Ik(L19...,—1,Ly) is well-defined in an appropriate sense.
(2) Ident1fy it with ﬁlgnflyn(L) .

2.7 Finite type invariants of virtual knots

A wirtual knot ([Kau99]) is defined by a knot diagram with virtual crossings
modulo Reidemeister moves. Finite type invariants of virtual knots were studied
in [GPV00], where their weight systems are defined on the space X(X i R)/ Fi
of arrow diagrams. Here an arrow diagram ([Pol00]) is a chord diagram with

oriented chords, and Z(X ; R) denotes the module over a commutative ring R

spanned by arrow diagrams on X subject to the 67T relation, and F_‘i denotes
the oriented FI relation (see Figure 9 for these relations). It is known [Pol00]

that Z(X ; R) is isomorphic to the module spanned by acyclic oriented Jacobi
diagrams on X subject to the relations

and the ﬁ, IH)_(), and STU relations (see Figure 9).

Problem 2.15 Let I denote an oriented interval.

(1) Determine the dimensions of Z(S’l; Q) and X(I; Q)9 for each d.
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The 6T relation: * v 4 = + A0+ T
\ 1 1 \
‘/ \ /7”}}\\ /———Jpj\
= "N A+ PR S
N <
I/ \\ ,/ \\
The P_‘i relation : \ =0= / \
—_— —_—
1 1
i i
_i 1 . i //’)\\\ — //‘)\\\ i
The weak FI relation : vl =0 ,
i R
1 1
1 1
N S
1 ’ \ _ ’ \ 1
[ \ = 1 vl
[ 1 1 v !
[ 1 1 V!
1l 1 1
\\
\ ~
\ - S~o
A AN =~
? . N/ N N
The AS relation: A 777777 = — T
// N_.7 /,/,/
//I ’
\\\-»_r___”’ \\\ lll
H | !
The IHX relation : = e I S
Ammmnn
N . i i \, ’
\V/ 1 1 A
The STU relation : : = E E -
: b

Figure 9: The 6T and the oriented FI, AS, THX, and STU relations. Here, a thick
dashed line implies the sum of the two orientations, and corresponding thin dashed
lines of pictures in the same formula have the same (arbitrarily given) orientation.
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(2) Determine the dimensions of Z(S’l; Q@ /?I and X(I; Q)@ /?I for each
d.

(3) Determine the dimensions of X S1; Q) / (weak FI) and
z(I Q)@ / (weak ?I) for each d.

Remark It is shown by elementary computation that Z St / FI =0 and
that X(I ,Q)®) /FT is a 2-dimensional vector space spanned by

P RS PP SN SN

~
’ 2N \ ’ N \

Note that the dimensions of Z(S L@@ and Z ) differ unlike the un-
oriented case.

Remark Constructive weight systems on Z(X ; R) can be defined by using
Lie bialgebras (see, e.g., [Dri87, EiKa96], for Lie bialgebras), where the weight
systems of the following diagrams

g \\\ /A{/ g ® g

T \T/ T
A% 0
I

i AN g®g g

—— -

are defined to be the bracket and the co-bracket of a Lie bialgebra g. Such
weight systems are helpful when we estimate lower bounds of the dimensions
of the spaces A(X;R).
Conjecture 2.16 (M. Polyak) The following two maps are injective,
A — A(D)@
A D /FI — A(D)D /7],

where they are defined by

() = ) ),

Remark If these maps are injective, then weight systems on A(I@ and A(I)¥ /FI
would be detected by weight systems on 2 ) and 7( 1)@/ F_‘i in other
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words, the upper rightward map in the following diagram would be surjective.

degree d weight systems degree d weight systems
for long virtual knots for classical knots

I |

degree d finite type invariants degree d Vassiliev invariants
. E— .
for long virtual knots for classical knots

Hence, this conjecture follows from Conjecture 2.17 below, which implies that
the lower rightward map in the above diagram is surjective.

Conjecture 2.17 ([GPVO00]) Every Vassiliev invariant of classical knots can
be extended to a finite type invariant of long virtual knots. (See also Problem
3.9.)

2.8 Finite type invariants derived from local moves

One aspect of the study of knot invariants is the study of the set of knots. A
local move and finite type invariants derived from it might give an approach of
this study.

A local mowve is a move between two knots, which are identical except for a ball,
where they differ as shown in both sides of a move in Figure 10. Let R be a
commutative ring with 1, and K the set of isotopy classes of oriented knots,
as before. For a local move m, we define Fy(RK, m) as follows. Let K be an
oriented knot with d disjoint balls By, Bs,--- , B4 such that K is as shown in
one side of m in each B;. For any subset S C {1,2,--- ,d}, we denote by Kg
the knot obtained from K by applying m in each B; for ¢ € S. We define
F4(RK,m) to be the submodule of RK spanned by

» (-1)#5 Ky (13)

S
for any K with d balls, where #S denotes the number of elements of S, and
the sum runs over all subsets S of {1,2,--- ,d}. Then, we have a descending
series of submodules,
RK = Fy(RK,m) D Fi(RK,m) D Fo(RK,m) D ---.

Note that Fy(RK) = F4(RK, x) for a crossing change “x”. An R-homomorphism
v: RK — R is called a finite type invariant of m-degree d, or an m finite type
invariant of degree d, if /U|].'d+1(RK,m) =0.
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A crossing change “x” : )\/\ R \/{
A double crossing change “xx” : X X \/k )\/

A A move : \\/_\,\/ — /k\[
A doubled delta move AA : \*/\S gk/

N
N V%
An n-gon move : \\)/ /F: — % \<:

Figure 10: Some local moves among oriented knots. The strands of both sides of a A
move and an n-gon move have any orientations such that corresponding strands from
opposite sides of the moves are oriented in the same way. Each side of an n-gon move
has n strands.
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It is a fundamental problem of finite type invariants to calculate the correspond-
ing graded spaces, which would enable us to identify finite type invariants in
some sense.

Problem 2.18 Calculate F4(ZK m)/Fyi1(ZK m), letting m be a local move
such as

(1) a # move,
(2) a pass move,
(3) a A move,

(4) an m-gon move.

Remark 1t is known that crossing change, double crossing change, # move (see
[Mur85]), A move (see [MuNa89]), n-gon move (see [Aid92]) are unknotting
operations, ¢.e., any oriented knot can be related to the trivial knot by a se-
quence of isotopies and each of these moves. Hence, Fy(ZK, m)/F; (ZK, m) = Z
for these moves m.

It is known [Kau83] that Arf invariant gives the bijection
{knots}/(pass move) — Z/2Z.
Hence, Fy(ZK, pass move)/F;(ZK, pass move) X Z & Z.

Remark A finite type invariants were introduced in [Mel20]; see also [Sta00].

Remark (K. Habiro) The following relations hold,
Faa(ZK x) D Fy(ZK A) D F3q(ZK, x),
Fo(ZK x) D Fa(ZK #) D Fa(ZK A).

These relations imply that m finite type invariants are Vassiliev invariants, and
Vassiliev invariants are m finite type invariants, for m = #,A. Further, the
rank of Fy(ZK, m)/Fgi1(ZK m) is finite for these m.

Remark For the Kontsevich invariant Z (introduced in Chapter 3), we have
that

(-\ ﬂ ﬂ n terms of
(( )(® @))( n n n higher degrees /'’
)( ))(
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where two tangles in the left hand side are related by a A move. Hence, the
image of

Fa(QK, A) — Foq(QK) — Foq(QK)/Faar1 (QK) = A(S'; Q)2

is equal to the subspace of A(S 1;(@)(2d) spanned by Jacobi diagrams on S*
whose uni-trivalent graphs are disjoint unions of d dashed Y graphs.

Remark Finite type invariants derived from a double crossing change were
introduced in [App02], to study finite type invariants of links with a fixed linking
matrix. For knots, they are equal to Vassiliev invariants, that is, Fy(ZK; xx) =

Fi(ZK x).

QS
The surgery on is defined to be the surgery along (\)

Figure 11: Definition of the surgery on a Y graph. Dotted lines imply strands possibly
knotting and linking. Three circles (partially dotted) in the left picture are called
leaves.

(Y. Ohyama) In the case all arcs in a A move are contained in the same
component, it is called a self A move. If two links can be transformed into
each other by a finite sequence of self A moves, they are said to be A link
homotopic.

Problem 2.19 (Y. Ohyama) Find necessary and sufficient conditions for two
p-component links (> 2) to be A link homotopic.

Remark (Y. Ohyama) For a p-component link K = K; UKy U... UK, let
61 = ay1(K) and 0y = ap41(K) — au—1(K) x (31| aa(K;) for the coefficient
a;(K) of the term 2' in the Conway polynomial of K.

It is known [Mat87, MuNag89] that two knots (or links) can be transformed
into each other by a finite sequence of A moves if and only if they have the
same number of components, and, for properly chosen orders and orientations,
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they have the same linking numbers between the corresponding components. In
particular, if two links are A link homotopic, then their §; coincide. Further,
it is known [Nak99] that if two pu component links are A link homotopic, then
their d5 coincide. These are necessary conditions of this problem.

Moreover, for 2-component links, a pair of §; and 09 is a faithful invariant
of A link homotopy. Namely, for two 2-component links, they are A link
homotopic if and only if their ; and dy coincide ([NaOh01]). This gives a
required condition of this problem for 2-components links.

2.9 Loop finite type invariants

The loop-degree of a Jacobi diagram on S' is defined to be half of the number
given by the number of trivalent vertices minus the number of univalent vertices
of the uni-trivalent graph of the Jacobi diagram. The filtration of A(S') given
by loop-degrees is related to a filtration of QK through the Kontsevich invariant.
The theory of the corresponding filtration in Z(MK) (given below) is developed
in [GaRo00] (noting that this definition also appears in the September 1999
version of [Kri00al).

We denote by MK the set of pairs (M, K) such that M is an integral homology
3-sphere and K is an oriented knot in M. Counsider a move between two pairs
(M,K) and (M',K') in MK such that (M’, K') is obtained from (M, K) by
surgery on a Y graph (see Figure 11) embedded in M — K whose leaves have
linking number zero with K. We call this move a loop move. Finite type
invariants of degree d derived from a loop move by (13) are called loop finite
type invariants of degree d, or finite type invariants of loop-degree d. We denote
the corresponding submodule of R(MK) by F;(Z(MK);loop).

A doubled delta move AA (see Figure 10) was introduced by Naik-Stanford
[NaSt 99] as a move characterizing S-equivalence classes; two knots are S-equivalent
if they are indistinguishable by Seifert matrices. A doubled delta move AA can
be presented by a surgery on such a Y graph as above. Thus, we have the map
FI(RK; AA) — Fi(R(MK);loop), taking a knot K to (S, K) € MK. Hence, a
loop finite type invariant gives a AA finite type invariant.

Problem 2.20 Let R be a commutative ring with 1, say, Z or Q.
(1) Describe the spaces Fi(R(MK); loop)/F;+1(R(MK); loop).
(2) Describe the spaces Fi(RK; AA)/Fi11(RK; AA).
(3) Describe the image of the above map Fi(RK; AA) — Fi(R(MK); loop).
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Remark (A. Kricker) It follows by a short argument from [NaSt99] and [Mat87]
that the following map taking a pair (M, K) to a Seifert matrix of K in M is
bijective,

MK/ (loop move) —s {S-equivalence classes of Seifert matrices}. (14)

(This implies that K and K' are related by a sequence of doubled delta
moves if and only if (93, K) and (93, K') are related by a sequence of loop
moves.) Hence, Fy(Z(MK); loop)/Fi(Z(MK);loop) is isomorphic to the module
over Z freely spanned by S-equivalence classes. Moreover, by (14), we have
that Z(MK) = @sZ(MK), where the sum runs over all S-equivalence classes s.
Further,

Fi(Z(MK); loop) / Fi 41 (Z (MK); loop) @Fz ); 100p) / Fiy1(Z (MK ); loop).

Hence, the problem (1) splits into problems of describing the direct summands

on the right hand sides: describe the spaces F;(Z(MKy);loop)/Fi4+1(Z(MKs); loop)
for each S-equivalence class s. For the S-equivalence class w including the un-

knot, 7 (Q(M, ); o0p) / Fi 41 (Q(MIK, ); loop) is isomorphic to AX1(p; g)toop D

by the map (30) of the loop expansion of the Kontsevich invariant (see also

[GaRo00]); for the definition of the space AL (g @)Uoop D) gee Section 3.9.

Remark A surgery on a Y graph in the definition of loop finite type invariants
lifts to a surgery of the infinite cyclic cover of the knot complement, which does
not change its homology. Hence, it is shown, topologically, that all coefficients
of the Alexander polynomial are finite type invariants of loop-degree 0.

It follows that all coefficients of the Alexander polynomial are finite type invari-
ants of AA-degree 0. It can also be shown from the fact that the Alexander
polynomial can be defined by the Seifert matrix of a knot, which is unchanged
by finite type invariants of AA-degree 0 as shown in [NaSt99].

The Alexander polynomial is universal among Vassiliev invariants which are of
finite type of AA-degree 0; more precisely, log Ak (e") as a power series of h
is universal among Q-valued primitive Vassiliev invariants which are of finite
type of AA-degree 0. An equivalent statement has been shown in [MuOhO01],
using Vassiliev invariants of S-equivalence classes of Seifert matrices.

Remark As shown in [NaSt99] we have a bijection,
{knots}/AA — {S-equivalence classes},

by taking a knot to its S-equivalence class. Hence, Fy(ZK AA)/F1(ZK; AA) is
isomorphic to the module over Z freely spanned by S-equivalence classes.
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Remark (A. Kricker) The dual space of
FI(K® QG AA) N Fy(K® Q x)
(Fran(K@@GAA) NFe(K® QX)) + (F(KOQAA) N Fui (KO Q X))
is isomorphic to the subspace of B spanned by connected uni-trivalent graphs

of degree d and of loop-degree [, i.e., the space Bgfr’ﬁ_l) in the notation given
in a remark in Problem 2.12.

(A. Kricker)

Let MK denote the set of pairs (M, K) such that M is an integral homology
3-sphere and K is an oriented knot in M, as before. A mod p loop move in
MK is defined to be a surgery on a Y graph (see Figure 11) such that each leaf
has linking number 0 modulo p with the knot. We consider the question: what
are the mod p loop move equivalence classes of knots?

To state the conjecture below, we give some notation. Consider a pair (M, K) of

an integral homology 3-sphere M and a knot K in M . Let EI(’ M,K) be the p-fold

P
(M,K)

3-sphere. Observe that there is an action of Z/pZ on the homology group

H 1(2’(’ M)’ Z) (induced from the covering transformations). Observe also that

the linking pairing on the torsion of H 1(2]’(7 MK
is invariant under the action of Z /pZ. Here, the linking pairing on the torsion of
H;(N;2) of a 3-manifold N is the map Tor(H;(N;2Z))®Tor(H;(N;Z)) — Q/Z
taking a ® § to 1/n times the algebraic intersection of F' and [, where F' is
a compact surface bounding na for some non-zero integer n.

branched cyclic cover of (M, K), and assume that X is a rational homology

¥ Z) (which is the whole group)

Conjecture 2.21 (A. Kricker) Take (M;,K;) and (M, Ky) of the above
sort. Then, there exists a (Z /pZ)-equivariant isomorphism ¢ : H 1(27(’ MK 7)) —
HI(ZI(’Mz,KQ); Z.) preserving the linking pairing if and only if (M, K1) is equiv-
alent to (Mo, K3) by a finite sequence of mod p loop moves.

Remark (A. Kricker) The case of p = 1 would recover Matveev’s theorem
[Mat87]: two closed 3-manifolds M and N are equivalent by a finite sequence
of surgeries on Y graphs if and only if there is an isomorphism H;(M;Z) —
Hy(N;7) preserving the linking pairing on the torsion.

Also, the limit as p — oo should recover a theorem due to Naik-Stanford
[NaSt99]: two knots are equivalent by a finite sequence of loop moves if and
only if they have isometric Blanchfield pairings. (Recall that the Blanchfield
pairing is the equivariant linking pairing on the universal cyclic cover.)
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2.10 Goussarov-Habiro theory for knots

Related to Vassiliev invariants of knots, equivalence relations among knots have
been studied by Goussarov [Gou95, Gou99] and Habiro [Hab00], which is called
the Goussarov-Habiro theory for knots. These equivalence relations are helpful
for us to study structures of the set of knots.

The Cy-equivalence'® (d =1,2,3,---) among oriented knots is the equivalence
relation generated by either of the following relations,

(1) Cg-move, i.e., surgery along a tree clasper with d trivalent vertices whose
leaves are disc-leaves [Hab00],

(2) relation on a certain collection of d crossing changes (Goussarov’s (d—1)-
equivalence) [Gou94a, Gou94b, Gou99],

(3) surgery by an element in the dth group in the lower central series of pure
braid group [Sta9§],

(4) capped grope cobordism of class d [CoTe00].

It is known that these relations generate the same equivalence relation among
knots. The Cy-equivalence is defined among links, string links, - - -, in the same
way.

It is known [Hab00] that there exists a natural surjective homomorphism

A(SH2)\), — {K ~ O}/ ~ (15)
Cq Cat1
such that the tensor product of this map and Q is an isomorphism, where O

denotes the trivial knot. In particular, {K Iy O} /ON forms an abelian group
d “d+1

with respect to the connected sum of knots, and hence, so does {knots} /CN .
d+1

Conjecture 2.22 The map (15) is an isomorphism.

This conjecture might be reduced to Conjecture 2.2 and the following conjec-
ture.

Conjecture 2.23 {K ~ O}/ ~ is torsion free for each d.
Cq Ca+1

Remark Conjecture 2.2 implies this conjecture, since the surjective homomor-
phism (15) gives a Q-isomorphism.

9The Cy-equivalence is also called the (d — 1)-equivalence (due to Goussarov) in some
literatures.
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It is known [Gou95, Sta98, Hab00] that two knots K and K’ are Cy-equivalent
if and only if v(K) = v(K') for any A-valued Vassiliev invariant v of degree < d
for any abelian group A. In fact, a natural quotient map {knots} — {knots} /(ry

“d

is a Vassiliev invariant of degree < d, which classifies C;-equivalence classes of
knots.

Conjecture 2.24 (K. Habiro [Hab00], see also [Gou99, “Theorem 5”]) Two
m-strand string links L and L' are Cg-equivalent if and only if v(L) = v(L’)
for any A-valued finite type invariant v of degree < d for any abelian group

A.

Remark (M. Polyak) The corresponding assertion for links does not hold; note
that {links}/ oy does not (naturally) form a group. Recall that {knots}/ o
d d

forms an abelian group, which guarantees the corresponding assertion for knots,
as mentioned above. The set {m-strand string links}/ o forms a group with
“d

respect to the composition of string links, though it is not abelian.

Problem 2.25 (M. Polyak) Establish the Goussarov-Habiro theory for vir-
tual knots.

Remark Polyak suggested that the following moves,

S AR voYe
Q _ 3

(which appear in [GPV00]) might play a similar role as the Cs-move plays
among knots. They are related to the following diagrams respectively,

//\Y\/Y/\ //\k\/k’\\

I I
Ao Y
—— ——

Further, Habiro suggested that the move,

=/ \
et

should be added to the above moves. It is a problem to define a sequence of
equivalence relations among virtual knots (an extension of the Cj-move) which
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induces finite type invariants of virtual knots. Are there surjective homomor-
phisms from certain modules of arrow graphs (oriented Jacobi diagrams) to the
graded sets derived from such equivalence relations?

(K. Habiro) We denote by MK the set of pairs (M, K) such that M is an inte-
gral homology 3-sphere and K is an oriented knot in M. The HL,-equivalence
(homology d-loop equivalence) in MK is the equivalence relation generated by
either of the following relations,

(1) surgery on a tree clasper with d trivalent vertices with null-homologous
leaves,

(2) surgery on a graph clasper with d trivalent vertices with null-homologous
leaves,

(3) surgery by an element of the dth lower central series subgroup of the
Torelli group of compact connected surfaces embedded in a null-homologous
way.

Here, “null-homologous” means null-homologous in knots complements. These
relations generate the same equivalence relation in MK.

Problem 2.26 (K. Habiro) Describe the abelian group
{(M,K) S3, unknot)}/ ~ for each d.

~
HLg ( HLg4 1

Remark (K. Habiro) Two pairs (M, K) and (M', K') in MK are HLg-equivalent
if and only if v(M, K) = v(M', K') for any A-valued loop finite type invariant
v of loop degree < d for any abelian group A. Thus, the HL-equivalence gives
the Goussarov-Habiro theory for loop finite type invariants.

The homotopy d-loop equivalence is defined by using “null-homotopic leaves”
instead of “null-homologous leaves” in the definition of the HL -equivalence.
These equivalences might be related to the rational Z invariant Z"*. The
homotopy loop equivalence relates (ZHS, boundary link) to (ZHS, boundary
link). A high loop-degree part of Z"* might be invariant under the homotopy
loop equivalence.

The quotient set MK/ L~ can be identified with the commutative monoid of
1

S-equivalence classes of Seifert matrices. (See a remark of Problem 2.20.)

Define the equivalence relation HL! among knots in S3 to be the equivalence
relation generated by surgery on a tree clasper with d trivalent vertices with
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null-homologous leaves in the complement of a knot such that at least one leaf
bounds a disc with zero intersection number with the knot. Then, there exists
a split exact sequence,

{knots in 53}/Hr; — M]K/Hr; — {ZHS’S}/va,
n d d

where the first map takes a knot K to (S, K) and the second map is the map
forgetting knots.

A refinement of Problem 2.26 is to consider the graded sets of the double se-
quence given by the Cj-equivalence and the HL,-equivalence.

2.11 Other problems

(D. Bar-Natan)!!
Is there a Hilbert’s Nullstellensatz for finite type invariants of links?

Let k£ be an algebraically closed field and let I be an ideal in the polynomial
ring k[z1,---,z,]. The Hilbert Nullstellensatz (see e.g. [Eisen94]) says that
the ideal of polynomials in k[xy,--- ,x,] that vanish on the variety defined by
the common zeros of all polynomials in I is the radical of I.

Problem 2.27 (D. Bar-Natan) Is there a similar statement for finite type
invariants of links? Let I be an ideal in the algebra V of finite type invariants
of links. Let Z be the set of links that are annihilated by all members of I, and
let J be the ideal in V of all invariants that vanish on Z. Clearly, J always
contains the radical of 1. Are they always equal?

Ezample (D. Bar-Natan) Let I be the ideal generated by linking numbers. In
this case, Z is the set of algebraically split links. Is it true that every finite
type invariant that vanishes on algebraically split links is a sum of multiples of
linking numbers? I believe it is true, and I believe it follows from the results of
Appleboim [App02], but I'm afraid Appleboim’s paper is incomplete and while
I believe it I cannot vouch for its validity.

Remark (D. Bar-Natan) One may also ask, “what is the Zariski closure of
a given set of links?”. I believe that in the light of the paragraphs above the
meaning of this question should be clear. I know of at least one interesting
example: In [Ng98] Ng shows that the Zariski closure of the set of ribbon knots
is the set of knots whose Arf invariant vanishes.

"' This part is a quotation from http://www.ma.huji.ac.il/~drorbn/Misc/Nullstellensatz/
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Is the similarity index of two different knots finite?
(M.-J. Jeong, C.-Y. Park)

K. Habiro and T. Stanford independently showed that for each positive integer
n, two knots K and L have the same values for any Vassiliev invariants of type
< n if and only if they are LC'Sy,-equivalent. Y. Ohyama introduced triviality
index of knots and K. Taniyama extended this to the similarity index of links;
see [Ohy95]. Ohyama showed that if two knots are n-similar then they have
the same value for any Vassiliev invariants of type < n. It is not difficult to
see that two knots are n-similar if they are LCS,-equivalent. D. Bar-Natan
gave a problem whether Vassiliev invariants can distinguish all of knots or not.
This problem is equivalent to the problem, whether the similarity index of any
two different knots have finite similarity index. We will give a new criterion
to calculate the similarity index of knots and, based on this, raise problems
to calculate similarity index. For example, for two given knots, which knot
invariants will give the best upper bound to calculate the similarity index of
knots, along our above new result? As a partial problem, can we show that the
triviality index of a non-trivial knot is finite by using our results?

Polynomial invariants and Vassiliev invariants
(M.-J. Jeong, C.-Y. Park)

In 1993, J. S. Birman and X.-S. Lin ([BiLi93]) showed that, after a suitable
change of variables, each coefficient of the Jones, HOMFLY and Kauffman
polynomial is a Vassiliev invariant. So we can obtain various Vassiliev invariants
from the derivatives of knot polynomials.

In 2001, by using some specific kinds of tangles, we gave two operations =~ and
* operations to get new polynomial invariants from a given Vassiliev invariant.
These new polynomial invariants are also Vassiliev invariants. So we can obtain
various Vassiliev invariants from the coefficients of these polynomial invariants.

Let V,, be the space of Vassiliev invariants of degrees < n. For A, C V,, let
(Ay) be the set of Vassiliev invariants obtained from A,, by using finite numbers
of ~ and * operations repeatedly.

Question 2.28 (M.-J. Jeong, C.-Y. Park) Find a minimal finite subset A,
of V,, such that span(A,) =V,.
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3 The Kontsevich invariant

The framed Kontsevich invariant Z(L) € A(U'S';Q) of an oriented framed
link L with [ components is defined by using monodromy along solutions of
the formal version of the KZ equation. Forgetting its framing, the Kontsevich
invariant Z(L) of an oriented link L is defined in A(L'S';Q)/FI. The Kont-
sevich invariant is universal among quantum invariants in the sense that the
quantum (g, R) invariant recovers from the Kontsevich invariant through the
weight system substituting a Lie algebra g and its representation R into Ja-
cobi diagrams. Moreover, the Kontsevich invariant is universal among Vassiliev
invariants in the sense that each coefficient of the Kontsevich invariant is a
Vassiliev invariant and any Vassiliev invariant can be presented by a linear sum
of coefficients of the Kontsevich invariant.

3.1 Calculation of the Kontsevich invariant

Problem 3.1 For each oriented knot K, calculate the Kontsevich invariant
Z(K) for all degrees.

Remark For each d the degree d part of Z(K) is a Vassiliev invariant. Hence,
it is algorithmically possible to calculate it in a finite procedure. It is a problem
to calculate Z(K) for all degrees.

Remark D. Bar-Natan, T. Le, and D. Thurston [BLT03] gave the following
presentation of the Kontsevich invariant of the trivial knot O,

sinh(z/2)

x/2 (16)

log,, Z(0) = %log
where z is an element in B (see (22)), and B is a space isomorphic to A(S!)
(see (21)). The Kontsevich invariant of a cable knot of a knot K can be
calculated by applying a cabling formula [BLT03] to the Kontsevich invariant
of K. The Kontsevich invariant of the connected sum of knots is given by
the connected sum of the Kontsevich invariant of the knots. Hence, we can
calculate the Kontsevich invariant of knots obtained from the trivial knot by
finite sequences of cabling and connected sum. To calculate the Kontsevich
invariant of other knots in a combinatorial way, we probably need an associator,

whose combinatorial direct presentation for all degrees is not known yet (see
Problem 3.13).
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3.2 Does the Kontsevich invariant distinguish knots?

Conjecture 3.2 The Kontsevich invariant distinguishes oriented knots. (See
Conjecture 2.5 for an equivalent statement of this conjecture.)

Remark Kuperberg [Kup96b] showed that all finite type invariants either dis-
tinguish all oriented knots, or there exist prime, unoriented knots which they
do not distinguish.

Problem 3.3 Does there exists a non-trivial oriented knot K such that Z(K) =
Z(0) for the trivial knot O7 (See Problem 2.6 for an equivalent problem.)

Conjecture 3.4 Z(K) = Z(—K) for any oriented knot K, where —K de-
notes K with the opposite orientation. (See Conjecture 2.7 for an equivalent
statement of this conjecture.)

3.3 Characterization and interpretation of the Kontsevich in-
variant

The space A(S') is an algebra with the product given by connected sum of
Jacobi diagrams on S'. Since the Kontsevich invariant Z(K) of a knot K
is group-like in A(S'), its logarithm log Z(K) belongs to A(S').m, where
A(S")conn denotes the vector subspace of A(S') spanned by Jacobi diagrams
on S' with connected uni-trivalent graphs.

Problem 3.5 Characterize those elements of /l(S DY oms Of the form log Z(K),
or those elements of B,,,, of the form log , Z(K).

Remark If the Kontsevich invariant was injective, this problem would be a step
of the classification problem of knots. It is known (see, for example, [Oht02])
that those elements of A(S™)(S9 of the form of the degree < d part of log Z(K)
forms a lattice, which is isomorphic to the lattice in A(S').... spanned by Jacobi
diagrams over Z, and that the coefficients of log Z(K) are invariants which are
independent to each other. Hence, it would be meaningful to characterize the

form of infinite sums of coefficients of log Z(K), resp. log , Z(K).

Wy r (Z (K )) is a polynomial in ¢='/2N for any simple Lie algebra g and its
representation R, where N is the determinant of the Cartan matrix of g (see
[Le00b]), since it is equal to the quantum (g, R) invariant of K. This somehow
characterizes the form of Z(K).
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The loop expansion characterizes the infinite sum of subsequences of log | Z(K)
in each loop-degrees; see (24), (26), and (28) in the cases of low loop-degrees.
Since the image of the Kontsevich invariant is a countable set, there should be
more restrictive properties.

Problem 3.6 (J. Roberts) Give a good topological construction of the Kont-
sevich integral.

Remark (J. Roberts) The Kontsevich integral is, in my opinion, the deepest
part of the existing theory of quantum invariants, and it has two (conjecturally)
equivalent formulations, each with its mysteries.

(a). In Kontsevich’s original formulation of his integral, the part relating to
braids is reasonably well-understood: it can be described using configuration
spaces of points in the plane, the Knizhnik-Zamolodchikov equation, 1-minimal
models in rational homotopy theory, Chen’s iterated integrals and Magnus ex-
pansions. The fact that this actually extends to a knot invariant does not seem
to appear naturally in these pictures, however. Passing from braids to (Mor-
sified) knots suggests thinking about configuration spaces of varying numbers
of points in the plane, and allowing some kind of annihilation and creation of
pairs. Is there some way to utilise such spaces? (A related question is Problem
3.14.)

(b). In the perturbative integral formulation, the diagrammatic power series is
introduced as a formal device for keeping track of which linear combinations of
the individual (non-invariant) coefficient integrals give give knot invariants. It
isn’t really clear from this point of view why this series should turn out to have
good properties such as multiplicativity, Kricker/Rozansky rationality, etc. Is
there an “all-in-one” definition?

3.4 The Kontsevich invariant in a finite field

Problem 3.7 Construct the Kontsevich invariant (i.e., a universal Vassiliev
invariant) with coefficients in a finite field.

Remark If we could find a solution (R, ®) of the pentagon and hexagon relations
with coefficients in a finite field, such a solution would give a combinatorial
construction of the Kontsevich invariant with coefficients in that field. In this
case we can not put R = exp ii /2 ) unlike the case of Q coefficients, because

p~! of the order p of the field appears in the expansion of the exponential.
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3.5 The Kontsevich invariant in arrow diagrams

Conjecture 3.8 (D. Bar-Natan, A. Haviv)

(Z(0)) = closure <exp (%( \\‘. -/ \\\‘. ))) 5

where Z(O) denotes the Kontsevich invariant of the trivial knot (see [BGRT00])
and ¢ is the map of Conjecture 2.16.

Remark (D. Bar-Natan, A. Haviv) This conjecture is true in any semi-simple
Lie algebra.

Problem 3.9 (M. Polyak) Construct the “Kontsevich invariant” (i.e., a uni-

versal finite type invariant) of virtual knots in X(I ). (See also Conjecture
2.17.)

Remark (M. Polyak) It is shown by Goussarov (see [GPV00]) that there exists
a Gauss diagram formula for any Vassiliev invariant of classical knots. His proof
is an algorithmical proof, assuming the existence of such a Vassiliev invariant,
and does not give a new proof of Kontsevich theorem “any weight system can
be integrated to an invariant of knots”. It would be nice to have a new direct
combinatorial proof, which would imply Kontsevich theorem. Then, it would
work for virtual knots.

Remark (M. Polyak) It is known (see, for example, [Oht02]) that quantum
invariants of knots can be defined by using quasi-triangular quasi-Hopf algebras
with associators ®. When ® = 1, such definition can naturally extend for
virtual knots. However, when ® # 1 (as in the combinatorial definition of the
Kontsevich invariant of classical knots), this extension does not work.

Problem 3.10 (D. Thurston) Construct a series of configuration space inte-

grals whose value is in X(I ) so that it gives all finite type invariants of virtual
knots.

Remark (D. Thurston) A technical difficulty is to kill the hidden strata of the
configuration spaces (see also Problem 3.11). A way to kill a hidden strata is
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to use an involution on the strata, but, in this case, such an involution takes
the following left diagram to the right diagram,

!

. N \\ }/

I

I

N
It

where the right diagram is equal to 0 by definition, while the left one is not
necessarily equal to 0.

(M. Polyak) Each of the following three approaches gives all Vassiliev invari-
ants.

e Construction of the Kontsevich invariant using monodromy along solu-
tions of the KZ equation.

e Configuration space integrals motivated by the perturbative Chern-Simons
theory.

e Gauss diagram formulas, which count configurations of crossings of knot
diagrams.

The invariants derived from these three approaches are expected to be natu-
rally equivalent in the following sense.'? 13 The integral of the second approach
gives an integral presentation of the mapping degree of a certain map on a
configuration space, and it is shown in the degree 2 case [PoViOl] that the
invariants of the first and third approaches can be obtained by localizing the
integral presentation with respect to appropriate volume forms on the target
space. A technical difficulty to show this in a general degree is to compute the
localization on the “hidden strata”; it is a part of the boundary of a configura-
tion space, whose contribution to the derivative of the integral is killed by an
involution on the strata.

Problem 3.11 (M. Polyak) Find another way to kill the hidden strata, so
that the above three approaches can naturally present the mapping degree of
the same map.

129, Poirier [Poi02] showed the equivalence between the invariants derived from the first and
second approaches, under the assumption of the vanishing of anomaly, by comparing these
invariants for quasi-tangles (see Question 3.12).

13D. Thurston suggests that Etingof-Kazhdan R matrices [EiKa96] might be helpful to
relate the invariants derived from the first and third approaches.

Geometry & Topology Monographs, Volume X (20XX)



58 Edited by T. Ohtsuki

3.6 The Chern-Simons series of configuration space integrals

Question 3.12 (C. Lescop) Is the Kontsevich integral of a (zero-framed)
knot equal to the Chern-Simons series of configuration space integrals of the
same knot (with Gauss integral 0)?

The (normalized) Chern-Simons series of configuration space integrals is a uni-
versal Vassiliev knot invariant that admits a natural and beautiful symmetric
definition that will be given below before describing the present situation of
this question that was first raised by Kontsevich in [Kon93].

In 1833, Carl Friedrich Gauss defined the first example of a configuration space
integral for an oriented two-component link. Let us formulate his definition in
a modern language. Consider an embedding

L:S{UuS)— R
of the disjoint union of two circles S' = {z € C s.t. |z| = 1} into R®. With an

element (z1,29) of ST x S3 that will be called a configuration, we may associate

the oriented direction W((z1,22)) of the vector L(zl)L(zgi. U((21,22)) € S2.
Thus, we have associated a map

U: S xSy — §?

from a compact oriented 2-manifold to another one with our embedding. This
map has an integral degree deg(¥) that can be defined in several equivalent
ways. For example, it is the number of preimages of a regular value of W
counted with signs that can easily be computed from a regular diagram of our
two-component link as

deg(\Il) - ijl\z - Ile - ijz\l - IjXZ ’

It can also be defined as the following configuration space integral

deg@) = [ W)

where w is the homogeneous volume form on S? such that S gw =1 1TItis
obvious that this integral degree, that depends continuously on our embedding,
is an isotopy invariant; and the reader has recognized that deg(V) is nothing
but the linking number of the two components of L.

Section 3.6 was written by C. Lescop.
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We can again follow Gauss and associate the following similar Gauss integral
I(K) to a C*° embedding K : S' < R3. Here, we consider the configuration
space C = S'x]0,2[, and the map

U:C — §?
BT —
that maps (z1,7) to the oriented direction of K (z1)K (z1€"), and we set

I(K) = /C T* (w).

This Gauss integral is NOT an isotopy invariant, and it can be seen as an
exercise that it takes any real value on any given isotopy class of knots.

However, we can follow Guadagnini, Martellini and Mintchev and associate
configuration space integrals to our embedding K and to any Jacobi diagram
on the circle I' without small loop like -<>. A configuration of such a diagram
is an embedding c of the set U U T of its vertices into R*> whose restriction
to the set U of univalent vertices factors through the knot embedding K so
that the factorization induces the cyclic order of U. Denote the set of these
configurations by C'(K;T'). C(K;T) is an open submanifold of (S')V x (R?)T.
Denote the set of dashed edges of I by E, and fix an orientation for these edges.
Then we can define the map ¥ : C(K;I')— (SQ)E whose projection to the $?
factor indexed by an edge from a vertex v; to a vertex vy is the direction of
¢(v1)e(vg). This map ¥ is again a map between two orientable manifolds that
have the same dimension, namely the number of dashed half-edges of ', and
we can write the configuration space integral:

I(K;T) = /C e T*(APw).

For example, if 6 denotes the Jabobi diagram €>, then I(K;0) = I(K). Bott
and Taubes have proved that this integral is convergent [BoTa94]. Thus, this
integral is well-defined up to sign. In fact, an orientation of the trivalent ver-
tices of T' provides I(K;I') with a well-defined sign'* such that the product
I(K;T)[I] € A(S';R) does not depend on the vertex orientation of I'.

YSince S? is equipped with its standard orientation, it is enough to orient C(K;I') C
(SHY x (R*)T in order to define this sign. This will be done by providing the set of the
natural coordinates of (S*)Y x (R*)”T with some order up to an even permutation. This set is
in one-to-one correspondence with the set of dashed half-edges of I', and the vertex-orientation
of the trivalent vertices provides a natural preferred such one-to-one correspondence up to some
(even!) cyclic permutations of three half-edges meeting at a trivalent vertex. Fix an order on
E, then the set of half-edges becomes ordered by (origin of the first edge, endpoint of the first
edge, origin of the second edge, . .., endpoint of the last edge), and this order orients C(L;T").
As an exercise, check that the sign of I(K;I")[I'] does depend neither on our choices nor on
the vertex orientation of I'.
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Now, the perturbative expansion of the Chern-Simons theory for knots in R? is
the following sum running over all the Jacobi diagrams without small loops and
without vertex orientation:

Zes(K) = 3 o) € A(S'sm)

where fAutl’ is the number of automorphisms of I' as a uni-trivalent graph
whose univalent vertices are cyclically ordered, but without vertex-orientation
for the trivalent vertices. The degree one part of Zcg is @ and therefore
Zcs is not invariant under isotopy. However, the evaluation!® of Zcg at rep-
resentatives of knots with null Gauss integral is an isotopy invariant that is a
universal Vassiliev invariant of knots [BoTa94, AlFr97, Thu99a, Poi02]. Now,
the still open question raised by Kontsevich in [Kon93] is: Is the Kontsevich
integral of a zero framed representative of a knot K equal to the above series of

configuration space integrals of a representative of K with Gauss integral 07

This question has been reduced by Sylvain Poirier [Poi02] to the computation
of the following constant in A(S*; R) = A([0,1]; R) that is called the Bott and
Taubes anomaly. In order to define the anomaly, replace the above knot K
by a straight line D, and consider a Jacobi diagram I' on the oriented line.
Define C(D;T) and ¥ as before. Let C(D;T) be the quotient of C(D;T)
by the translations parallel to D and by the positive homotheties, then W
factors through C (D;T) that has two dimensions less. Now, allow D to run
among all the oriented lines through the origin of R® and define C(I') as the
total space of the fibration over S? where the fiber over the direction of D is
C(D;T). ¥ becomes a map between two smooth oriented'é manifolds of the
same dimension. Then we can again define

= “(AEw).
I(r) = /am‘“A )

Now, the anomaly is the following sum running over all Jacobi diagrams on the
oriented lines (again without vertex-orientation and without small loop):

=3 ﬁi(ll:t)r ] € A([0, 1]; B).

15 Actually, this evaluation is equal to Zcos(K) exp(—@a)
where a € A([0,1]; R) is the Bott and Taubes anomaly.

16 (') carries a natural smooth structure and can be oriented as follows: orient C(D;I)
as before, orient C'(D;T') so that C(D;T') is locally homeomorphic to the oriented product
(translation vector of the oriented line, ratio of homothety) xC(D;T) and orient C(I') as the
local product base x fiber.

for any representative K,
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Its degree one part is

a1 :t‘

It is not hard to see that for any integer n, ag, = 0. In [P0i02], Sylvain Poirier
proved that if all «; vanish for ¢ > 2, then the answer to the above Kontsevich
question is YES, and he computed a3 = 0. He also computed a5 = 0 with the
help of Maple. In [Les02], it is proved that « is a combination of diagrams with
two univalent vertices. Poirier also gave an equivalent definition of the anomaly
that allows one to see that, for any ¢ > 1, «; is a combination of diagrams with
at least 6 univalent vertices.

As a corollary, all coefficients of the HOMFLY polynomial properly normalized
that are Vassiliev invariants of degree less than seven can be explicitly written
as combinations of the above configuration space integrals. A positive answer
to the Kontsevich question would allow one to express any canonical Vassiliev
invariant as an explicit combination of the above configuration space integrals.

G. Kuperberg and D. Thurston have constructed a universal finite type invariant
for homology spheres as a series of configuration space integrals similar to the
above Chern-Simons series in [KuTh99]. Their construction yields two natural
questions that are stated in Question 11.9.

3.7 Associators

An associator ® is defined to be an invertible group-like element in A(]]J;C)
satisfying that e2® =1 € A({{;C) and the following relations,

where we put H = ii .
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Here, A; and ¢; are the comultiplication and the counit acting on the ¢-th solid
line; see [Bar97] for these notations. An associator is derived from a Drinfel’d
series (A, B) by

® = o H J : J H ) € A5 ©), (17)

where a Drinfel’d series is an invertible group-like power series ¢(A, B) of non-
commutative indeterminates A and B satisfying certain relations.

The Drinfel’d associator is given as follows. We consider the differential equa-
tion

1 A B
B 2/ —1 (
for an analytic function G of the variable z, where G(z) belongs to the formal
power series ring C((A, B)) of non-commutative indeterminates A and B. There
exists unique solutions G ..), and G...) of the above differential equation of
the forms

G'(2) )G(2), (18)

7 oz—1

Granye(2) = f(2)2427V 1
Gapon(2) = g(1 — 2)(1 — 2)B/27V1

where f(z) and g(z) are analytic functions with f(0) = ¢(0) = 1 € C{(A4, B))
defined in a neighborhood of 0 € C. The power series ¢,,(A, B) € C(A, B))
is defined by Gee)e = Go(ee)@yy, (A, B). The associator derived from ¢, (A, B)
by (17) is called the Drinfel’d associator.

Problem 3.13 Find a combinatorial direct presentation of an associator for
all degrees, in particular, an associator with rational coefficients.

Remark We still do not have a combinatorial direct presentation of any asso-
ciator for all degrees. This implies that we still do not know a combinatorial
direct presentation of the Kontsevich invariant of each knot for all degrees (ex-
cept for the trivial knot); see Problem 3.1 and its remarks. Bar-Natan [Bar97]
showed a combinatorial degree-by-degree proof of the existence of solutions of
the defining relations of a pair (R,®). Our definition of ® follows from the

defining relations when R is given by exp (% ii )

Remark The only associator whose coefficients can be directly presented for
all degrees so far is the Drinfel’d associator. We can present all degrees of the
Drinfel’d associator by a limit of iterated integrals (see (19)) of by multiple
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zeta, functions (see (20)). It is known [LeMu95] that all associators are related
to each other by “twists”, which are some actions of symmetric elements in
A({l;C) on associators.

Remark ¢,,(A, B) is presented by the following limit ,

P4, B) = lim e B27VTG (1 — )2 T, (19)
E—r
where we regard % as
1 2
¥ =exp(zloge) =1 +xlog€+x2@ +ee

Further, G. is a solution of (18) given by

o0

Ge(l—e)=1+ /< Wtm) - wlty)dty - - dtm,
1 Je<ti <o <tm<l-e

putting

- (A1)

Remark In [LeMu95], ¢,, (A, B) is presented by

+p) (b+
¢z (A, B) —1+Z > (=P a+p,b+q)(app>( q)

I=1ab,pq 1
x B\q\(A’B)(a,b)A\pl’ (20)
where the second sum runs over a, b, p,q such that the sum of their length is

equal to [ and entries of them are non-negative integers. Here, the notations
are given by

n(aub):<(171a alab1+171a17"' a]-ab2+]-7"' a171a"' 71abl+1)7
S~—— — —
a;—1 a;—1 a;—1

la| = a1 +as+ - +a

a . al a9 aj
()= G GG
(A, B)®P) = gupbi... quph

for a = (a1, -+ ,a;) and b = (by,---,b;), where the multiple zeta function is
defined by

C(alaa27' o aak) = Z n;aln;aQ t .n/;ak'

np<n2<--<ngeN
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In particular,

¢(3)

1
Pz (A, B) = 1+ﬂ[A, B]—m

([4,[A, B]]+[B, [A,B]])—)-< terms of ) '

degree > 4

Remark In [Bar97], an associator with rational coefficients is given in low de-
grees by

[A,B] _ 8[A,[A, [A, B]]] +[A, [B, [A, BJ||

logp(4, B) = =5~ - 11520
4, [A, [A[4, [A BN | [4,[A,[A[B,[4 BIlll | 13[4, [A,[B, [B, [4, B]I]
60480 1451520 1161216
17[A, [B, [A, [A, [A, B]]ll] | [A,[B,[A,[B,[4, B]]]]]
1451520 1451520

— (interchange of A and B)
+ (terms of degree > 8).

Problem 3.14 (J. Roberts) Construct a rational Drinfel’d associator in the
context of rational homotopy theory.

Remark (J. Roberts) The theory of 1-minimal models provides a representa-
tion of the pure braid group, which is the fundamental group of the configu-
ration space of distinct ordered points in C, the “pure braid space” for short.
This is the representation coming from the Kontsevich integral. A better way
to describe it is as a representation of the fundamental groupoid of the pure
braid space, using “basepoints at infinity” described by associations (bracket-
ings) of the points. In this picture, the Drinfel’d associator is the image of a
certain path which changes the basepoint. Is there a theory of 1-minimal mod-
els for fundamental groupoids which gives a straightforward construction of a
(rational-valued) associator, as an alternative to the tricky iterative procedures
of [Bar97]?

3.8 Graph cohomology

Problem 3.15 (J. Roberts) What is graph cohomology the cohomology of?

Remark (J. Roberts) In the theory of quantum knot invariants such as the
Jones polynomial, the topology and algebra (in this case, the group SU(2)) are

Section 3.8 was written by J. Roberts.
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entangled somewhat confusingly. Passing to the theory of finite type invariants,
they become separated: there is a purely topological part (the Kontsevich in-
tegral of a knot) and a purely algebraic part (the weight system associated to
SU(2)) whose intermediary is the space of Jacobi diagrams.

Viewing this space as (part of) Kontsevich’s graph (co)homology [Kon94], we
see that quantum invariants arise from a pairing between elements of graph
cohomology and homology. But what actually is this cohomology? A good geo-
metric interpretation of it might lead to better understanding of the topological
and algebraic constructions involving it, and their composite.

Most of the intuition about graph cohomology has been built up from the al-
gebraic side: it has been portrayed primarily as a kind of universal invariant
theory for Lie algebras. Vogel has pursued this idea the furthest, but he also
showed [Vog96] that not all weight systems come from classical Lie algebras.
In fact, the work of Rozansky and Witten [RoWi97] and Kapranov [Kap99]
demonstrates that compact holomorphic symplectic manifolds can be used in-
stead of Lie algebras to define Vassiliev weight systems, and this gives quite a
different perspective on graph cohomology, which Simon Willerton and I have
been studying [Rob01].

In a similar vein, Bar-Natan, Le and Thurston [Thu00] have proved the so-called
“wheeling conjectures”, diagrammatic generalisations of the Duflo isomorphism
of Lie theory. Their theorem is far too striking for a purely combinatorial
interpretation to be satisfactory. Does it have a geometric interpretation?

Kontsevich [Kon94| has given three topological interpretations of graph coho-
mology. The first is that it is the twisted cohomology of “outer space”, the
classifying space of the group of outer automorphisms of a free group. This is
analogous to the fact that a certain complex of fatgraphs gives the cohomology
of the moduli space of Riemann surfaces. The answer is unsatisfying because
the natural geometric model for the classifying space is, unlike the Riemann
moduli space, not a smooth orbifold, and if we are seeking geometric construc-
tions underlying the various kinds of diagrammatic operations we encounter,
smoothness would seem to be an essential property. Is there is a better model?

A second approach comes from configuration spaces of points in R3. The com-
plex of graphs (with distinguished legs) maps to the de Rham complex of con-
figuration spaces, and gives a model for its cohomology. This kind of viewpoint
was exploited by Kontsevich (and Taubes, and Axelrod and Singer) in defining
the perturbative invariants of 3-manifolds, and by Bott and Taubes [BoTa94]
for knots.
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In this context, Lie algebra weight systems are functionals on the cohomology
of the configuration spaces, and might be thought of as homology classes, or
even cycles. Hence the following problem, posed by Raoul Bott:

Problem 3.16 (R. Bott) Give a geometric construction of these homology
classes coming from Lie algebras.

The third and currently best interpretation of graph cohomology is that it is the
cohomology of an infinite-dimensional Lie algebra of formal Hamiltonian vector
fields. Kontsevich uses this to explain (and vastly generalise) Rozansky-Witten
weight systems in terms of Gelfand-Fuchs cohomology. Can this interpretation
be employed on the topological rather than algebraic side? In other words, is
there a construction involving knots and algebras of formal vector fields which
yields the Kontsevich integral?

3.9 The loop expansion of the Kontsevich invariant

The loop expansion is the series of the rational presentations of the Kontsevich
invariant in loop-degrees. It was conjectured by [Roz99]; the existence of the
rational presentations in all loop-degrees has been proved by Kricker [Kri00b],
and its canonicality by Garoufalidis-Kricker [GaKr(1].

We have three isomorphic algebras
A(SY) =2 B=pB,, (21)

where the first isomorphism is the formal Poincare-Birkhoff-Witt isomorphism,
and B has the product structure related, by the isomorphism, to the product
structure of A(S') given by connected sum. Further, the second isomorphism
is the wheeling isomorphism [BGRTO00] between B and B, where B, is B as
a space and has the product given by the disjoint union of uni-trivalent graphs.

We denote by B,., the vector subspace of B, spanned by connected uni-
trivalent graphs, and denote by Bgf;ﬁp D) the vector subspace of B, spanned
by connected uni-trivalent graphs of loop-degree [, where the loop-degree of a
uni-trivalent graph is defined to be half of the number given by the number of

trivalent vertices minus the number of univalent vertices. Then,

o0
loop
Bconn = @ B(Eonnp )
=0

Each BU°P ) can be presented by using the polynomial rings in H'(G) for
trivalent graphs G of loop-degree [ subject to Aut(G) and the AS and THX
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relations. We will present B1°°P D) for [ = 0,1,2 in this way, to state the loop

conn

expansion in these loop-degrees.

When [ = 0, we have the map

Q[z] —» Bloor 0), " — o (22)

conn

‘‘‘‘‘‘

regarding  as a basis of H'(circle). Since the orientation-reversing automor-
phism of S! takes ™ to —z™ by the AS relation, the above map deduces the
following isomorphism,

Bloo? ¥ = Qla?]. (23)
For a knot K,
o0 _ Ly s/ 1
(108, 2()) ™" ¥ = 5 1o 02— © log A (e, (24)

where log , is the logarithm in B, regarding Z(K) as in B, and the left
hand side is the summand of log,, Z(K) € Beoy, in BU2%P 0 This development

follows from the theory of [BaGa96]. See also [Kri00b, GaKr01] (and references
therein) for a recent direct calculation.

When [ =1, we have the map

’ A\
Qlz1, x2, T3] » Blloop 1) TP el — et Y

conn

regarding H'(6-graph) as the vector space spanned by z1, x2, 3 subject to
the relation =1 + z3 + 3 = 0. Since Aut(f-graph) = &, x &3, the above map
deduces

Bloop 1) ~ Q[$1,$2,$3]/(G2 X &3, 21+ 22 +x3 =0)

conn

G2 X G3
o (@[x1,$2,$3]/($1 T2ty = 0)>

= (Q[Ul ,02, 03]/(01 = 0)> o = Q[U27032’]7 (25)

where o; denotes the i-th elementary symmetric polynomial in z1, 2, and x3.
(To compute Bloop 1) in o precise argument, we must also consider the space

conn
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of “dumbbell diagram” with legs. Since this space is injectively mapped to the
right hand side of the above formula, we omit its computation here.) For a
knot K there exists a polynomial P (t,ts,t3), called the 2-loop polynomial,
satisfying that

Pf((e""”1 , €72 e"3)
AK(exl)AK(em)AK(em) '

(log,, Z(K))(loop Y- (26)
The 2-loop polynomial Pf((tl, to,t3) in t1,to, t3 satisfying t1tots = 1 is uniquely
determined by each knot K. It is an invariant of K satisfying that
PRt 65 ") = Pl (ty, by, t3) for any signs and any {i,j, k} = {1,2,3}.
Problem 3.17 Find a topological construction of the 2-loop polynomial Pf(.

Remark As in (24) the loop-degree 0 part of the Kontsevich invariant is pre-
sented by the Alexander polynomial, which can be constructed from the homol-
ogy of the infinite cyclic cover of the knot complement. It is shown, in [GaRo00],
that the “first derivative” of the 2-loop polynomial is given in terms of linking
functions associated to the infinite cyclic cover of the knot complement. It is
expected [GaRo00] that the 2-loop polynomial would be described in terms of
invariants of the infinite cyclic cover of the knot complement.

Remark A table of the 2-loop polynomial for knots with up to 7 crossings is given
by Rozansky [Roz03]. See also a computer program [Roz], which calculates the
2-loop polynomial of each knot. For example,

1
12P301 (tla ta, ) = _t%tQ + t%a
t1to

1
12P401 (t17t2a —) = Oa
tito

1
1ﬂﬁ@hhﬁﬁ?zﬂﬁﬁ—Zﬁh+2ﬁ_ﬁh+¢%

The following problem is a step to Problem 3.17.

Problem 3.18 (A. Kricker) Let Kr be the knot obtained from a tangle T
as shown in Figure 12. Find a presentation of the 2-loop polynomial Pf(T of
K7 by using the Kontsevich invariant Z(T) of T'.

Remark (A. Kricker) Pf(T might be presented by the degree < 3 part of Z (7).

Generalize the presentation Ag(t) = det(t'/2S — t=1/287) of the Alexander
polynomial Ak (t) by a Seifert matrix S of K.
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e

Ky

T

69

Figure 12: The knot Ky is obtained from the 2-parallel of a 2-strand tangle T by
adding the tangle depicted in solid lines in the right picture. The dotted lines imply

strands possibly knotted and linked in some fashion.

When [ = 2, we have the map

---- re=~a
nglegs .7 o S
& ! N s legs
~ ’ P '\
S 1 : : \
-._’l nl egS H : ‘\
! - nzlegs .-
: 1 . 1
: PNy !
LAY ~ e 1
M2 L e v N o
1 22 6 e o )
‘\(v' N Seou
k4
o b molegs g
-~ l'

~
~ .
~~. -

which deduces the following isomorphism,

conn

Bloop 2) %Q[.’El,xg,"' 7;56]/(64,3314—.’52-!—:133 =x1+x6—25=0

$2+$4—$6:$3+$5—$4:0).

Corresponding to faces of a tetrahedra, we put y; = 1 — 2 — g,
Y9 = Ty — T3 — L4, Y3 = T3 — L1 — T4, and yq4 = x4 + x5 + . Then,

B(loop 2) ~v Q

conn

[yl,yg,yg,y4]/(64,y1 +y2+y3 +ys =0)
Sy
= (Q[ylayZay3ay4]/(y1 +yas+ys+uys = 0)) ,

where the action of 7 € &, takes a polynomial p(y1,y2,ys,ys) to
(sgn7)p(Yr(1): Yr(2), Yr(3), Yr(a)) - Hence,

(loop 2) ~

conn

(Q[g2 oy, 04]) (even)

= Q[UQ ) 0-32'a U4]a
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where o; is the i-th elementary symmetric polynomial in y;, y2, y3, and
ys. (To compute BUoP 2) in a precise argument, we need some more com-

putations, which are omitted here.) For a knot K there exists a polynomial
Pl (t1,t2,- - 1) satisfying that

Pl (exl 6x2 . exa)
log, Z(K)) P %) = S R . 28
( g Z( )) Ak (e ) A (er2) - A (ets) (28)
Pj(e®1, e, ... e%) is uniquely determined by a knot K (hence, is an invariant

of K) in the completion of Q[og,03,04].

Problem 3.19 Find a topological construction of the polynomial Pj. given
above.

D = e
--{afi)+bg(t) - =a --{f))-- +b--{8())---

Figure 13: The multi-linear relations. Here, f(t),g(t) € S, and a, b are scalars.

~ L
~~~ “ \\ ”
~~~ "f
v’ Saoe”

-

D
|

Figure 14: The push relation

The loop expansion in a general loop-degree is described as follows. Let R be
a field, say Q, and let S be a subring of R(t) which is invariant under the
involution ¢ — ¢t~!, where t is an indeterminate. A labeled Jacobi diagram on
() is a vertex-oriented trivalent graph, whose edges are labeled by pairs of local
orientations and elements of S. We define A%((); R) to be the vector space over
R spanned by labeled Jacobi diagrams on () subject to the AS, IHX, multilinear,
and push relations (see Figures 13 and 14). The loop-degree of a labeled Jacobi
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diagram is half the number of trivalent vertices of the Jacobi diagram. For a
polynomial A(t) with A(1) =1 and A(t) = A(t '), we have a map

AUFELYA®) (. ) — B, (29)
defined by
' ' ' . v 1 legs
= P : s
J) = G E +a é"" &) E-:::: +o et tee,
- L :

where f(t) € Qt*!,1/A(t)] is written f(e?) = 3272, cxh®. In particular, the

map
til

0,0 — B (30)
is defined by

U

N | =
_--_r-1_--_
+
+
|

4_
_____r_____
4_

The loop expansion of the Kontsev1ch invariant is described by the rational Z
invariant 27 (K) € A% 1/Ax®1(); Q) which is taken to log, Z(K) by the
map (29). In particular, when Ag(t) =1, Z(K) € AU = l(0;Q). (The exis-
tence of Z"™(K) has been shown in [Kri0(b], and the canonicality of Z"'(K)
has been shown in [GaKr01].)

Problem 3.20 Find a topological constructwn of the loop-degree | part of the
rational Z invariant Z"(K) € A% 511/ Ak (1) 1(0; Q) of a knot K, for each [.

Problem 3.21 Find a basis of the space AR 1/A®](; )1oop U for each I,
where A(t) is a polynomial with A(1) = 1 and A(t) = A(t™1). In part1cular
find a basis of the space AU*'1((); @)oop D

Conjecture 3.22 ([Roz99, GaKr01]) The map (29) is injective. In particular,
the map (30) is injective.

Remark If this conjecture is true, Z™'(K) is determined by the Kontsevich
invariant.
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3.10 The Kontsevich invariant of links in ¥ x [0, 1]

Let > be a closed oriented surface. We denote by Ay the algebra of chord
diagrams on Y. It is defined to be the vector space over C spanned by the
homotopy classes of continuous maps from chord diagrams to ¥ modulo 4T
relations.

Problem 3.23 (T. Kohno) Construct explicitly a universal invariant of finite
type for links in ¥ x [0, 1] with values in Ay,.

In the case of genus 0 the above problem is solved by Kontsevich integral. In
higher genus case a suggestion for a construction of a universal invariant was
given by Deligne at Oberwolfach meeting 1995. In the case of a punctured
surface the problem was solved by Andersen, Mattes and Reshetikhin.

Let G be a simple Lie group and M%(X) the moduli space of G flat connections
on Y. The space of smooth functions on M%(X) denoted by C(M% (X)) has a
structure of a Poisson algebra coming from a symplectic structure on M%(X).
The algebra Ay, has also a Poisson algebra structure (see [AMR96]). If each
component of Ay, is colored by a representation of GG, then there is a natural
Poisson algebra homomorphism

7: Ay = C(MY(D)).
Problem 3.23 is related to the following problem.

Problem 3.24 (T. Kohno) Give a deformation quantization of the Poisson
algebra Ay, which descends to a deformation quantization of C(MY(%)).

The above problem will give a new insight on quantization of M%(X). It
would also be interesting to investigate a relation to the geometric quantization

of MY(X).

Problem 3.25 (T. Kohno) Clarify the relation between a deformation quan-
tization of C(MY (X)) at a special parameter and the space of conformal blocks
in WZW models.

Problem 3.26 (T. Kohno) Determine the image and the kernel of the above
map T.

Section 3.10 was written by T. Kohno.
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The space of conformal blocks in WZW model is defined as the space of coin-
variant tensors in the following way. Let pi,---,p, be marked points on ¥
and Hy,---, H, be representations of the affine Lie algebra g. The space of
conformal blocks is defined to be the set of linear forms

p:H® --®H, —C

invariant under the action of meromorphic functions with values in g with poles
at most at pq,--- ,p,, where the action is defined by the Laurent expansion at
these points. There is a twisted version of the above construction, where the
above meromorphic functions are replaced by meromorphic sections of a g local
system.

Problem 3.27 (T. Kohno) Compute the holonomy of the space of conformal
blocks of the twisted WZW model. In particular, determine the action of the
braid group of ¥ on the space of conformal blocks for each G flat connection
on Y.

There is also a notion of the algebra of chord diagrams on n strings with
horizontal chord on ¥, which we shall denote by A, (X).

Problem 3.28 (T. Kohno) Let P,(X) denote the pure braid group of ¥ with
n strings. Does there exist an injective multiplicative homomorphism

0: P, (%) = A,(X)
defined over Q7

Geometry & Topology Monographs, Volume X (20XX)



74 Edited by T. Ohtsuki

4 Skein modules

Skein module is an algebraic object associated to a manifold, usually con-
structed as a formal linear combination of embedded (or immersed) subman-
ifolds, modulo locally defined relations. In a more restricted setting a skein
module!” is a module associated to a 3-dimensional manifold, by considering
linear combinations of links in the manifold, modulo properly chosen (skein)
relations. It is a main object of the algebraic topology based on knots. In the
choice of relations one takes into account several factors:

(i) Is the module we obtain accessible (computable)?

(i) How precise are our modules in distinguishing 3-manifolds and links in
them?

(iii) Does the module reflect topology/geometry of a 3-manifold (e.g. surfaces
in a manifold, geometric decomposition of a manifold)?

(iv) Does the module admit some additional structure (e.g. filtration, grada-
tion, multiplication, Hopf algebra structure)? Is it leading to a Topo-
logical Quantum Field Theory (TQFT) by taking a finite dimensional
quotient?

One of the simplest skein modules is a ¢-deformation of the first homology
group of an oriented 3-manifold M, denoted by So(M;q). It is based on the
skein relation (between oriented framed links in M ): \\ =q > < ; it also
satisfies the framing relation Cj& =¢q | , where the diagrams in each formula

imply framed links, which are identical except in a ball, where they differ as
shown in the diagrams. Already this simply defined skein module “sees” non-
separating surfaces in M. These surfaces are respounsible for torsion part of the
skein module [Prz98b].

There is more general pattern: most of analyzed skein modules reflect various
surfaces in a manifold.

The best studied skein modules use skein relations which worked successfully in
the classical knot theory (when defining polynomial invariants of links in R3).

The original version of Chapter 4 was written by J. H. Przytycki. It was revised by T.
Ohtsuki following suggestions given by the referee. Based on it, Przytycki wrote this chapter.
17 Alexander first wrote down the skein relation for his polynomial. Conway rediscovered the
relation and placed in the abstract setting of ”linear skein”. He predicted the corresponding
skein module for a tangle. General skein modules of 3-manifolds were first considered in 1987
by Przytycki and Turaev independently [Prz91], [Tur88].
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4.1 The Kauffman bracket skein module

Let M be an oriented 3-manifold, and put R = Z[A*']. The Kauffman bracket
skein module Sz o (M) of M is defined to be the R module spanned by unori-
ented framed links in M (including the empty link) subject to the relations

/ VIS

= —A? - A2

where three diagrams in the first formula imply three framed links, which are
identical except in a ball, where they differ as shown in the diagrams. The Kauff-
man bracket gives an isomorphism between S5 oo (5%) and R. Thus, Sz (M)
is a generalization of the Jones polynomial (in its Kauffman bracket interpreta-
tion). The Kauffman bracket skein module is best understood among the Jones
type skein modules. It can be interpreted as a quantization of the co-ordinate
ring of the character variety of SL(2,C) representations of the fundamental
group of the manifold M, [Bul97b, PrSi98, BFK99, PrSi00].

Problem 4.1 Calculate Ss (M) for each oriented 3-manifold M. Find a
convenient methodology to calculate it.

Remark It is known that Sz . (L(p,q)) of the lens space L(p,q) is a free
R module with [p/2] + 1 generators [HoPr93], and that Sp.(S! x S%) =
R® @, R/(1 — A*™) [HoPr95a]. The Kauffman bracket skein modules
are also calculated for I-bundles over surfaces [HoPr89, Prz91], the exteriors of
(2,n) torus knots [Bul95], and Whitehead manifolds [HoPr95b]. A connected
sum formula is given in [Prz00]. Skein modules at the 4th roots of unity are
calculated in [Sik00]. It is shown in [Lof99] that Sy o (M Up My ) for orientable
3-manifolds My and Ms with a common boundary F' is expressed as a quotient
module of a direct sum of tensor products of relative skein modules of M; and
M.

Problem 4.2 (J. Przytycki) Incompressible tori and 2-spheres in M yield
torsion in Sp oo (M) [Prz99]. It is a question of fundamental importance whether

other surfaces can yield torsion as well.

Conjecture 4.3 If every closed incompressible surface in M is parallel to OM ,
then Ss o (M) is torsion free.
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Remark The Kauffman bracket skein module of the 3-manifold obtained by an
integral surgery along the trefoil knot is finitely generated if and only if the
3-manifold contains no essential surface [Bul97a].

The test case for the conjecture is the manifold M = Fy3 x S 1 where Fy3 is
a 2-sphere with 3 holes, because it contains immersed m;-injective torus.

Problem 4.4 (J. Przytycki) Compute Sy (Fp3 x S1).

Problem 4.5 Let F' be a surface and I an interval. Describe the algebra
Sgyoo(F X I).

Remark Sz o(F x I) is an algebra (usually noncommutative). It is finitely
generated algebra for a compact F' [Bul99], and has no zero divisors [PrSi00].
The center of the algebra is generated by boundary components of F' [BuPr00,
PrSi00)].

Problem 4.6 Calculate the skein homology based on the Kauffman bracket
skein relation.

Remark The skein homology were introduced in [BFK98] (see also [KPS00]).

Problem 4.7 We define the sl3 skein module S*'*(M) of an oriented 3-manifold
M by the defining relations of the sl3 linear skein [Kup94, OhYa97]. Calculate
Ss13(M) of each 3-manifold M .

Remark The quantum sl3 invariant of links gives an isomorphism between

S913(S3) and the coefficient ring; see, e.g., [Oht02]. Thus, S*3(M) gives a
generalization of the quantum sl3 invariant of links.

4.2 The Homflypt skein module
Let M be an oriented 3-manifold, and put R = Z[v*!,2*!]. The Homflypt

skein module Ss(M) of M is defined to be the R module spanned by oriented
links in M subject to the relation
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where three diagrams in the formula imply three oriented links, which are iden-
tical except in a ball, where they differ as shown in the diagrams. The Homflypt
polynomial gives an isomorphism between S3(S%) and R. The Homflypt skein
modules generalize skein modules based on Conway relation which were hinted
by Conway. S3(M) is related to the algebraic set of SL(n,C) representations
of the fundamental group of the manifold M [Sik01].

Problem 4.8 Calculate S3(M) for each oriented 3-manifold M. Find a con-
venient methodology to calculate it.

Remark 1t is known that S3(F x I) is an infinitely generated free module
[Prz92b], and that S3(S' x S?) is isomorphic to the direct sum of R and an
R-torsion module [GiZhOla]. A connected sum formula is given in [GiZhO1b].

Problem 4.9 Let F be a surface and I an interval. Describe the algebra
Sg(F X I).

Remark Ss3(F x I) is a Hopf algebra (usually neither commutative nor co-
commutative) [Tur91, Prz92b]. S3(F xI) is a free module (as mentioned above)
and can be interpreted as a quantization [Tur88, HoKi90, Tur91, Prz92a].

4.3 The Kauffman skein module

Let M be an oriented 3-manifold, and put R = Z[a*!, z*!]. The Kauffman
skein module S3 o (M) of M is defined to be the R module spanned by unori-
ented framed links in M subject to the relations

KX =X w
-0

where the diagrams in each formula imply framed links, which are identical
except in a ball, where they differ as shown in the diagrams.

Problem 4.10 Calculate S3,(M) for each oriented 3-manifold M. Find a
convenient methodology to calculate it.
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Remark S5, (F x I) is known to be a free module. The case of F being a
torus was solved by Hoste, Kidwell and Turaev. It is calculated in [Lie99] for a
surface F' with boundary. Sj (S % S?) is calculated in [ZhLu02]. A connected
sum formula is given in [Zho02).

Problem 4.11 Calculate the higher skein modules based on the Kauffman
skein relation W (M) and W3 (M) (see below for their definitions).

)

Remark The higher skein modules were introduced in [Prz94]. They are
discussed (in the case of the Conway skein triple) in [Ron97, LiR098] and
[AnTu99, AnTu0l]. In the case of the Kauffman skein relation, definitions
are as follows: Let RL denote the free R module spanned by the ambient iso-
topy classes of unoriented framed links in an oriented 3-manifold M modulo the
framing relation (32), where R = Z[a®', 2%!]. We regard singular links with a
finite number of double points as elements in RL by replacing a double point
with the difference of the two sides of (31). We introduce a (singular links)
filtration RL = Cy D C; D Cy D C3 D ---, where the module C; is generated
by singular links with ¢ double points. We define the ith higher Kauffman
skein module as: W»*°(M) = RL/C;i;y; and the completed higher Kauffman

)

skein module, W3’°°(M ), as the completion of RL with respect to the filtration

{Ci}.

Problem 4.12 Counstruct invariants of 3-manifolds via a linear skein theory
based on the Kauffman skein module.

Remark It is known that quantum invariants of 3-manifolds can be constructed
via linear skein theories based on the Kauffman bracket skein modules (see
[Lic97a]) and the Homflypt skein modules ([Yok97]).

Update Beliakova and Blanchet did it [BeBIO1].

4.4 The ¢-homotopy skein module

Let M be an oriented 3-manifold, and put R = Z[qﬂ, z]. The g-homotopy skein
module HSY(M) of M is defined to be the R module spanned by oriented links

in M subject to the link homotopy relation for self-crossings

and the skein relation ¢~ / —q \ =z > < for “mixed crossings”,
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i.e., we assume that the two strings of X (or X ) of the skein relation

belong to different components of the link.

We have an isomorphism between HS?(S3) and Z[¢*!,t, 2], regarding t* as the
trivial link with & components, and this isomorphism is given by the linking
numbers [Prz01].

Problem 4.13 Calculate HS(M) for each 3-manifold M .

Remark HSY(F x I) is a quantization [HoPr90, Tur91, Prz01], and as noted by
Kaiser it can be almost completely understood using singular tori technique of
X.-S. Lin. HS?(M) is free if and only if 71 (M) is abelian and 2b; (M) = by (0M)
[Kai0l].

4.5 The (4,00) skein module

We generalize the Kauffman bracket and Kauffman skein modules by consider-
ing the general, unoriented skein relation bgLo+b1L1+---+by 1Ly 1+ bsoLlco
(see Figure 15). The first new case to analyze, n = 4, is described in this
section. We call it the (4,00) skein module and denote by Sy (M ; R). This
problem is very interesting even for M = S3.

The definitions are as follows. Let M be an oriented 3-manifold, Ly, the
set of unoriented framed links in M (including the empty knot, () and R any
commutative ring with unity. We fix a, by, b3 to be invertible elements in R and
fix b1, b2,bs to be elements of R. Then we define the (4,00) skein module as:
S1,00(M; R) = RLy[1(4,00), Where I(y ) is the submodule of RLj, generated
by the following two relations:

the (4,00) skein relation:  bygLg + by L1 + baLo + bsL3 + boo Lo = 0,

the framing relation: LW = aL,
where Lg, -+, Ly are framed links which are identical except in a ball, where

they differ as shown in Figure 15, and L) denotes a link obtained from L by
adding +1 framing to some component of L.

Problem 4.14 (J. Przytycki)
(i) Find generators of Sy (5%, R).

(ii) For which parameters of the (4,00) skein and framing relations, trivial
links are linearly independent in Sy (S*; R)?
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Figure 15: L3, - , Lo, Lo are framed links which are identical except in a ball, where
they differ as shown in the pictures. Links Ly for kK =4,5,--- are similarly defined.

(iii) For which parameters of the (4,00) skein and framing relations, the trivial
knot is not representing a torsion element of Sy oo (S°, R)?

A generalization of the Montesinos-Nakanishi conjecture [PrTs01] said that
S1,00(S%, R) is generated by trivial links and that the (4,00) skein module (suit-
ably defined) for n-tangles is generated by H?;11(3i+1) certain basic n-tangles.
This would give a generating set for the (4,00) skein module of S® or D3
with 2n boundary points (for n-tangles). However, the Montesinos-Nakanishi
3-move conjecture has been disproved by M.Dabkowski and J.H.Przytycki in
February 2002 [DaPr02] and [Prz02]. Therefore J[7;'(3* +1) is only the lower
bound for the number of generators.

In [PrTs01] we extensively analyze the possibilities that trivial links are linearly
independent; if b, = 0, then this may happen only if bgb; = babs. These leads
to the following conjecture (cases (1)—(2)):

Conjecture 4.15 (J. Przytycki, see [Mor00])

(1) There is a polynomial invariant of unoriented links, P,(L) € Z[z,t] which
satisfies:

(i) Initial conditions: Py(T,) = t", where T, is a trivial link of n
components.

(ii)) Skein relation Py(Lg) + xPy(Ly) — ©Py(Lg) — P1(L3) = 0 where
Lo, Ly, Ly, L3 is a standard, unoriented skein quadruple (Lj;y is
obtained from L; by a right-handed half twist on two arcs involved
in L;; compare Figure 15.)

(2) There is a polynomial invariant of unoriented framed links, P>(L) €
Z[A*, ] which satisfies:

(i) Initial conditions: Py(T,) = t",
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(ii) Framing relation: Py(LM)) = —A3Py(L) where L) is obtained from
a framed link L by a positive half twist on its framing.
(iii) Skein relation: Py(Lg) + A(A? + A72)Py(Ly) + (A% + A7) Pa(Lo) +
APy(L3) = 0.
(3) There is a rational function invariant of unoriented framed links, P3(L) €
Zla*™t, z,y, (z + y + 2y + y?) '] which satisfies:

. .. .. a3 2 7 1 2 -1 -
(i) Initial conditions: P3(T,) = (— (w+y+wyx+_|_a:yiﬁx—z+(;2+y+ ) —a )t
(ii) Framing relation: P35(L()) = aP3(L),

(iii) Skein relation: P3(Lo)+arPs(L1)+a’yPs(Le)—a®(z+y+1)Ps3(L3) =
0.

)

(4) The invariant predicted in (1) (respectively (2) and (3)) is not uniquely
defined (if it exists).

Note that a solution to (3) becomes a solution to (1) under the substitution
a =1, x = —y and that a solution to (3) becomes a solution to (2) under the
substitution a = —A43, . = —1—-A"%, y = A=+ A8, As for the uniqueness of
(4), note that all such invariants agree on trivial links and therefore they agree
on the space spanned by trivial links in the related cubic skein module.

The above conjectures assume that b, = 0 in our skein relation. Let consider
the possibility that by, is invertible in R. Using the “denominator” of our skein
relation (the first line of Figure 16) we get the relation which allows to compute
the effect of adding a trivial component to a link L (we write ¢" for the trivial
link T7,):
(a™3b3 + a7 2by + a7 1by + by + boot) L = 0. (33)

When considering the “numerator” of the relation and its mirror image (Figure
16) we obtain formulas for Hopf link summands, and because unoriented Hopf
link is amphicheiral we can eliminate it from our equations to get the formula
(34):

bs(L#H) + (aby + byt +a by + abs)L = 0.

bo(L#H) + (a™ by + bot + abs + a*b) L = 0.

((b0b1 — bgbg)t + (G_Ib% - ab%) + (ab0b2 - a_lblbg) + boo(abo - a2b3))L = 0.
(34)

It is possible that (33) and (34) are the only relations in the module. Precisely,

we ask whether Sy (5% R) is the quotient ring R[t]/(Z) where t* represents
the trivial link of ¢ components and Z is the ideal generated by (33) and (34) for
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Figure 16:

L =t. The substitution which realizes the relations is: by = b3 =a =1, by =
bs =z, boo = y. This may lead to the polynomial invariant of unoriented links
in S with values in Z[z, y] and the skein relation L3+zLo+2L1+Lo+yLs = 0.

Problem 4.16 (J. Przytycki) For which coefficients of the (4,00) skein rela-
tion is the number of Fox T-colorings measured by the (4,00) skein module?

Remark We denote by Col,(L) the (Z/pZ)-linear space (for p prime) of Fox
p-colorings of a link L (for its definition, see [Prz98a]) and col,(L) denotes
the cardinality of the space. It is known that Col,(L) can be identified with
Hi(My(L);Z/pZ), where My(L) denotes the double cover of S® branched
along L. Since the double covers of tangles defining Lo, Ly,--- ,Ly_1, Lo
give all subspaces of H,(T?;Z/pZ) respectively (where T2 is the double cover
of (52, 4 points)), col, of those links are equal except for col, of one link
which is equal to p times the others [Prz98a]. This leads to the relation
of type (p,00). A relation between the Jones polynomial (or the Kauffman
bracket) and cols(L) has the form: colz(L) = 3|V (e™V=1/3)? and a for-
mula relating the Kauffman polynomial and col5(L) has the form: cols(L) =
5| Fp(1,e2™V"1/5 4 e~2mV=1/5)|2  This seems to suggest the existence of a similar
formula'® for col7(L).

18 Francois Jaeger told Przytycki that he knew how to get the space of Fox p-colorings from
a short skein relation (of type (Zf*,00)). Frangois died prematurely in 1997 and his proof
has never been recorded.
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4.6 Other problems

We extend the family K of oriented knots in a 3-manifold M by singular knots,

and resolve a singular crossing by >< = X — X . These allows us

to define the Vassiliev-Goussarov filtration: RK = Cy D Cy D Cy D C3---,
where R is a commutative ring with unity and Cj, is generated by knots with &
singular points. Regarding the quotient Wy (M) = RK/Cj41 as an invariant of
M , we call it the kth Vassiliev-Goussarov skein module of M. The completion
of the space of knots with respect to the Vassiliev-Goussarov filtration, RK,
is a Hopf algebra (for M = S3). Functions dual to Vassiliev-Goussarov skein
modules are called finite type or Vassiliev invariants of knots; see [Prz94].

Problem 4.17 Calculate Wy (M) for each 3-manifold M .

Remark When M = S3, and coefficients are from Q then the graded space
C%/Cry1 can be described by chord diagrams of degree k; see Chapter 2.

Problem 4.18 Define a skein module of 3-manifolds, and calculate it.

Remark The quantum Hilbert space (or the space of conformal blocks) of
(82, 4 points) is known to be finite dimensional. This is a reason why a
quantum invariant of links satisfies a skein relation; it is a linear relation of
tangles bounded by (52, 4 points) whose invariants are linearly dependent in
the quantum Hilbert space. The quantum Hilbert space of a closed surface,
say, a torus, is also known to be finite dimensional. Hence, a quantum invari-
ant of 3-manifolds satisfies a “skein relation”; it should be a linear relation of
3-manifolds bounded by a surface. A skein module of 3-manifolds might be
defined to be a module spanned by closed oriented 3-manifolds subject to a
suitably chosen “skein relation” among 3-manifolds. It is a problem to define
such a skein module which can be calculated.
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5 Quandles

A quandle is a set X equipped with the binary operation * satisfying the
following 3 axioms.

(1) z*z =z forany z € X.
(2) For any y,z € X there exists a unique 2 € X such that z =z x y.
(3) (zxy)*xz=(r*2)*(yxz) for any z,y,2 € X.

The notions of subquandle, homomorphism, isomorphism, automorphism are
appropriately defined. Each z in a quandle X defines a map S, : X — X
by S;(y) = y * . This map is an automorphism of X by the axioms (2) and
(3). The inner automorphism group is a group of automorphisms generated by
Sy (z € X). An orbit under the action of the inner automorphism group on
a quandle X is simply called an orbit of X . This forms a subquandle of X.
A quandle is called connected™ if the action of its inner automorphism group
is transitive on it (i.e., if X has only one orbit). A quandle is called simple if
every surjective homomorphism from the quandle is either an isomorphism or
the constant map to the one-element quandle. The dual quandle of X is the
set X with the dual binary operation given by z¥y = S Yz).

The conjugation quandle of a group is the group with the binary operation
x *y = y ‘zy. This kind of quandles is a prototype of quandles; the defining
relations of a quandle are relations satisfied by the conjugation of a group. Any
conjugacy class of a group is a subquandle of the conjugation quandle of the
group. The dihedral quandle R, of order n is the subquandle of the conjuga-
tion quandle of the dihedral group of order 2n, consisting of reflections. An
Alezander quandle is a quotient module Z[t*!]/.J, where t is an indeterminate
and J is an ideal of the Laurent polynomial ring Z[t*!], equipped with the
binary operation z *xy = tx + (1 — ¢t)y. The dihedral quandle R,, is isomorphic
to Z[tT/(n,t +1).

5.1 Classification of quandles

It was a classical problem in group theory to classify the isomorphism classes
of groups of order n for each n. The following problem is a corresponding
problem for connected quandles.

Chapter 5 was written by T. Ohtsuki, following suggestions and comments given by S.
Kamada and M. Saito.
9We call this property connected here following [Joy82]. This is also called weakly homoge-
neous in some literatures.
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Problem 5.1 Classify the isomorphism classes of connected quandles of order
n for each positive integer n.

See Table 4 for a list of connected quandles of order n for some n.

n 4 Connected quandles of order n
Self-dual | Not self-dual
1 1 A trivial quandle
2 0
3 1 R
4 1 Ay/(t2+t+1)
5 3 Rs A5 /(t — 2), its dual
6 2 2 subquandles of Conj(&4)
7 5 Ry A7/(t —2), A7/(t — 3), their duals
s | ma | An el exemon s
o | s e he/E—ir1), Ro/(t—2), As/( 41— 1),
R3 x R3, A3/ (t* + 1) their duals
10 >1 | A subquandle of Conj(Ss)
11 9 Ry A/t —a) (a=2,3,---,9)
12 S | Bsx (A2/(# +t+1)),
- An icosahedral quandle
13 11 | Ris Ais/(t—a) (a=2,3,---,11)
14 >0
R3 X Rs, .
1 24 A subquandle of Conj(&5) By x (As/(t = 2)), its dual
Primep | p—2 | R, Ap/(t—a) (a=2,3,--- ,p—2)

Table 4: A table of some connected quandles. The second column shows the numbers
of isomorphism classes of connected quandles of order n. We denote Z[t*!]/(n) by
A,. Conj(&,,) denotes the conjugation quandle of the mth symmetric group &,,. An
icosahedral quandle is a quandle whose elements are the vertices of an icosahedron such
that S, of each element z is given by a rotation of the icosahedron centered at x.

Remark (M. Grana) It is shown, in [EGS01] in terms of set theoretical solutions
of the quantum Yang-Baxter equation, that a connected quandle of prime order
p is isomorphic to the Alexander quandle Z[t*]/(p,t—a) for some a. It is shown
in [AnGr02, Nel02] that two connected Alexander quandles are isomorphic if
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and only if they are isomorphic as Z[t*!]-modules. These give the classification
of connected quandles of prime order shown in Table 4.

Remark (M. Grana) It is shown in [AnGr02] that a simple quandle of prime
power order is an Alexander quandle; it is a finite field F' such that ¢ acts by
multiplication by some primitive element w (i.e., w generates F' as an algebra).
Further, it is shown in [Gra02b] that a connected quandle of prime square order
is an Alexander quandle. This gives the classification of connected quandles of
order 9 shown in Table 4.

Remark S. Yamada made the list of isomorphism classes of quandles (and racks)
of order < 7 by computer search. The list of connected quandles of order < 7
in Table 4 follows from it. S. Nelson [Nel02] classifies the Alexander quandles
of order < 15; connected ones among them are listed in Table 4.

Remark The following modification of Problem 5.1 gives an algorithm to list
up connected quandles: classify the isomorphism classes of connected quandles
fixing the conjugacy class of the union of S, and an identity map. For a quandle
X we denote by Sx the set of S, (z € X)), which is regarded as a subset of &,,
when X is of order n. The map X — &,, taking x — S;, is often injective,
though in general the map X — Sy is a quotient map, and the order of Sx
divides n when X is connected. Let us investigate this problem in some simple
cases.

Let X be a connected quandle of order n whose Sx includes (12) € &,,. Then,
for any 4 there is a sequence 1 = ag, ay,--- ,ar = i such that (apay), (a1ag), - €
Sx since X is connected. Further, since Sx is closed with respect to conjuga-
tion, Sx includes (17) € &,,, and hence any (ij) € &,,. Therefore, n = 3, and
X is isomorphic to the dihedral quandle Rj.

Let X be a connected quandle of order n whose Sy includes (123) € &,,.
Suppose that Sy further included (145) € &,. Then, since Sx is closed
with respect to conjugation, Sy would include (ijk) € &,, for any {i,j,k} C
{1,2,3,4,5}. This would contradict, since the order of S is at most n. Hence,
n =4, and X is isomorphic to the conjugation subquandle of 2l4 consisting of
(123), (134), (142), and (243), which is isomorphic to Z[tF')/(2,#2 + ¢ +1).

Let X be a connected quandle of order n whose Sx includes (1234) € &,,.
If Sx further included (1567) € &,,, a contradiction would follow from a sim-
ilar argument as above. Hence, it is sufficient to consider the cases that Sx
include (1234) and either of (1256), (2156), (1526), (1536), or (ijk5) for any
{i,7,k} = {1,2,3}. It follows from some concrete computations that such a
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X is isomorphic to either of the Alexander quandle Z[t*1]/(5,t — 2), its dual
quandle, or the conjugation subquandle of &4 including (1234).

5.2 Representations of knot quandles

Consider the conjugation quandle of the fundamental group w1 (S® — K) of the
complement of a knot K. The reduced knot quandle Q(K ) is its subquandle
generated by meridians of K. A knot quandle®® Q(K) is a quandle generated
by meridians of K (for its precise definition, see [Joy82]) which is almost equal
to Q(K ); to be precise, there is a surjective (almost, bijective) homomorphism

Q(K) = Q(K).

Homomorphisms to a fixed group/quandle are often called representations. It
was said, before quantum invariants were discovered, that to count the numbers
of representations of knot groups to a fixed finite group was a most powerful
method to distinguish two given knots. The following problem is a refinement
of it. A motivation is to construct a methodology to count the number of
representations of a knot quandle to a fixed quandle of finite order.

Problem 5.2 Describe (the number of) representations of a knot quandle to a
fixed connected quandle of finite order, say, by using knot invariants known so
far, or by reducing the problem to the case of smaller target quandles.

Remark Since a knot quandle is connected, the image of a representation to
a quandle X is included in an orbit of X, which forms a subquandle of X.
Hence, the number of representations to X is equal to the sum of the numbers
of representations to the quandles which are obtained as orbits of X . Repeating
this procedure, the number of representations to X can be presented by the
sum of the numbers of representations to certain connected quandles. Hence,
it is sufficient to consider this problem when a target quandle is connected.?!

Remark The problem to count the number of representations of a knot group
to a fixed finite group can be reduced to Problem 5.2. Because it is equal to
the number of representations of a knot quandle to the conjugation quandle of
the group, and the problem to count it can be reduced to Problem 5.2 by the
above remark.

*Knot quandle was introduced by Joyce [Joy82] and independently by Matveev [Mat82];
see [FeR092] for an exposition.
21 This argument is not available for the link case, since a link quandle is not connected.
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Remark The number of representations of a knot quandle to an Alexander
quandle can be presented by using the ¢th Alexander polynomials of the knot
[Ino01]. In particular, the number of representations to a dihedral quandle can
be obtained as its corollary.

Remark Let X be a connected finite quandle, and let Ax(K) denote the num-
ber of representations of the knot quandle of a knot K to X. Then, hx is
multiplicative with respect to connected sum of knots. It is known (see, for ex-
ample, [Oht02]) that any Q-valued Vassiliev invariant is equal to a polynomial
in some primitive Vassiliev invariants, where primitive Vassiliev invariants are
additive with respect to connected sum of knots. Hence, hy is not a Vassiliev
invariant, unless it is constant. (See also [Alt96] for another proof.)

Conjecture 5.3 Let hx be as above. Then, log hx is not a Vassiliev invariant,
unless it is constant.

5.3 (Co)homology of quandles

Second cohomology classes of a quandle are used in order to define quandle
cocycle invariants of knots. They are introduced as follows. Let A be an abelian
group, written additively, and let C™(X; A) be the abelian group consisting of
maps X" — A, where X" denotes the direct product of n copies of X. We
put

Co(X;4) = CH(X; 4),

C%(X;A) ={feC*X;A) | f(z,z) =0 for any = € X},

CH(X;A) = {g € C*(X; A) | g(,z,y) =0 and g(z,y,y) = 0 for any z,y € X}.
The coboundary operators d; : Cé(X; A) — Cg“l(X; A) are given by

dif(z,y) = f(z) — f(z*y),

dag(w,y,2) = g(x,2) — g(2,y) — gz *x y,2) + gz * 2,y * 2),
for f € Cé(X ;A) and g € C%(X ; A). We define the second quandle cohomol-
ogy group by Hé(X;A) = (kerneldy)/(imaged;). It is known that Hé(X;A)
is isomorphic to Hom (HQQ (X); A) by the universal coefficient theorem, noting

that HIQ(X) is free abelian (see [CJKSO01b]). Here, HQQ(X) denotes the sec-
ond homology group of the dual complex of {Cf(X;Z),d.}. See [CJKSO01b]
for the definition of the nth quandle (co)homology group. Therefore, to obtain
H%(X, A) for any A, it is sufficient to compute HQQ(X)
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‘ Connected quandle X ‘ Order ‘ H2Q (X) ‘ HSQ (X)
R3 3 10 Z/3Z
LI/ (2,82 + 4+ 1) 4 | z/22 | Z)2LoL/AL
Rs 5 0 Z[5Z
L[t/ (5,t - 2) 0 0
Ry 0 Ak’
Z[t=1/(7,t - 2) 7 |o 0
L[t/ (7,t = 3) 0 0
ZtE /(2,83 + t + 1) 8 0 Z.]27
Ry 0 7|9
Z[t=1/(9,t - 2) 0 Z/3Z
Z[tH/ (3,82 + 1) 9 [z/3z | (2/3L)°
Z[t=1/(3, 87 —t +1) Z]37 | Z/3L& L]9L
Zt /(3,82 +t — 1) 0 0
Z[t=1/(p,t — a) 0
for any prime p and any a # 0,1 € Z /pZ P

89

Table 5: The cohomologies of the quandles, except for the last one, in the table are
due to [LiNe01]. From a table in [LiNe01] we omit one of two dual quandles and
quandles that are not connected (see remarks on Problem 5.6). The 2nd homology of
Z[t/(p, t—a) is due to [Moc01]. See [LiNe01, Moc01] for computations of cohomology

groups of some more quandles.
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Problem 5.4 Compute HQQ(X) for each connected quandle X . More generally,
find a convenient methodology to compute quandle (co)homology groups.

See Table 5 for some quandle homology groups given in [LiNe0I]; see also
[Moc01] for computations of quandle cohomology groups of many Alexander
quandles. There are maple programs [JeSa] for computing quandle cohomology
groups.

Remark We consider only connected quandles in this problem, since compu-
tations of quandle cocycle invariants of knots can be reduced to the cases of
connected quandles (see a remark on Problem 5.6).

Remark Rack (co)homology groups (see [CJKSO01b]) of X are isomorphic to
(co)homology groups of the rack space (see [FRS95]) of X, which can be given
by a cell complex whose n-cells correspond to X™ and whose (co)boundary
operator corresponds to the (co)boundary operator of the quandle (co)homology
groups. Quandle (co)homology groups of a quandle X are isomorphic to the
(co)homology groups of the quandle space of X (a subspace of the rack space
of X). The rack space and the quandle space are classifying spaces of X in
certain senses.

Problem 5.5 (J. S. Carter) Compute HlQ(6,T) of & which denotes the
quandle of the nth symmetric group with the binary operation given by xxy =
y "y,

5.4 Quandle cocycle invariant

The quandle cocycle invariant, introduced in [CJKLS99, CJKLS99], is defined
as follows. For o € H%(X; A) we choose a 2-cocycle ¢ representing «. Any
representation of a knot quandle Q(K) to X is presented by a coloring of a
knot diagram of K, where a coloring of an oriented knot diagram is a map of
the set of over-arcs of it to X satisfying the condition depicted in the pictures
of (35) at each crossing of the knot diagram. We define the weight of a crossing
of a colored diagram by

W( in*y) = ¢(z,y) € A, W( in*y) — blzy) € A,

(35)
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where we write A multiplicatively here. The quandle cocycle invariant of a
knot K is defined by

0o (K)=>_ [[W(r,0) € z[A],
C T

where the sum runs over all coloring C of a diagram of K, and the product
runs over all crossing 7 of the diagram, and Z[A] denotes the group ring of A.
®,(K) only depends on K and «.

Problem 5.6 Compute the quandle cocycle invariant ®,(K) of each knot K
for a second cohomology class « of a connected quandle.

Remark When X = R4 (which is not connected), it is shown as follows (see
also [CJKSO01a] for numerical computation) that ®,(K) =4 for any K and «,
though R4 has non-trivial cohomology groups since H2Q (Ry) = 2° & (2/22)*.
The quandle R4 has two orbits, which form subquandles isomorphic to 15,
where T, denotes the trivial quandle (i.e., x * y = x for any z,y) of order n.
Further, 75 has two orbits, which form subquandles isomorphic to 7T;. Since
Q(K) is connected, any representation of Q(K) to Ry is trivial (i.e., a constant
map). Hence, any coloring is trivial (i.e., colored by a single element of X).
Since ¢(z,z) =0 for any 2-cocycle ¢, ®,(K) = 4 by definition.

When X = Z[t*')/(9,t — 4) (which is not connected), it follows from a similar
argument (see also [CJKSOla] for numerical computation) that ®,(K) =9 for
any K and «, noting that this X has three orbits, which form subquandles
isomorphic to T3.

In general, let X1, Xo,--- be the orbits of X. These form subquandles of X.
We denote by i : Xy — X the inclusions. Then, it follows from a similar
argument as above that ®,(K) = > ; ®;+o(K). Repeating this procedure, the
computations of ®,(K) of a knot K can be reduced to those for connected
quandles.??

Remark The cohomology group H 22 (X; A) of the dual quandle X of a quandle
X is isomorphic to H%(X : A) by an isomorphism taking a 2-cocycle ¢ to ¢
where ¢(z,y) = ¢(z * y,y). It follows that ®Pz(K) = ®,(K), where K de-
notes the mirror image of K. Therefore, the computations of quandle cocycle
invariants for X can be reduced to those for X.

22This argument is not available for the link case, since a link quandle is not connected.

Geometry & Topology Monographs, Volume X (20XX)



92 Edited by T. Ohtsuki

Remark When a = 0, by definition ®,(K) is equal to the number of represen-
tations Q(K) — X . In particular, when X is an Alexander quandle, it can be
presented by using the ith Alexander polynomials, as mentioned in a remark
of Problem 5.2.

Remark ([CJKSOla]) When X = z[t*!]/(2,t2 +t+1), Hé(X; Z]22) =7]2Z.
For its non-trivial cohomology class «,

,

4(1 + 3u) for K = 31,41,72,73,81,84,811,813, and
9 certain knots with 9 crossings,
16(1 4+ 3u) for K = 8;5, 940,
16 for K = 85,810, 815, 819-821, and
16 certain knots with 9 crossings,

4 for the other knots K with at most 9 crossings,

\

where v denotes the generator of Z/2Z. See [CJKSOla] for details.
When X = z[t*/(3,t + 1), Hé(X;Z/BZ) = 7/3Z. For a non-trivial coho-

mology class « of it,
r9(1+4u+4u2) if K =44,55,83,817,818,821, and
9 certain knots with 9 crossings,
O (K) = ¢ 27(11 + 8u + 8u?)  if K = 949,
81 if K = 63,83,819, 824,912,913, %46,

9 for the other knots K with at most 9 crossings,

\

where u denotes a generator of Z/3%Z. See [CJKS01a] for details.

Remark It is known, see [CENS01], that each a € H%(X;A) gives an abelian

extension A — Y 5 X, where Y = A x X, which forms a quandle with the
binary operation given by (a1, z1) * (a2, z2) = (a1 + P(x1,x9), 1 * 1132) using a
2-cocycle ¢ representing «, and p denotes the natural projection.

Let aj, a9, -+ ,an be a sequence of generators of Q(K) associated with over
paths of a diagram of K which are chosen as going around K. Adjacent
generators a; and ag are related by a; * b = ay (or a; = ag x b) for some

generator b. Let p(b) be a pre-image of p(b) under the projection p. Then,

Spf(;) (resp. S:(;j)) induces a map p~'(a1) — p~!(a2), which does not depend on
p

the choice of a pre-image of p(b). Composing such maps, we have a sequence of
maps p '(a1) = p Yaz) = --- —= p Yan) = p '(a1). The composite map of
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these maps can be expressed a — a+m(p) (a € A) for some m(p) € A. Then,
the quandle cocycle invariant can be presented by ®q(K) = >, m(p) € Z[A],
where the sum runs over all representations p of Q(K) to X.

In particular, as shown in [CENS01], the number of representations Q(K) — X
that can lift to representations Q(K) — Y is equal to the coefficient of the
unit of A in ®,(K). For example, when A = Z/2Z, it follows that, writing
®,(K) = a+ bt (where ¢ is the generator of Z/2Z), a is equal to the number
of representations Q(K) — X that can lift to representations Q(K) — Y, and
b is equal to the number of those that do not.

In this way we can compute ®,(K) in terms of the abelian extension associated
to «a.

Problem 5.7 Find relations between quandle cocycle invariants and knot in-
variants known so far, such as quantum invariants.

Remark When a = 0 and X is an Alexander quandle, ®,(K) can be presented
by using the ith Alexander polynomial, as mentioned in a remark of Problem
5.6.

Remark (M. Grana) The quandle cocycle invariants can be presented by knot
invariants derived from certain ribbon categories [Gra02a).

A central extension of a group G gives an abelian extension of the conjugation
quandle of G. It is known that an abelian extension of a group G can be
characterized by the cohomology group H?(G; A) for a G-module A. Motivated
by this cohomology group we introduce H, 5(X ; A) of a quandle X for an “X-
module” A as follows. We call an abelian group A an X -module of a quandle
X if there is a map p: X — Aut(A) satisfying that p(z * y) = p(y) *p(z)p(y)
for any z,y € X. For simplicity, we often write p(z)*'a as z*'a omitting p.
Let Céz(X ; A) be as before. We give the coboundary operators by

dif(z,y) =y " (flz)+3f(y) — fy) — flz*y),
dag(z,y,2) = (y * 2) "' g(,2) — 27 g(a,y) + (yx 2) " ((z + 2) — 1)g(y, 2)
—g(T*y,2) +g(z* 2,9 * 2),

for f € Cé(X ;A) and g € C%(X ; A). We define the second quandle cohomol-
ogy group by H%(X, A) = (kerneldy)/(imaged ).
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Problem 5.8 Compute Hgg(X, A) for each X -module A.

Remark This cohomology group might be isomorphic to the cohomology group
of a quandle space of X (see a remark on Problem 5.4) with coefficients in the
local system corresponding to the X -module A.

For an X-module A, each « € H%(X;A) gives an extension A - Y — X,
where Y = A x X, which forms a quandle with the binary operation given by
(a1, 1) * (ag,z2) = (x;l(al + z1a9 — ag2) + P(x1,x9), T * xg) using a 2-cocycle
¢ representing «.

Problem 5.9 Let the notation be as above. Then, extending the definition of
the quandle cocycle invariant, define a knot invariant associated with «, which
is, roughly speaking, an invariant obtained by counting representations of a
knot quandle Q(K) to X with information whether each representation can
lift to a representation Q(K) — Y .

5.5 Other problem

Problem 5.10 (M. Polyak) Define a quantum quandle.

Remark A quantum group is a quantization of a group, in the sense that it can
be regarded as a non-commutative perturbation of a (certain) function algebra

on a group. It is a problem to formulate an appropriate quantization of a
quandle.
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6 Braid group representations

For n = 1,2,..., the braid group B, is the group generated by o1,...,0n-1
modulo the relations:
® 0,0, =0;0; if |i—j|>1,

e 0,050, =0jo;0; if [i—j]=1.

6.1 The Temperley-Lieb algebra

For 7 € C, the Temperley-Lieb algebra TL,(7) is the associative C-algebra
generated by 1,ej,...,e,—1 modulo the relations:

o ciej=eje; if|i—j|>1,
® €66 = € if |i—j|:1,
® €, =TE;.
We will simply write TL,,, where 7 is understood. There is a map from B,, to
TL,, given by
oi— A+ A_lei,
0'Z~_1 — A7 4 Ae;,
where A € C is such that 7 = —A4%2 — A72,
These definitions can be motivated in terms of tangle diagrams in Rx I. These
are similar to knot diagrams, except that they can include arcs with endpoints
on R x {0,1}. Two tangles are considered the same if they are related by a
sequence of isotopies and Reidemeister moves of the second and third type. The

generators of B, and TL, can be defined to be the tangle diagrams suggested
by Figure 17. The arcs of these diagrams have endpoints

(1,2,...,n} x {0,1}.

The product ab of two such diagrams ¢ and b is obtained by placing ¢ on top
of b and then shrinking the result vertically to the required height. The third
relation in the Temperley-Lieb algebra allows one to delete a closed loop at the
expense of multiplying by 7. Using these definitions, the map from B, to TL,
is given by resolving all crossings using the Kauffman skein relation.

Chapter 6 was written by S. J. Bigelow.
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\ U
) N

Figure 17: The generator o3 of Bs (the left picture) and the generator es of TLs (the
right picture).

Problem 6.1 ([Jon00, Problem 3]) Is the representation of the braid group
inside the Temperley-Lieb algebra faithful?

Remark We are mostly interested in the case 7 is a transcendental. The answer
is yes for n < 3, and unknown for all other values of .

The Jones polynomial of the closure of a braid 3 is a certain trace function of
the image of § inside the Temperley-Lieb algebra. If 5 € By, \ {1} maps to the
identity in TL,,, and v € B,, is any braid whose closure is the unknot, then the
closure of v would have Jones polynomial one. It should be easy to arrange
for this to be a non-trivial knot. Thus a negative answer to Problem 6.1 would
almost certainly lead to a solution to Problem 1.1.

6.2 The Burau representation

For k =0,1,...,|%], let V' 5, be the vector space spanned by tangle diagrams
in R X I with no crossings and endpoints

{(1,0),(2,0),...,(n—2k,0)} U{(1,1),(2,1),...,(n, 1)}
modulo the relations:

e a tangle is zero if it contains an edge with both endpoints on R x {0},

e a closed loop may be removed at the expense of multiplying by 7.

Let TLj, act on V' ,, by stacking tangle diagrams in the usual way. For generic
values of 7, TL,, is semisimple and these are its irreducible representations.

We obtain irreducible representations of B, by taking its induced action on
V™ o,- By a result of Long [Lon86], the representation of B, inside TL, is
faithful if and only if each of these irreducible representations is faithful. Note
that the action of B, on the one-dimensional space V' is never faithful for
n > 2. Also if n > 2 is even then the action of B,, on V' is easily shown to be
unfaithful. The action of B, on V"', is the famous Burau representation.
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Problem 6.2 Is the Burau representation of By faithful?

Remark The Burau representation of B, is known to be faithful for n < 3 and
not faithful for n > 5 [Big99].

The representation of By in TLy is faithful if and only if the Burau represen-
tation of By is faithful.

Remark The Burau representation of By is faithful if and only if a certain pair
of three-by-three matrices generate a free group. The matrices given in [Bir74]
contain a misprint, but their description as words in the generators is correct.

The Burau representation of By is faithful if and only if a certain intersection
pairing detects intersection of arcs in the four-times punctured disk [Big99].

Cooper and Long have explicitly calculated the kernel of the Burau represen-
tation modulo the primes 2, 3 and 5 [CoLo98].

Problem 6.3 (S.J. Bigelow) Is the action of Bs on V3 faithful?

Remark The Burau representation of Bg is unfaithful [LoPa93]. Thus the
representation of Bg in TLg is faithful if and only if the action of Bg on Vi is
faithful.

No approach to this problem is known except for a brute force computer search.
However such a search might find an example more easily than any of the more
subtle approaches to the Burau representation of By.

Remark We could also ask whether the action of Bs on V is faithful. A
computer search of this representation would be easier because the matrices
involved are smaller (five-by-five instead of nine-by-nine). On the other hand,
this representation is more likely to be faithful, since if the representation of
Bg in TLg is faithful then so is the representation of By in TLs.

6.3 The Hecke and BMW algebras

We now introduce two algebras which can be defined in a similar way to the
Temperley-Lieb algebra. The Hecke algebra is the set of formal linear combina-
tions of braids modulo the relation:

KX (
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where A € C. The BMW algebra is the set of formal linear combinations of
tangles whose edges have endpoints {1,2,...,n} x {0,1}, modulo the relations:

XXX
Q-1

where m, [ € C. See [Mur87] and [BiWe89] for an analysis of the BMW algebra.
The Temperley-Lieb algebra can be embedded into the Hecke algebra, which in
turn can be embedded into the BMW algebra.

These algebras are semisimple for generic values of their parameters. The irre-
ducible representations of the BMW algebra correspond to partitions of n — 2k
for k =0,1,...,[5]. Theirreducible representations of the Hecke algebra corre-
spond to partitions of n. The irreducible representations of the Temperley-Lieb
algebra correspond to partitions of n into two parts.

Lawrence [Law96] has used a topological construction to obtain the irreducible
representations of the Hecke algebra. The construction uses the definition of
the braid group as the mapping class group of a punctured disk to obtain an
action on the homology of a related space.

Problem 6.4 (S.J. Bigelow) Generalise Lawrence’s construction to obtain
the irreducible representations of the BMW algebra.

Remark Zinno [Zin01] has shown how to obtain the representation of the BMW
algebra corresponding to the partition of n — 2 into one part.

Problem 6.5 (S.J. Bigelow) Find a larger family of irreducible representa-
tions of B,, which includes those coming from the BMW algebra.

Remark This might be defined using tangles and some more complicated rela-
tions, or by generalising Lawrence’s approach.

6.4 Other problems

Problem 6.6 Classify all irreducible representations of B, .
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Remark 'This is probably impossibly hard. However it seems that interest-
ing partial results are possible. Formanek [For96] has classified all irreducible
complex representations of B, having degree at most n — 1.

Problem 6.7 (S.J. Bigelow) Is there a faithful representation of By, into a
group of matrices over Q?

Remark There is a faithful representation of Bs into GL(2,Z). The problem
is open for all n > 4.

There is a faithful representation of B,, into a group of matrices over Z[¢*", t+1].
Krammer’s proof of this fact [Kra02] works when ¢ is assigned any value between
0 and 1. However it is not known whether there is an algebraic value of ¢ for

which the representation remains faithful.
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7 Quantum and perturbative invariants of 3-manifolds

7.1 Quantum invariants

Witten [Wit89] proposed that, for a semi-simple compact Lie group G and a
positive integer k, a topological invariant of a closed oriented 3-manifold M is
given by the path integral

Z8 (M) = / 2mV/=ThCS(A) p 4| (36)

which is a formal integral over gauge equivalence classes of connections A on
the trivial G bundle on M. Here, the Chern-Simons functional CS: A — R is
defined by

1 2
CS(4) = ¢y /M trace(A A dA + SANANA) (37)

for a connection A, regarding it as a g-valued 1-form on M, where g denotes
the Lie algebra of G.

This invariant had been reconstructed in mathematically rigorous ways, first by
Reshetikhin and Turaev [ReTu91], and by many researchers; we denote it by the
quantum G invariant 7¢ (M) putting r = k+h  with the dual Coxeter number
h' of g. For example, when M is obtained from S* by integral surgery along
a framed knot K with a positive framing, TEU@)( M) for r > 3 and 7700 )(M)

for odd r > 3 are given by

r—1 -1
U@ (M) = (;[R]QSZZ;VH ) z:: Qe ‘q exp(2my/=1/r)’
503) B sla; Vi, 1 slo;Vin
Ty ’ (M) N ( 0§<r [n]Q " (U+)> 0§<r[ ]Q " K ‘q exp( 277\/_/”
s odd r is odd

where [n] = (¢"/? — ¢ "?)/(¢"/* — ¢"'/?), and U, denotes the trivial knot
with 41 framing, and Q*?V»(K) denotes the quantum invariant of K associ-
ated with the irreducible n-dimensional representation of the quantum group
Uyq(sl2); for details see [KiMe91] (see also [Oht02] for the notation). It is known
[KiMe91] that

SU(2) T:fU(Q)(M)T;ng) (M) if r = 3 mod 4,
m (M) =4 e sow) o
5 (M) (M) if r =1 mod 4,

where T:f v (M) is an invariant determined by the cohomology ring and the
linking pairing of M, which is equal to zero for some M (see (38)). For details
on quantum G invariants, see e.g. [Oht02] and references therein.
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Problem 7.1 (see [Kir97, Problem 3.108]) Does there exist a closed 3-

manifold M, other than S*, such that 750(3)(M) = 750(3)(53) for all odd
r>37

Remark (see [Kir97, Remark on Problem 3.108]) Suppose that 7206) (M) =
750(3)(53) for a closed 3-manifold M and all odd r > 3. If the Betti number
of M was positive, 750(3)(M) is divisible by ¢ — 1. Hence, M is a rational
homology 3-sphere. We have that 7593) (M) = 7590)(83). Since the leading
two coefficients of 7593) (M) are given by the order of the first homology group
and Casson invariant of M, M is an integral homology 3-sphere with Casson
invariant zero.

Note that 770 (L(65,8)) = 7206 (L(65,18)) for all odd r > 3; see [Yam95].

Remark There is a center in the mapping class group of the closed surface of
genus 2, shown below.

G—

T rotation

A mutation of a 3-manifold M is defined to be a 3-manifold obtained from M
by cutting along a separating closed surface of genus 2 in M and by gluing
again after twisting by the above map. It is shown in [Kaw94] that o 0(3)(M )

does not depend on a change by any mutation of M.

Problem 7.2 (S. K. Hansen, T. Takata) Find pairs of non-homeomorphic
rational homology 3-spheres that can be distinguished by their quantum G
invariants 7¢ or their quantum PG invariants 7Y for some level r and some

simply connected compact simple Lie group G but not by their LM O invariants.

Remark (S. K. Hansen, T. Takata) For example, the LMO invariants of the lens
spaces L(25,4) and L(25,9) are equal ([BaLa00]), but their quantum SU(2)
invariants for » = 5 are not equal.

Problem 7.3 (S. K. Hansen, T. Takata) Do the family of quantum G in-
variants TTG or the family of quantum PG invariants 7" ¢ G running through
all simply connected compact simple Lie groups and r running through all al-
lowed levels, separate rational homology 3-spheres? How well do these families
of invariants separate closed oriented 3-manifolds?
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Remark (S. K. Hansen, T. Takata) It is well known that the LMO invariant
is a weak invariant outside the class of rational homology 3-spheres; see the
last remark on Problem 11.1. On the contrary there are 3-manifolds with
arbitrary high first Betti number and non-trivial quantum SU(2) invariants as
the example of Seifert manifolds shows. We note that the non-triviality of the
invariants of Seifert manifolds e.g. follows from the fact that these invariants
have non-trivial asymptotic expansion in the limit of large quantum level; see
[R0z97], [Han99], and Section 7.2. It is likely to believe, e.g. from the asymptotic
expansion conjecture of Andersen, see Conjecture 7.7, that the quantum G
invariants are quite strong invariants also outside the class of rational homology
3-spheres. It is known, however, that the family of quantum SU(n) invariants,
n running through all integers > 1, is not a complete invariant, that is to say
that this family of invariants can not separate all closed oriented 3-manifolds,
cf. [Lic97b]. It is still an open question if this is also the case if we include
the quantum invariants for all the other simply connected compact simple Lie
groups.

Problem 7.4 Find a 3-dimensional topological interpretation of quantum in-
variants of 3-manifolds.

Remark Certain special values have some interpretations. For a closed oriented
3-manifold M,

if there exists o € HY(M; Z /27Z) with a® # 0,

SU(2) _ )0
73 (M) = {\/irankHl(M;Z/ZZ)e_B(M)ﬂ\/_—l/4 (38)

otherwise,

where B(M) denotes the Brown invariant. Further, for a closed oriented 3-

manifold M,
TfU(Q)(M) — Z efu(M,U)~37r\/f_1/8,

where the sum runs over all spin structures o of M and u(M, o) denotes the
Rohlin invariant of a spin structure o of M. For details, see [KiMe91].

It is known [Mur95] that, for any rational homology 3-sphere M and any prime

|Hy(M; 7))
b

mod (¢ — 1)? in Z[(], putting ¢ = e2™V=1/P where A(M) denotes the Casson-
Walker invariant of M and <5> denotes the Legendre symbol.

()] 5900 = ) (1+exan(c - )
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Remark The Chern-Simons path integral (36) by Witten [Wit89] gives a 3-
dimensional physical interpretation of a quantum invariant of 3-manifolds. His-
torically speaking, the quantum invariants of 3-manifolds were introduced, mo-
tivated by Witten’s Chern-Simons path integral.

Conjecture 7.5 ([GP98]) For non-vanishing 7¢(M), the absolute value
|79 (M)| only depends on the fundamental group m1(M).

7.2 The asymptotic expansion conjecture

The perturbative expansion of the Chern-Simons path integral (36) is given by
the semi-classical approximation and its higher loop perturbations. Roughly
speaking, the semi-classical approximation is obtained from the path integral
by ignoring the contribution from the third order term of the Chern-Simons
functional, and the higher loop perturbation contributions are the corrections
to this semi-classical contribution.

To the best of our knowledge, there is today, no complete perturbative treatment
of the Chern-Simons quantum field theory available, even from a mathematical
physics point of view. In the following few paragraphs we shall try to outline
the main activities seen so far in this direction.

The the first formula for the semi-classical approximation of the Chern-Simons
path integral was given by Witten in [Wit89], describing it as a sum of contri-
butions, one for each gauge equivalence classes of flat connection, involving the
Chern-Simons value, the Reidemeister torsion and a certain spectral flow for
each such gauge equivalence class. To test this prediction, Freed and Gompf
[FrGo91] made for certain Seifert fibered manifolds some computer studies of
the large k£ behavior of Z,f ve (M) and based on these calculations and fur-
ther discussion of the semi-classical approximation of the path integral, they
proposed the following formula for the semi-classical approximation (r = k+2)
Z,fU(2)(M) ~ 3TV =I(L4bY (M))/4

7 —00
% Z eQw\/—_erS(A)T(hg—hg)/26—2w¢—_1(1A/4+hg/8)TM(A)1/2’
[A]

The first version of Section 7.2 was written by T. Ohtsuki, following seminar talks given
by J.E. Andersen. Based on it, J.E. Andersen wrote this section.
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where the sum is over the gauge equivalence classes of flat connections A. Let
us explain the quantities involved in this expression and in which cases one can
make sense of this expression as it stands.

For any flat connection A, we have the cohomology groups H*(M,d,) of the
covariant derivative complex dq : Q*(M;g) — Q*t1(M;g) given by daf =
df + [A, f], and kY, is the dimension of H*(M,d4). Further associated to this

complex we have the Reidemeister torsion 7)/(A) € ®;(det H'(M, dA))(_l)i =

(det HO(M,ds) ® (det H' (M, dA))*>2 (by Poincaré duality). If one now as-
sumes that all the gauge equivalence classes of flat connections A are isolated,
in fact Freed and Gompf assumed H'(M,d,) = 0, so that the above sum is
finite and such that the square root of the Reidemeister torsion 7j,(A4)Y/? is

a well-defined number (once a volume on H'(M,d4) has been fixed, but for
irreducible connections H°(M,d4) = 0).

The quantity 4 € Z/87Z denotes the spectral flow of the operator (ZdA; _d; t*>
Ay

on Q'(M;g) ® Q3(M;g), where A; is a path of connections running from the
trivial connection to A. They also looked at some examples where H'(M,d ) #
0 and checked the overall growth predicted by the above formula.

Following this Jeffrey [Jef92] proposed the following more general interpretation
of the square root of Reidemeister torsion in the cases where the connections
are not isolated: Assume that the moduli space of flat connections M on M is
smooth and that the tangent space at each equivalence class of flat connection
A equals HY(M,d4). Since HY(M,d,) C g the invariant inner product we have
chosen on g induces a volume element on H°(M,d4). In total this means that
the square root of the Reidemeister torsion induces a measure on the moduli
space when we pair it with the induced volume element on H°(M,d,) divided
by the order of the center of G and one arrives at (r =k + hv)

ZkG’(M) ~ e—7r\/—_1(dim G)(1+b(M))/4

7—00

y / 2V =IrCS(4) (B —h%)/2 =2/ =TI [+ (K4 +hR)/8) 1 (4)1/2.
[AlemM

For some mapping tori of genus 1 surfaces and lens spaces, Jeffrey verified this
form of the semi-classical approximation. Garoufalidis [Gar92] independently
proved the semi-classical approximation for lens spaces and studied in vari-
ous examples the growth rate predicted by these approximations. Rozansky
[Roz95a] proposed a further refined version of the above semi-classical approxi-
mation, and offered calculations for a very large class of Seifert fibered manifolds
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as evidence. He proposed to divide the volume element on H°(M,d4) by the
volume of the stabilizer of A, and to use the resulting quantity paired with the
square root of the Reidemeister torsion as the measure on M (generalizing the
division by the order of the center above). This gave a natural explanation of
factors not accounted for in both the work of Freed and Gompf and the work of
Jeffrey. He also proposed corrections to the formula for the growth rate of the
invariant (i.e. the power of r in the above), in cases where not all directions in
H'(M,d,) are tangent to paths of flat connections (see [Roz95a] and [Roz95b]).

Axelrod and Singer [AxSi92, AxSi94] (see also [Kon94|) considered the higher
loop contributions in the perturbation expansion and proposed the following:

ZE(M) N / < semi—cl'assicfal ) xexp i lk l Z Zr(M, A ’
k—oo J{glem \ approximation P ! | Aut(T

(39)
for some scalar ¢, where the right sum runs over connected trivalent graphs I'
whose Euler number is equal to —[, and |Aut(I")| denotes the order of the group
of automorphisms of I'. Further, in the case where A is acyclic or when A € M
is contained in a smooth component, Axelrod and Singer was able to construct
Zp(M, A) as a topological invariant of (M, A); roughly speaking, it is given as
follows in the acyclic case. We identify the set of connection around A with
QY(M,g). The second order part of the Chern-Simons functional gives a bilinear
form on Q'(M,g)®?, and it determines a 2-form L € Q?(M x M,g® g) and its
“inverse”. Further, the third order part of the Chern-Simons functional gives a
trilinear form 7' on Q' (M, g)®3. We obtain Zp(M, A) by contracting LGV by
T “along the trivalent graph I'” (roughly regarding L as in Q' (M, g)®?);
we determine the action of T®®2) on L®GD ¢ Q'(M, g)®6) by putting copies
of L on 3l edges of I' and putting copies of T" on 2] vertices of I'. For a precise

(mathematical) construction (and its topological invariance) of Zp(M, A), see
[AxSi92, AxSi94].

From the mathematical viewpoint we regard Z< (M) as

+G
7 ) = o e
1 2

k+hV(S x 5%)

for the quantum G invariant 7¢(M). Then, the asymptotic expansion of
ZkG (M) is predicted by the semi-classical approximation and its higher loop
corrections stemming from a perturbative expansion of the Chern-Simons path
integral, explained above in some cases. This leads us to the following somewhat
vague conjecture.
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Conjecture 7.6 (The perturbative expansion conjecture) The asymptotic
expansion of Z,? (M) of a closed oriented 3-manifold M is given by

—m+v/—1(dim '
ZE(M) e HAm AN/
x / 2V =IrCS(A) (W =h) /2 =2y =T /1 (W +RA)/8) - ( 4)1/2
[Alem

> dE Zpr(M, A)
o ;(21)!(31)!@;1 [Aut(D)] |

putting r = k + hv, where the right hand side can be given in the mathemat-
ical viewpoint in certain cases, as mentioned above, but which needs further
interpretation in general.

Remark The semi-classical approximation stated above (the upper two lines in
the above formula), has been confirmed for lens spaces (first partially [FrGo91])
and then by [Jef92, Gar92], for certain mapping tori of diffeomorphisms of a
torus [Jef92], and for all finite order mapping tori of automorphisms of any
closed orientable surface of genus at least 2 [And95]. For a large class of
Seifert fibered manifolds [Roz95b]| and [Roz97] offered calculations which pro-
vided evidence that the phases in the semi-classical approximation is given by
the Chern-Simons invariants and the measure is given by the square root of the
Reidemeister torsion as explained above. Also, expressions for the higher loop
corrections was offered. Later the necessary analytic estimates was provided in
[Han99] so as to confirm this. See also the discussion below. For now, there are
no examples of hyperbolic manifolds, where parts of the above conjecture has
been confirmed.

For other versions of Conjecture 7.6, see [Kir97, Problem 3.108], [Gar98].

The formula in Conjecture 7.6 might not give an exact description of the asymp-
totic behavior of Z ,? (M) even in the semi-classical part, neither is it in all cases
well-defined. Moreover, it might be difficult at present to calculate the concrete
value of the higher loop corrections in the asymptotic expansion of Conjecture
7.6 for given M, A, and I"'. Nor do we have definitions for these terms, which
has been proven to be well defined topological invariants in all cases.

The following conjecture offers a kind of reverse viewpoint on Conjecture 7.6,
avoiding such ambiguities and difficulties.
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Conjecture 7.7 (The asymptotic expansion conjecture, J.E. Andersen [And 95])
Let {cp = 0,¢1,--- ,cm} be the set of values of the Chern-Simons functional
of flat G connections on a closed oriented 3-manifold M . There exist d; € Q,
fj € Q/z, vj € Ry, and aj € C for j =0,1,--- ,m and e = 1,2,3,--- such
that (r =k+h")

o0

m

G 2/ —1re; d; mv/—11;/4, -

Z; (M) e Eoe” rejpdi gmV =1/ v;(1+ Elair °),
J= e—=

that is, for all E =0,1,2,..., there exists a constant cg such that

d—E-1

m E
‘Z,?(M) — Z 2V =1rcjpd; e”ﬁlﬂ'/‘lvj (1+ Z a?r_e) < cgr
e=1

=0

for all r = 2,3,4,---. Here, d = max{dy,--- ,dp}.

Remark (J.E. ~Amdersem) If such an expansion in the above conjecture exists,
then ¢;, dj, I, vj, and af are uniquely determined by Z,?+2(M) for k =
0,1,2,3,4,---.

Problem 7.8 (J.E. Andersen) Ifsuch an expansion exists, understand how
it is related to the expansion of Ohtsuki and the expansion of Habiro.

It will of course be important to establish, that an expansion of this type ex-
ists, however, of far greater importance will be to give independent topological
meaning to the many resulting new invariants, e.g. to prove that the phases are
the Chern-Simons values c¢j. From the discussion above on the semi-classical
approximation we derive the following conjecture:

Conjecture 7.9 (Topological interpretations of the d;’s) Let M; be the
union of components of the moduli space of flat connections M which has
Chern-Simons value c¢j. Then

1
dj = = max (hj — h
J 2 AEM]‘( A A)7
where max here means the maximum value that (h'y —hY) assumes on a Zariski

open subset of M;.
Note that this conjecture might be rather optimistic, and may only hold in the

non-degenerate cases. However, we do not know of any cases where it fails (see
[Gar98]).
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Remark (J.E. Andersen) The special max proposed in Conjecture 7.9 is cer-
tainly needed, as shown by the example of the mapping torus of the diffeomor-
phism —Id of a torus. The quantum SU(2) invariant of this manifold is easily
seen to be r — 1, since —Id is represented trivially for all levels, however, there
are flat SU(2) connections for which (bl —hY) > 2.

The Conjecture 7.9 implies the following growth rate.

Conjecture 7.10 (The growth rate conjecture) Let d = max{dy,...,d,}.
Then |Z&(M)| = O(r?).

It is well known that the quantum invariants only grows like r to some power.
The power is bounded from above by some simple function (depending on G)
of the Heegaard genus of the manifold.

Remark (J.E. Andersen)

1. Suppose that M is a closed 3-manifold satisfying that 7¢(M) = 79 (S3) for
all r. If the growth rate conjecture 7.10 is true for the group G, then there is
no non-central representation of (M) to G.

2. Kronheimer and Mrowka have proposed a program using Seiberg-Witten
theory and Floer homology to establish that any 3-manifold M obtained from
S3 by +1 surgery along a non-trivial knot K has a non-trivial (and therefore
non-abelian) representation of m; (M) to SU(2). Suppose that this is the case
and the growth rate conjecture 7.10 is true. Then, Jx . = Jy, for all ¢ =
1,2,--- if and only if K is the trivial knot U, where Jg . denotes the colored
Jones polynomial of a knot K with a color c.

At this time we do not know of a topological interpretation of the values of I b
and v; which makes sense in all cases. Let us simply just propose the following

Conjecture 7.11 There is a construct of the right measure, say 7p;(A)'/? for
A € M,;, from the square root of the Reidemeister torsion generalizing the
non-degenerate case explained above and such that

em/—_1ij/4vj _ / ew\/—_l(—21A+h?4+h}4)/47_M(A)I/Z‘
AeM;

Conjectures 7.7 and 7.9 together with Conjecture 7.11 were first proved for
mapping tori of all finite order diffeomorphisms of all surfaces of genus at least
two in [And95]. Recently, Conjecture 7.7 was proved for all Seifert fibered
spaces in [Han99] by supplementing the calculations in [Roz95b] and [Roz97]
with the need analytic estimates.
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Ezample Let us illustrate the asymptotic behavior of the quantum SU(2) in-
variant of the lens space L(5,1) of type (5,1). For simplicity, we let r be an
odd prime. Since T?:SU( )(L(5, 1)) = 1, putting ¢ = exp(2rv/—1/r), we have
that
SU(2) 750) _ 350 ¢ =1
RO (p6,1)) = 700 (1s0) = (2) 50 S

where k* denotes the inverse of k in Z /rZ. Since T;SU( S1x8?%) = /% /sin(%),
we have that

SU®) L(5,1 L c10r _ 10
Z;‘S'—UQ(Z)(L(5? 1)) = T;UZ ( ( - )) == \/gsini (§> —3-5 %
U@ (stx g2y Vo r\r o=
(40)

On the other hand, as in [Jef92], the semi-classical approximation is given as
follows. The lens space L(5,1) has three flat connections A, (n=0,1,2); each
A, is determined by the representation of m (L(5,1)) = Z/5Z to SU(2) which

627r\/—_1n/5 0
takes a generator of Z/5Z to 0 Copy/Tass |- As in [Jef92], we
e

have that CS(Ay) = n?/5, h% =1, bl =0, r(4,)/? = 4\{ sin?
In(mod 4) =1 if n < 5/2, and —1 if n > 5/2. Hence,

ZUPEE) ~ )2 Y e T T )

n=0,1,2

5 , and

noting that the notatin of lens spaces in [Jef92] is equal to the notation of their
mirror images in [KiMe91, Gar92].

The sequence of ™ v (L(5, 1)) for odd primes r splits into four subsequences
according to r = 1,43 mod 10, and each subsequence can be approximated
by a function of a polynomial order. Let us describe the subsequence, say, with
r = —1 mod 10, as follows. Since 10* = (r + 1)/10, we calculate (40) as

w/—=1/5r _ =1 _—m/=1/5r
289 (L(5,1)) = \ﬁsm T 6/ /5r ¢ we
r r r emV—=1/r _ o—mv/—=1/r
r—00 \/—_2 ’
putting w = exp(2my/—1/5). On the other hand, the right hand side of (41) is
calculated as

—2 (6—27“/?1/5 sin? 2n 1 2mV=1/5 g2 4_”) _w- 17ﬂ—1/27
5r 5 ) V)
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noting that v/5 = 1 4 2w + 2w~ (Gaussian sum). Therefore, it was verified
that the semi-classical approximation is correct for this subsequence.

This is related to the perturbative invariant

50(3 3 5q1/10 _q—1/10
750 )(L(5, 1) =q" / PEET=T € Qllg —1]]

as follows. We regard it as a holomorphic function of ¢ in a suitable domain.
The asymptotic behavior of T}g 0B) (L(5, 1)) , say, for the above mentioned sub-

1/5

sequence, can be presented by using this holomorphic function around ¢*/° = w.

Ezample It is known, see [LaZa99, Le00], that
709 (2(2,3,5 v ch =M =) (= Y

for Poincare homology 3-sphere ¥(2,3,5), where we put ¢ = exp(2mv/—1/r).
It is an exercise to compute the asymptotic behaviour of Zf_U2(2) (2(2,3,5))
as r — oo related to Conjecture 7.7, and to formulate a relation with the
perturbative invariant given by

7_50(3) (2(2’3’5)) _ IL an(l o qn-l-l)(l - qn+2) . (1 - q2n+1)‘

7.3 The volume conjecture

It is known (see Conjecture 7.10 and its remark) that the asymptotic behaviour
of the quantum SU(2) invariant T]‘\g,U(Z)(M ) as N — oo is a polynomial growth
in N. Nevertheless, this asymptotic behaviour might be regarded as an expo-
nential growth in the sense of the following conjecture, which is a 3-manifold
version of the volume conjecture (Conjecture 1.19).

Conjecture 7.12 (H. Murakami [MurOOb]) For any closed 3-manifold M,

SU(2)

1 M

9/ T olim 28N (M) _
N—>oo N

CS(M) + v/—1vol(M),
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where vol(M) and CS(M) denote the hyperbolic volume?*® and the Chern-
Simons invariant®* of M respectively, and o-lim denotes the “optimistic limit”
introduced in [Mur00b].

Remark As mentioned in [Mur0OOb] the “definition” of the optimistic limit is not
rigorous yet, because there is some ambiguity in the present definition, where
formal approximation, such as (4) and (5), are used. It is a problem to find a
rigorous formulation of the optimistic limit.

Remark It is shown [Mur0Ob], by using formal approximations, that Conjecture
7.12 is “true” for closed 3-manifolds obtained from S3 by surgery along the
figure-eight knot.

Remark R. Benedetti gave another formulation of the volume conjecture by
using quantum hyperbolic invariants; see Conjecture 7.25.

Remark The statement of Conjecture 7.12 should extend for knot (link) com-
plements M , which should be related to the volume conjecture for knots (Con-
jecture 1.21).

Remark By formally applying the (infinite dimensional) saddle point method to
the Chern-Simons path integral, the value (42) appears at a critical point of the
Chern-Simons functional. This might give a physical explanation of Conjecture
7.12. Can we justify it in mathematics? There is an approach, by using knotted
trivalent graphs (see Conjecture 12.7), to justify the Chern-Simons path integral
mathematically, which might be helpful to apply the saddle point method to it
rigorously.

SU(2)
Problem 7.13 (H. Murakami) Calculate o—limw

3-manifolds M .

for Seifert fibered

Remark When M is a mapping torus of a homeomorphism of a surface, a
quantum invariant of M can be presented by the trace of the linear map on the
quantum Hilbert space associated to the homeomorphism. Such a presentation
might be useful to compute the asymptotic behaviour of Ti;U@) (M).

*3When M is not hyperbolic, we define vol(M) to be vs||M||, where ||M]| is the simplicial
volume and w3 is the hyperbolic volume of the regular ideal tetrahedron.

21t is also conjectured (see Problem 7.16) that there exists an appropriate definition of
CS(M) of any closed 3-manifold M, though CS(M) is defined only for hyperbolic 3-manifolds
M at present.
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Remark When we choose a simplicial decomposition of M, (the absolute value
of) its quantum invariant can be expressed by using quantum 6j-symbols. The
computation of the asymptotic behaviour of T]“f,U(z) (M) might be reduced to the
computation of limits of quantum 6j-symbols. J. Roberts [Rob99] showed that
a limit of classical 6j-symbols is given by the Euclidean volume of a tetrahedron.
Further, J. Murakami and M. Yano [MuYa0!] recently showed that a limit of
quantum 67-symbols is related to the hyperbolic volume of a tetrahedron via
formal approximation such as (4) and (5).

Problem 7.14 (D. Thurston) Find a series of invariants of a 3-manifold (de-
pending on roots of unity) that grows as its hyperbolic volume (or its simplicial
volume).

Problem 7.15 (D. Thurston) Find a correct generalization of the volume
conjecture to other non-compact Lie groups.

Remark The volume conjecture is related to the SL(2,C) Chern-Simons theory,
which (formally) deduces the hyperbolic volume and the Chern-Simons invari-
ant. It is a problem to find (or formulate) such invariants of 3-manifolds for
other non-compact Lie groups.

The Chern-Simons functional CS(A) € C of a SL(2;C) connection A on a
closed 3-manifold M is defined by the formula (37), where we regard A in the
formula as a si(2;C)-valued 1-form on M in this case. Since a gauge transfor-
mation of A changes CS(A) by an integer, CS([A]) of the gauge equivalence
class of A is defined to be in C/Z. The Chern-Simons invariant CS(M) € R/Z
and the volume vol(M) € Rs( of a closed hyperbolic 3-manifold M is given
by25

CS([4g]) = CS(M) + v/—1vol(M), (42)

where [Ap] is the gauge equivalence class of a SL(2;C) flat connection A, asso-
ciated to the conjugacy class of a holonomy representation 71 (M) — SL(2;C)
of the hyperbolic structure on M. Further, when M is the complement of a
hyperbolic knot (link) in a closed 3-manifold, CS(M) can be defined similarly.

*The Chern-Simons invariant was introduced by Chern and Simons [ChSi71] as an invariant
of compact (4n — 1)-dimensional Riemannian manifolds. For hyperbolic 3-manifolds, Meyer-
hoff [Mey86] extended CS(M) for M with cusps. See also [Neu98, CGHNO00] for CS(M) of
hyperbolic 3-manifolds M as a counterpart of vol(M).
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Problem 7.16 (S. Morita [KoNe87]) Define the Chern-Simons invariant
CS(M) as a topological invariant of any closed oriented 3-manifold M, and
of any knot (link) complement M in a closed 3-manifold.

This problem includes two problems: to define CS(M) (topologically or com-
binatorially) as a topological invariant, and to define it for non-hyperbolic 3-
manifolds.

Remark The hyperbolic volume (which is a counterpart of the Chern-Simons
invariant) has a definition as a constant multiple of the simplicial volume, which
is combinatorial, and can be applied, not only for hyperbolic 3-manifolds, but
also for any other 3-manifolds.

Remark (S. Kojima) The Chern-Simons invariant CS(M) of non-hyperbolic
3-manifolds M should be defined satisfying the following two requirements.
One is that CS(—M) = —CS(M), where —M denotes M with the opposite
orientation. The other is the requirement explained as follows. Let K be a
hyperbolic knot in a 3-manifold N. Then, it is known that Nk, has a
hyperbolic structure except for finitely many (p, ¢), where N K;(p,q) denotes the
3-manifold obtained from N by Dehn surgery along the slope of type (p,q), and
that such hyperbolic structures can be obtained in a deformation space of the
hyperbolic structures of NV — K parameterized by a natural complex parameter,
which can be presented by two real parameters p and ¢. Moreover, the function

CS(M) + v/ —1vol(M) (43)

is a holomorphic function of the complex parameter. Note that vol(M) can
extend for non-hyperbolic 3-manifolds M by redefining it to be a constant
multiple of the simplicial volume ||M||. CS(M) should be defined such that,
for appropriate?® knots K in any closed 3-manifold N, the function (43) on
the family {N K;(p,q)}p,q can extend to a holomorphic function of a complex
parameter presented by p and ¢ appropriately.

Problem 7.17 (7T. Ohtsuki) Give a “complex structure” to the set of 3-
manifolds. More precisely, find an embedding (or, an immersion) of the set
of 3-manifolds to some complex variety such that its restriction to the set
Nk | p? + ¢ >> 0} can be extended to a holomorphic map of the above
mentioned complex parameter for any (hyperbolic) knot K in any 3-manifold
N.

26These knots should include, not only all hyperbolic knots, but also other knots. They
might not include the trivial knot.
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We would expect some structures of the set of 3-manifolds such as mentioned in
Problems 7.17 and Problem 10.16. Such structures would yield new viewpoints
in the study of (the set of, and invariants of) 3-manifolds.

Remark As mentioned above, the set { Ny, o) | p*+¢* >> 0} can be embedded
in C, on which the function (43) is holomorphic. In this sense, the infinite
family of N (, 4 has a “complex structure” around the infinity point of (p,q).
The volume conjecture says that the function (43) would be obtained as a
certain limit of some series of quantum invariants. This suggests that the above
“complex structure” would extend to the whole set of 3-manifolds.

7.4 Quantum hyperbolic invariants of 3-manifolds

The main references for this section are [Bas01, BaBe0Ia, BaBe01b], a review
being [BaBe02]. In [BaBe0Ib] the ideas of sections 7-9 in [BaBe0Ia] are devel-
opped with some important differences in the way they are concretized.

Let W be a compact closed oriented 3-manifold, L C W be a non-empty link,
p be a flat principal B-bundle on W'; B is the upper triangular Borel subgroup
of SL(2,C). In [BaBe0Ia] one constructs a family of “quantum hyperbolic
invariants” (QHI) Ky(W,L,p) € C, where N > 1 is any odd integer. This
consists of two main steps:

(1) For every triple (W, L, p), the construction of so-called D-triangulations
T =(T,H,D), where: (T, H) is a (singular) triangulation of (W, L) such
that each edge has distinct vertices and H contains all the vertices of T';
the “decoration” D is made of a full simplicial B-1-cocycle representing
p on W a branching (for instance one induced by a total ordering of the
vertices of T'), and an integral charge. For these notions, see [BaBe(2].

(2) The proof that a suitable state sum Hy (7)) does not depend on the choice
of the D-triangulation 7 up to multiplication by N-th roots of unity, so
that Kn (W, L,p) = Kn(T) = Hy(T)Y actually defines an invariant.

The proof of the existence of D-triangulations is difficult essentially due to
strong global constraints in D. The main building-blocks of the state sums
Hy(T) are the “quantum-dilogarithm” 65-symbols of the N-dimensional cyclic
representations of a quantum Borel subalgebra of U,(sl(2,C)), where w =
exp(2mi/N). Kashaev proposed in [Kas94] a conjectural purely topological

Section 7.4 was written by S. Baseilhac and R. Benedetti.

Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 115

invariant Ky (W, L) which should have been expressed by a state sum of this
kind (although in his proposal there were no flat bundles and no notion of
D-triangulation); in fact, Kx (W, L) appears as a special case of Ky(W, L, p)
when p is the trivial flat B-bundle on W. The algebraic properties of the
67 -symbols ensure the invariance of Kx(7) up to certain elementary moves on
D-triangulations. Then, the proof of the full invariance of Ky (7) consists in
connecting by such elementary moves any two D-triangulations of (W, L, p),
which is not so easy to achieve.

Problem 7.18 (S. Baseilhac, R. Benedetti) Generalize the construction of
the QHI for flat principal G-bundles, for Lie groups G different from B.

Remark A basic ingredient of the B-QHI is the relationship between the cyclic
representation theory of a quantum Borel subalgebra of U,(sl(2,C)), and flat
B-bundles encoded by simplicial full 1-cocycles. This relationship relies on
the theory of quantum coadjoint action of [DePr93], which holds for other Lie
groups such as G = SL(2,C).

Problem 7.19 (S. Baseilhac, R. Benedetti) Fix (W, L) and vary p. Study
Ky as a function of the bundle, that is as a function defined on the character
variety of W with respect to B: regularity, fibers, and so on.

Remark Denote by z the B-1-cocycle in T that represents p. The state sum
Kn(T) is a rational function of the upper diagonal entries of the whole set of
values of z. Moreover, the 6j-symbols are rational functions of the moduli of
the idealized triangulation F(7) defined below.

Every a € H'(W;C) leads to two flat B-bundles p, and pl, defined as fol-
lows. The first one is obtained via the natural identification of (C,+) with the
parabolic subgroup Par(B) of B. The second one is obtained by means of the
exponential map of (C,+) onto the multiplicative C*, and the identification of
C* with the diagonal Cartan subgroup C(B) of B. Similarly, every class in
H'(W;7/pZ) leads to a B-bundle by the natural embedding of Z/pZ into the
group S! C C*.

Problem 7.20 (S. Baseilhac, R. Benedetti) Specialize Problem 7.19 to bun-
dles coming from the ordinary cohomology as above. For real additive ones,
analyze the behaviour of the QHI with respect to Thurston’s norm. Are they
constant on the faces of the corresponding unit sphere ?
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Remark The “projective invariance” property of the QHI (see [BaBe01a, BaBe02])
implies in particular that they are constant on the rays of H'(W;R).

Problem 7.21 (S. Baseilhac, R. Benedetti) Understand the ‘phase factor’
(i.e. the ambiguity due to N -th roots of unity) of the state sum Hpy(T).
Possibly derive from it an invariant for (W, L,p) endowed with some extra-
structure, thus refining Kx(W, L, p).

Remark The phase factor uniquely depends on the branching and the integral
charge in the decoration D. On one hand, it is known that branchings can be
used to encode, for instance, combings, framings, spin structures and so on.
On another hand, combings induce the extra-structure that allows Turaev’s
refinement of Reidemeister torsions.

Problem 7.22 (S. Baseilhac, R. Benedetti) Determine a suitable (2 + 1)
‘decorated’ cobordism theory supporting a (non purely topological) QF'T con-
taining the already defined QHI. Study in particular the behaviour of the QHI
with respect to connected sums.

Problem 7.23 (S. Baseilhac, R. Benedetti) Develop a 4-dimensional theory
of QHI based on Turaev’s shadow theory.

Remark A first step should be to determine the right notion of D-shadow
together with a geometric interpretation. In this direction, F. Costantino is
completing his PhD thesis at Pisa, where he shows in particular that ‘branched
shadows’ do encode Spin® structures.

Problem 7.24 (S. Baseilhac, R. Benedetti) Determine the actual relationship
between Ky (S3,-) and the coloured Jones polynomial Jy(-) (evaluated at w =
exp(2im/N) and normalized by Jy(unknot) = 1), as functions of links.

Remark (1) In [MuMuOl1] it is shown that Jy may be defined by means of
usual (1,1)-tangle presentations (as for the Alexander polynomial), using an
enhanced Yang-Baxter operator whose R-matrix is derived from the quantum-
dilogarithm 6j-symbols. This suggests that there could be a relationship be-
tween Ky (S2,-) (necessarily associated to the trivial flat B-bundle on $?) and
Jn(-)Y. The most immediate guess would be that Ky (5% L) = Jy(L)N for
each L. In fact, one can give an R-matrix formulation of Ky (S3,) involving
R-matrices depending on parameters. These parameters are specified in terms
of the decorations of special D-triangulations adapted to planar link diagrams
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[BaBeOIc]. So Ky (S3,-) can be computed by using suitably decorated link
diagrams, and the decoration must satisfy non trivial global constraints. In
this setup, (1,1)-tangle presentations do not play any role. On another side,
the constant R-matrix used for Jy corresponds to one fized particular choice
in the parameters. This is not enough to confirm the above guess.

(2) A motivation of Problem 7.24 is also to make working for Jy a theory of
scissors congruence classes, as described below for the QHI.

The so-called Volume Conjectures concern the asymptotic behaviour of the
invariants constructed on the base of the quantum dilogarithm 6j5-symbols,
that is of Ky(W,L,p) or Jy(L) (for L C S%), when N — oo. They are
originally motivated by the asymptotic behaviour of the quantum dilogarithm
6 -symbols, whose dominant term involves dilogarithm functions that may be
used to compute the volume of oriented ideal hyperbolic tetrahedra. In the
case of Jy(L) there are also some numerical computations (sometimes using
formal manipulations) - see for instance the first section of the present volume
for details. In the case of QHI, we develop in [BaBe0la, BaBe01b] (see also
[BaBe02]) a theory of scissors congruence classes for triples (W, L, p) which
gives a natural framework for a formulation of a volume conjecture.

This goes roughly as follows. One constructs a ‘Bloch-like’ group P(D) based
on D-decorated tetrahedra, which maps via an explicit idealization map F onto
an enriched version P(Z) of the classical Bloch group, built on hyperbolic ideal
tetrahedra. Any D-triangulation 7 of (W, L, p) leads to elements ¢p(W, L, p) €
P(D) and cz(W,L,p) = F(cp(W,L,p)) € P(T). They are respectively called
the D- and Z-scissors congruence classes of (W, L,p). The QHI essentially
depend on the D-class, and for any given D-triangulation 7 the 6j-symbols
occuring in Hy(7) depend on the moduli of the hyperbolic tetrahedra of the
idealization F (T) of T. By using the classical Rogers dilogarithm one can also
define a dilogarithmic invariant R(W, L, p) which only depends on the Z-class.

Conjecture 7.25 (S. Baseilhac, R. Benedetti) (Real Volume Conjecture for
QHI) For any triple (W, L, p) one has:
Jlim_ (2r/N?) log(|Kn (W, L, p)]) = Im R(ez(W. L. p)) .
— 00

Remark From the explicit formula of Hy(7") one easily shows that the left-hand
side of Conjecture 7.25, if it exists, only depends on the moduli of the hyperbolic
tetrahedra of (7). A natural problem is to find a geometric interpretation
of the dilogarithmic invariant. Indeed, for scissors congruence classes built
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with ideal triangulations of genuine (non-compact finite volume) hyperbolic
3-manifolds M, a similar dilogarithmic invariant gives i(Vol(M) + iCS(M)),
where Vol is the Volume and CS is the Chern-Simons invariant (see [Neu92]).

In [BaBe02] one proposes a complex version of Conjecture 7.25, for the whole
Ky (not only its modulus).

7.5 Perturbative invariants

The perturbative SO(3) invariant 759G (M) = 325° Xa(q—1)® € Q[[g — 1]] of
a rational homology 3-sphere M is the invariant characterized by the property
that EI;:O Ag(e2™ =11 —1)? for any k is congruent to (M) Tr‘go(g)(M)
modulo r for infinitely many primes r; for a detailed definition see [Oht96b,
Oht02]. (Tt is known, see [Roz98, Hab02], that 79°G)(M) € z[[q — 1]] for any
integral homology 3-sphere M.) The perturbative PG invariant 77%(M) of a
rational homology 3-sphere M, say, for G = SU(N), is defined in Q[[q — 1]]

similarly, related to the quantum invariant 7.7%(M); see [Le00a, Le00].

Problem 7.26 For each rational homology 3-sphere M , calculate 750(3)(M )
and 7PSUN) (M) for all degrees.

Remark The value of 7% (L(a,b)) of the lens space L(a,b) is concretely
calculated in [Jef92, Gar92]. It follows from those values that

1/2a —1/2a

SO(3 _—3s(ba) 4 —q
T ()(L(a,b)) = g3 a)wa
where we regard it as in Q[[¢ — 1]] and s(b,a) denotes the Dedekind sum.

Concrete presentations of 75°3) (M) for Seifert fibered 3-manifolds M are given
in [LaR099].

Lawrence [Law97] has given holomorphic expression for the perturbative SO(3)
invariants of rational homology 3-spheres obtained by integral surgery along
(2,n) torus knot.

Habiro’s expansion (45) gives a presentation of 759()(M). See examples of
Problem 7.31, for presentations of 7590 (%(2,3,5)) and 7990)(%2(2,3,7)),
which are due to [Le00]. See also [LaZa99] for a computation of 7996) (£(2,3,5)).
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Remark From the value of 7, >V (L(a,b)) of the lens space L(a,b) calculated
in [Tak96], we obtain

2 alN 2/ a]V 2. — a
PPSUN) (L (a, b)) = ¢ VO Ds0)/2 [1/ ][1]N[21/[2]]N2 - [[J(VN— 1]1)/ ],

where we regard it as in Q[[q — 1]] putting [o] = (¢*/% — ¢~ *?)/(¢"/? — ¢ /?).
Takata [Tak97] computed the quantum PSU(N) invariant of Seifert fibered
manifolds M. Concrete presentations of 7"5V(N)(M) might follow from the
computation.
Remark 7PSUN) (M) is recovered from the LMO invariant by

TPV (M) = | Hy(M;2)| VR, (290 (M),
In particular, noting PSU(2) = SO(3),

T OO (M) = |Hi(M;2)| " W, (290 (M)).

For details see [Oht02]. In this sense Problem 7.26 is related to Problem 11.1.

Problem 7.27 (J. Roberts) Explain the appearance of modular forms in the
Witten invariants.

Remark (J. Roberts) Lawrence and Zagier discovered in [LaZa99] that the
perturbative series for the Poincaré homology sphere was close to a modular
form. Is this a random coincidence, or is there a more systematic explanation?
Does such a relation ever hold for a hyperbolic 3-manifold?

Problem 7.28 Characterize those elements of Z[[q— 1]] of the form 75°®) (M)
of integral homology 3-spheres M .

Remark The degree < d part of 750(3)(M ) can have any value in the degree
< d part of Z[[q— 1]]. Hence, it is meaningful to consider this problem for the
form 759G) (M) for all degrees.

Remark Problem 7.28 is related to Problem 7.31, which is on the characteriza-
tion of Habiro’s expansion (45). See examples of Problem 7.31, for calculations
of Habiro’s expansions of 730) (2(2, 3, 5)) and 7990) (2(2, 3, 7))

Geometry & Topology Monographs, Volume X (20XX)



120 Edited by T. Ohtsuki

Let ¢ be an indeterminate, and let ¢ be an r-th root of unity. Set

Ry =1imzlg,q ']/((¢ - 1)(¢* = 1) (¢" — 1)).
n
For an integral homology 3-sphere M, relations between Ve (M) (which
equals 7206 (M) for odd r, in this case) and 75°G) (M) can be described in
the following commutative diagram.

injection

I (M) € R 2llg—1] € Qllg—1)) 5 759 ()

putq:(l lpmq:g

SO(3) injection 7 [C]

(M) =7 (M) € Z[(]

(44)
Here, the two horizontal maps are defined to be natural injections, and the two
vertical maps are defined by substituting ¢ = (.

It was conjectured by Lawrence [Law95], and proved by Rozansky [Roz9§],

that 799G)(M) € Z[[q — 1]] for any integral homology 3-sphere M, and that

the images of 7990)(M) and r70B) (M) coincide in Z[¢] in the above diagram

for any odd prime power r. See [R0oz98] for their numerical examples.

Habiro [Hab02] showed?” that there exists an R;-valued invariant 1°'2(M) of an
integral homology 3-sphere M whose images in Q[[¢ —1]] and Z[(] in the above
diagram are equal to 79°0G)(M) and ™ U(2)(M ) respectively for any positive
integer r. (Here we set Ve (M) =1 for r =1,2.) This gives another proof

of the above mentioned conjecture of Lawrence for integral homology 3-spheres.
This also implies that 799()(M) can be presented by

TOO(M) = N a-1)(¢* -1)--(¢" — 1) (45)
n=0

with some X/, € Z[g,q™!] (in the above sense) such that
O = Y NC-DE -1 (-1,
0<n<r

Note that the presentation (45) is not unique.

(K. Habiro) Let g be a finite dimensional simple complex Lie algebra. Let
d € {1,2,3} be such that d =1 in the ADE cases, d = 2 in the BCF' cases

*"Hence, 75°®)(M) is as powerful as the set of TTSU(Z)(M) for any integer r > 3, and as

powerful as the set of Tfo(g)(M) for any odd r > 3, for any integral homology 3-sphere M.

Further, the LMO invariant dominates 7, _ > (M) for any integer r > 3.
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and d = 3 in the Gy case. If M is a closed 3-manifold and if ¢ is a root of
unity of order r divisible by d, then the quantum g invariant 77(M) € Q[¢] of
M at ( is defined.

Conjecture 7.29 (K. Habiro, T. Le) For each g as above, there is a (unique)
invariant 19(M) € R, of an integral homology 3-sphere M such that for each
root of unity ¢ of order r divisible by d we have

(M) _ = T8 (M).

Remark When (r,det(a;j)) = 1, where (a;;) is the Cartan matrix of the Lie
algebra g, the projective g-invariant Tf #(M) can be defined [Le00]. Then
Habiro and Le also conjecture that I°(M)|,=¢ = ng(M), if (r,det(a;;)) = 1.
Note that for an integral homology 3-sphere, TCP *(M) = 7§(M) when both are
defined (i.e., when r is divisible by d and (r,det(a;;)) = 1). If this is the case,
then we have

i(I8(M)) = 78(M)
where 7¢(M) € Q[[¢ — 1]] is the perturbative g invariant of M [Le00], and
i : Ry — Z[[q— 1]] is the upper injection in (44).

Remark The above conjecture implies that the quantum g invariant Tg(M ) of
an integral homology sphere M takes values in the ring of cyclotomic integers
Z[¢], and also that the perturbative invariant 79(M) takes values in Z[[q — 1]].

Update Habiro and Le [HaLe03] proved Conjecture 7.29.

Conjecture 7.30 (K. Habiro) Suppose that Conjecture 7.29 would hold. For
a new indeterminate t, set

Ry =lm Ry[t]/((t = q)(t — ¢*) -+~ (t —q"))

Then there exists an invariant I'(M) € R} of an integral homology 3-sphere
M such that I°'(M)|—gn = I°'"(M) for any n > 1, where we set I°''(M) = 1.

Problem 7.31 Characterize those elements of Habiro’s expansion (45) of
750G) (M) of integral homology 3-spheres M.
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Ezample For the Poincare homology 3-sphere ¥(2,3,5) (obtained by surgery
on a left-hand trefoil with framing —1) and the Brieskorn sphere 3(2,3,7)
(obtained by surgery on a right-hand trefoil with framing —1), it is computed
in [Le00] that

1 oo
PO(2(2,3,5) = = D a" @=L =g (1= g,
n=0
1 - —n{n n n n
R e A S e [ e B e !
n=0

See also [LaZa99] for a computation of 750(3) (2(2, 3, 5)) .

Remark Such an infinite sum as (45) would be interesting from the number
theoretical viewpoint. For example,

o
3p2_Llp
L+ "= 1) (¢" =) =Y (~)FFlgzF =k
n=1 kez
ey

A similar infinite sum appears in (12); see also [Sik01].
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8 Topological quantum field theory

The notion of topological quantum field theory (TQFT) was introduced in
[Ati89, AHLS88], motivated by the operator formalism of a partition function
in a quantum field theory which does not depend on the metric of the space.
In the mathematical viewpoint, any quantum invariant of 3-manifolds can be
formulated by a TQFT, which enables us to compute the invariant by the cut-
and-paste method.

A TQFTis a functor which takes an oriented closed surface ¥ to a finite dimen-
sional complex vector space V(X), and takes an oriented compact 3-manifold
M with boundary ¥ to a vector Z(M) € V(X), satisfying the following 5
axioms.

(1) V(=%)=V(X)*, where —% denotes ¥ with the opposite orientation and
V(X)* denotes the dual vector space of V().

(2) V(E1UX) =V(E)®V(3s), where X1 U 39 denotes the disjoint union
of two surfaces ¥; and Y.

(3) V(D) =C, where () denotes the empty surface.

(4) For 3-cobordisms M; and M with OM; = (—X;) U Xy and OMs =
(—X2)UXE3 we have that Z(MIXL;’I M) = Z(Ms)o Z(My) as linear maps?®
2

(5) Z(X x I) is equal to the identity map of V(X).

To be precise, in many (but not in all) examples we need “extended 3-manifolds”
instead of 3-manifolds to formulate a TQFT, where an extended 3-manifold is
a 3-manifold M equipped with some kind of framing, e.g. a pi-structure a on
M (see [BHMV95])?. Namely, we extend the above definition of TQFT to a
functor from the category of extended 3-cobordisms in an appropriate way (see
[BHMV95]). Then, each quantum invariant can be formulated as a TQFT of
the category of extended 3-cobordisms. In the remaining part of this section
we call such a TQFT simply a TQFT.

The first version of the introductory part of Chapter 8 and Sections 8.1-8.4 was written
by T. Ohtsuki, following seminar talks given by G. Masbaum. Based on it, G. Masbaum wrote
this introductory part and these sections. Section 8.5 was written by T. Kerler.

*8For a 3-cobordism M with M = (—%1)UX> the vector Z(M) belongs to V(=% LX) =
V(-Z1)®V(Z2) = V(Z1)*®V(X2) by the axioms (1) and (2). Hence, Z(M) can be regarded
as a linear map V(X1) = V(Z2).

?There is another formulation of a “framing” of a 3-manifold using signature cocycle; see
[Tur94].
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8.1 Classification and characterization of TQFT’s

To understand TQFT’s is an important problem in order to investigate the 3-
cobordism category, similarly as the representation theory is important in order
to investigate groups and algebras.

Problem 8.1 Find (and classify) all TQFT’s.

Remark The operator formalism of the Chern-Simons path integral suggests the
existence of many TQFT’s. It is known, see [Tur94, BaKiO1], that a modular
category is derived from a quantum group at a root of unity and a TQFT is
derived from a modular category. The underlying 3-manifold invariant is called
the Reshetikhin-Turaev invariant. Some other TQFT’s might be obtained from
quantum groupoids [NTV(00]. A TQFT for the LMO invariant is discussed in
[MuOh97].

Another major construction of TQFT’s is derived from sets of 6j-symbols;
for the construction see [TuVi92, BaWe96]. When a set of 6j-symbols arises
from a subfactor, the underlying 3-manifold invariant is called the Turaev- Viro-
Ocneanu invariant (see Section 9.4). Further, when a set of 6j-symbols comes
from a quantum group, such a TQFT is isomorphic to a tensor product of two
TQFT’s derived from the quantum group [Tur94]. See Problems in Chapter 9
for concrete problems for TQFT’s derived from 67-symbols.

There are TQFT’s derived from finite groups, whose invariants are called the
Dijkgraaf- Witten invariants [DiWi90]. Such TQFT’s can alternatively be for-
mulated by using certain sets of 67-symbols.

It is known [Ati90a] that the vector space V(X) of a TQFT (V, Z) derived from
a quantum group is isomorphic to the space of conformal blocks of a conformal
field theory (CFT) of the Wess-Zumino-Witten model. Some other (possibly,
“new”) TQFT’s might be obtained from the orbifold construction of CFT. It is
a problem to understand TQFT’s derived from the Rozansky-Witten invariant
(see [RSW 01]); their isomorphism types might be described by known TQFT’s,
or they might be “new” TQFT’s.

The following problem is a part of Problem 8.1 in the sense that some TQFT’s
are derived from modular categories, as mentioned in a remark after Problem
8.1.

Problem 8.2 Find (and classify) all modular categories.
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For a TQFT (V,Z), put Py,z)(t) = 3.2, (dimV'(X,))t9, where X, denotes a
closed surface of genus g. The following problem is a refinement of Problem
8.1.

Problem 8.3

(1) Characterize the power series of the form Py, z)(t).

(2) For each power series P(t) (satisfying the characterization of (1)), classify
all TQFT’s (V, Z) such that Py, z)(t) = P(t).

Remark A concrete form of such a power series for a TQFT derived from
a quantum group is given by Verlinde formula [Ver88]. For example, such a
power series of the TQFT derived from Uy(slz) at level k is presented by

00 k+1 .
L+ 2\g-1 2-2
E t9 ( + ) ! E ( sin "J ) g.
_ 2 - k+2
g=0 j=1

8.2 Spin TQFT’s

There are some refinements of TQFT"s.

A spin TQFTis a TQFT on the category of spin 3-cobordisms, whose invariants
depend on spin structures; such a TQFT can be formulated by extending the
definition of a usual TQFT (see [BIMa96]). It is shown [BIMa96] that a spin
TQFT can be obtained from the modular category of U,(slz) at level k = 2
(mod 4).

Problem 8.4 Find other spin TQFT"s.

Remark Some examples of spin TQFT’s can be constructed from the refined
quantum invariants of [BeBl01, Theorem 6.2].

Remark A spin TQFT is expected to be a refinement of a usual TQFT in the
sense that a spin TQFT (V*, Z9) should be related to a usual TQFT (V, Z) such
that V(X) for connected ¥ can be described by the direct sum of V*¥(¥,0x)
over the spin structures oy, on ¥ (see [BIMa96]) and Z (M) of a closed manifold
M can be described by the sum of Z*(M, o) over the spin structures oy on
M.
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A spin® TQFT should be a TQFT on the category of spin¢ 3-cobordisms, whose
invariants depend on spin® structures.

Problem 8.5 Formulate and find spin® TQFT’s.

Remark The Seiberg-Witten invariant (for its exposition see, e.g., [Mar99])
and the torsion invariant 7 (see [Tur0I]) are defined for closed 3-manifolds
with spin® structures. Are there TQFT’s which are related to these invariants?

8.3 Homotopy QFT’s

V. Turaev [Tur99, Tur00] introduced and developed HQFT (homotopy QFT)
with a target space X in dimension d + 1.

Problem 8.6 (V. Turaev)
(1) Extend HQFT’s to spin and spin® settings.
(2) Find algebra structures behind spin and spin® HQFT’s in dimension 1+41.

Problem 8.7 (V. Turaev) Study (spin and spin®) HQFT’s with the target
space K(H,2) in dimensions 1 + 1,2+ 1, and 3+ 1 for H = 7"

Remark Tt is shown by V. Turaev that HQFT’s with the target space K(m, 1) in
dimension 141 can be described by crossed m-algebras, and that any modular
G-category gives rise to a HQFT with the target space K(G,1) in dimension
2+ 1 [Tur00]. HQFT’s with the target space K(H,2) in dimension 1+ 1 were
studied and classified by M. Brightwell and P. Turner [BrTu00].

8.4 Geometric construction of TQFT’s

Assume that the surface X is equipped with the structure of a smooth algebraic
curve over C. We denote by H?(Myx, L) the space of sections of LZ* on My,
where My is the moduli space of semi-stable rank N bundles with trivial
determinant over X, and £ is the determinant line bundle on My . It is known
that H°(My, L2*) is isomorphic to V() of a TQFT (V,Z) derived from
the quantum group U,(sly) at a (k + N)-th root of unity. In this sense,
H(My, LZF) gives a geometric construction of such a V(3).

Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 127

Problem 8.8 Find a geometric construction of a TQFT based on H'(Myx,, LZF).
Namely, find a geometric way to associate a vector in H°(Myx, LZF) to a 3-
manifold M with OM = X.

Remark In physics such a vector is obtained by applying an infinite dimensional
formal analogue of the geometric invariant theory and the symplectic quotient
to the Chern-Simons path integral; see [Ati90a]. It is a problem to justify this
argument in some mathematical sense.

Here is a concrete problem which may be of interest in studying the relationship
between V(X) and H*(My, L), The group JN) () of N-torsion points on
the Jacobian J(X) acts on My by tensoring. This gives an action of a central
extension £(X) of JWV)(X) on HY( My, LEF).

Problem 8.9 (G. Masbaum) Study this action of the finite group £(3) on
H%( My, L®%), and describe the induced decompositions of this vector space
according to the characters of £(X). Also relate these decompositions to de-
compositions of V(X) for the TQFT (V,Z) derived from the quantum group
Uy(sl2) at a (k+ N)-th root of unity.

Remark This was done for N =2 in [AnMa99].

Remark The group JV)(¥) is isomorphic to H'(X;Z/N) and the extension
E(X) is described using the Weil pairing, which corresponds to the intersection
form on H(3;Z/N). For N =2, an action of £(X) on the vector space V(X)
is described in [BHMV95, Section 7], and it was shown in [AnMa99] that V (X)
and H°(Msy, £LZ*) are isomorphic as representations of £(3); here the torsion
points on the Jacobian J(X) correspond to simple closed curves on the surface
Y. For example, if £ = 2 mod 4, one obtains decompositions indexed by spin
structures (theta-characteristics) on 3. For N > 3, the action of £(X) and the
spin decompositions of V(X) were constructed in [Bla01].

Let 9, denote the mapping class group of a closed surface X, of genus g,
and let 9, denote its central extension (see [Ati90b, MaR095]) arising in the
category of extended 3-cobordisms.

Problem 8.10 For a given TQFT (V,Z), determine whether the image of Ef)tg
in End(V (2,)) is finite.
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Remark Using physical arguments, Bantay [Ban01] (see also references therein)
showed that for every CFT the image of 9 in End(V (S* x S')) is finite. This
had been rigorously proved by Gilmer [Gil99] for the SU(2) case.

In higher genus, it is known [Fun99, Masb99] that the image of M, (g > 2) is
infinite in general.

Problem 8.11 (G. Masbaum) Is there a relation between the Nielsen-Thurston
classification of mapping classes of ¥, and their images on V (3,) for TQFT’s
V,Z)?

Remark The Nielsen-Thurston classification says that any mapping class of a
surface is either finite order, reducible, or pseudo-Anosov (see, e.g., [CaBI88]).
It is known that a Dehn twist is taken to a matrix of finite order by any TQFT
derived from a modular category of a quantum group. On the other hand, it is
shown in [Masb99] that a certain product of two non-commuting Dehn twists
is taken to a matrix of infinite order in the SU(2) TQFT at level k£ unless
k=1,2,4,8.

8.5 Half-projective and homological TQFT’s

In [Gil01] it is shown that, for a restricted set of cobordisms, the Reshetikhin-
Turaev TQFT at a prime p-th root of unity (, can be defined, at least ab-
stractly, as a functor V, : Cob — Z[(,]-mod, meaning the category of free Z[(p]-
modules. Note that there is a well defined ring epimorphism Z[(,]— F,[y]/y? !,
which sends ¢, — 1 +y and maps integer coefficients canonically onto the fi-
nite field F, = Z/pZ. Thus an endomorphism, which for a choice of basis
of the free Z[(,)-modules is given by a matrix with entries in Z[(,], will be
represented by the same matrix with reduced coefficients now in F,[y]/y?~".
Collecting the coefficients for each degree we can thus reexpress such a matrix
as a sum of matrices over F, multiplied with powers of y, or, more succinctly,
use Mat(F,[y]/y? 1) = Mat( »)[y]/y? L. This means that in the rlng—reductlon
the TQFT assigns to cobordisms a polynomial V,(M) = Ep Oyj . }(M),
(4]

where each Vj''(M) is a matrix over F, and is well defined for given bases.

Recall also the notion of a half-projective TQFT with respect to an element
x € R in the base ring, introduced in [Ker98]. It is defined, by perturbing func-
toriality into V(N o M) = x#MN)Y(N)V(M), where u(M, N) = rank (H; (N o

M) > Hy(N N M)).

Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 129

Problem 8.12 (T. Kerler) [Cyclotomic integer TQFT’s]

(1) Find explicit/computable bases for the V,(%,) as free modules over Z[(,).

(2) Show that V, can be extended to all cobordisms as a half-projective
TQFT with x = (¢, — 1)"= € R=17[(,)].

(3) Determine the structure of the V,Ej }(M ) and in how far they have lifts
from I, to Z, analogous to the Ohtsuki invariants for closed 3-manifolds.

(4) Find a universal TQFT that combines all V,, at least perturbatively, into
one.

In the case of p =5 the program for items (1)-(3) has been mostly carried out
in [Ker(02b], for primes p > 7 not much is known though. Some explicit bases
have been found for genus ¢ = 1 by Gilmer, but the situation for higher genera
g > 3 is unknown. An immediate application of item (2) is that the quantum
order, as introduced in [CoMe01], is also an upper bound for the cut-number of a
3-manifold. A closely related statement for (2) would also yield a very different
proof for the fact that the Ohtsuki invariants are of finite type. In item (3) the
“lift” must depend on p since the dimensions of the vector spaces do, and must
also involve further quotients that arise since the irreducible TQFT’s over Z
do not match the required dimensions either, but they become reducible when
reduced to F,. Item (4) is rather vague at this point, indicating for some sort
of infinite filtered space with finite graded components.

Any TQFT V: Cob — R-mod implies a sequence of representation Vg, : I'y —
GLRr(V(Xy)) of the mapping class groups. We say that a TQFT is homological
if each of these representations factors through the quotient I'y—» Sp(2g,%)
(given by the action on H;(X,)), and we say it is strictly homological if each
of the Sp(2g,Z)-representations is algebraic, i.e., either faithful or zero. A
particular example of strictly homological TQFT’s over R = Z are the Lefschetz
components V) of the Frohman-Nicas TQFT, see [FrNi92, Ker00]. From these
we can generate a larger family QY of such TQFT’s by taking all direct sums of
V0U)’s. For example all the TQFT’s constructed in [Don99] lie in @°. An even
larger family Q™ is found by taking also tensor products and their irreducible
summands.

Problem 8.13 (T. Kerler) [Homological TQFT’s]

(1) Find the irreducible components and ring structure (w.r.t & and ®) of
Qr.
(2) Determine whether all strictly homological TQFT’s lie in Q™.
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(3) Identify the homological TQFT’s that arise from the gauge theory of
higher rank groups (such as PSU(n) in [FrNi94]) with elements in Q*.

(4) Identify the irreducible factors of the constant orders VI[,O] of the cyclo-
tomic integer expansion of the Reshetikhin-Turaev theory with elements

in Q*.

The first item is in some sense about finding the representation ring of Sp(2,7Z) x
Sp(4,Z) x ... x Sp(2g,Z) X ... equipped with further generators and relations
given by the standard handle attachments. The constraints given by the latter
may be just good enough to ensure that the answer to item (2) is positive. The
application of (3) is a better understanding and possibly a closed form for the
polynomials from [FrNi94] that express the PSU(n)-invariants in terms of the
coefficients of the Alexander polynomial. Evidence seems to suggest that the
TQFT’s from (4) stem from p—f—fold symmetric products of elements in Q.
A plausible corollary would be that for a closed manifold with by (M) > 1 we

have
P

V(M) = (G =1 PesOcwr(M)) + O((G-1"7),  (46)
where Acwr, is the Casson-Walker-Lescop invariant, and P; is a polynomial of
degree j with integer coefficients. (Note our normalization V,(S%) = 1). As
remarked in [Ker02a] the identity in (46) is true for p = 5 and general M with
b1 (M) > 1. Moreover, work in progress shows that (46) holds also for general
p if M is a torus-bundle over a circle.

The homological TQFT’s are the starting point for a more general, pertur-
bative view point on TQFT’s that should parallel and extend that of the fi-
nite type theory of homology-3-spheres. At least for fixed p one can under-
stand, for example, the Reshetikhin-Turaev theory as deformation of the Q*-
theories. The notion that is somewhat parallel to that of finite type for closed
3-manifolds is what we shall call finite length. More precisely, the representa-
tions Vg : I'y = GLr(V(X,)) of the mapping class groups extend linearly to
homomorphisms Vg : Z[['g] — Endr(V(%y)). Denote by IZ, C Z[I'y] the aug-
mentation ideal of the Torelli group. The length of V is the maximal L € N such
that V[g]((IIg)L“) = 0. Clearly, the L = 0-theories are just the homological
ones. The L = 1-theories can be thought of as elements of some Ext(V, W) with
V, W e Q. Restricted to representations of the I'y’s they factor (in char # 2)

through the Johnson-Morita-homomorphism I'j — /\3H1(Z]g) x Sp(2¢,Z), for
which such extension are explicitly constructible [Ker01b].

Problem 8.14 (T. Kerler) [Length =1 TQFTs]
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(1) Describe and construct algebraic L = 1-extensions of I'y-representations
to TQFT’s, preferably as “simple” generalizations of the Frohman-Nicas-
U(1)-theory.

(2) Produce a classification of L = 1-TQFT’s in the sense of an extension
theory of Q.

(3) Identify the I'j-representations on relative SU(2)-moduli space from [CLMO00]
with these TQFT’s, and find similar, higher rank theories.

(4) Identify the V,[,O} as L = 1-theories, if possible.

The conceivable generalizations of the TQFT construction of Frohman and
Nicas described in (1) include using different, possibly non-compact gauge
groups instead of U(1) and using more refined versions of intersection homolo-
gies for stratified moduli spaces. Given the theory for @* the solution to item
(2) will lead to well defined problems in sp-invariant theory. Constructions of
L = 1-theories follow the schemes from (1) and (3). The identification in (4) is
carried out for p =5 in [Ker01Ib].

The notion of finite length can be refined into the notion of ¢/I-solvable in-
troduced in [Ker02a], indicating a TQFT over R = Mly]/y!*! such that the
constant order TQFT over the ground ring M is of length ¢. This, clearly,
defines a special case of a TQFT of length < (¢-1+ ¢+ 1) . Murakami’s result
[Mur95] can be restated as saying that the Reshetikhin-Turaev theory gives rise

to a 1/1-solvable TQFT VI[,SH with ground ring F, (i.e., a TQFT of length 3
over F,[y]/y?) such that

1
VEIM) = 1+ yohews (M) (47)

for any closed homology sphere M . Following Ohtsuki’s work Murakami’s iden-
tity (with some extra renormalizations by the order of Hi(M)) extends also to
rational homology spheres. Let us call a theory with this property a TQFT of
Casson type.

Recall, that the similar relation (46) for A¢w for manifolds with b (M) > 1
is already contained in the information of a homological (L = 0) TQFT, and is
indeed a special evaluation of the Turaev-Milnor Torsion, see [Ker02a]. Given
the richer structure of a 1/1-solvable TQFT we will expect new invariants =
that are refinements of Aoy, and the torsion invariants.

To be more precise, note that for a pair (M, ), where ¢ : 7 (M) — Z defines
a cyclic cover, any TQFT V yields an invariant V(M, ) = trace(V(Cyx)) where
Cy=M-—%:%Y — % and ¥ C M is any surface dual to ¢. In this way the
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Frohman Nicas theories VU) yields the coefficients of the Alexander Polynomial,
and, as shown in [Ker(02a], thus also Aowp, .

A more refined invariant, which, roughly speaking, generalizes the Alexander
module, is the Turaev-Viro module My (M, p). It is described by Gilmer
in [Gil97]. My (M, ) is given, up to conjugacy, by V(E)/ker(V(Cg)N)
(with N large enough) together with the action of V(Cyx) on it. The traces of
V(Csx;) or its powers are the most obvious well defined numerical invariants of
My (M, ¢). The dimension of the module is yet another such invariant.

For a 1/1-solvable theory V the invariant V(M, ¢) takes values in M[y]/y? and
can hence be written as V(M,p) = AZ(M) +vy- EZ(M), where AV and EY
are now M-valued invariants. If y coincides with the half projective parameter
AV does not depend on ¢, and we expect it to be some function of Aoy .
Moreover, if V descends from a 1/2-solvable TQFT with the same property
also Z¥ would be independent of ¢.

For the modular TQFT over Fs[y]/y? obtained from the Reshetikhin Turaev
theory this invariant has already been defined in [Ker(02a], and we may expect
it to lift, similarly, to an invariant =z over Z. For p > 5 we expect, as in the
case of A\cwr, the next order terms in the expansions (46) of the Reshetikhin
Turaev theories to be polynomial expressions in Aoy and Zz.

Problem 8.15 (T. Kerler) [gq/l-solvable and Casson TQFT’s]

(1) Lift the 1/I-solvable TQFT’s of Casson type over F, to a universal 1/1-
solvable TQFT’s of Casson type over Z.

2

3

(2) Describe the resulting invariant Z; for 3-manifolds with by (M) > 1.
(3)
(4) Relate those with the various, standard resolutions of I'.
(5)
(6)

Develop a perturbation theory for general q/l-solvable TQFT’s.

)
6

Relate them also to the traditional finite type theory for closed 3-manifolds.
Describe the Reshetikhin-Turaev theories in this pattern.

Preparations for item (1) can be found in [Ker02a] in which formulae for the
Casson invariant over Z are derived that have the same form as general TQFT
formulae. Item (2) is immediate from the preceding discussion. The remaining
items are logical continuations.

The category of 3-dim cobordisms Cob® between compact, oriented surfaces

with one boundary component has a natural structure of a braided tensor cat-
egory. Another, category Alg can be defined entirely algebraically in terms of
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generators and relations with respect to a tensor product and a composition
product. On the level of objects it has exactly one generator, say A, so that all
other objects are of the form A®9 with 1 = A®?. The morphisms are given by
all words that can be generated by taking composition and tensor products of
elementary morphisms m: A® A > A, A:A— ARA,e:1 > A, e: A—1,
..., that appear in the definition of a braided, ribbon Hopf algebra with in-
tegrals and a non-degenerate pairing. For example, in [Ker(Ia] a surjective
functor Alg— Cob® is constructed, which, in the genus one restriction in fact
an isomorphism.

Problem 8.16 (T. Kerler) [3-dim cobordisms from Hopf algebras]

(1) Find further relations on Alg, besides the ones arising from the axiomat-
ics of Hopf algebras, that would make Alg — Cob® an isomorphism.

(2) Find relations on Alg such that the maps Aut 4(A®9) — T'y = Aut e pe(3y,1)
are isomorphisms.

(3) Relate this to obstructions, such as Steinberg and Whitehead groups, via
stratified function spaces.

(4) What are the analogous algebraic structures in higher dimensions.

The first problem is easily stated, but presumably very difficult as it implies a
faithful translation of 3-dimensional topology into an algebraic gadget. In this
respect it is vaguely parallel to the geometrization and Poincaré conjectures.
The easier problem stated in item (2) can, in theory, be attacked head-on,
given the known presentations of the mapping class groups. The third point
hints to the fact that the generators in Alg correspond to Morse-theoretically
elementary cobordisms, and the relations can be interpreted, similarly, in terms
of handle slides and cancellation. This is, thus, reminiscent of the definitions of,
e.g., Steinberg groups of 3-manifolds. The problem in item (4) is, again, easily
stated but even in 4 dimensions lingers in almost complete total darkness. It
is not hard to understand that higher category theory has to be invoked and
not just one “object” A suffices as a “generator”. Any partial answers may
open the possibility of constructing functorial 4-manifold invariants by “linear
representation” of such structures.

In [KeLyOl] ETQFT’s V are defined as double functors from the double cate-
gory of relative, 2-framed 1+1+1-dim cobordisms Cob* to the double category
of linear, abelian categories over a perfect field. (The “E” stands for “extended
to surfaces with boundaries”). Applied to a single circle, thought of as a 0-
object in Cob*, it yields an abelian category Cy = V(S'), which we call the
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associated circle category. The main result of [KeLy01] is a construction of a
V¢, for each given modular tensor category C (meaning a bounded, ribbon,
braided tensor category with some additional properties) such that Cy, = C.
The construction is made for all semisimple C, and is extended, in the case of
non-semisimple C, to both to the situation of connected surfaces with boundary
as well as disconnected, closed surfaces using the previously mentioned notion
of half-projective TQFT’s.

Problem 8.17 (T. Kerler) [Extended and half-projective TQFT’s]

(1) Describe in how far an ETQFT V with circle category C can differ from
V¢, thus introducing a equivalence notion that would establish a bijective
correspondence between the class of ETQFT’s and the class of modular
tensor categories.

(2) Find an extended notion of half-projectivity that includes also surfaces
that are both disconnected and have boundary.

(3) Find constructions and axioms of ETQFT’s that apply to more relaxed
notions of boundedness or modularity.

The functor Alg — Cob*® already imposes that a circle category Cy must fulfill
about all axioms of a modular tensor category, and contain a Hopf algebra
object with properties. Given some rigidity assumption it actually must be the
same chosen in the construction of V. What may still differ is the choice
of algebra structures of the same object in the same category, which is thus
the main source of possible ambiguities. Already in [KeLy01] it is clear that
there are several choices. The correct axiomatics for item (2) should follow
from a careful analysis of the double composition laws for surgery tangles from
[KeLy01] and generalization of [Ker98]. Item (3) is relevant to include more
general notions of TQFT’s as they would be of interest in the theory of finite
type invariants.

The Reshetikhin-Turaev theory typically starts with non-semisimple modular
category C, typically the representation category of a non-semisimple quantum
groups U,(g), and then considers a canonical semisimple sub-quotient C, see
[Ker92]. Thus V5 yields a semisimple TQFT. It is known that this is different
from the non-semisimple TQFT V¢, which in the case of a quantum group is
obtained via the Hennings algorithm.

TQFT’s can also be generated from a rigid, monoidal category B without any
braiding. One way is to take the Drinfel’d double D(B), which is then a modular
category for some choice of ribbon element, and use Vp (). For semisimple B
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one can also extract the 6j-symbol data and follow the Turaev-Viro construction
to obtain a TQFT Wg.

Problem 8.18 (T. Kerler) [Non-semisimple vs. semisimple TQFT’s, the
double conjecture]

(1) Clarify the difference in the content of V5 and V¢! Are there homological
TQFT’s H such that V¢ is in some essential way equivalent to Vz @ H 7

(2) Find a construction of Wg that generalizes the Turaev-Viro TQFT’s to
non-semisimple B’s, similar to the way [KeLy01] generalized the Reshetikhin-
Turaev construction. In the case of quantum groups and closed 3-manifolds
this should reproduce a version of the Kuperberg invariant.

(3) What is the relation between Wy and Vpg)? Are they in some sense
isomorphic TQFT’s?

For the case of Ug(sl) there is evidence from the genus=1 case that such an
is indeed given by the Frohman-Nicas-U(1)-theory. Item (2) is rather natural
as a problem. As is apparent in [Kup96c] one may expect technical challenges
requiring “minimal” cell decompositions of cobordisms, as opposed to general
triangulations, as well as “combings” instead of framings.

The last conjecture appears also as Question 5 in [Ker97] which was motivated
by works of and discussions with D. Kazhdan and S. Gelfand in 1994. Since
it is a rather nearby conjecture from a formal point of view it may have been
posed already earlier. For categories arising from subfactors and closed man-
ifolds results answering this conjecture have been obtained in [KSW02]. As
outlined in [Ker97] further, more general results in this direction should yield
a deeper understanding of both TQFT constructions involved as well as entail
a topological picture for the Drinfel’d double construction.
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9 The state-sum invariants of 3-manifolds derived
from 6j-symbols

Turaev and Viro [TuVi92] introduced a formulation of a state-sum invariant of
3-manifolds as a state-sum on triangulations of 3-manifolds derived from certain
67-symbols. After that, Ocneanu gave a general formulation of this state-sum
for general 6j-symbols and constructed 3-manifold invariants from subfactors
based on this formulation. This general formulation was also given by Barrett
and Westbury [BaWe96].

9.1 Monoidal categories, 6j-symbols, and subfactors

Consider a collection, {V;}icr, of (irreducible) modules over C (of a quantum
group or a subfactor) which is closed under tensor product, i.e., for any i, €1,
ViV, = &ke [’H ® Vi for some N, k] dimensional vector space Hl j» which
expresses the mult1phc1ty of V in V; ® Vj. Such a collection (with a certain
property) is called a monoidal category, where each Vj; is called a simple object
of the category (for details see [BaKi0O1]). A monoidal category is provided by
a certain set of representations of a quantum group (see, e.g., [Kas94]), and
also by a certain set of N-N bimodules arising from a subfactor N C M (as
explained below) The algebra spanned by I with the multiplication given by
a-b=3 ;N bc for a,b € I is called the fusion rule algebra.

Let {V;}icr be a monoidal category (with a finite set I) provided by a quantum
group (at a root of unity) or a subfactor (of finite depth). Fix the above
mentioned isomorphism V; ® V; = @y 17—[57 ; ® Vi for each i,j. Then, we have
two bases of the vector space Hom(V;, V; ® V; ® Vi) for each 1,4, k,1 as follows.
Consider the maps

W—>Vn®Vk—>(VZ‘®Vj)®Vk

determined by basis vectors A € Hl k and B € H;. The composition of these
maps gives a vector of Hom(V;,V; ® Vi ® Vi). Thus we obtain a basis of this
vector space consisting of vectors labeled by triples (n, A, B). Moreover, we
obtain another basis consisting of vectors labeled by triples (m,C, D), where
CeH ,De H7%, by considering the following maps,

,m?

Vi—VioVy, — Vi@ (V; @ V).

The introductory part of each section of Chapter 9 was written by T. Ohtsuki, following
suggestions given by Y. Kawahigashi and J. Roberts.
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The collection of the entries of the matrix which relates these two bases is a typ-
ical example of a set of 65-symbols, where a set of 65 -symbols is defined to be a
solution of certain polynomial equations: the tetrahedral symmetry, the unitar-
ity, and the pentagon relation. Each 6j-symbol is labeled by i, 7,k,l,m,n € I,
and A € M, B e H};, C e,

i,m?

i and D € H7}. This 6j-symbol will be

associated to a tetrahedron labeled by them.

A subfactor is a pair of infinite dimensional algebras N and M with an inclusion
relation N C M satisfying some property. A major class of subfactors is a class
of WZW model subfactors of level kK = 1,2,---, which are related to quantum
groups. Another well-known class is a class of subfactors of the Jones index
< 4; they are classified to be of types A, Doy, Fg, or Eg. A left X right YV
module Z is called a X-Y bimodule, and is written xZy. For a subfactor
N C M, counsider irreducible N-N bimodules appearing as direct summands
of N-N bimodules in the following sequence,

NNy, NMy @ iMpy, NMy @ My @ My @ My,
M M N M

The collection of (isomorphism classes of) such irreducible modules provides a
monoidal category {V;}icr. It is known that I is a finite set when the subfactor
is of finite depth (this always holds when its index < 4). For a fusion rule
algebra with a set of 65-symbols there exists a subfactor (if quantum dimensions
are positive) such that the diagram in Figure 18 commutes. For details of this
paragraph see [GHV89, EvKa98|.

Thus, the following classification problems are almost equivalent. Each of them
is fundamental, but probably impossibly hard. (See also Problem 8.2.)

Problem 9.1
(1) Find (and classify) all semi-simple monoidal categories (with finitely many
isomorphism classes of simple objects).

(2) Find (and classify) (finite dimensional) fusion rule algebras and sets of
67 -symbols.

(3) Find (and classify) all subfactors (of finite depth).

Remark Major sets of 67-symbols, what we call quantum 6j-symbols, are the
sets of 67-symbols derived from quantum groups, resp. WZW model subfactors.
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Quantum groups, quantum groupoids
(at roots of unity)

Choose certain sets of
representations

Take a certain matrix
Semi-simple monoidal categories related to associativity (Finite dimensional)
(with finitely many isomorphism =~ —— —» fusion rule algebras

classes of simple objects) and sets of 6j-symbols

Choose certain
bimodules
Subfactors (of finite depth)

Figure 18: 6j-symbols and related objects

Another class of 6j-symbols is derived from finite groups; for a 3-cocycle o of
a finite group G, a set of 6j-symbols is given by

& 5
W( ) N {04(91792793) if g12 = 9192, 923 = 9293, and g123 = 919293,
8123

1 otherwise,

where the tetrahedra is given a trivial face coloring. There are still other in-
finitely many sets of 6j-symbols arising from subfactors; see Table 6. These
67-symbols might have a universal presentation given by a tetrahedron in the
theory of knotted trivalent graphs (see Section 12.4).

9.2 The state-sum invariants derived from monoidal categories

A state-sum invariant of 3-manifolds is defined by using such a set of 6j-symbols
with a monoidal category {V;}icr, as follows. Choose a simplicial decomposition
of a closed 3-manifold M, and fix a total order of its vertices, which induces
orientations of edges. Further, choose an edge coloring X\, which is a map of

39Ty be precise, the even part of the subfactor of type Ds, is braided, and its S-matrix is
non-degenerate.
31 This is trivially braided.
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subfactor monoidal S-matrix
category
WZW model subfactors of level £ =1,2,--- .
braided non-degenerate
SU(N)k, SO(N)k, SP(N), - --
subfactors of type fDln (=SU(2),) Eraﬁejgo non—jegenemte30
index < 4 type Day, ralde : non-degenerate
type Eg, Es not braided | none
:subfactors of (generalized) Haagerup, ot braided | none
index > 4: Asaeda-Haagerup, - - -
exotic subfactors, | quantum doubles of braided non-degenerate
Haagerup subfactor, - - -
subfactors | 3-cocycles of finite groups not braided | none
from — representations of finite groups || braided?! degenerate

Table 6: Subfactors, their monoidal categories, and S-matrices

the set of edges to I, and choose a face coloring ¢, which is a collection of such

assignments that a basis vector of Hf, ; 1s assigned to a triangle &

with an edge coloring. To a tetrahedron o with an edge coloring A and a face
coloring ¢, we associate the above mentioned 6j-symbol, which we denote by
W(o; A, ). Then, a state-sum invariant of M is defined by

2) = w™ " (L) Yo TT W0, (48)
A E [

where the sums of A and ¢ run over all edge colorings and all face colorings, and
the products of £ and o run over all edges and all tetrahedra of the simplicial
decomposition of M, and pu; is a constant, which corresponds to a “quantum
dimension”, and w =), ,u%, and v is the number of vertices of the simplicial
decomposition. It is known (see [BaWe96], [EvKa98, Chapter 12]) that the
invariant (48) is a topological invariant of M. The definition of the invariant
(48) can naturally be extended to an invariant of 3-manifolds with boundaries,
and a TQFT can be formulated based on it.

In particular, for the set of 65-symbols arising from representations of the quan-
tum group U, (Sl2) at a root of unity, the invariant (48) is called the Turaev-Viro
invariant [TuVi92]. In its definition it is not necessary to introduce face col-
orings (because Ni’fj is always equal to 0 or 1 for any 4,7,k in this case) and
orientations of edges (because each representation of Uy(sly) is self-dual).

The monoidal category of a set of quantum 6;-symbols is a modular category,
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and we can construct the Reshetikhin-Turaev invariant from it (see Section 9.3).
The square of the absolute value of the invariant is equal to the value of the
state-sum invariant derived from these 6j-symbols.

The state-sum invariant derived from the set of 65-symbols given by a 3-cocycle
a of a finite group G is called the Dijkgraaf-Witten invariant [DiWi90]. In
particular, when « = 1, it is equal to the number of conjugacy classes of
representations m (M) — G. It is further equal to the state-sum invariant
derived from the set of 6j-symbols obtained from the representations of the
finite group G.

When a set of 6j5-symbols arises from a subfactor, the state-sum invariant
derived from these 6j-symbols is called the Turaev-Viro-Ocneanu invariant.
There are infinitely many subfactors other than the above cases as shown in
Table 6. The Turaev-Viro-Ocneanu invariants derived from such subfactors
might be new invariants of 3-manifolds.

Problem 9.2 (Y. Kawahigashi) Suppose we have a three-dimensional TQF'T.
Can we determine whether it arises from a fusion rule algebra and 6j-symbols?
If yes, can we describe all fusion rule algebras with 6j-symbols producing the
TQFT?

Remark (Y. Kawahigashi) By a result of Ocneanu, we have at most only
finitely many such fusion rule algebras with 6j-symbols, up to equivalence of
67 -symbols.

Problem 9.3 (Y. Kawahigashi) Suppose we have two fusion rule algebras
with 67-symbols and that two TQFT’s arising from them are isomorphic. What
relation do we have for the two sets of 6j-symbols?

Remark (Y. Kawahigashi) Are they equivalent in the sense of [Sat97]?

Problem 9.4 (Y. Kawahigashi) Suppose we have a TQFT arising from a
fusion rule algebra with 6j-symbols. Using a fusion rule subalgebra and 67 -
symbols restricted on it, we can construct another TQFT. What relation do we
have for these TQFT’s?

Remark (Y. Kawahigashi) How about the case where the fusion rule subalgebra
arises from «a-induction? The a-induction produces a fusion rule algebra with
67 -symbols from a semisimple ribbon category with finitely many isomorphism
classes of simple objects and a specific choice of an object satisfying certain
axioms. See [BEKO1], [KiOs02] and their references. If the original ribbon
category is modular, we have some answer in [BEKO1], so it is particularly
interesting when the S-matrix is not invertible.
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9.3 The state-sum invariants derived from ribbon categories

A ribbon category is a monoidal category {Vi}icr equipped with a braiding
VW — WQ®V and a twist V — V for any objects V' and W which are
maps satisfying certain properties. We obtain an invariant of framed links from
a ribbon category by associating a braiding to a crossing of a link diagram and
a twist to a full-twist of a framing of a link. A monoidal category is called semi-
simple if any object is isomorphic to a direct sum of simple ones. The S-matriz
S = (8Sij)ijer of a semi-simple ribbon category {V;}icr is defined by putting S;;
to be the invariant of the Hopf link whose components are associated with V;
and Vj. A modular category is a semi-simple ribbon category with finitely many
isomorphism classes of simple objects whose S-matrix is invertible. We obtain
the Reshetikhin-Turaev invariant of 3-manifolds and its TQFT from a modular
category by using surgery presentations of the 3-manifolds. See [BaKi01] for
details of this paragraph.

Monoidal category = State-sum invariant of 3-manifolds and its TQFT

+ braiding
+ twist

Y
Ribbon category = Invariant of framed links
+ semi-simple

+ finiteness of I
|+ invertibility of §

Modular category = Reshetikhin-Turaev invariant of 3-manifolds and its TQFT
Figure 19: Monoidal, ribbon, modular categories and their consequences

The quantum 67-symbols are typical 67-symbols which induce modular cate-
gories. The square of the absolute value of the Reshetikhin-Turaev invariant
derived from a modular category is equal to the value of the state-sum invari-
ant derived from the category. It is suggested by Ocneanu that the monoidal
category of the quantum double of each of such subfactors would be braided,
and that the Reshetikhin-Turaev invariant derived from this quantum double
would be equal to the Turaev-Viro-Ocneanu invariant derived from the original
subfactor.

Problem 9.5 (Y. Kawahigashi) Suppose we have a semisimple ribbon cat-
egory C with finitely many isomorphism classes of simple objects. If the S-
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matrix is invertible, we can construct the Reshetikhin-Turaev invariant and
the state-sum invariant from C' and the latter is the square of the absolute
value of the former. If the S-matrix is not invertible, do we still have a similar
description of the state-sum invariant?

Remark See also Problem 9.11 for a similar problem for the Turaev-Viro-
Ocneanu invariants.

Problem 9.6 (Y. Kawahigashi) Suppose we have a semisimple ribbon cat-
egory C with finitely many isomorphism classes of simple objects, but the
S-matrix is not invertible. Then we can construct a new modular category
Co containing C as a full subcategory by the “quantum double” construction
[Ocn94, Ocn01, Izu94], but there may be another extension of C to a modular
category. Theorem 2.13 in [Ocn94] claims that we have a “minimal” exten-
sion in an “essentially unique” way. Do we indeed have existence and certain
uniqueness of such an extension? If so, what is the relation between the two
TQFT’s arising from C and its minimal extension?

Problem 9.7 (Y. Kawahigashi) Suppose we have a semisimple ribbon cat-
egory C7 with a degenerate S-matrix as in Problem 9.6. By the method in
[Miig00], we can also make a modular tensor category Co from C,. What is
the relation between the two TQFT’s arising from C; and Cs?

Problem 9.8 (Y. Kawahigashi) There are some fusion rule algebras with
67 -symbols that do not seem to arise from quantum groups in [AsHa99] and
more conjectured candidates of such examples in [Haa94]. What are the cor-
responding TQFT’s? Especially if the series conjectured in [Haa94] does exist,
it would give a parametrized family of TQFT’s. Does a differentiation by a
parameter (after a certain reparametrization) give a more interesting invariant,
possibly of Vassiliev type?

9.4 The Turaev-Viro-Ocneanu invariants

The state-sum invariant of 3-manifolds derived from 67-symbols is called the
Turaev- Viro-Ocneanu invariant when the set of 6j-symbols arises from a sub-
factor. There are infinitely many subfactors other than those derived from
quantum groups or finite groups. The Turaev-Viro-Ocneanu invariants derived
from such subfactors might be new invariants of 3-manifolds.
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(N. Sato)

The Haagerup subfactor of Jones index % has the smallest index among
finite depth subfactors with Jones index bigger than 4 and it is expected to have
some “exotic” properties from the subfactor theoretical viewpoint. However, it
does not seem so sensitive to classify 3-manifolds. The Turaev-Viro-Ocneanu in-
variant constructed from the Haagerup subfactor cannot distinguish lens spaces
L(5,1) and L(5,2), as well as L(7,1) and L(7,2). On the other hand, general-
ized Eg-subfactors with the group symmetries Z/3Z and Z/5Z can distinguish
L(3,1) and L(3,2), L(5,1) and L(5,2), respectively.

Problem 9.9 (N. Sato) Find a subfactor which can distinguish lens spaces
L(7,1) and L(7,2). Moreover, find a subfactor to classify 3-manifolds as well
as possible.

In the lattice field theory, Ponzano and Regge [PoRe68] constructed a state sum
model for SU(2) and investigated an asymptotic behavior of the model.

Some infinite depth subfactors are manageable in the sense of growth rate
(amenability). Such subfactors are called strongly amenable. The strong amenabil-
ity condition might be enough to control the asymptotic behavior of the state
sum model constructed from a strongly amenable subfactor.

Problem 9.10 (N. Sato) Counstruct a well-defined state sum type invariant
from a strongly amenable subfactor.

Note that, unlike the Ponzano-Regge model, we do not have an asymptotic
description of the quantum 65-symbols in general. (Recall that 6j-symbols of
SU(2) have an asymptotic description.)

Let us consider the Turaev-Viro-Ocneanu invariant for a closed 3-manifold
constructed from a subfactor. Then, this invariant can be considered as a
Reshetikhin-Turaev type invariant constructed from a subfactor by passing the
initial subfactor through the Longo-Rehren construction. If we start with a
subfactor which has a non-degenerate braiding in particular, then this Turaev-
Viro-Ocneanu invariant splits into a Reshetikhin-Turaev invariant and its com-
plex conjugate. The following question will open a way to establish a theory of
the minimal non-degenerate extension of a degenerate braiding.

Problem 9.11 (N. Sato) Let us consider the Turaev-Viro-Ocneanu invariant
from a subfactor with a degenerate braiding. Then, find a description of this
invariant as a Reshetikhin-Turaev invariant.
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Remark See also Problem 9.5 for a similar problem for the state-sum invariants
derived from ribbon categories.
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10 Casson invariant and finite type invariants of 3-
manifolds

10.1 Casson and Rohlin invariants

It is known as Rohlin theorem that the signature of a spin smooth closed 4-
manifold is divisible by 16, which deduce the following definition of the Rohlin
invariant. For a closed 3-manifold M and a spin structure o on M, the Rohlin
invariant (M, o) € Z/16Z is defined to be the signature of any smooth compact
spin 4-manifold with spin boundary (M, o). In particular, for a Z/2Z homology
3-sphere M, the Rohlin invariant (M) € Z/16Z is defined to be the signature
of any smooth compact spin 4-manifold with boundary M , noting that there
exists a unique spin structure on such a M. Casson invariant is a Z-valued
lift of the Rohlin invariant of integral homology 3-spheres. Further, it is known
[Wal92] that

w(M) = A|H, (M;2)PAcw (M) = 8| Hy (M; Z) [ Adewr(M)  (mod 16)

for any Z /27 homology 3-sphere, where Acw denotes the Casson-Walker invari-
ant®? [Wal92] and Acwi, denotes the Casson-Walker-Lescop invariant®? [Les96].
For expositions of Casson and Rohlin invariants, see [KiMe91, Les96, Sav99].

Problem 10.1 Can Casson invariant of an integral homology 3-sphere M be
characterized by the signature of a certain 4-manifold bounded by M ?

Remark 1t is shown in [FMMO90] that Casson invariant of the Seifert fibered
homology 3-sphere X(ay,---,ap) is equal to 1/8 times the signature of its
Milnor fiber.

The Casson-Walker-Lescop invariant of closed 3-manifolds with positive Betti
number can be computed from the torsion invariant 7 of V. Turaev. He [Tur01]
gave a surgery formula for 7, which implies a surgery formula for the Casson-
Walker-Lescop invariant.

Problem 10.2 (V. Turaev) Relate this surgery formula for the Casson-
Walker-Lescop invariant with that of Lescop [Les96].

32The normalization here is that Acw (M) = 2Ac(M) for an integral homology 3-sphere
M.

*3The normalization here is that Aewr(M) = (|H1(M;Z)|/2)Acw (M) for a rational ho-
mology 3-sphere M.
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(C. Lescop) In 1984, Casson defined his invariant of integral homology 3-
spheres as an integer that “counts” the SU(2)-representations of their funda-
mental group in an appropriate way (see [AkMc90, GuMa92]). Cappell, Lee and
Miller [CLM90] showed that the Casson way of counting SU(2)-representations
of the m; works for any compact Lie group and provides other invariants of in-
tegral homology spheres.

Question 10.3 (C. Lescop) Are the Cappell-Lee-Miller Casson-type SU(n)-
invariants of finite type? If so, what are their degrees and their weight systems?

Problem 10.4 (M. Polyak) Define an invariant A of a pair (M, o) of a closed
3-manifold M and a spin structure ¢ on M such that

Aowr (M) = A(M, 0)

for any closed 3-manifold M , where the sum runs over all spin structures o on
M.

Note that the set of spin structures on M is a torsor over H'(M;Z/2Z) in
the sense that differences of spin structures can be detected by cohomology
classes in H'(M;7Z/2Z), while the set of spin® structures on M is a torsor over
H'(M;Z) in a similar sense.

Remark Tt is shown [OzSz00] that there exists an invariant 6 of a rational
homology 3-sphere M associated with a spin® structure o on M such that

|H1(M Z) | Aew(M Ze M,q)

for any rational homology 3-sphere M, where the sum runs over all spin® struc-
tures a on M. It is conjectured [OzSz00] that € is equal to Seiberg-Witten
invariant for all rational homology 3-spheres.

Remark (M. Polyak) Casson invariant is a lift of Rohlin invariant. We expect
that A(M, o) of Problem 10.4 should be a lift of (M, o). Howis ) u(M,0) €
Z/16Z related to AcwrL(M)?

It is known that this sum vanishes in Z /16Z when by (M) > 3, while it is known
[LeSQG] that ACWL(M) =0 when b; (M) > 3.
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Remark (C. Lescop) Let M be the 3-manifold obtained by surgery along a
framed link L, and let W be the 4-manifold associated to the surgery presenta-
tion. Then, 24 cwr (M) —3|H1(M;Z)|signW can be presented by a formula of
Alexander polynomial coefficients and linking numbers of L ([Les96, Formula
6.3.1]), which might be helpful.

Note that the list of ;+(M, o) for a given M is richer than their sum ) _u(M, o).
For example, pu(RP3,0) = 1, —1 and pu(RP3#(Poincare sphere),o) = 7, 9,
while their sums are equal in Z/16Z.

Remark The invariant of Problem 10.4 should be related to the Goussarov-
Habiro theory for spin 3-manifolds [Mass01]. Recall that the Rohlin and Cas-
son invariants can be characterized as invariants under Y;-equivalence and Y3-
equivalence among ZHS’s respectively. It was shown [Mass0I] that Rohlin
invariant of spin closed 3-manifolds is the invariant under spin Y3-equivalence
among spin closed 3-manifolds. What is the invariant under spin Y3-equivalence?

Remark Casson-Walker invariant can be characterized as the first coefficient of
the perturbative expansion of the quantum SO(3) invariant 75°G) (M) ([Mur95]).
We have a spin refinement T,ﬁqU(z)(M, o) of the quantum SU(2) invariant U (M)
for r = 0 mod 4 such that

'O =3 O, 0),

where the sum runs over all spin structures o on M ([KiMe91]). We expect
that A\(M,o0) of Problem 10.4 should be related to the first coefficient of the

perturbative expansion of T;gU(Z)(M, o).

When r = 2 mod 4, we have another refinement Ve (M, &) for € € Hi(M;Z/27)

such that
VO(M) =" 75O (M, ¢),
3

when the sum runs over all cohomology classes in H'(M;Z/2Z). The first coef-

ficient of the perturbative expansion of T;g U(Z)(M ,€) was discussed in [Mur99,
Mur00a]. It might be a problem to find a refinement A\(M, &) of Acw (M) for
some cohomology class &.

Remark Problem 10.4 is related to Problem 11.7, which is a problem to find

a spin refinement of the LMO invariant, noting that the first coefficient of the
LMO invariant is given by the Casson-Walker-Lescop invariant.
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Question 10.5 (M. Polyak) Is there a “Rohlin invariant” of a pair (M, a) of
a closed 3-manifold M and a spin® structure o on M ? (See Question 10.21.)

Problem 10.6 (M. Polyak) By presenting 3-manifolds by surgery along
framed links in S®, we can regard an invariant of 3-manifolds as an invari-
ant of framed links. Establish a Gauss diagram formula for the link invariant
derived from each finite type invariant of 3-manifolds.

Remark (M. Polyak) The first step is to find a Gauss diagram formula for
Casson invariant. The Casson-Walker invariant as an invariant of 2-component
links is studied in [KiLi97].

If we would obtain a Gauss diagram formula for the Casson-Walker-Lescop
invariant, then a spin refinement of it (of Problem 10.4) would be obtained by
decorating the Gauss diagram formula by characteristic sublinks, noting that
the spin structures on the 3-manifold obtained by surgery along a framed link
L can be presented by characteristic sublinks of L (see [KiMe91]).

10.2 Finite type invariants

A link in an integral homology 3-sphere is called algebraically-split if the linking
number of any pair of its components vanishes, and is called boundary if all its
components bound disjoint surfaces. A framed link is called unit-framed if the
framings of its components are +1. Let M be the set of (homeomorphism classes
of) oriented integral homology 3-spheres, and let R be a commutative ring with
1. For an algebraically-split unit-framed link L in an integral homology 3-sphere
M, we put
(M, L] =Y (-1)*' My € R,
L'CcL

where the sum runs over all sublinks L' of L, and #L' denotes the number
of components of L', and M, denotes the 3-manifold obtained from M by
surgery along L'. Let F3(RM) [Oht96a] (resp. F?(RM) [Gar96]) denote the
submodule of RM spanned by [M, L] such that M is an integral homology 3-
sphere and L is a unit-framed algebraically-split link L with d components in
M (resp. a unit-framed boundary link L in M). Let F) (RM) [GGPO01] denote
the submodule of RM spanned by [M, G] such that M is an integral homology
3-sphere and G is a collection of d disjoint Y-graphs (see Figure 11) in M,
where [M, Q] is defined similarly as [M, L] (see [GGP01]).3* A homomorphism

34 FY(RM) can alternatively be defined by using blinks [GaLe97]; see [GGPO1].
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v: RM — R is called a finite type invariant of F25-degree d (resp. FP-degree d,
or FY-degree d) if v vanishes on 951 (BRM) (resp. .7:5+1(RM), or T}+1(RM)).
It is known [GaOh98] that

F3a(QM) = F3q 1 (QM) = F3g »(QM)
and that there is an isomorphism
AW; Q' — FE(Qv)/F55 5 (Qv)
between vector spaces [GaOh98, Le97]. It is known [GGPO1] that
F(ZM) D Fog(ZM),  F5a(ZM) D Fyq(ZM),
3a(RM) = Fo(RM) = Fyq(RM),
Faa—1(BM) = Foq(RM)
if 1/2 € R.

10.2.1 Torsion and finite type invariants

Conjecture 10.7 F3*(ZM)/Fg5, (ZM) (resp. fg(ZM)/f(?H(ZM)) is torsion
free for each d.

Remark (K. Habiro) The group F; (ZM)/F; ;(ZM) has 2-torsion for each
d>0.

Conjecture 10.8 A(();Z) is torsion free.

10.2.2 Do finite type invariants distinguish homology 3-spheres?

Conjecture 10.9 Finite type invariants distinguish integral homology 3-spheres.
(See Conjecture 11.2.)

10.2.3 Dimensions of spaces of finite type invariants

A finite type invariant v is called primitive if v(Mi#Ms) = v(My) + v(Ms)
for any integral homology 3-spheres M; and M;. We denote by A(; R).onn
the submodule of A(0; R) spanned by Jacobi diagrams with connected trivalent
graphs. As a graded vector space A((}; Q) is isomorphic to the symmetric tensor
algebra of A(0; Q)conn -
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¢ Jlofr[2]3]af[5[6]7]8]9][10]
prime diag. 011010101 1 1
dim AM@ o111 ]2]|2]3|4|5]6] 8

conn

dim AB)@ 1123691625 [42]65] 105

\ d [ 11 ] 12 | 13 ] 14 |
prime diag.
dim A@)@D [ 9 [ >11 | >13 ] >15

dim A®)D || 161 | >254 | >386 | >595

Table 7: Some dimensions for Problem 10.10

Problem 10.10 Determine the dimension of the space of primitive finite type
invariants of integral homology 3-spheres of each degree d. Equivalently, deter-
mine the dimension of the space A((; Q)(%)  for each d.

conn

Remark A(0; Q)9 is isomorphic to B{%+12) mentioned in a remark of Problem
2.12, by the isomorphism taking a trivalent graph to a uni-trivalent graph ob-
tained from the trivalent graph by cutting a middle point of an edge. Hence, the
dimension of A(0; Q)@ is equal to the dimension Ba+1,2 of B(d+1.2) - Therefore,

conn conn

we obtain the row of A(f; Q)(?) in Table 7 from a column of Table 2.

conn

Remark A(D)conn 1s an algebra with the product given by connected sum of
Jacobi diagrams. Let us look for prime diagrams with respect to the connected
sum; they generate the algebra A(()..n,. By the AS and IHX relations, we can
remove a triangle, and we can break a polygon with odd edges. Hence, prime
diagrams are given by

- ~

S -

_________

PRy
PP

They have the relation pip7 = pj, since pipr = pi(zsps) = (z3p1)ps = p3,
where x3 is the element of Vogel’s algebra A given in (49) below, which acts
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on A(})eonn- It is a problem to find a complete list of generators and relations
of the algebra, A(0)conn -

Remark A(D; Q)conn is a A-algebra, where A is Vogel’s algebra given below,
whose generators and relations have been known in degree < 10; see a remark
on Problem 10.11. It is a problem to find generators and relations of A(0; Q) conn
as a A-algebra.

10.2.4 Vogel’s algebra

Vogel’s algebra [Vog96] is defined as follows. For fixed 3 points, we denote
by A(3 points).,,, the module over Q spanned by vertex-oriented connected
uni-trivalent graphs whose univalent vertices are the fixed 3 points subject to
the AS and THX relations. The symmetric group &3 acts on A(3 points) e,
by permutation of 3 points. The module A is defined to be the submodule of
A(3 points).,, consisting of all elements u satisfying that o(u) = sgn(o) - u
for any o € &3. It is well defined to insert u € A in a vertex-oriented trivalent
vertex as

Moreover, this insertion is independent, modulo the AS and IHX relations, of
a choice of a trivalent vertex as follows. By the AS and IHX relations,
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where the middle equality is derived from the anti-symmetry of . By the 7 /4
and —/4 rotations of the above formula, we have that

. ~ .
\ K \ K ~ . o e
\ \
/ . /
! \
_-—— _ Y- H _
\ / = '
/

Hence, the left hand side of the above formula is equal to 0. This implies that
the insertion of u is independent of a choice of a trivalent vertex. The module
A is an algebra, called Vogel’s algebra, whose product of z,y € A is defined to
be the element of A obtained by inserting x in a trivalent vertex of y. It is a
commutative algebra. Some generators of A in low degrees are given by

and further,

8
3
Il

mm——qemmemppe--

having n horizontal lines between the vertical line and the circle. It is known
that the even x,’s can be presented by odd z,’s.

Problem 10.11 Describe Vogel’s algebra A, say, by giving complete sets of
generators and relations of A.

Remark Vogel [Vog99] conjectured that the homomorphism ¢ : Ry — A given
in [Vog99] was bijective, where Ry is the subalgebra of a polynomial algebra in
3 variables, generated by elements given in [Vog99]. As mentioned in [Vog99,
¢ has been known to be bijective in degree < 10, and injective in degree < 15.

Recently (in June, 2001), Vogel found a polynomial in Ry whose image in A
vanishes; this implies that ¢ is not injective. Surjectivity of ¢ (which implies
that A is generated by ¢, x3, x5, %7, ) is still an open problem.
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Vogel [Vog] further found a divisor of zero in A. It is given as follows. Putting

____

¥

I
)
03
2
N3
IIII:
Ry

I
"

where the sum of o runs over all permutations o € &g, and A\ is obtained

from W by removing a neighborhood of a trivalent vertex. Vogel showed that
th=0cAand A#0€A.

10.2.5 Other problems

Problem 10.12 Find a constructive combinatorial presentation of each finite
type invariant of integral homology 3-spheres, and, in particular, of Casson
invariant, by localizing configration space integrals.

Remark The perturbative expansion of the path integral of the Chern-Simons
field theory suggests that each Vassiliev invariant of knots can be obtained as
a mapping degree of a certain map on a configuration space, whose localiza-
tion deduces a Gauss diagram formula of this Vassiliev invariant; see comments
before Problem 3.11. In the 3-manifold case G. Kuperberg and D. Thurston
[KuTh99] gave a presentation of each finite type invariant by using configura-
tion space integrals, whose localization might deduce a combinatorial formula,
similarly as a Gauss diagram formula. It would be a difficult point of such
localization to deal with “hidden strata” (anomaly faces).

Problem 10.13 (J. Roberts) What is the space of 3-manifolds?

Remark (J. Roberts) Vassiliev invariants are usually characterised in purely
combinatorial terms, but it is worth remembering that Vassiliev was led to
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this definition by considering the natural stratification of the space of smooth
maps S' — R3. The combinatorial theory of finite type invariants of homology
spheres is now equally well-developed but there remains no natural justification
for considering the relations introduced by Ohtsuki, other than that these turn
out to interact very well with the perturbative expansion of the Witten invari-
ants. One would like to find a stratified space of integer homology spheres, in
which crossing a codimension 1 stratum corresponds to doing 41 surgery on
a knot. Now the space of smooth maps f : "™ — S™ is a natural choice for
a “space of framed 3-manifolds”, via the Pontrjagin-Thom construction (take
the preimage of a fixed point in S™). But this space gives the wrong filtration,
and it’s not clear how to alter it to implement (for example) constraints on the
homology of the preimages. See Shirokova [Shir00].

10.3 Goussarov-Habiro theory
10.3.1 Goussarov-Habiro theory for 3-manifolds

Related to finite type invariants of 3-manifolds, equivalence relations among 3-
manifolds have been studied by Goussarov [Gou95, Gou99] and Habiro [Hab00],
which is called the Goussarov-Habiro theory for 3-manifolds. These equivalence
relations are helpful for us to study structures of the set of 3-manifolds.

The Yy-equivalence’® among oriented 3-manifolds is the equivalence relation

generated by either of the following relations,

(1) surgery on a tree clasper with d trivalent vertices [Hab00],

(2) Goussarov’s d-variation (which generates Goussarov’s notion of (d — 1)-
equivalence) [Gou9s, Gou99],

(3) surgery by an element in the dth lower central series subgroup of the
Torelli group of a compact connected surface.

It is known [Hab00] that these relations generate the same equivalence rela-
tion among ZHS’s. Two closed 3-manifolds M and M’ are Yi-equivalent if
and only if there is an isomorphism H;(M;Z) — Hy(M';Z) which induces an
isomorphism between their linking pairings ([Mat87]).

It is known [Hab00] that {integral homology 3-spheres (ZHS'’s)}/ ~= 7 [2Z
2
and that {ZHS’s}/ ~= Z, which deduce the Rohlin and Casson invariants
3

35The Yy-equivalence is also called the (d — 1)-equivalence (due to Goussarov) in some
literatures.
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respectively. Further, it is known [Hab00] that {Myw S3}/Y~ =0ford>1
2d—1 2d

and that there exists a natural surjective homomorphism

AWB;2)(, — (M ~ S}/ ~ (50)
Yaq Yod+1
such that the tensor product of this map and Q is an isomorphism. In particular,

{M o~ S31 /YN forms an abelian group with respect to the connected sum of
2d 2d+1

ZHS'’s, and hence, so does {ZHS’s}/ ~ .

Yoq+1
Conjecture 10.14 The map (50) is an isomorphism.

This conjecture might be reduced to Conjecture 10.8 and the following conjec-
ture.

Conjecture 10.15 {M ~ S3}/ ~ is torsion free for each d.
Yod Yod+1

Remark Conjecture 10.8 implies this conjecture, since the surjective homomor-
phism (50) gives a Q-isomorphism.

Remark (K. Habiro) It is also a problem to describe the graded set {M o~

d

My}/ ~ for an arbitrarily given 3-manifold My. For d = 0, the quotient

Ya+1
set {3-manifolds}/ ~ can be identified with the set of isomorphism classes of
1

Hy(M;Z) and their linking pairings (as mentioned above). For d > 0, there is
a surjective map to this graded set from a certain module of Jacobi diagrams
(subject to the AS and IHX relations).

Problem 10.16 (T. Ohtsuki) Define a product M; o My of integral homol-
ogy 3-spheres My and My which is related, by (50), to the product of Jacobi
diagrams given by their connected sum.

Remark A(D)conn 1s an algebra with the product given by connected sum of
Jacobi diagrams. The connected sum of Jacobi diagrams on ) is well defined
by the AS and IHX relations. The sum of A(().,,, corresponds, by (50), to
the connected sum of integral homology 3-spheres. The problem is to define
a product among integral homology 3-spheres corresponding to the product of

A(®)conn by (50).
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It is known [Gou95, Hab00] that two integral homology 3-spheres M and M’
are Yy-equivalent if and only if v(M) = v(M') for any A-valued finite type
invariant3® v of FY-degree < d for any abelian group A. In fact, a natural
quotient map {ZHS’s} — {ZHS’s} /;; is a finite type invariant of F, -degree

< d, which classifies Y;-equivalence classes of integral homology 3-spheres.

For an oriented compact surface F', a homology cylinder over F is a homology
F x I whose boundary is parameterized by O(F x I).

Conjecture 10.17 (M. Polyak, see [Gou99, “Theorem 4”]) Let F be an
oriented compact surface. Two homology cylinders C and C' over F are Yy-
equivalent if and only if v(C) = v(C") for any A-valued finite type invariant v
of FY -degree < d for any abelian group A.

Remark (M. Polyak) The corresponding assertion for closed 3-manifolds does
not hold; note that {closed 3-manifolds} /ryv does not (naturally) form a group.
d

Recall that {ZHS’s}/ o~ forms an abelian group, which guarantees the corre-
d

sponding assertion for Z HS’s, as mentioned above. The set {homology cylinders
on F'} /;J forms a group with respect to the composition of homology cylinders,
d

though it is not abelian.

10.3.2 Goussarov-Habiro theory for spin and spin® 3-manifolds

As shown in [Mass0I], we have a natural spin (resp. spin® structure) on the

3-manifold obtained from a spin (resp. spin®) 3-manifold by surgery along a Y

graph (or a tree clasper). We define the Y -equivalence (spin Yq-equivalence)

(resp. Y[ -equivalence (spin® Yy-equivalence)) to be the equivalence relation

among spin (resp. spin®) 3-manifolds given by the Yj-equivalence. It is known

[Mass01] that the quotient set {spin closed 3-manifolds}/ o~ can be identified
1

with the isomorphism classes of pairs of H;(M;Z) and certain quadratic forms
dm,e : TorH(M;Z) — Q/Z, or equivalently, the isomorphism classes of triples
of Hi(M;Z) and linking pairings Ay : (TorH; (M; Z))®2 — Q/Z and the mod
8 reduction of the Rohlin invariant p(M, o). Further, it is known [DeMa02] the

36 For an abelian group A, a homomorphism v : ZM — A is called a finite type
invariant of FY -degree d if v vanishes on Fj,,(ZM).
The first version of Section 10.3.2 was written by T. Ohtsuki, following a report of F.
Deloup. Based on it, F. Deloup wrote this section.
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quotient set {spin® closed 3-manifolds} /;/\; can be identified with the set of the
1

isomorphism classes of pairs of H;(M;Z) and certain quadratic forms g, . This
set would be well described by the classification of the following problem.

Problem 10.18 (F. Deloup) Classify the monoid (for orthogonal sum) of
isomorphism classes of quadratic forms q, .

Remark The quotient set {closed 3-manifolds} /ryv can be identified with the set
1

of the isomorphism classes of pairs of H;(M;Z) and linking pairings. This set
can be well described by the classification of linking pairings given in [KaKo80].

Problem 10.19 (G. Massuyeau) Describe the quotient set
{spin closed 3-manifolds} /;\;, in particular, for d = 2,3.
d

Problem 10.20 (F. Deloup, G. Massuyeau) Describe the quotient set
{spin® closed 3-manifolds}/~ , in particular, for d = 2,3.
Yg

Remark There is a unique spin (resp spin®) structure on a ZHS. Hence,
{spin ZHS’S}/{/V (resp. {spin® ZHS’S}/;/V) is equal to {ZHS’S}/er. This
4 d d

quotient set can be described by Jacobi diagrams (see Conjecture 10.15).

Remark The above two problems are related to spin and spin® refinements of
the Casson-Walker-Lescop invariant; see Problem 10.4.

Deloup and Massuyeau [DeMa02] obtained a complete system of invariants for
quadratic functions on finite abelian groups which involves the Gauss-Brown
invariant v(q) =), ¢ 2™V ~1u(®) of 5 quadratic form ¢. In the case g, comes
from a usual spin structure, g, is homogeneous” and the argument of v(q,) is
just the mod 8 reduction of the Rohlin invariant. (Here we take the classical
Rohlin invariant of a spin structure on M to be the signature mod 16 of an ori-
ented smooth simply-connected 4-manifold bounded by M.) Thus, in general,
argv(q¢s) € Q/Z may be viewed as mod 8 generalization of Rohlin invariant for

3T A quadratic function ¢ is a a map such that g(z 4+ y) — ¢(x) — g(y) is bilinear in 2 and
y. It is called homogeneous if q(nx) = n’q(z) for any n € Z and = € G. In fact, there is a
canonical map o — ¢, from spin® structures to quadratic functions and ¢, is homogeneous
if and only if o actually comes from a spin structure. Note that not all spin® structures come
from spin structures.
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spin¢ structures. In the context of spin Goussarov-Habiro theory, Massuyeau
proved that the Rohlin invariant is a finite type invariant of degree 1. This
suggests the following question.

Question 10.21 (F. Deloup) Is there a lift of argy(q,) to a mod 16 invariant?

This would give a finite type invariant of degree 1 in the spin® Goussarov-Habiro
theory.
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11 The LMO invariant

The LMO invariant Z"™O(M) € A(0) of closed oriented 3-manifolds was in-
troduced in [LMO98]. The LMO invariant of rational homology 3-spheres was
reformulated by Aarhus integral [BGRT02]. The LMO invariant is a universal
perturbative invariant of rational homology 3-spheres (see [Oht00, BGRT02,

Oht02]), and a universal finite type invariant of integral homology 3-spheres
[Le97].

11.1 Calculation of the LMO invariant

Problem 11.1 For each rational homology 3-sphere M, calculate Z™O (M)
for all degrees.

Remark Bar-Natan and Lawrence [BaLa00] showed a rational surgery formula
for the LMO invariant. By using it, they obtained

BV (L(p,)) = (00 2,0 s exp g 1)

for the lens space L(p,q) of type (p,q), where s(q,p) denotes the Dedekind
sum. For the notation (Qqg,Q,1Q;/,)e see [BaLa00].

Remark The degree 1 part of Z"™O(M) is given by Casson-Walker invariant
of M ([LMO98]). Further, the degree < d part of Z"™O(M) of integral ho-
mology 3-spheres are given by finite type invariants of degree < d. Hence, it
is algorithmically possible to calculate the degree < d part of Z"™O (M) of an
integral homology 3-sphere for each d. It is meaningful to calculate Z™O (M)
for all degrees.

Remark Tt is meaningful to calculate Z"™O (M) when M is a rational homology
3-sphere. Otherwise, it is known that Z"™MO(M) can be given by some “classi-
cal” invariants. When by (M) = 1, the value of Z"™O (M) can be presented by
using the Alexander polynomial of M ([GaHa00, Lie00]). When b, (M) = 2,
the value of Z"™O(M) can be presented by using the Casson-Walker-Lescop
invariant of M ([HaBe00]). When b (M) = 3, the value of Z"™MO(M) can be
presented by using the cohomology ring of M ([Habe96]). When by (M) > 3,
we always have that Z"™O(M) =1 ([Habe96)).
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11.2 Does the LMO invariant distinguish integral homology 3-
spheres?

Conjecture 11.2 The LMO invariant distinguishes integral homology 3-spheres.
(See Conjecture 10.9.)

Remark Bar-Natan and Lawrence [BaLa00] showed (as a corollary of their
calculation (51)) that the LMO invariant does not separate lens spaces. They
also showed in [BaLa00] that the LMO invariant separates integral homology
Seifert fibered spaces.

Problem 11.3 Does there exist an integral/rational homology 3-sphere M
such that Z"™MO(M) = ZzMO(83)?

11.3 Characterization of the image of the LMO invariant

Problem 11.4 Characterize those elements of A(@)cm of the form log Z™O (M)
for integral /rational homology 3-spheres.

Remark Since 799G)(M) can be obtained from Z"™O(M) by applying the
weight system Wy, , some characterization of this problem might be obtained
from the characterization of the form 7593)(M) (Problem 7.28), say, from the
integrality of the coefficients of 75°(3)(M) for integral/rational homology 3-
spheres M. Some other characterization of this problem might by obtained
from the loop expansion of the Kontsevich invariant.

11.4 Variations of the LMO invariant

Problem 11.5 Construct the LMO invariant with coefficients in a finite field.

Remark 1If the Kontsevich invariant with coefficients in a finite field would be
constructed (see Problem 3.7), then it would be helpful for this problem.

Problem 11.6 Construct the LMO invariant (or the theory of finite type in-
variants) in arrow diagrams.
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11.5 Refinements of the LMO invariant

(T. Le) As mentioned in a remark in Problem 11.1, the LMO invariant is a
weak invariant when by (M) > 0; in particular, Z"MO(M) = 1 when b (M) > 3.
The following two problems might give refinements of Z"™O (M) which would
be stronger than Z"™O(M), in particular, when b (M) > 0.

Problem 11.7 (T. Le, V. Turaev) Define the LMO invariant Z"™O(M, o)
of the pair of a closed 3-manifold M and a spin structure o of M such that
ZIMO(Ny = S ZIMO(M, o), where the sum runs over all spin structures on
M . There is also a similar problem for spin® structures.

Remark The quantum SU(2) invariant of (M, o) satisfies that U (M) =
S V@ (M, o) for r divisible by 4 (see [KiMe91]). The Z™MO(M, ) should
be defined such that 7" % (M, o) can be recovered from Z"™MO(M, o) in an
appropriate sense, and such that the coefficients of Z™MO(M, o) are “finite type

invariants” of (M, o) under an appropriate definition of finite type invariants
of (M,0).

The set of spin structure is a torsor over H'(M;Z/2Z) in the sense that the
difference of two spin structures is an element in H'(M;Z/2Z), and every
element of H'(M;Z/2Z) is the difference of some spin structure and a fixed
one. Similarly, the set of all spin® structure is a torsor over H'(M,Z). In this
sense the previous problem might be related to the following problem.

Problem 11.8 (T. Le, V. Turaev) For every element ¢ € H'(M,7Z) construct
an extension of Z™O(M, ¢) of the LMO invariant such that when & = 0 one
recovers the usual LMO invariant.

The idea is that the usual LMO invariant corresponds only to the trivial coho-
mology class, and for manifolds with high Betti number, it is equal to 0. K.
Habiro has an extension of the LMO invariant that might be a solution to this
problem.

Remark For a finite abelian group A and ¢ € H'(M, A), let 7(M, &) be the
invariant of (M, ¢), defined from a modular A-category, and let 7(M) be the
invariant of M derived from a modular category forgetting A-grading. Then,
T(M) =32 7(M,§). (For details, see [LeTu01].) The ZMO (M, €) should be
defined such that a suitable 7(M,¢) can be recovered from Z"™O (M, ¢) in an
appropriate sense, and such that the coefficients of Z"™O (M, ¢) are “finite type

invariants” of (M, &) under an appropriate definition of finite type invariants
of (M, ).
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11.6 Other problems

Question 11.9

(1) Find a surgery formula for the Kuperberg-Thurston invariant [KuTh99]
in terms of the Chern-Simons series of Question 3.12

(2) Compare the Kuperberg-Thurston invariant to the LMO invariant.
Problem 11.10 (D. Thurston) Do configuration spaces of [KuTh99] have

torsion in Z-homology? Does such torsion deduce a torsion invariant of homol-
ogy 3-spheres?
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12 Other problems

12.1 (Pseudo) Legendrian knot invariants

Let W be a compact closed oriented 3-manifold. (K, v) is said a pseudo Leg-
endrian pair in W if K C W is a knot, v is a non singular vector field on W
and K is transverse to v. K is simply said a (pL)-knot. (K, v), t € [0,1], is
a pseudo Legendrian isotopy if K; is an ambient isotopy of knots, v; is a homo-
topy of fields and (Ky,v;) is a (pL)-pair for every ¢ € [0,1]. Every (pL)-knot
is naturally a framed knot, and every (pL)-isotopy is in particular a framed
knots isotopy. If £ is a transversely oriented contact structure on and K is £-
Legendrian in the classical sense, then K is a (pL)-knot w.r.t. any field v which
is positively transverse to ¢. Every Legendrian isotopy between &-Legendrian
knots induces a (pL)-isotopy. So we have 3 categories of knots, related by
natural forgetting maps:

{Legendrian knots} £t {(pL)-knots} et {framed knots}.

Note that, for each one of these categories, C say, also the C-homotopy immer-
sion class of any C-knot is naturally defined, this contains the C-isotopy class
and is preserved by the forgetting maps.

In [BePeOla] one has introduced the Reidemeister-Turaev torsions of (pL)-
knots; one has realized that torsions include a correct lifting to the (pL)-
category of the classical Alexander invariant; moreover, in many cases (for
instance when W is a Z-homology sphere), they can distinguish (pL)-knots
which are isotopic as framed knots.

Question 12.1 (R. Benedetti) Are torsions actually sensitive only to the
(pL)-homotopy immersion classes of (pL)-knots?

If one fix a C- homotopy immersion class of knots, say « , then one can define
the set of finite type invariants F(«) of the C-isotopy classes contained in «. If
ap is a class of Legendrian knots, one can take a; = fi(a) and ay = fo(ay);
a finite type invariant for «; lifts to a finite type invariant for «;_;. So one has
natural maps

Flas) B Fla) B Flap).

It is known [FuTa97] that, under certain hypotheses on W (for instance when
W is a Z-homology sphere), fi o f5 is a bijection. On the oder hand, one

Section 12.1 was written by R. Benedetti.
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can find in [Tch03] examples where f; o f5 is not surjective and Legendrian
finite type invariants can eventually distinguish some Legendrian knots which
are isotopic as framed knots. In fact one can realize that for these examples
f5 is already not surjective and that (pL)-finite type invariants can eventually
distinguish some (pL)-knots which are isotopic as framed knots. The following
conjecture is not in contradiction with all these known results on the subject.

Conjecture 12.2 (R. Benedetti) For every W, for every (pL)-class ay as
above, f{ is an isomorphism. This means, in particular, that finite type invari-
ants of Legendrian knots should be definitely not sensitive to geometric (rigid)
properties of the contact structures like “tightness”.

See also [BePe0lb] for a more detailed discussion and related questions.

12.2 Knots and finite groups

Knot groups are known to be residually finite, that is, any non-trivial element
can be detected by a homomorphism to some finite group.

Now by Dehn’s lemma and the loop theorem a knot is trivial if and only if
its longitude represents the trivial element of the knot group. Consequently
for each non-trivial knot there is a homomorphism to some finite group which
carries the longitude to a non-trivial element.

Problem 12.3 (H. R. Morton) From a knot diagram find an explicit such
homomorphism to some permutation group or establish that the knot is trivial.

Refinements.

1. Give an upper bound in terms of the diagram for the order of the permu-
tation groups which need to be considered.

2. See what happens if the meridians (which are all conjugate) are restricted
to map to permutations of some specified cycle type, for example, single trans-
positions.

Remark Every finite group is the subgroup of a permutation group, so no
restrictions are implied here.

The language of quandles could be adopted for 2 when referring to the chosen
meridian conjugacy class.

Section 12.2 was written by H. R. Morton.
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It is possible to represent some knot groups onto a finite non-cyclic group with
the longitude mapping trivially. This always happens when n-colouring a knot,
as the knot group is mapped onto the dihedral group D,,, and the longitude
goes into its commutator subgroup. The problem here focusses on the stronger
question of representing the longitude non-trivially.

12.3 The numbers of 3-, 5-colorings and some local moves

A p-coloring of a link L is a homomorphism of the link quandle of L to the
dihedral quandle R, of order p (or, alternatively, a homomorphism of 71 (S®—L)
to the dihedral group of order 2p which takes each meridian to a reflection).3®
Let Coly(L) denote the number of p-colorings of L (see the remark of Problem
4.16). The following conjecture implies that the 3-move (see Figure 20) would
topologically characterize the partition of the set of links given by Cols(L);
note that Col3(L) is unchanged under the 3-move.

Conjecture 12.4 (3-move conjecture, Y. Nakanishi [Nak94|) Any link can be
related to a trivial link by a sequence of 3-moves.

Remark Colz(L) is equal to 3" where n is the rank of Hy(My(L);Z/3%Z) and
M (L) denotes the double cover of S® branched along L. Further, Colz of the
trivial link with n components is equal to 3". Hence, if a link L is related to a
trivial link by 3-moves, then such a trivial link has log; Col3(L) components.

Remark ([Kir97, Remark on Conjecture 1.59 (1)]) Since B,/(c?) is finite
for n < 5, the proof of this conjecture for closures of braids of at most 5
strands is reduced to verifying finitely many cases. According to Y. Nakanishi,
the smallest known obstruction of this conjecture is the 2-parallel of a set of
Borromean rings.

Remark ([Sto03]) This conjecture is true for weak genus two knots.
Update Dabkowski and Przytycki [DaPr02] showed that some links cannot be

reduced to trivial links by 3-moves, which are counterexamples to this conjec-
ture.

38The original definition of a 3-coloring by Fox (see [CrFo63, Chapter VI, Exercise 6]) is (an
equivalent notion of) a non-triviel homomorphism of the link quandle of L to the dihedral
quandle R3. Przytycki [Prz98a] studied the number of 3-colorings. His definition allows trivial
homomorphisms.
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It is shown in [HaUc93] that Cols(L) is invariant under the (2,2)-move (see
Figure 20). The following conjecture implies that the (2,2)-move would topo-
logically characterize the partition of the set of links given by Cols(L).

Conjecture 12.5 (Y. Nakanishi, T. Harikae [Kir97, Conjecture 1.59 (6)])
Any link can be related to a trivial link by a sequence of (2,2)-moves.

Remark This conjecture holds for algebraic links; see [Kir97, Conjecture 1.59
(6)], [Prz98a], and references therein.

The 3-move : W —
The (2,2)-move : >< — /\//\/

Figure 20: The 3-move and the (2,2)-move

12.4 Knotted trivalent graphs

D. Bar-Natan and D. Thurston [BaTh0fa, BaTh01b, Thu01] developed the
theory of knotted trivalent graphs and their algebra, related to shadow surfaces
of V. Turaev [Tur94] and Lie groups/algebras.

A knotted trivalent graph (KTG) is a (framed) embedding of a (ribbon) trivalent
graph I' into S3, where framing is an integer of a half integer (hence, the ribbon
of a trivalent graph is not necessarily orientable). There are four operations of
KTG’s: connected sum, unzip, bubbling and unknot; see Figure 21. Any KTG
(in particular, any link) can be obtained from copies of tetrahedron and Mdbius
strip with £1/2 framing by applying KTG operations. Further, two sequences
of KTG operations give the same KTG, if and only if they are related by
certain (finitely many) relations including the pentagon and hexagon relations
(see [BaThO1b]). Thus, the theory of KTG’s is finitely presented in this sense.

The Kontsevich invariant of framed links have an extension for KTG’s (see
[MuOh97]) and the extended Kontsevich invariant is well-behaved under the

Section 12.4 was written by T. Ohtsuki, following seminar talks given by D. Thurston.
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Connected sum : > < —

Bubbling : - —

Unzip : — H
)
—/

Unknot : 0 —

Figure 21: Four operations of KTG’s [BaTh01b]. The left hand side of the connected
sum denotes a disjoint union of two separate graphs.

KTG operations such that they give another construction of the Kontsevich
invariant starting from the invariants of tetrahedron and Mobius strip.

Problem 12.6 Find a new proof of the existence of a universal Vassiliev in-
variant of knots, presenting them by KT'G’s and their operations.

Conjecture 12.7 (D. Bar-Natan, D. Thurston) For each compact Lie group
G, level k, and every KTG K : I' — R?, there exists a collection of measures
i, on the space of gauge equivalence classes of G -connections on I' satisfying
the following conditions.

e [t is well-behaved under KTG operations.
e It is “localized” near connections that extend to S® — K .

e A half-twist framing change acts by eV —1Hn/ 2 where H is the Schrédinger
operator on G.

e It recovers quantum invariants by

In(K) = [ hae(A)diug (4),
where hp(A) denotes the holonomy of A in R. Here, R is a set of

representations of G associated to edges of I' and appropriate intertwiners
associated to vertices of I'.
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Remark ([Bar00, BaTh(0la]) The physical presentation of the quantum in-
variant of a knot K associated with a representation R of G is given by the
Chern-Simons path integral,

Z(5%,K) = [ hala)en/TTES O,

where CS(A) denotes the Chern-Simons functional of A and the integral is a
formal integral over the infinite dimensional space of all G connections on S3.
It is a motivation of Conjecture 12.7 that a collection of p,. should play a role of
2™V=IkCS(A)DA | It is expected [Bar00, BaTh(Ia] that the collection of mea-
sures ji, of Conjecture 12.7 would prove the asymptotic expansion conjecture
(Conjecture 7.6).

Problem 12.8 Construct an invariant of KTG’s from configuration space in-
tegrals in a natural way.

Turaev [Tur94] introduced a presentation of 3-manifolds as S'-bundles over
“shadow surfaces”, as follows (for details see [Tur94, BaTh0O1b, Thu?0I]). A
fake surface is a singular surface such that a neighborhood of each point is
homeomorphic to an open subset of the cone over a tetrahedron. A S'-bundle
over a fake surface can appropriately be defined and its isomorphism class is
determined by the Chern number, which is an integer or half-integer associated
to each face; we call the Chern number the gleam. A shadow surface is a fake
surface with gleams associated to the faces. Every (closed) 3-manifold can be
presented by a S'-bundle over a (closed) shadow surface. The pentagon and
hexagon relations (see [Tur94, Figure 1.1 of Chapter VIII]) are moves among
shadow surfaces which present a homeomorphic 3-manifold, though they are
not enough to characterize a homeomorphism class of 3-manifolds.

Exercise 12.9 Find a complete set of moves among shadow surfaces which
present a homeomorphic 3-manifold.

We obtain a shadow surface as a time evolution of a sequence of KTG’s given
by KTG operations. Thus, we have relations among links, 3-manifolds, KTG’s
and shadow surfaces as in the commutative diagram in Figure 22; for detailed
statements see [BaTh0Ib, Thu01].

Motivated by a complexity of 3-manifolds discussed in [Mat90, MaPe01, MaPe01],
D. Thurston introduced the shadow number of 3-manifolds. The shadow num-
ber is defined to be the minimal number of vertices of a shadow surface. All
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exterior surgery
Framed links — Framed link exteriors —— Closed 3-manifolds

tati by making by making
presentation S*-bundle S*-bundle
Certain sequences — Collapsible —+ (losed shadow surfaces
of KTG’s une shadow surfaces cap off &

evolution

Figure 22: Links, 3-manifolds, KTG’s, and shadow surfaces

graph manifolds have shadow number 0 and all surgeries on the Borromean
rings have shadow number 1. The volume conjecture might be related to the
following conjecture.

Conjecture 12.10 (D. Thurston) The shadow number of a 3-manifold is
quasi-linear in its Gromov norm. That is, there exist constants c¢; and co such
that

c1]|M|| < (shadow number of M ) < co|| M|

for any 3-manifold M, where ||M|| denotes the Gromov norm of M .

Remark (D. Thurston) It is easy to bound the Gromov norm in terms of the
shadow number (i.e., to prove the left inequality for some c; ).

Remark (D. Thurston) It is shown by W. Thurston that the hyperbolic volume
of a hyperbolic 3-manifold is quasi-linear in the minimal number of ideal tetra-
hedra in a “spun triangulation” (i.e., the minimal number of ideal tetrahedra in
some link complement in the 3-manifold). It is shown by J. Brock [Broc0!] that
the volume of a mapping torus is quasi-linear in the pants translation distance
(for fixed genus).

Lackenby [Lac00] showed that alternating knot diagrams give good information
about the hyperbolic volume. Knot diagrams are a special case of shadow
diagrams, but shadow diagrams can be much more efficient. This suggests the
following problem:

Problem 12.11 (D. Thurston) Find a condition on shadow diagrams which
is satisfied by shadow diagrams from alternating knots; and gives a lower bound
on the hyperbolic volume.
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Closed shadow surfaces
with 0 gleams

by making I-bundles . 1
and cap off boundary/ N{ making S*-bundles

Closed 3-manifolds Certain closed 3-manifolds
M —  M#M#(S? x SY)’s

Figure 23: Two ways to obtain 3-manifolds from shadow surfaces

The Reshetikhin-Turaev invariant and the Turaev-Viro-Ocneanu invariant can
be described in terms of the KT G algebra, via I-bundles and S!-bundles over
shadow surfaces respectively. The relation between the two invariants is derived

from the relation between the two construction of 3-manifolds shown in Figure
23.

Problem 12.12 Construct a universal Reshetikhin-Turaev invariant and a uni-
versal Turaev-Viro-Ocneanu invariant of closed 3-manifolds, in terms of the
KTG algebra.

Remark The LMO invariant and the even degree part of it might be a universal
Reshetikhin-Turaev invariant and a universal Turaev-Viro-Ocneanu invariant
of rational homology 3-spheres, respectively.

12.5 Quantum groups
Problem 12.13 (J. Roberts) What are quantum groups?

Remark (J. Roberts) A naive answer is to simply define them by means of gen-
erators and relations, but this is appallingly unsatisfying. Better is Drinfel’d’s
original construction [Dri87], which begins with the geometric construction of
quasi-quantum groups using the monodromy of the KZ equation. He then uses
completely algebraic results about uniqueness of deformations to obtain from
each one a quantum group, whose category of representations is equivalent to
that of the quasi-quantum group, though the first has a trivial associator and
a complicated R-matrix, the second vice versa. (In particular, the braid group
representation associated to a quantum group is local in the sense that the
R-matrix implementing the action of a braid generator on a tensor product of
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representations of the quantum group involves only the tensor factors associated
to the two strings concerned. This is certainly not true for the KZ equation. Is
there any way to understand this using geometry?)

These constructions are very subtle and complicated. What really is a quan-
tum group, in fact? I believe that algebraists have some reasonably geometric
descriptions of pieces of them in terms of perverse sheaves, etc., but I do not
pretend to understand these. Atiyah made the very interesting suggestion that
quantum groups might be in some sense the “quaternionifications” of compact
Lie groups. Literal quaternionification does not make sense, but substitutes
might be available, in the sense that hyperkahler geometry provides a working
substitute for the non-existent quaternionic version of complex manifold the-
ory. Some evidence for this point of view is presented in Atiyah and Bielawski
[AtBi02].

12.6 Other problems

Problem 12.14 (N. Askitas) Can a knot of 4-genus g5 always be sliced (made
into a slice knot) by g, crossing switches?

Remark (A. Stoimenow) Clearly (at least) gs crossing switches are needed,
but sometimes more are needed to unknot the knot.

Update Livingston [Liv02] showed that the knot 74 provides a counterexample
to this problem; ¢4(74) = 1 but no crossing change results in a slice knot.

Problem 12.15 (M. Boileau [Kir97, Problem 1.69 (C)]) Are there mutants
of distinct unknotting numbers?

Remark (A. Stoimenow) There are mutants of distinct genera (Gabai [Gab84])
and slice genera (Livingston [Liv83]).

Let G be the graph such that its vertices are isotopy classes of unoriented
knots, and two vertices are adjacent if the corresponding knots differ by a
single crossing change.

Conjecture 12.16 (X.-S. Lin [Lin.www|) Any automorphism of G is either

the identity or the mirror map, that is, any automorphism of G is induced by
a diffeomorphism of the ambient space.
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Problem 12.17 (X.-S. Lin [Lin.www|) What is the homotopy type of the
space L(K) of long ropes (as shown in the picture below) with the fixed knot

type K ?
9 g

Remark ([Lin.www]) A conjecture would be that, if K is a prime knot, L(K)
is homotopy equivalent to the circle if and only if K is non-trivial, with the
fundamental group generated by the obvious loop in L(K) shown in the above
picture. This question is motivated by the paper [Mos02]. If the conjecture
holds, the homotopy type of the space of short ropes studied by Mostovoy would
be clear. A paper of Hatcher [Hat99] seems to be related with this problem.

Problem 12.18 (J. Roberts) Extend Kuperberg’s work on webs.

Remark (J. Roberts) Kuperberg posed in [Kup96a] the question of giving a
presentation, as a tensor category, of the representation category of a compact
Lie group or quantum group. The generators should be (roughly) the funda-
mental modules and their bilinear and trilinear invariants; more complicated
morphisms in the category can be built out of these according to a graphical
calculus (essentially Penrose’s tensor calculus) of “webs”. The first main prob-
lem is to describe a set of elementary linear relations (skein relations) among
such pictures which generates all the relations among morphisms in the cat-
egory. The second is to describe a canonical basis of any invariant space in
terms of canonical pictures in the disc. Kuperberg solved both these problems
for groups of ranks one (in which case the pictures are just Temperley-Lieb
diagrams) and two and, with Khovanov in [KhKu99], made tantalising but im-
precise conjectures about how in the higher-rank case the pictures might be
related to the geometry of the weight lattice. These ideas are closely related to
the work of Vaughan Jones [Jon99] on planar algebra, which is a similar kind
of calculus describing the category of bimodules over a subfactor. (Aside: Is it
possible to find a bimodule category whose intertwining rules are described by
quasiperiodic Penrose tiles?)

Problem 12.19 (J. Roberts) Extend the theory of measured laminations to
higher rank groups.
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Remark (J. Roberts) Let ¥ be a closed oriented surface of genus g, and
let C'(X) be its set of multicurves (isotopy classes of collections of disjoint
simple closed curves). Let T'(X) be its Teichmiiller space; that is, the space of
hyperbolic structures, considered up to diffeomorphisms isotopic to the identity.
Topologically, T'(X) is an open ball of dimension 6g — 6.

Each of C'(X),T(X) has a natural embedding in the space of functions C(X) —
R>o: one sends a multicurve to its associated minimal geometric intersection
number function, and a metric to its associated geodesic length function. It is a
remarkable fact that the Ry -projective boundaries of these sets coincide. They
define the space of measured laminations, which compactifies T'(X) into a closed
ball and is of great importance in Thurston’s theory of surface automorphisms.
For further details see for example Penner and Harer [PeHa92].

Now T'(X) may also be described algebraically as a certain component of the
space of flat SL(2,R) connections on ¥ (that is, homomorphisms = (X) —
SL(2,R)), and in this context the geodesic length function is replaced by a
trace-of-holonomy function. Is there a generalisation of the above picture to a
higher rank group such as SL(n,R)?

Hitchin [Hit92] proves that in fact the space of flat SL(n,R) connections has
a special “Teichmiiller component”, which is topologically an open ball, so we
have a candidate for T'(X).(Aside: he asks whether there is an interpretation
of the points of the Teichmiiller component in terms of some kind of geometric
structures on Y. Choi and Goldman showed that for n = 3 they parametrise
convex real projective structures, but no general answer is known.)

A candidate for C'(X) might be the set of Kuperberg-style (closed) webs drawn
on the surface, for there is then a natural holonomy-type map T'(X) x C(X) — R
which is a substitute for the geodesic length function. (In the SL(2) case, this
C(X) is just the set of multicurves, as it should be.) What might replace the ge-
ometric intersection number, and lead to some notion of “measured lamination”
for higher-rank groups, is unclear.

Problem 12.20 (J. Roberts) What is the generating function for g-spin net
evaluations?

Remark (J. Roberts) A g¢-spin net is a trivalent planar graph whose edges are
labelled by irreducible representations of SU(2). By placing idempotents from
the Temperley-Lieb algebra on its edges and joining up their external strings
in a planar fashion at the vertices, one forms an evaluation in Z[¢*']. The goal
is to find a power series in variables associated to the edges which serves as a
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generating function for the evaluations corresponding to all possible labellings
of a given graph. Such a formula is known for any graph at the classical value
g = 1, and Westbury [Wes98] found a generating function for the tetrahedral
graph (the quantum 6j-symbol). A general formula is, however, unknown, and
Westbury also shows that the naive guess (simply replacing factorials in the
g = 1 formula by quantum factorials) is wrong.

Problem 12.21 (Y. Shinohara [Shin71]) If n =4k + 1 with k > 0, is there
a knot with determinant n and signature 47

Remark (A. Stoimenow) The form 4k + 1 follows from Murasugi [Mur65], and
the condition k£ # 0 from a signature theorem for even unimodular quadratic
forms over Z. If a counterexample for n > 1 exists, then all prime divisors of n
are of the form 24k+1 and not smaller than 2857. If 048 845 is the elementary
symmetric polynomial of degree 4 + 8/ in 8/ + 5 variables, then all values of
O4481,81+5 on positive odd arguments are no counterexamples, so the problem
could “reduce” to showing that some of the oy4g; 8145 realizes almost all n on
positive odd arguments. This appears number theoretically hard, however.

The set of concordance classes of 2-strand string links forms a group Cy. Stan-
ford showed that Cs is not nilpotent, in particular not abelian.

Problem 12.22 (T. Stanford) Is Co solvable? Does Co contain a free group?

Problem 12.23 (A. Stoimenow) Do positive links of given signature o have
bounded (below) maximal Euler characteristic x ?

Remark (A. Stoimenow) So far for general positive links only o > 0 is known
[Rud82, CoGo88], and for positive knots o > 4 if 2g = 1—x > 4 (it follows from
[Tan89]). For positive braid links the answer is positive, and also for special
alternating links by Murasugi [Mur65].

Problem 12.24 (A. Stoimenow) If a prime knot K can be transformed into
its mirror image by one crossing change, is K achiral or (algebraically?) slice?

Remark (A. Stoimenow) Smoothing out this crossing gives a link of zero
Tristram-Levine-signatures [Tri69, Lev69] and zero Alexander polynomial. Many
such links are slice, and then K would be slice also. But unlikely.
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Problem 12.25 (A. Stoimenow) Let n be an odd natural number, different
from 1, 9, and 49, such that n is the sum of two squares. Is there a prime
alternating achiral knot of determinant n ?

Remark (A. Stoimenow) If there is an achiral knot of determinant 7, then n
is the odd sum of two squares [HaKa79]. The converse is also true, and the
achiral knot of determinant n can be chosen to be alternating or prime, but
not always both. For n = 1, 9, and 49, there is no prime alternating achiral
knot of determinant n. If there is another such n, then n > 2000 and n is not
a square. See [Sto00].

Conjecture 12.26 (V. Turaev) A pair (a finitely generated abelian group
H of rank 1, an element A(t) € Z[H/Tors H] = Z[t*']) (where t is a generator
of H/Tors H ) can be realized as the pair (H, (M), the Alexander polynomial
Apr of M) for a closed connected oriented 3-manifold M if and only if A(t) =
tEA(t~1) with even k € Z and A(1) = £|Tors H|.

Remark (V. Turaev) Both conditions are known to be necessary. They are
presumably sufficient. This is known for H = Z and for H = Z x (Z/nZ) with
n > 2. When M is obtained from S® by 0-surgery along a knot K, Hy(M) = Z
and Ajpr(t) = Ag(t). It is known that a Laurent polynomial f(t) € Z[tT!] is
realized as the Alexander polynomial of a knot if and only if f(¢) = tFf(¢t™1)
with even k and f(1) = 1. Using surgery on a 2-component link in S® with
linking number 0 and framing numbers 0,7, respectively, one can prove (cf.
[Lev67]) the conjecture for H = Z x (Z /nZ).
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