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2 Edited by T. OhtsukiSin
e the intera
tion between geometry and mathemati
al physi
s in the 1980s,many invariants of knots and 3-manifolds have been dis
overed and studied.The dis
overy and analysis of the enormous number of these invariants yieldeda new area: the study of invariants of knots and 3-manifolds (from anotherviewpoint, the study of the sets of knots and 3-manifolds). Re
ent works havealmost 
ompleted the topologi
al re
onstru
tion of the invariants derived fromthe Chern-Simons �eld theory, whi
h was one of main problems of this area.Further, relations among these invariants have been studied enough well, andthese invariants are now well-organized. For the future developments of thisarea, it might be important to 
onsider various streams of new dire
tions;2 thisis a reason why the editor tried to make the problem list expository. The editorhopes this problem list will 
larify the present frontier of this area and assistreaders when 
onsidering future dire
tions.The editor will try to keep this problem list up to date at his web site.3 If thereader knows a (partial) solution of any problem in this list, please let him4know it. February, 2003T. Ohtsuki

2For example, dire
tions related to other areas su
h as hyperboli
 geometry via the volume
onje
ture and the theory of operator algebras via invariants arising from 6j-symbols.3http://www.kurims.kyoto-u.a
.jp/~tomotada/proj01/4Email address of the editor is: tomotada�kurims.kyoto-u.a
.jpGeometry & Topology Monographs, Volume X (20XX)
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6 Edited by T. Ohtsuki0 Introdu
tionThe study of quantum invariants of links and three-manifolds has a strangestatus within topology. When it was born, with Jones' 1984 dis
overy of hisfamous polynomial [Jon85℄, it seemed that the novelty and power of the newinvariant would be a wonderful tool with whi
h to resolve some outstandingquestions of three-dimensional topology. Over the last 16 years, su
h hopeshave been largely unful�lled, the only obvious ex
eption being the solution ofthe Tait 
onje
tures about alternating knots (see for example [MeTh93℄).This is a disappointment, and parti
ularly so if one expe
ts the role of the quan-tum invariants in mathemati
s to be the same as that of the 
lassi
al invariantsof three-dimensional topology. Su
h a 
omparison misses the point that most ofthe 
lassi
al invariants were 
reated spe
i�
ally in order to distingush betweenthings; their de�nitions are mainly intrinsi
, and it is therefore 
lear what kindof topologi
al properties they re
e
t, and how to attempt to use them to solvetopologi
al problems.Quantum invariants, on the other hand, should be thought of as having beendis
overed. Their 
onstru
tion is usually indire
t (think of the Jones polyno-mial, de�ned with referen
e to diagrams of a knot) and their existen
e seems todepend on very spe
ial kinds of algebrai
 stru
tures (for example, R-matri
es),whose behaviour is 
losely related to three-dimensional 
ombinatorial topology(for example, Reidemeister moves). Unfortunately su
h 
onstru
tions give lit-tle insight into what kind of topologi
al information the invariants 
arry, andtherefore into what kind of appli
ations they might have.Consequently, most of the development of the subje
t has taken pla
e in dire
-tions away from 
lassi
al algebrai
 and geometri
 topology. From the earliestdays of the subje
t, a wealth of 
onne
tions to di�erent parts of mathemati
shas been evident: originally in links to operator algebras, statisti
al me
hani
s,graph theory and 
ombinatori
s, and latterly through physi
s (quantum �eldtheory and perturbation theory) and algebra (deformation theory, quantumgroup representation theory). It is the investigation of these outward 
onne
-tions whi
h seems to have been most pro�table, for the two main frameworksof the modern theory, that of Topologi
al Quantum Field Theory and Vassilievtheory (perturbation theory) have arisen from these.The TQFT viewpoint [Ati89℄ gives a good interpretation of the 
utting andpasting properties of quantum invariants, and viewed as a kind of \higher di-mensional representation theory" ties in very well with algebrai
 approa
hesChapter 0 was written by J. Roberts.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 7to deformations of representation 
ategories. It ties in well with geometri
quantization theory and representations of loop groups [Ati90a℄. In its physi
alformulation via the Chern-Simons path-integral (see Witten [Wit89℄), it eveno�ers a 
on
eptual explanation of the invariants' existen
e and properties, butbe
ause this is not rigorous, it 
an only be taken as a heuristi
 guide to theproperties of the invariants and the 
onne
tions between the various approa
hesto them.The Vassiliev theory (see [Bar95a, Kon94, Thu00℄) gives geometri
 de�nitionsof the invariants in terms of integrals over 
on�guration spa
es, and also 
an beviewed as a 
lassi�
ation theory, in the sense that there is a universal invariant,the Kontsevi
h integral (or more generally the Le-Murakami-Ohtsuki invariant[LMO98℄), through whi
h all the other invariants fa
tor. Its drawba
k is thatthe integrals are very hard to work with { eight years passed between thede�nition and 
al
ulation [Thu00℄ of the Kontsevi
h integral of the unknot!These two frameworks have revealed many amazing properties and algebrai
stru
tures of quantum invariants, whi
h show that they are important and in-teresting pie
es of mathemati
s in their own right, whether or not they haveappli
ations in three-dimensional topology. The stru
tures revealed are pre-
isely those whi
h 
an, and therefore must, be studied with the aid of three-dimensional pi
tures and a topologi
al viewpoint; the whole theory shouldtherefore be 
onsidered as a new kind of algebrai
 topology spe
i�
 to threedimensions.Perhaps the most important overall goal is simply to really understand thetopology underlying quantum invariants in three dimensions: to relate the \newalgebrai
 topology" to more 
lassi
al notions and obtain good intrinsi
 topologi-
al de�nitions of the invariants, with a view to appli
ations in three-dimensionaltopology and beyond.The problem list whi
h follows 
ontains detailed problems in all areas of thetheory, and their division into se
tions is really only for 
onvenien
e, as there arevery many interrelationships between them. Some address unresolved mattersor extensions arising from existing work; some introdu
e spe
i�
 new 
onje
-tures; some des
ribe eviden
e whi
h hints at the existen
e of new patterns orstru
tures; some are surveys on major and long-standing questions in the �eld;some are purely spe
ulative.Compiling a problem list is a very good way to stimulate resear
h inside asubje
t, but it also provides a great opportunity to \take sto
k" of the overallGeometry & Topology Monographs, Volume X (20XX)



8 Edited by T. Ohtsukistate and dire
tion of a subje
t, and to try to demonstrate its vitality and worthto those outside the area. We hope that this list will do both.

Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 91 Polynomial invariants of knots1.1 The Jones polynomialThe Kau�man bra
ket of unoriented link diagrams is de�ned by the followingre
ursive relations,D E = AD E+A�1D E;
 D� = (�A2 �A�2)hDi for any diagram D,hthe empty diagram ;i = 1;where three pi
tures in the �rst formula imply three links diagrams, whi
h areidenti
al ex
ept for a ball, where they di�er as shown in the pi
tures. The Jonespolynomial VL(t) of an oriented link L is de�ned byVL(t) = (�A2 �A�2)�1(�A3)�w(D)hDi���A2=t�1=2 2 Z[t1=2; t�1=2℄;where D is a diagram of L, w(D) is the writhe of D , and hDi is the Kau�manbra
ket of D with its orientation forgotten. The Jones polynomial is an isotopyinvariant of oriented links uniquely 
hara
terized byt�1VL+(t)� tVL�(t) = (t1=2 � t�1=2)VL0(t); (1)VO(t) = 1;where O denotes the trivial knot, and L+ , L� , and L0 are three oriented links,whi
h are identi
al ex
ept for a ball, where they di�er as shown in Figure 1. Itis shown, by (1), that for any knot K , its Jones polynomial VK(t) belongs toZ[t; t�1℄.
L+ L� L0Figure 1: Three links L+; L�; L0Geometry & Topology Monographs, Volume X (20XX)



10 Edited by T. Ohtsuki1.1.1 Does the Jones polynomial distinguish the trivial knot?Problem 1.1 ([Jon00, Problem 1℄) Find a non-trivial knot K with VK(t) =1.Remark It is shown by 
omputer experiments that there are no non-trivialknots with VK(t) = 1 up to 17 
rossings of their diagrams [DaHo97℄, and up to18 
rossings [Yam00℄. See [Big02℄ (and [Big.www℄) for an approa
h to �nd su
hknots by using representations of braid groups.Remark Two knots with the same Jones polynomial 
an be obtained by mu-tation. A mutation is a relation of two knots, whi
h are identi
al ex
ept for aball, where they di�er by � rotation of a 2-strand tangle in one of the followingways (see [APR89℄ for mutations).
For example, the Conway knot and the Kinoshita-Terasaka knot are related bya mutation.
They have the same Jones polynomial, be
ause their diagrams have the samewrithe and the Kau�man bra
ket of the tangle shown in the dotted 
ir
le 
anbe presented byD E = xD E+ yD E = D E;with some s
alars x and y .Remark The Jones polynomial 
an be obtained from the Kontsevi
h invariantthrough the weight system Wsl2;V for the ve
tor representation V of sl2 (see,e.g., [Oht02℄). Problem 1.1 might be related to the kernel of Wsl2;V .Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 11Remark Some links with the Jones polynomial equal to that of the 
orrespond-ing trivial links are given in [EKT03℄. For example, the Jones polynomial ofthe following link is equal to the Jones polynomial of the trivial 4-
omponentlink.
Remark (X.-S. Lin [Lin.www℄) Use Kontsevi
h integral to show the existen
e ofa non-trivial knot with trivial Alexander-Conway polynomial. This might giveus some hints to Problem 1.1.1.1.2 Chara
terization and interpretation of the Jones polynomialProblem 1.2 ([Jon00, Problem 2℄) Chara
terize those elements of Z[t; t�1℄of the form VK(t).Remark ([Jon00℄) The 
orresponding problem for the Alexander polynomialhas been solved; it is known that a polynomial f(t) 2 Z[t; t�1℄ is equal to theAlexander polynomial of some knot K if and only if f(1) = 1 and f(t) =f(t�1). The formulas VK(1) = 1 and VK(exp 2�p�13 ) = 1 are obtained by theskein relation (1). These formulas give weak 
hara
terizations of the requiredelements.Remark (X.-S. Lin [Lin.www℄) The Mahler measure (see [Eve98℄ for its exposi-tion) of a polynomial F (x) = aQi(x� �i) 2 C [x℄ is de�ned bym(F ) = log jaj+Xi logmaxf1; j�ijg = Z 10 log jF (e2�p�1�)jd�:The Mahler measure 
an be de�ned also for a Laurent polynomial similarly. Isit true that m(VK) > 0 for the Jones polynomial VK of a knot K , if K is anon-trivial knot?Problem 1.3 Find a 3-dimensional topologi
al interpretation of the Jones poly-nomial of links.Geometry & Topology Monographs, Volume X (20XX)



12 Edited by T. OhtsukiRemark The Alexander polynomial has a topologi
al interpretation su
h asthe 
hara
teristi
 polynomial of H1( ^S3 �K;Q) of the in�nite 
y
li
 
over ofthe knot 
omplement S3 �K , where H1( ^S3 �K;Q) is regarded as a Q[t; t�1 ℄-module by regarding t as the a
tion of the de
k transformation on ^S3 �K .Remark In the viewpoint of mathemati
al physi
s, Witten [Wit89℄ gave a 3-dimensional interpretation of the Jones polynomial of a link by a path integralin
luding a holonomy along the link in the Chern-Simons �eld theory.Remark Certain spe
ial values of the Jones polynomial have some interpreta-tions. The formulas VL(1) = (�2)#L�1 and VL(exp 2�p�13 ) = 1 are shown bythe skein relation (1), where #L denotes the number of 
omponents of L. It isknown that jVL(�1)j is equal to the order of H1(M2;L) if its order is �nite, and0 otherwise. Here, M2;L denotes the double bran
hed 
over of S3 bran
hedalong L. It is shown, in [Mur86℄, that VL(p�1) = (�p2)#L�1(�1)Arf(L) ifArf(L) exists, and 0 otherwise. It is shown, in [LiMi86℄, that VL(exp p�1�3 ) =�p�1#L�1p�3dimH1(M2;L;Z=3Z). If ! is equal to a 2nd, 3rd, 4th, 6th root ofunity, the 
omputation of VL(!) 
an be done in polynomial time of the numberof 
rossings of diagrams of L by the above interpretation of VL(!). Otherwise,VL(!) does not have su
h a topologi
al interpretation, in the sense that 
om-puting VL(!) of an alternating link L at a given value ! is #P-hard ex
eptfor the above mentioned roots of unity (see [JVW90, Wel94℄).Problem 1.4 (J. Roberts) Why is the Jones polynomial a polynomial?Remark (J. Roberts) A topologi
al invariant of knots should ideally be de-�ned in an intrinsi
ally 3-dimensional fashion, so that its invarian
e underorientation-preserving di�eomorphisms of S3 is built-in. Unfortunately, almostall of the known 
onstru
tions of the Jones polynomial (via R-matri
es, skeinrelations, braid groups or the Kontsevi
h integral, for example) break the sym-metry, requiring the introdu
tion of an axis (Morsi�
ation of the knot) or planeof proje
tion (diagram of the knot). I believe that the \perturbative" 
onstru
-tion via 
on�guration spa
e integrals [Thu99a℄, whose output is believed to beessentially equivalent to the Kontsevi
h integral, is the only known intrinsi

onstru
tion.In the de�nitions with broken symmetry, it is generally easy to see that theresult is an integral Laurent polynomial in q or q 12 . In the perturbative ap-proa
h, however, we obtain a formal power series in ~, and although we knowGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 13that it ought to be the expansion of an integral Laurent polynomial under thesubstitution q = e~ , it seems hard to prove this dire
tly. A related observationis that the analogues of the Jones polynomial for knots in 3-manifolds otherthan S3 are not polynomials, but merely fun
tions from the roots of unity toalgebrai
 integers. What is the spe
ial property of S3 (or perhaps R3 ) whi
h
auses this behaviour, and why does the variable q seem natural only when onebreaks the symmetry?The typi
al raison d'etre of a Laurent polynomial is that it is a 
hara
ter of the
ir
le. (In highbrow terms this is an example of \
ategori�
ation", but it is alsobelongs to a 
on
rete tradition in 
ombinatori
s that to prove that somethingis a non-negative integer one should show that it is the dimension of a ve
torspa
e.) The idea that the Jones polynomial is related to K -theory [Wil02℄ andthat it ought to be the S1 -equivariant index of some ellipti
 operator de�nedusing the spe
ial geometry of R3 or S3 is something Simon Willerton and Ihave been pondering for some time. As for the meaning of q , Atiyah suggestedthe example in equivariant K -theoryKSO(3)(S2) �= KS1(pt) = Z[q�1℄;in to make the �rst identi�
ation requires a 
hoi
e of axis in R3 . (This wouldsuggest looking for an SO(3)-equivariant S2 -family of operators.)Problem 1.5 (J. Roberts) Is there a relationship between values of Jonespolynomials at roots of unity and bran
hed 
y
li
 
overings of a knot?Problem 1.6 (J. Roberts) Is there a relationship between the Jones polyno-mial of a knot and the 
ounting of points in varieties de�ned over �nite �elds?Remark (J. Roberts) These two problems prolong the \ri� in the key of q":the amusing fa
t that traditional, apparently independent uses of that letter,denoting the number of elements in a �nite �eld, the deformation parameterq = e~ , the variable in the Poin
ar�e series of a spa
e, the variable in the theoryof modular forms, et
. turn out to be related.The �rst problem addresses a relationship whi
h holds for the Alexander poly-nomial. For example, the order of the torsion in H1 of the n-fold bran
hed
y
li
 
over equals the produ
t of the values of the Alexander polynomial at allthe nth roots of unity. It's hard not to feel that the variable q has some kindof meaning as a de
k translation, and that the values of the Jones polynomialat roots of unity should have spe
ial meanings.Geometry & Topology Monographs, Volume X (20XX)



14 Edited by T. OhtsukiThe se
ond has its roots in Jones' original formulation of his polynomial usingHe
ke algebras. The He
ke algebra Hn(q) is just the Hall algebra of double
osets of the Borel subgroup inside SL(n; Fq ); the famous quadrati
 relation�2 = (q�1)�+ q falls naturally out of this. Although the alternative de�nitionof Hn(q) using generators and relations extends to allow q to be any 
omplexnumber (and it is then the roots of unity, at whi
h Hn(q) is not semisimple,whi
h are the obvious spe
ial values), it might be worth 
onsidering whetherJones polynomials at prime powers q = ps have any spe
ial properties.Ideally one 
ould try to �nd a topologi
al de�nition of the Jones polynomial(perhaps only at su
h values) whi
h involves �nite �elds. The 
oloured Jonespolynomials of the unknot are quantum integers, whi
h 
ount the numbers ofpoints in proje
tive spa
es de�ned over �nite �elds; might those for arbitraryknots in S3 
ount points in other varieties? Instead of 
ounting 
ounting points,one 
ould 
onsider Poin
ar�e polynomials, as the two things are 
losely relatedby the Weil 
onje
tures.One obvious 
onstru
tion involving �nite �elds is to 
ount representations of afundamental group into a �nite group of Lie type, su
h as SL(n; Fq ). Very mu
hin this vein, Je�rey Sink [Sin00℄ asso
iated to a knot a zeta-fun
tion formed fromthe 
ounts of representations into SL(2; Fps ), for �xed p and varying s. Hishope, motivated by the Weil 
onje
tures, was the idea that the SU(2) Cassoninvariant might be related to su
h 
ounting. For su
h an idea to work, it isprobably ne
essary to �nd some way of 
ounting representations with signs, orat least to enhan
e the 
ounting in some way. Perhaps the kind of twisting usedin the Dijkgraaf-Witten theory [DiWi90℄ 
ould be used.Problem 1.7 (J. Roberts) De�ne the Jones polynomial intrinsi
ally usinghomology of lo
al systems.Remark (J. Roberts) The Alexander polynomial of a knot 
an be de�ned usingthe twisted homology of the 
omplement. In the 
ase of the Jones polynomial,no similar dire
t 
onstru
tion is known, but the approa
h of Bigelow [Big01b℄is tantalising. He shows how to 
onstru
t a representation of the braid groupB2n on the twisted homology of the 
on�guration spa
e of n points in the 2n-pun
tured dis
, and how to use a 
ertain \matrix element" of this representationto obtain the Jones polynomial of a knot presented as a plait. Is there any wayto write the same 
al
ulation dire
tly in terms of 
on�guration spa
es of npoints in the knot 
omplement, for example?Problem 1.8 (J. Roberts) Study the relation between the Jones polynomialand Gromov-Witten theory.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 15Remark (J. Roberts) The theory of pseudo-holomorphi
 
urves or \Gromov-Witten invariants" has been growing steadily sin
e around 1985, in parallelwith the theory of quantum invariants in three dimensional topology. Duringthat time it has 
ome to absorb large parts of modern geometry and topol-ogy, in
luding symple
ti
 topology, Donaldson/Seiberg-Witten theory, Floerhomology, enumerative algebrai
 geometry, et
. It is remarkable that three-dimensional TQFT has remained isolated from it for so long, but �nally thereis a 
onne
tion, as explained in the paper by Vafa and Gopakumar [GoVa00℄(though pre�gured by Witten [Wit95℄), and now under investigation by manygeometers. The basi
 idea is that the HOMFLY polynomial 
an be reformu-lated as a generating fun
tion 
ounting pseudo-holomorphi
 
urves in a 
ertainCalabi-Yau manifold, with boundary 
ondition a Lagrangian submanifold as-so
iated to the knot. (This is the one pla
e where the HOMFLY and not theJones polynomial is essential!) The importan
e of this 
onne
tion 
an hardly beoverestimated, as it should allow the ex
hange of powerful te
hniques betweenthe two subje
ts.
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Figure 2: The upper pi
tures show the distribution of zeros of the Jones polynomial foralternating knots of 11 and 12 
rossings [Lin.www℄. The lower pi
ture shows the distri-bution of zeros of the Jones polynomial for 12 
rossing non-alternating knots [Lin.www℄.See [Lin.www℄ for further pi
tures for alternating knots with 10 and 13 
rossings.Geometry & Topology Monographs, Volume X (20XX)
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Figure 3: The upper pi
tures show the distribution of zeros of the Jones polynomial forn-twist knots, with n from 1 to 50 and from 51 to 100, respe
tively [Lin.www℄. The lowerpi
tures show the distribution of zeros of the Jones polynomial for (2; 2n � 1) torusknots, with n from 1 to 50 and from 51 to 100, respe
tively [Lin.www℄. See [Lin.www℄for further pi
tures for (3; 3n+ 1) and (3; 3n+ 2) torus knots.
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Problems on Invariants of Knots and 3-Manifolds 171.1.3 Numeri
al experimentsThe following problem might 
hara
terize the form of the Jones polynomial ofknots in some sense.Problem 1.9 (X.-S. Lin) Des
ribe the set of zeros of the Jones polynomialof all (alternating) knots.Remark (X.-S. Lin) The plottings in Figure 2 numeri
ally des
ribe the set ofzeros of the Jones polynomial of many knots. Similar plottings are already pub-lished in [WuWa01℄ for some other in�nite families of knots for whi
h the Jonespolynomial is known expli
itly. See also [ChSh01℄ for some other plottings.Remark (X.-S. Lin) It would be a basi
 problem to look into the zero distri-bution of the family of polynomials with bounded degree su
h that 
oeÆ
ientsare all integers and 
oeÆ
ients sum up to 1, and 
ompare it with the zero dis-tribution of the Jones polynomial on the 
olle
tion of (alternating) knots withbounded 
rossing number. The paper [OdPo93℄ dis
usses the zero distributionof the family of polynomials with 0,1 
oeÆ
ients and bounded degree. It isparti
ularly interesting to 
ompare the plotting shown in this paper with theplottings in Figures 2 and 3 for the zeros of the Jones polynomials.Problem 1.10 (N. Dun�eld) Des
ribe the relationship between the hyper-boli
 volume of knot 
omplements and log VK(�1) (resp. log VK(�1)= log degVK(t)).Remark (N. Dun�eld [Dun.www℄) VK(�1) is just �K(�1), whi
h is the orderof the torsion in the homology of the bouble 
over of S3 bran
hed over K .log VK(�1) is one of the �rst terms of the volume 
onje
ture (Conje
ture 1.19).Figure 4 suggests that for alternating knots with a �xed number of 
rossings,log VK(�1) is almost a linear fun
tion of the volume.Figure 5 suggests that there should be an inequalitylog VK(�1)log degVK(t) < a � vol(S3 �K) + bfor some 
onstants a and b. For 2-bridge knots, Agol's work on the volumes of 2-bridge knots [Ago99℄ 
an be used to prove su
h an inequality with a = b = 2=v3(here, v3 is the volume of a regular ideal tetrahedron).Geometry & Topology Monographs, Volume X (20XX)
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Figure 4: The distribution of pairs of the hyperboli
 volume of knot 
omplements and� logVK(�1) for alternating knots with 13 
rossings [Dun.www℄.1.1.4 Categori�
ation of the Jones polynomialKhovanov [Kho00, Kho02℄ de�ned 
ertain homology groups of a knot whoseEuler 
hara
teristi
 is equal to the Jones polynomial, whi
h is 
alled the 
at-egori�
ation of the Jones polynomial. See also [Bar02℄ for an exposition ofit.Problem 1.11 Understand Khovanov's 
ategori�
ation of the Jones polyno-mial.Problem 1.12 Categorify other knot polynomials.Remark (M. Hut
hings) There does exist a 
ategori�
ation of the Alexanderpolynomial, or more pre
isely of �K(t)=(1 � t)2 , where �K(t) denotes the(symmetrized) Alexander polynomial of the knot K . It is a kind of Seiberg-Witten Floer homology of the three-manifold obtained by zero surgery on K .One 
an regard it as Z�Z=2Z graded, although in fa
t the 
olumn whose Euler
hara
teristi
 gives the 
oeÆ
ient of tk is relatively Z=2kZ graded.Geometry & Topology Monographs, Volume X (20XX)
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20 Edited by T. Ohtsuki1.2 The HOMFLY, Q, and Kau�man polynomialsThe skein polynomial (or the HOMFLY polynomial) PL(l;m) 2 Z[l�1;m�1℄ ofan oriented link L is uniquely 
hara
terized byl�1PL+(l;m)� lPL�(l;m) = mPL0(l;m);PO(l;m) = 1;where O denotes the trivial knot, and L+ , L� , and L0 are three oriented links,whi
h are identi
al ex
ept for a ball, where they di�er as shown in Figure 1.For a knot K , PK(l;m) 2 Z[l�2;m℄. The Kau�man polynomial FL(a; z) 2Z[a�1; z�1℄ of an oriented link L is de�ned by FL(a; z) = a�w(D)[D℄ for anunoriented diagram D presenting L (forgetting its orientation), where [D℄ isuniquely 
hara
terized by" #+ " # = z " #+ " #!" # = a" # ;[O℄ = 1:For a knot K , FK(a; z) 2 Z[a�1; z℄. The Q polynomial QL(x) 2 Z[x�1℄ of anunoriented link L is uniquely 
hara
terized byQ� �+Q� � = x Q� �+Q� �!Q(O) = 1:It is known thatVL(t) = PL(t; t1=2 � t�1=2) = FL(�t�3=4; t1=4 + t�1=4);�L(t) = PL(1; t1=2 � t�1=2);QL(z) = FL(1; z);where �L(t) denotes the Alexander polynomial of L. The variable m ofPL(l;m) is 
alled the Alexander variable. See, e.g., [Kaw+90, Li
97a℄, for de-tails of this paragraph.Let the span of a polynomial denote the maximal degree minus the minimaldegree of the polynomial.Problem 1.13 (A. Stoimenow) Does the Jones polynomial V admit only�nitely many values of given span? What about the Q polynomial or the skein,Kau�man polynomials (when �xing the span in both variables)?Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 21Remark (A. Stoimenow) It is true for the skein polynomial when boundingthe 
anoni
al genus (for whi
h the Alexander degree of the skein polynomialis a lower bound by Morton), in parti
ular it is true for the skein polynomialof homogeneous links [Cro89℄. It is true for the Jones, Q and Kau�man Fpolynomial of alternating links (for F more generally for adequate links). One
annot bound the number of di�erent links, at least for the skein and Jonespolynomial, be
ause Kanenobu [Kan86℄ gave in�nitely many knots with thesame skein polynomial.Problem 1.14 (A. Stoimenow) Why are the unit norm 
omplex numbers �for whi
h the value QK(�) has maximal norm statisti
ally 
on
entrated arounde11�p�1=25 ?Remark (A. Stoimenow) The maximal point of jQK(e2�p�1t)j for t 2 [0; 1) isstatisti
ally 
on
entrated around t = 11=50. This was revealed by an experi-ment in an attempt to estimate the asymptoti
al growth of the 
oeÆ
ients ofthe Q polynomial. There seems no di�eren
e in the behaviour of alternatingand non-alternating knots.Problem 1.15 (M. Kidwell, A. Stoimenow) Let K be a non-trivial knot, andlet WK be a Whitehead double of K. Is thendegm PWK (l;m) = 2degz FK(a; z) + 2 ?Remark (A. Stoimenow) It is true for K up to 11 
rossings. degm PWK (l;m)is independent on the twist of WK if it is > 2 by a simple skein argument.Update Gruber [Gru03℄ showed that, if K is a prime alternating knot and WKis its untwisted Whitehead double, then degm PWK (l;m) � 2 degz FK(a; z)+2.Problem 1.16 (E. Ferrand, A. Stoimenow) Is for any alternating link L,�(L) � mindegl�PL(l;m)� � mindega�FL(a�1; z)� ?Remark (A. Stoimenow) The se
ond inequality is 
onje
tured by Ferrand[Fer02℄ (see also 
omment on Problem 1.18), and related to estimates of the Ben-nequin numbers of Legendrian knots. As for the �rst inequality, by Cromwell[Cro89℄ we have mindegl�PL(l;m)� � 1��(L) and 
lassi
ally �(L) � 1��(L).Problem 1.17 (A. Stoimenow) If rk is the 
oeÆ
ient of zk in the Conwaypolynomial and 
(L) is the 
rossing number of a link L, is then��rk(L)�� � 
(L)k2k k! ?Geometry & Topology Monographs, Volume X (20XX)



22 Edited by T. OhtsukiRemark (A. Stoimenow) The inequality is non-trivial only for L of k+ 1; k �1; : : : 
omponents. It is also trivial for k = 0, easy for k = 1 (r1 is just thelinking number of 2 
omponent links) and proved by Polyak-Viro [PoVi01℄ forknots and k = 2. There are 
onstants Ck with��rk(L)�� � Ck 
(L)k ;following from the proof (due to [Bar95
, Sta97℄ for knots, due to [Sto01℄ forlinks) of the Lin-Wang 
onje
ture ([LiWa96℄) for links, but determining Ck fromthe proof is diÆ
ult. Can the inequality be proved by Kontsevi
h-Drinfel'd, sayat least for knots, using the des
ription of the weight systems of r of Bar-Natanand Garoufalidis [BaGa96℄? More spe
i�
ally, one 
an ask whether the (2; n)-torus links (with parallel orientation) attain the maximal values of rk . One
an also ask about the shape of Ck for other families of Vassiliev invariants,like dkdtk VL(t)��t=1 .Problem 1.18 (A. Stoimenow) Does for any link L hold mindega�FL(a�1; z)�� 1��(L)? If u(K) is the unknotting number of a knot K , does for any knotK hold mindega�FK(a�1; z)� � 2u(K)?Remark (A. Stoimenow) For the 
ommon lower bound of 2u and 1 � � forknots, 2gs , there is a 15 
rossing knot K with 2gs(K) < mindega�FK(a�1; z)� .Morton [Mor88℄ 
onje
tured long ago that 1 � �(L) � mindegl�PL(l;m)� .There are re
ent 
ounterexamples, but only of 19 to 21 
rossings. Ferrand[Fer02℄ observed that very often mindegl�PK(l;m)� � mindega�FK(a�1; z)�(he 
onje
tures it in parti
ular always to hold for alternating K ), so repla
ing`mindega�F (a�1; z)�' for `mindegl�PK(l;m)�' enhan
es the diÆ
ulty of Mor-ton's problem (the 
ounterexamples are no longer su
h).1.3 The volume 
onje
tureIn [Kas95℄ R. Kashaev de�ned a series of invariants hLiN 2 C of a link L forN = 2; 3; � � � by using the quantum dilogarithm. In [Kas97℄ he observed, byformal 
al
ulations, that2� � limN!1 loghLiNN = vol(S3 � L)for L = K41 ;K52 ;K61 , where vol(S3 � L) denotes the hyperboli
 volume ofS3�L. Further, he 
onje
tured that this formula holds for any hyperboli
 linkL. In 1999, H. Murakami and J. Murakami [MuMu01℄ proved that hLiN =Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 23JN (L) for any link L, where JN (L) denotes the N -
olored Jones polynomial5of L evaluated at e2�p�1=N .Conje
ture 1.19 (The volume 
onje
ture, [Kas97, MuMu01℄) For any knotK , 2� � limN!1 log jJN (K)jN = v3jjS3 �Kjj; (2)where jj � jj denotes the simpli
ial volume and v3 denotes the hyperboli
 volumeof the regular ideal tetrahedron.Remark For a hyperboli
 knot K , (2) implies that2� � limN!1 log jJN (K)jN = vol(S3 �K):Remark ([MuMu01℄) Both sides of (2) behave well under the 
onne
ted sumand the mutation of knots. Namely,jjS3 � (K1#K2)jj = jjS3 �K1jj+ jjS3 �K2jj;JN (K1#K2) = JN (K1)JN (K2);and JN (K) and jjS3 �Kjj do not 
hange under a mutation of K . For detailssee [MuMu01℄ and referen
es therein.Remark The statement of the volume 
onje
ture for a link L should probablybe the same statement as (2) repla
ing K with L. It is ne
essary to assumethat L is not a split link, sin
e JN (L) = 0 for a split link L (then, the lefthand side of (2) does not make sense).Example It is shown [KaTi00℄ that for a torus link LlimN!1 loghLiNN = 0;whi
h implies that (2) is true for torus links.Remark Conje
ture 1.19 has been proved for the �gure eight knot K41 (see[Mur01℄ for an exposition). However, we do not have a rigorous proof of this
onje
ture for other hyperboli
 knots so far. We explain its diÆ
ulty below,after a review of a proof for K41 .5This is the invariant obtained as the quantum invariant of links asso
iated with the N -dimensional irredu
ible representation of the quantum group Uq(sl2).Geometry & Topology Monographs, Volume X (20XX)



24 Edited by T. OhtsukiWe sket
h a proof of Conje
ture 1.19 for the �gure eight knot K41 ; for a detailedproof see [Mur01℄. It is known thatJN (K41) = N�1Xn=0 (q)n(q�1)n; (3)where we put q = e2�p�1=N and(q)n = (1� q)(1� q2) � � � (1� qn); (q)0 = 1:As N tends to in�nity �xing n=N in �nite, the asymptoti
 behaviour of theabsolute value of (q)n is des
ribed bylog j(q)nj = nXk=1 log �2 sin �kN � = N� Z n�=N0 log(2 sin t)dt+O(logN)= �N2� Im�Li2(e2�np�1=N )�+O(logN);where Li2 denotes the dilogarithm fun
tion de�ned on C � fx 2 R j x > 1g byLi2(z) = 1Xn=1 znn2 = �Z z0 log(1� s)s ds:Noting that ea
h summand of (3) is real-valued, we have thatJN (K41) = X0�n<N exp�N2� Im�Li2(e�2�np�1=N )�Li2(e2�np�1=N )�+O(logN)�:The asymptoti
 behaviour of this sum 
an be des
ribed by the maximal pointz0 of Im�Li2(1=z)�Li2(z)� on the unit 
ir
le �z 2 C �� jzj = 1	. In fa
t this z0is a 
riti
al point of Li2(1=z)�Li2(z) in C , and hen
e Im�Li2(1=z0)�Li2(z0)�gives the hyperboli
 volume of S3 � K41 . Therefore, the 
onje
ture holds inthis 
ase.Next, we sket
h a formal argument toward Conje
ture 1.19 for the knot K52 .Following [Kas97℄, we have thatJN (K52) = X0�m�n<N (q)2n(q)�m q�m(n+1);where the asterisk implies the 
omplex 
onjugate. By applying the formalGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 25approximation6(q)n �? exp� N2�p�1�Li2(1)� Li2(e2�np�1=N )��; (4)(q)�n �? exp� N2�p�1�Li2(e�2�np�1=N )� Li2(1)��;we have thatJN (K52) �? X0�m�n<N exp� N2�p�1��22 � 2Li2(e2�np�1=N )� Li2(e�2�mp�1=N ) + 2�nN 2�mN ��:Further, by formally repla
ing7 the sum with an integral putting t = n=N ands = m=N , we have thatJN (K52) �?? N2 Z0�s�t�1 exp N2�p�1��22 � 2Li2(e2�p�1t)� Li2(e�2�p�1s) + 2�t � 2�s�dsdt (5)= �N24�2 Z exp N2�p�1��22 � 2Li2(z) � Li2( 1w )� log z logw�dww dzz ;where the se
ond integral is over the domain �(z; w) 2 C 2 �� jzj = jwj = 1; 0 �arg(w) � arg(z) � 2�	, and the equality is obtained by putting z = e2�p�1tand w = e2�p�1s . By applying the saddle point method8 the asymptoti
 be-haviour might be des
ribed by a 
riti
al value of�22 � 2Li2(z)� Li2( 1w )� log z logw: (6)Sin
e a 
riti
al value of this fun
tion gives a hyperboli
 volume of S3 � K52 ,this formal argument suggests Conje
ture 1.19 for K52 .It was shown by Yokota [Yok00℄, following ideas due to Kashaev [Kas95℄ andThurston [Thu99b℄, that the hyperboli
 volume of the 
omplement of any hy-perboli
 knot K is given by a 
riti
al value of su
h a fun
tion as (6), whi
h isobtained from a similar 
omputation of JN (K) as above.6It might be diÆ
ult to justify this approximation in a usual sense, sin
e the argument of(q)n , given by (q)n = j(q)nj � q�n(n+1)=2(�p�1)n , 
hanges dis
retely and qui
kly near thelimit.7It might be seriously diÆ
ult to justify this repla
ement, sin
e there is a large parameterN in the power of the summand, whi
h exponentially 
ontributes the summand.8The saddle point method in multi-variables is not established yet. This might be a te
h-ni
al diÆ
ulty.Geometry & Topology Monographs, Volume X (20XX)



26 Edited by T. OhtsukiProblem 1.20 Justify the above arguments rigorously.Remark The asymptoti
 behaviour of JN (K) might be des
ribed by usingquantum invariants of S3�K . We have some ways to 
ompute the asymptoti
behaviour of su
h a quantum invariant, say, when K is a �bered knot (in this
ase, S3 �K is homeomorphi
 to a mapping torus of a homeomorphism of apun
tured surfa
e), and when we 
hoose a simpli
ial de
omposition of (a 
losureof) S3 �K . For details, see remarks of Conje
ture 7.12.The following 
onje
ture is a 
omplexi�
ation of the volume 
onje
ture (Con-je
ture 1.19).Conje
ture 1.21 (H. Murakami, J. Murakami, M. Okamoto, T. Takata,Y. Yokota [MMOTY01℄) For a hyperboli
 link L,2�p�1 � limN!1 log JN (L)N = CS(S3 � L) +p�1vol(S3 � L)for an appropriate 
hoi
e of a bran
h of the logarithm, where CS and vol denotethe Chern-Simons invariant and the hyperboli
 volume respe
tively. Moreover,limN!1 JN+1(L)JN (L) = exp� 12�p�1�CS(S3 � L) +p�1vol(S3 � L)��: (7)Remark It is shown [MMOTY01℄, by formal 
al
ulations (su
h as (4) and (5)),that Conje
ture 1.21 is \true" for K52 ;K61 ;K63 ;K72 ;K89 and the Whiteheadlink.Remark The statement for non-hyperboli
 links should probably be the samestatement, repla
ing vol(S3 � L) with v3jjS3 � Ljj. Note that, if L is nothyperboli
, then it is also a problem (see Problem 7.16) to �nd an appropriatede�nition of CS(S3�L), whi
h might be given by (7). It is ne
essary to assumethat L is not a split link, sin
e JN (L) = 0 for a split link L.Remark (H. Murakami) Zagier [Zag01℄ gave a 
onje
tural presentation of theasymptoti
 behaviour of the following sum,JN (K31) = N�1Xk=0 (q)k �N!1 exp���p�112 (N�3+ 1N )�N3=2+Xk�0 bkk! ��2�p�1N �kfor some series bk . This suggests that lim log JN (K31 )N should be ��p�1=12.Problem 1.22 (H. Murakami) For a torus knot K , 
al
ulate CS(S3 � K)(giving an appropriate de�nition of it) and 
al
ulate lim log JN (K)N (�xing anappropriate 
hoi
e of a bran
h of the logarithm).Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 272 Vassiliev invariantsLet R be a 
ommutative ring with 1 su
h as Z or Q . We denote by K the setof isotopy 
lasses of oriented knots. A singular knot is an immersion of S1 intoS3 whose singularities are transversal double points. We regard singular knotsas in RK by removing ea
h singularity linearly by= � :Let Fd(RK ) denote the submodule of RK spanned by singular knots with ddouble points, regarding them as in RK . Then, we have a des
ending series ofsubmodules, RK = F0(RK ) � F1(RK ) � F2(RK ) � � � � :An R-homomorphism v : RK ! R (or, a homomorphism ZK ! A for anabelian group A) is 
alled a Vassiliev invariant (or a �nite type invariant)of degree d if vjFd+1(RK) = 0. See [Bar.www℄ for many referen
es of Vassilievinvariants.A trivalent vertex of a graph is 
alled vertex-oriented if a 
y
li
 order of the threeedges around the trivalent vertex is �xed. A Ja
obi diagram9 on an oriented1-manifold X is the manifold X together with a uni-trivalent graph su
h thatunivalent verti
es of the graph are distin
t points on X and ea
h trivalentvertex is vertex-oriented. The degree of a Ja
obi diagram is half the number ofunivalent and trivalent verti
es of the uni-trivalent graph of the Ja
obi diagram.We denote by A(X;R) the module over R spanned by Ja
obi diagrams on Xsubje
t to the AS, IHX, and STU relations shown in Figure 6, and denote byA(X;R)(d) the submodule of A(X;R) spanned by Ja
obi diagrams of degreed. There is a 
anoni
al surje
tive homomorphismA(S1;R)(d)=FI! Fd(RK )=Fd+1(RK ); (8)where FI is the relation shown in Figure 6. This map is known to be anisomorphism when R = Q (due to Kontsevi
h). For a Vassiliev invariant v :RK ! R of degree d, its weight system A(S1;R)(d)=FI ! R is de�ned by themap (8).9A Ja
obi diagram is also 
alled a web diagram or a trivalent diagram in some literatures.In physi
s this is often 
alled a Feynman diagram.Geometry & Topology Monographs, Volume X (20XX)



28 Edited by T. OhtsukiThe AS relation : = �The IHX relation : = �The STU relation : = �The FI relation : = 0Figure 6: The AS, IHX, STU, and FI relations2.1 Torsion and Vassiliev invariantsLet R be a 
ommutative ring with 1, say Z=nZ. Then, Q -, Z-, R-valuedVassiliev invariants and their weight systems and the Kontsevi
h invariant formthe following 
ommutative diagram.� Kontsevi
h invariantA(S1;Q)=FI K??yproj ??yA(S1;Q)(d)=FI isom����! Fd(QK )=Fd+1 (QK ) �����! QK =Fd+1 (QK ) ����! Qx??�
Q x??�
Q �
Qx?? �
Qx??A(S1;Z)(d)=FI surj����! Fd(ZK)=Fd+1 (ZK) �����! ZK=Fd+1 (ZK) ����! Z??yproj ??yproj proj??y proj??yA(S1;R)(d)=FI surj����! Fd(RK )=Fd+1 (RK ) �����! RK=Fd+1 (RK ) ����! RHere, the right horizontal maps are derived from Vassiliev invariants, and the
ompositions of horizontal maps are their weight systems.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 29Conje
ture 2.1 ([Kir97, Problem 1.92 (N)℄) Fd(ZK)=Fd+1(ZK) is torsionfree for ea
h d.Remark (see [Kir97, Remark on Problem 1.92 (N)℄) Goussarov has 
he
kedthe 
onje
ture for d � 6. It has been 
he
ked that Fd(ZK)=Fd+1(ZK) has no2-torsion for d � 9 by Bar-Natan, and for d � 12 in [Kne97℄.Remark If this 
onje
ture was true, then Z-valued and Q -valued Vassiev invari-ants 
arry exa
tly the same information about knots. Moreover, any (Z=nZ)-valued Vassiliev invariants would be derived from Z-valued Vassiliev invariants.Conje
ture 2.2 A(S1;Z) is torsion free.Remark (T. Stanford) This 
onje
ture would imply Conje
ture 2.1 be
auseof the Kontsevi
h integral. However, it is possible that there is torsion inA(S1;Z)(d) whi
h is in the kernel of the map (8).Conje
ture 2.3 (X.-S. Lin [Lin.www℄) Let R be a 
ommutative ring with1, say Z=2Z. Every weight system A(S1;R)(d)=FI ! R is indu
ed by someVassiliev invariant RK ! R.Remark If the map (8) is an isomorphism and Fd(RK )=Fd+1(RK ) is a dire
tsummand of RK=Fd+1(RK ), then this 
onje
ture is true (see the diagram atthe beginning of this se
tion).Remark When R = Q , this 
onje
ture is true, sin
e the 
omposition of theKontsevi
h invariant and a weight system gives a Vassiliev invariant, whi
hindu
es the weight system. If the Kontsevi
h invariant with 
oeÆ
ients in Rwould be 
onstru
ted (see Problem 3.7), this 
onje
ture would be true.Remark (T. Stanford) The 
hord diagram module A(##;Z) 
orresponds to�nite-type invariants of two-strand string links. Jan Kneissler and Ilya Dogo-lazky (see [Dog98℄) showed that there is a 2-torsion element in A(##;Z)(5)=FI(see Figure 7). I have done re
ent 
al
ulations (to be written up soon) whi
hshow that there is no Z=2Z-valued invariant of string links 
orresponding to thistorsion element. Thus there is a Z=2Z weight system A(##;Z=2Z)=FI! Z=2Zwhi
h is not indu
ed by a Z=2Z-valued �nite-type invariant. So for string links,Conje
ture 2.1 is false.Geometry & Topology Monographs, Volume X (20XX)



30 Edited by T. Ohtsuki�Figure 7: A 2-torsion element in A(##;Z) due to Dogolazky{Kneissler(T. Stanford) Note that the Kontsevi
h integral works (for rational invariants)for string links just as well as for knots. Sin
e this 
al
ulation shows that thereis no Z=2ZKontsevi
h integral for string links, it suggests that there is no Z=2ZKontsevi
h integral for knots.Question 2.4 (T. Stanford) The Dogolazky-Kneissler 2-torsion element inA(##;Z) (see Figure 7) 
an be embedded into a 
hord diagram in A(S1;Z) inmany ways. Su
h an embedding will always produ
e an element x 2 A(S1;Z)with 2x = 0. Is it possible to produ
e su
h an x whi
h is nontrivial? If so, thiswould give a 
ounterexample to Conje
ture 2.3.2.2 Do Vassiliev invariants distinguish knots?Conje
ture 2.5 Vassiliev invariants distinguish oriented knots. (See Conje
-ture 3.2 for an equivalent statement of this 
onje
ture.)Remark Two knots with the same Vassiliev invariant up to an arbitrarily givendegree 
an be obtained; see [Ohy95℄ and Goussarov-Habiro theory [Gou95,Gou99, Hab00℄. Hen
e, we need in�nitely many Vassiliev invariants to showthis 
onje
ture.Problem 2.6 Does there exists a non-trivial oriented knot whi
h 
an not bedistinguished from the trivial knot by Vassiliev invariants? (See Problem 3.3for an equivalent problem.)Remark The volume 
onje
ture (Conje
ture 1.19) suggests that the answer isno; see [MuMu01℄.Conje
ture 2.7 (see [Kir97, Problem 1.89 (B)℄) For any oriented knot K ,no Vassiliev invariants distinguish K from �K . (See Conje
ture 3.4 for anequivalent statement of this 
onje
ture.)Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 31Remark ([Kir97, Remark on Problem 1.89℄) The �rst oriented knot whi
h isdi�erent from its reverse is 817 . It is known that no Vassiliev invariants ofdegree � 9 
an distinguish a knot from its reverse.Remark This 
onje
ture is redu
ed to the problem to �nd D 2 A(S1) withD 6= �D , where �D is D with the opposite orientation of S1 . If su
h a Dexisted, the 
onje
ture would fail. Su
h a D has not been known so far.Remark Kuperberg [Kup96b℄ showed that all Vassiliev invariants either distin-guish all oriented knots, or there exist prime, unoriented knots whi
h they donot distinguish.2.3 Can Vassiliev invariants dete
t other invariants?(T. Stanford) Let hG(K) be the number of homomorphisms from the fun-damental group of the 
omplement of a knot K to a �nite group G. This isnot a Vassiliev invariant ([Eiser00℄). hS3(K) of the 3rd symmetri
 group S3is presented by the number of 3-
olorings of K , and hD5(K) of the dihedralgroup D5 of order 10 is presented by the number of 5-
olorings of K . Theseare determined by the Jones and Kau�man polynomials, respe
tively (see theremark of Problem 4.16), and therefore are determined by invariants of �nitetype. In fa
t, by the usual power-series expansions of the Jones and Kau�manpolynomials, we see that hS3 and hD5 are the (pointwise) limits of respe
tivesequen
es of �nite-type invariants.Question 2.8 (T. Stanford) Can we approximate hG by Vassiliev invariantsfor other G than dihedral groups?Remark (T. Stanford) It is known (due to W. Thurston) that knot groups areresidually �nite. So if hG 
an be approximated by �nite-type invariants for all�nite groups G, then Vassiliev invariants would distinguish the unknot.Remark (T. Stanford) If p is a prime, then there exists a nontrivial p-
oloringof a knot K , and hen
e a nontrivial representation of the fundamental groupof K into the dihedral group Dp of order 2p, if and only if �K(�1) is divisibleby p. Thus the Alexander polynomial 
ontains information about hDp , thoughit may not determine hDp 
ompletely. Suppose that G is a �nite, non-abeliangroup, not isomorphi
 to Dp . Even if we 
annot approximate hG by �nite-type invariants, it would at least be interesting to know whether �nite-typeinvariants provide any information at all about hG .Geometry & Topology Monographs, Volume X (20XX)



32 Edited by T. OhtsukiRemark Let hX(K) denote the number of homomorphisms from the knot quan-dle of a knot K to a �nite quandle X . The number hG(K) 
an be presented bythe sum of hX(K) for subquandles X of the 
onjugation quandle of G. In thissense, it is a re�nement of Question 2.8 to approximate hX of �nite quandles Xby Vassiliev invariants. It is known [Ino01℄ that hX(K) for 
ertain Alexanderquandles X 
an be presented by the ith Alexander polynomial of K .Problem 2.9 (X.-S. Lin [Lin.www℄) Is the knot signature the limit of a se-quen
e of Vassiliev invariants?Remark It is known [Dea94℄ that the signature of knots is not a Vassilievinvariant.2.4 Vassiliev invariants and 
rossing numbersLet v2 and v3 be R-valued Vassiliev invariants of degree 2 and 3 respe
tivelynormalized by the 
onditions that v2(K) = v2(K) and v3(K) = �v3(K) forany knot K and its mirror image K and that v2(K31) = v3(K31) = 1 for theright trefoil knot K31 . They are primitive Vassiliev invariants, and the imageof v2 � v3 is equal to Z� Z� R � R.Problem 2.10 (N. Okuda [Oku02℄) Des
ribe the setn�v2(K)n2 ; v3(K)n3 � 2 R � R ��� K has a knot diagram with n 
rossingso: (9)Remark Willerton [Wil01℄ observed that the set of (v2(K); v3(K)) for knotsK with a (
ertain) �xed 
rossing number gives a �sh-like graph. This �sh-likegraph is dis
ussed in [DLL01℄ from the point of view of the Jones polynomial.Remark (N. Okuda) It is shown by Okuda [Oku02℄ (the right inequality of(10) is due to [PoVi01℄) that, if a knot K has a diagram with n 
rossings, then� jn216k � v2(K) � jn28 k; (10)jv3(K)j � jn(n� 1)(n� 2)15 k; (11)where bx
 denotes the greatest integer less than or equal to x. It follows thatthe set (9) is in
luded in the re
tangle [�1=16; 1=8℄ � [�1=15; 1=15℄. It is aproblem to des
ribe the smallest domain in
luding this set. The plottings inGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 33
� 116 18

124

� 124Figure 8: The plottings of the set (9) for some family of knots [Oku02℄Figure 8 numeri
ally des
ribe the set (9) for a large �nite subset of a 
ertainin�nite family of knots. Okuda [Oku02℄ identi�ed the boundary of the domainin
luding this set for this in�nite family of knots. This boundary is given by
urves parameterized by some polynomials of degree 2 (for the v2 -
oordinate)and of degree 3 (for the v3 -
oordinate). Further, the points (1=8;�1=24) arethe limits of the points given by the (2; n) torus knot and its mirror image.The point (�1=16; 0) is the limit of the points given by the knotsn=2 n=2for n divisible by 4, where ea
h twisting part has n=2 
rossings. These knotsgives the bounds of (10), while the inequality in (11) might not be best possible(see Conje
ture 2.11 below).Remark (O. Viro) The experimental data (in Figure 8) suggest that there mightexists an additional invariant(s) whi
h together with v2 , v3 , and n satisfy analgebrai
 equation(s) su
h that the set (9) is the proje
tion of the algebrai
 setde�ned by the equation(s).Geometry & Topology Monographs, Volume X (20XX)



34 Edited by T. OhtsukiConje
ture 2.11 (S. Willerton [Wil01℄) Let v3 be as above. If a knot Khas a diagram with n 
rossings, thenjv3(K)j � jn(n2 � 1)24 k:Remark It is shown in [Wil01℄ that the (2; n) torus knot gives the equality ofthis formula.2.5 Dimensions of spa
es of Vassiliev invariantsWe denote by A(S1;R)
onn the submodule of A(S1;R) spanned by Ja
obi dia-grams with 
onne
ted uni-trivalent graphs. As a graded ve
tor spa
e A(S1;Q)is isomorphi
 to the symmetri
 tensor algebra of A(S1;Q)
onn . A Vassiliev in-variant v is 
alled primitive if v(K1#K2) = v(K1) + v(K2) for any orientedknots K1 and K2 . The degree d subspa
e of A(S1;Q)
onn is dual to the dthgraded ve
tor spa
e for Q -valued primitive Vassiliev invariants.Problem 2.12 Determine the dimension of the spa
e of primitive Vassilievinvariants of ea
h degree d. Equivalently, determine the dimension of the spa
eA(S1;Q)(d)
onn for ea
h d.d 0 1 2 3 4 5 6 7 8 9 10dim A(S1)(d)
onn 0 1 1 1 2 3 5 8 12 18 27dim A(S1)(d) 1 1 2 3 6 10 19 33 60 104 184dim A(S1)(d)=FI 1 0 1 1 3 4 9 14 27 44 80d 11 12 13 14dim A(S1)(d)
onn 39 55 � 78 � 108dim A(S1)(d) 316 548 � 932 � 1591dim A(S1)(d)=FI 132 232 � 384 � 659Table 1: Some dimensions given in [Broa97, Kne97℄Remark The dimension of A(S1;Q)(d)
onn 
an partially be 
omputed as follows.Let B denote the ve
tor spa
e over Q spanned by vertex-oriented uni-trivalentgraphs subje
t to the AS and IHX relations, and let B(d)
onn denote the subspa
eof B spanned by 
onne
ted uni-trivalent graphs with 2d verti
es.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 35It is known that A(S1;Q)(d)
onn is isomorphi
 to B(d)
onn by (21). Let B(d;u)
onn bethe subspa
e of B(d)
onn spanned by uni-trivalent graphs with u univalent verti
es(hen
e, with 2d � u trivalent verti
es), and �d;u its dimension. Then, thedimension of A(S1;Q)(d)
onn is presented by Pu�2 �d;u .Bar-Natan [Bar96℄ gave a table of �d;u for d � 9 and for some other (d; u) by
omputer.The series of �k;k is given as follows. The dire
t sum �kB(k;k)
onn is isomorphi
 tothe polynomial ring Q[x2 ℄ as a graded ve
tor spa
e by (23); in other words, itis spanned by \wheels". Hen
e, the series of �k;k is presented by the followinggenerating fun
tion, Xk�0 �k;ktk = 11� t2 :That is, �k;k = 1 if k is even, and 0 otherwise.The series of �k+1;k is given as follows. The dire
t sum �kB(k+1;k)
onn is isomor-phi
 to Q[�2 ; �23 ℄ as a graded ve
tor spa
e by (25), where �i denotes the i-thelementary symmetri
 polynomial in some variables. Hen
e, the series of �k+1;kis presented by the following generating fun
tion,Xk�0 �k+1;ktk = 1(1� t2)(1� t6) :The series of �k+2;k is presented byXk�0 �k+2;ktk = 1(1� t2)(1� t4)(1 � t6) ;sin
e �kB(k+2;k)
onn is isomorphi
, as a graded ve
tor spa
e, to Q[�2 ; �23 ; �4℄ withelementary symmetri
 polynomials in some variables by (27).It is 
onje
tured [Das00℄ that the series of �k+3;k would be presented byXk�0 �k+3;ktk ?= 1 + t2 + t8 � t10(1� t2)(1 � t4)(1� t6)(1� t10) :It has been shown that �d;u = 0 for d � 9 and for d � u + 2. However, it is
onje
tured yet for other (d; u).A 
onje
ture of a two-variable generating fun
tion for the series of �d;u withtwo parameters d and u is given in [Broa97℄.Geometry & Topology Monographs, Volume X (20XX)



36 Edited by T. Ohtsuki�d;u u = 2 u = 4 u = 6 u = 8 u = 10 u = 12 u = 14 totald = 1 1 1d = 2 1 1d = 3 1 1d = 4 1 1 2d = 5 2 1 3d = 6 2 2 1 5d = 7 3 3 2 8d = 8 4 4 3 1 12d = 9 5 6 5 2 18d = 10 6 8 8 4 1 27d = 11 8 10 11 8 2 39d = 12 9 13 15 12 5 1 55d = 13 � 11 � 16 � 20 � 18 � 10 3 � 78d = 14 � 13 � 19 � 25 � 26 � 17 7 1 � 108Table 2: A table of �d;u [Broa97, Kne97℄Remark An asymptoti
 evaluation of a lower bound of dimA(S1)(d)
onn was givenin [ChDu99℄; dimA(S1)(d)
onn grows at least as dlog d when d!1. Further, it wasimproved in [Das00℄; dimA(S1)(d)
onn grows at least as e
pd for any 
 < �p2=3when d!1.Remark Upper bounds of dimA(S1)(d)
onn were given dimA(S1)(d)
onn � (d� 1)! in[ChDu94℄ and dimA(S1)(d)
onn � (d � 2)!=2 (for d > 5) in [NgSt99℄. Stoimenow[Sto98℄ introdu
ed the number �d of \regular linearized 
hord diagrams", andshowed that dimA(S1)(d)=FI � �d . Further, he showed that �d is asymptot-i
ally at most d!=1:1d , whi
h was improved by d!=(2 ln 2 + o(1)) in [BoRi00℄.Furthermore, Zagier [Zag01℄ showed that1Xn=0(1� q)(1� q2) � � � (1� qn) = 1Xd=0 �d(1� q)d 2 Z[[1� q℄℄; (12)and that �d � d!pd(�2=6)d �C0 + C1d + C2d2 + � � � �with C0 = 12p3��5=2e�2=12 � 2:704, C1 � �1:527, C2 � �0:269. It followsthat the asymptoti
 growth of dimA(S1)(d)=FI is at most O(d!pd(�2=6)�d).Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 37d 0 1 2 3 4 5 6 7 8 9 10dim A(S1)(d)=FI 1 0 1 1 3 4 9 14 27 44 80�d 1 1 2 5 15 53 217 1014 5335 31240 201608Table 3: Upper bounds �d of dimA(S1)(d)=FI (see [Sto98℄)2.6 Milnor invariants(T. Stanford) Fix k , and 
onsider k -strand string links. Let Vn be the sub-spa
e of rational-valued �nite-type invariants of order � n (of k -strand stringlinks). Let Mn � Vn be the subspa
e of Milnor invariants and produ
ts ofMilnor invariants. It is known that in general Mn is a proper subspa
e of Vn .Question 2.13 (T. Stanford) Does Mn have an interesting 
omplementaryspa
e in Vn? Consider, for example, the spa
e Nn � Vn of invariants v withthe property that v(L) = 0 for any string link L su
h that �1(B3 � L) is free.Is Nn nontrivial? Do Nn and Mn together span Vn?Here is some ba
kground and motivation.When 
onsidering �nite-type invariants of string links, the �rst ones that 
ometo mind are the Milnor invariants. These were de�ned by Milnor [Mil54℄ in 1954as numbers asso
iated to links. They are not quite invariants of links, in theusual sense, be
ause of some indetermina
y. They are, however, well-de�ned asinvariants of string links, and this point of view was taken by Habegger and Lin[HaLi90℄. After Vassiliev's work appeared, Bar-Natan [Bar95b℄ and Lin [Lin97℄showed (independently) that the Milnor invariants are �nite-type invariants.Habegger and Masbaum [HaMa00℄ showed that on the 
hord diagram level, theMilnor invariants (in
luding produ
ts of Milnor invariants) are exa
tly the onesthat vanish on Ja
obi diagrams that 
ontain internal loops, and also that theMilnor invariants are the only rational-valued �nite-type invariants of stringlinks whi
h are also 
on
ordan
e invariants.String links may have lo
al knots in the strands, and su
h knots are not dete
tedby Milnor invariants. If a string link L has lo
al knots, then �1(B3�L) is notfree. Hen
e the question as to whether �nite-type invariants 
an show that the
omplement of a string link is not free.(M. Polyak) Let us review the 
onstru
tions of Milnor �-invariant in [Co
90℄.For a n-
omponent link L = L1 [ � � � [Ln , regard the homotopy 
lass of Ln asGeometry & Topology Monographs, Volume X (20XX)



38 Edited by T. Ohtsukiin �1�S3� (L1[ � � � [Ln�1)�, and write it in terms of meridians m1; � � � ;mn�1of L1; � � � ; Ln�1 . Consider its Magnus expansion putting mi = 1+Xi for non-
ommutative variables Xi . Then, Milnor's �-invariant �i1���ik;n(L) is de�ned tobe the 
oeÆ
ient of Xi1 � � �Xik in the expansion, whi
h is an invariant underthe assumption that the lower �-invariants vanish. For example, �1;2 is equalto the linking number lk(L1; L2) of L1 and L2 . Further, if �i;j(L) = 0 forany i; j , then �12;3(L) = lk(L12; L3), where L12 denotes the link whi
h is theinterse
tion of Seifert surfa
es of L1 and L2 . In general, under the vanishingassumption of the lower �-invariants, �12���n�1;n(L) = lk(L12���n�1; Ln) whereL12���k (for k = 2; 3; � � � ; n � 1) denotes the link whi
h is the interse
tion ofSeifert surfa
es of L12���k�1 and Lk .Problem 2.14 (M. Polyak) Milnor's �-invariants of string links 
an be de-�ned similarly as above (see [Pol99℄). Find a topologi
al presentation of a �-invariant of string links (not assuming the vanishing of the lower �-invariants).(1) Show that lk(L12���n�1; Ln) is well-de�ned in an appropriate sense.(2) Identify it with �12���n�1;n(L).2.7 Finite type invariants of virtual knotsA virtual knot ([Kau99℄) is de�ned by a knot diagram with virtual 
rossingsmodulo Reidemeister moves. Finite type invariants of virtual knots were studiedin [GPV00℄, where their weight systems are de�ned on the spa
e �!A(X;R)=�!FIof arrow diagrams. Here an arrow diagram ([Pol00℄) is a 
hord diagram withoriented 
hords, and �!A(X;R) denotes the module over a 
ommutative ring Rspanned by arrow diagrams on X subje
t to the 6T relation, and �!FI denotesthe oriented FI relation (see Figure 9 for these relations). It is known [Pol00℄that �!A(X;R) is isomorphi
 to the module spanned by a
y
li
 oriented Ja
obidiagrams on X subje
t to the relations= 0 =and the �!AS, ��!IHX, and ��!STU relations (see Figure 9).Problem 2.15 Let I denote an oriented interval.(1) Determine the dimensions of �!A(S1;Q)(d) and �!A(I;Q)(d) for ea
h d.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 39
The 6T relation : + += + +The �!FI relation : = 0 =The weak �!FI relation : = ;=The �!AS relation : = �The ��!IHX relation : = �The ��!STU relation : = �Figure 9: The 6T and the oriented FI, AS, IHX, and STU relations. Here, a thi
kdashed line implies the sum of the two orientations, and 
orresponding thin dashedlines of pi
tures in the same formula have the same (arbitrarily given) orientation.
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40 Edited by T. Ohtsuki(2) Determine the dimensions of �!A(S1;Q)(d)=�!FI and �!A(I;Q)(d)=�!FI for ea
hd.(3) Determine the dimensions of �!A(S1;Q)(d)=(weak �!FI) and�!A(I;Q)(d)=(weak �!FI) for ea
h d.Remark It is shown by elementary 
omputation that �!A(S1;Q)(2)=FI = 0 andthat �!A(I;Q)(2)=FI is a 2-dimensional ve
tor spa
e spanned by; :Note that the dimensions of �!A(S1;Q)(d) and �!A(I;Q)(d) di�er unlike the un-oriented 
ase.Remark Constru
tive weight systems on �!A(X;R) 
an be de�ned by usingLie bialgebras (see, e.g., [Dri87, EiKa96℄, for Lie bialgebras), where the weightsystems of the following diagramsgx??g
 g g
 gx??gare de�ned to be the bra
ket and the 
o-bra
ket of a Lie bialgebra g. Su
hweight systems are helpful when we estimate lower bounds of the dimensionsof the spa
es A(X;R).Conje
ture 2.16 (M. Polyak) The following two maps are inje
tive,A(I)(d) �! �!A(I)(d)A(I)(d)=FI �! �!A(I)(d)=�!FI;where they are de�ned by 7�! + :Remark If these maps are inje
tive, then weight systems on A(I)(d) and A(I)(d)=FIwould be dete
ted by weight systems on �!A(I)(d) and �!A(I)(d)=�!FI ; in otherGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 41words, the upper rightward map in the following diagram would be surje
tive.� degree d weight systemsfor long virtual knots � ����! � degree d weight systemsfor 
lassi
al knots �x?? x??� degree d �nite type invariantsfor long virtual knots � ����! � degree d Vassiliev invariantsfor 
lassi
al knots �Hen
e, this 
onje
ture follows from Conje
ture 2.17 below, whi
h implies thatthe lower rightward map in the above diagram is surje
tive.Conje
ture 2.17 ([GPV00℄) Every Vassiliev invariant of 
lassi
al knots 
anbe extended to a �nite type invariant of long virtual knots. (See also Problem3.9.)2.8 Finite type invariants derived from lo
al movesOne aspe
t of the study of knot invariants is the study of the set of knots. Alo
al move and �nite type invariants derived from it might give an approa
h ofthis study.A lo
al move is a move between two knots, whi
h are identi
al ex
ept for a ball,where they di�er as shown in both sides of a move in Figure 10. Let R be a
ommutative ring with 1, and K the set of isotopy 
lasses of oriented knots,as before. For a lo
al move m, we de�ne Fd(RK ;m) as follows. Let K be anoriented knot with d disjoint balls B1; B2; � � � ; Bd su
h that K is as shown inone side of m in ea
h Bi . For any subset S � f1; 2; � � � ; dg, we denote by KSthe knot obtained from K by applying m in ea
h Bi for i 2 S . We de�neFd(RK ;m) to be the submodule of RK spanned byXS (�1)#SKS (13)for any K with d balls, where #S denotes the number of elements of S , andthe sum runs over all subsets S of f1; 2; � � � ; dg. Then, we have a des
endingseries of submodules,RK = F0(RK ;m) � F1(RK ;m) � F2(RK ;m) � � � � :Note that Fd(RK ) = Fd(RK ;�) for a 
rossing 
hange \�". An R-homomorphismv : RK ! R is 
alled a �nite type invariant of m-degree d, or an m �nite typeinvariant of degree d, if vjFd+1(RK;m) = 0.Geometry & Topology Monographs, Volume X (20XX)



42 Edited by T. Ohtsuki
A 
rossing 
hange \�" :  !A double 
rossing 
hange \��" :  !A # move :  !A pass move :  !A � move :  !A doubled delta move �� :  !An n-gon move :  !Figure 10: Some lo
al moves among oriented knots. The strands of both sides of a �move and an n-gon move have any orientations su
h that 
orresponding strands fromopposite sides of the moves are oriented in the same way. Ea
h side of an n-gon movehas n strands.
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Problems on Invariants of Knots and 3-Manifolds 43It is a fundamental problem of �nite type invariants to 
al
ulate the 
orrespond-ing graded spa
es, whi
h would enable us to identify �nite type invariants insome sense.Problem 2.18 Cal
ulate Fd(ZK;m)=Fd+1(ZK;m), letting m be a lo
al movesu
h as(1) a # move,(2) a pass move,(3) a � move,(4) an n-gon move.Remark It is known that 
rossing 
hange, double 
rossing 
hange, # move (see[Mur85℄), � move (see [MuNa89℄), n-gon move (see [Aid92℄) are unknottingoperations, i.e., any oriented knot 
an be related to the trivial knot by a se-quen
e of isotopies and ea
h of these moves. Hen
e, F0(ZK;m)=F1 (ZK;m) �= Zfor these moves m.It is known [Kau83℄ that Arf invariant gives the bije
tionfknotsg=(pass move) �! Z=2Z:Hen
e, F0(ZK;pass move)=F1(ZK;pass move) �= Z� Z.Remark � �nite type invariants were introdu
ed in [Mel20℄; see also [Sta00℄.Remark (K. Habiro) The following relations hold,F2d(ZK;�) � Fd(ZK;�) � F3d(ZK;�);Fd(ZK;�) � Fd(ZK;#) � Fd(ZK;�):These relations imply that m �nite type invariants are Vassiliev invariants, andVassiliev invariants are m �nite type invariants, for m = #;�. Further, therank of Fd(ZK;m)=Fd+1 (ZK;m) is �nite for these m.Remark For the Kontsevi
h invariant Z (introdu
ed in Chapter 3), we havethatZ� ��Z� � = +� terms ofhigher degrees � ;Geometry & Topology Monographs, Volume X (20XX)



44 Edited by T. Ohtsukiwhere two tangles in the left hand side are related by a � move. Hen
e, theimage ofFd(QK ;�) �! F2d(QK ) �! F2d(QK )=F2d+1 (QK ) �= A(S1;Q)(2d)is equal to the subspa
e of A(S1;Q)(2d) spanned by Ja
obi diagrams on S1whose uni-trivalent graphs are disjoint unions of d dashed Y graphs.Remark Finite type invariants derived from a double 
rossing 
hange wereintrodu
ed in [App02℄, to study �nite type invariants of links with a �xed linkingmatrix. For knots, they are equal to Vassiliev invariants, that is, Fd(ZK;��) =Fd(ZK;�).
The surgery on is de�ned to be the surgery along :
Figure 11: De�nition of the surgery on a Y graph. Dotted lines imply strands possiblyknotting and linking. Three 
ir
les (partially dotted) in the left pi
ture are 
alledleaves.(Y. Ohyama) In the 
ase all ar
s in a � move are 
ontained in the same
omponent, it is 
alled a self � move. If two links 
an be transformed intoea
h other by a �nite sequen
e of self � moves, they are said to be � linkhomotopi
.Problem 2.19 (Y. Ohyama) Find ne
essary and suÆ
ient 
onditions for two�-
omponent links (� > 2) to be � link homotopi
.Remark (Y. Ohyama) For a �-
omponent link K = K1 [K2 [ : : : [K� , letÆ1 = a��1(K) and Æ2 = a�+1(K)� a��1(K)� (P�i=1 a2(Ki) for the 
oeÆ
ientai(K) of the term zi in the Conway polynomial of K .It is known [Mat87, MuNa89℄ that two knots (or links) 
an be transformedinto ea
h other by a �nite sequen
e of � moves if and only if they have thesame number of 
omponents, and, for properly 
hosen orders and orientations,Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 45they have the same linking numbers between the 
orresponding 
omponents. Inparti
ular, if two links are � link homotopi
, then their Æ1 
oin
ide. Further,it is known [Nak99℄ that if two � 
omponent links are � link homotopi
, thentheir Æ2 
oin
ide. These are ne
essary 
onditions of this problem.Moreover, for 2-
omponent links, a pair of Æ1 and Æ2 is a faithful invariantof � link homotopy. Namely, for two 2-
omponent links, they are � linkhomotopi
 if and only if their Æ1 and Æ2 
oin
ide ([NaOh01℄). This gives arequired 
ondition of this problem for 2-
omponents links.2.9 Loop �nite type invariantsThe loop-degree of a Ja
obi diagram on S1 is de�ned to be half of the numbergiven by the number of trivalent verti
es minus the number of univalent verti
esof the uni-trivalent graph of the Ja
obi diagram. The �ltration of A(S1) givenby loop-degrees is related to a �ltration of QK through the Kontsevi
h invariant.The theory of the 
orresponding �ltration in Z(MK ) (given below) is developedin [GaRo00℄ (noting that this de�nition also appears in the September 1999version of [Kri00a℄).We denote by MK the set of pairs (M;K) su
h that M is an integral homology3-sphere and K is an oriented knot in M . Consider a move between two pairs(M;K) and (M 0;K 0) in MK su
h that (M 0;K 0) is obtained from (M;K) bysurgery on a Y graph (see Figure 11) embedded in M �K whose leaves havelinking number zero with K . We 
all this move a loop move. Finite typeinvariants of degree d derived from a loop move by (13) are 
alled loop �nitetype invariants of degree d, or �nite type invariants of loop-degree d. We denotethe 
orresponding submodule of R(MK ) by Fl(Z(MK ); loop).A doubled delta move �� (see Figure 10) was introdu
ed by Naik-Stanford[NaSt99℄ as a move 
hara
terizing S-equivalen
e 
lasses; two knots are S-equivalentif they are indistinguishable by Seifert matri
es. A doubled delta move �� 
anbe presented by a surgery on su
h a Y graph as above. Thus, we have the mapFl(RK ;��) ! Fl(R(MK ); loop), taking a knot K to (S3;K) 2 MK . Hen
e, aloop �nite type invariant gives a �� �nite type invariant.Problem 2.20 Let R be a 
ommutative ring with 1, say, Z or Q .(1) Des
ribe the spa
es Fl(R(MK ); loop)=Fl+1(R(MK ); loop).(2) Des
ribe the spa
es Fl(RK ; ��)=Fl+1(RK ;��).(3) Des
ribe the image of the above map Fl(RK ;��)! Fl(R(MK ); loop).Geometry & Topology Monographs, Volume X (20XX)



46 Edited by T. OhtsukiRemark (A. Kri
ker) It follows by a short argument from [NaSt99℄ and [Mat87℄that the following map taking a pair (M;K) to a Seifert matrix of K in M isbije
tive,MK =(loop move) =�! fS-equivalen
e 
lasses of Seifert matri
esg: (14)(This implies that K and K 0 are related by a sequen
e of doubled deltamoves if and only if (S3;K) and (S3;K 0) are related by a sequen
e of loopmoves.) Hen
e, F0(Z(MK ); loop)=F1(Z(MK ); loop) is isomorphi
 to the moduleover Z freely spanned by S-equivalen
e 
lasses. Moreover, by (14), we havethat Z(MK ) = �sZ(MK s), where the sum runs over all S-equivalen
e 
lasses s.Further,Fl(Z(MK ); loop)=Fl+1(Z(MK ); loop) =Ms Fl(Z(MK s); loop)=Fl+1(Z(MK s); loop):Hen
e, the problem (1) splits into problems of des
ribing the dire
t summandson the right hand sides: des
ribe the spa
es Fl(Z(MK s); loop)=Fl+1(Z(MK s); loop)for ea
h S-equivalen
e 
lass s. For the S-equivalen
e 
lass u in
luding the un-knot, Fl(Q(MK u); loop)=Fl+1(Q(M K u); loop) is isomorphi
 to AZ[t�1℄(;;Q)(loop l)by the map (30) of the loop expansion of the Kontsevi
h invariant (see also[GaRo00℄); for the de�nition of the spa
e AZ[t�1℄(;;Q)(loop l) see Se
tion 3.9.Remark A surgery on a Y graph in the de�nition of loop �nite type invariantslifts to a surgery of the in�nite 
y
li
 
over of the knot 
omplement, whi
h doesnot 
hange its homology. Hen
e, it is shown, topologi
ally, that all 
oeÆ
ientsof the Alexander polynomial are �nite type invariants of loop-degree 0.It follows that all 
oeÆ
ients of the Alexander polynomial are �nite type invari-ants of ��-degree 0. It 
an also be shown from the fa
t that the Alexanderpolynomial 
an be de�ned by the Seifert matrix of a knot, whi
h is un
hangedby �nite type invariants of ��-degree 0 as shown in [NaSt99℄.The Alexander polynomial is universal among Vassiliev invariants whi
h are of�nite type of ��-degree 0; more pre
isely, log�K(e~) as a power series of ~is universal among Q -valued primitive Vassiliev invariants whi
h are of �nitetype of ��-degree 0. An equivalent statement has been shown in [MuOh01℄,using Vassiliev invariants of S-equivalen
e 
lasses of Seifert matri
es.Remark As shown in [NaSt99℄ we have a bije
tion,fknotsg=�� =�! fS-equivalen
e 
lassesg;by taking a knot to its S-equivalen
e 
lass. Hen
e, F0(ZK;��)=F1(ZK;��) isisomorphi
 to the module over Z freely spanned by S-equivalen
e 
lasses.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 47Remark (A. Kri
ker) The dual spa
e ofFl(K 
 Q;��) \ Fd(K 
 Q;�)�(Fl+1(K 
 Q; ��) \ Fd(K 
 Q;�)� + �Fl(K 
 Q;��) \ Fd+1(K 
 Q;�)�is isomorphi
 to the subspa
e of B spanned by 
onne
ted uni-trivalent graphsof degree d and of loop-degree l , i.e., the spa
e B(d;d�l)
onn in the notation givenin a remark in Problem 2.12.(A. Kri
ker)Let MK denote the set of pairs (M;K) su
h that M is an integral homology3-sphere and K is an oriented knot in M , as before. A mod p loop move inMK is de�ned to be a surgery on a Y graph (see Figure 11) su
h that ea
h leafhas linking number 0 modulo p with the knot. We 
onsider the question: whatare the mod p loop move equivalen
e 
lasses of knots?To state the 
onje
ture below, we give some notation. Consider a pair (M;K) ofan integral homology 3-sphere M and a knot K in M . Let �p(M;K) be the p-foldbran
hed 
y
li
 
over of (M;K), and assume that �p(M;K) is a rational homology3-sphere. Observe that there is an a
tion of Z=pZ on the homology groupH1(�p(M;K);Z) (indu
ed from the 
overing transformations). Observe also thatthe linking pairing on the torsion of H1(�p(M;K);Z) (whi
h is the whole group)is invariant under the a
tion of Z=pZ. Here, the linking pairing on the torsion ofH1(N ;Z) of a 3-manifold N is the map Tor�H1(N ;Z)�
Tor�H1(N ;Z)�! Q=Ztaking � 
 � to 1=n times the algebrai
 interse
tion of F and � , where F isa 
ompa
t surfa
e bounding n� for some non-zero integer n.Conje
ture 2.21 (A. Kri
ker) Take (M1;K1) and (M2;K2) of the abovesort. Then, there exists a (Z=pZ)-equivariant isomorphism � : H1(�p(M1;K1);Z)!H1(�p(M2;K2);Z) preserving the linking pairing if and only if (M1;K1) is equiv-alent to (M2;K2) by a �nite sequen
e of mod p loop moves.Remark (A. Kri
ker) The 
ase of p = 1 would re
over Matveev's theorem[Mat87℄: two 
losed 3-manifolds M and N are equivalent by a �nite sequen
eof surgeries on Y graphs if and only if there is an isomorphism H1(M ;Z) !H1(N ;Z) preserving the linking pairing on the torsion.Also, the limit as p ! 1 should re
over a theorem due to Naik-Stanford[NaSt99℄: two knots are equivalent by a �nite sequen
e of loop moves if andonly if they have isometri
 Blan
h�eld pairings. (Re
all that the Blan
h�eldpairing is the equivariant linking pairing on the universal 
y
li
 
over.)Geometry & Topology Monographs, Volume X (20XX)



48 Edited by T. Ohtsuki2.10 Goussarov-Habiro theory for knotsRelated to Vassiliev invariants of knots, equivalen
e relations among knots havebeen studied by Goussarov [Gou95, Gou99℄ and Habiro [Hab00℄, whi
h is 
alledthe Goussarov-Habiro theory for knots. These equivalen
e relations are helpfulfor us to study stru
tures of the set of knots.The Cd -equivalen
e10 (d = 1; 2; 3; � � � ) among oriented knots is the equivalen
erelation generated by either of the following relations,(1) Cd -move, i.e., surgery along a tree 
lasper with d trivalent verti
es whoseleaves are dis
-leaves [Hab00℄,(2) relation on a 
ertain 
olle
tion of d 
rossing 
hanges (Goussarov's (d�1)-equivalen
e) [Gou94a, Gou94b, Gou99℄,(3) surgery by an element in the dth group in the lower 
entral series of purebraid group [Sta98℄,(4) 
apped grope 
obordism of 
lass d [CoTe00℄.It is known that these relations generate the same equivalen
e relation amongknots. The Cd -equivalen
e is de�ned among links, string links, � � � , in the sameway.It is known [Hab00℄ that there exists a natural surje
tive homomorphismA(S1;Z)(d)
onn �! fK �Cd Og= �Cd+1 (15)su
h that the tensor produ
t of this map and Q is an isomorphism, where Odenotes the trivial knot. In parti
ular, fK �Cd Og= �Cd+1 forms an abelian groupwith respe
t to the 
onne
ted sum of knots, and hen
e, so does fknotsg= �Cd+1 .Conje
ture 2.22 The map (15) is an isomorphism.This 
onje
ture might be redu
ed to Conje
ture 2.2 and the following 
onje
-ture.Conje
ture 2.23 fK �Cd Og= �Cd+1 is torsion free for ea
h d.Remark Conje
ture 2.2 implies this 
onje
ture, sin
e the surje
tive homomor-phism (15) gives a Q -isomorphism.10The Cd -equivalen
e is also 
alled the (d � 1)-equivalen
e (due to Goussarov) in someliteratures.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 49It is known [Gou95, Sta98, Hab00℄ that two knots K and K 0 are Cd -equivalentif and only if v(K) = v(K 0) for any A-valued Vassiliev invariant v of degree < dfor any abelian group A. In fa
t, a natural quotient map fknotsg ! fknotsg=�Cdis a Vassiliev invariant of degree < d, whi
h 
lassi�es Cd -equivalen
e 
lasses ofknots.Conje
ture 2.24 (K. Habiro [Hab00℄, see also [Gou99, \Theorem 5"℄) Twom-strand string links L and L0 are Cd -equivalent if and only if v(L) = v(L0)for any A-valued �nite type invariant v of degree < d for any abelian groupA.Remark (M. Polyak) The 
orresponding assertion for links does not hold; notethat flinksg=�Cd does not (naturally) form a group. Re
all that fknotsg=�Cdforms an abelian group, whi
h guarantees the 
orresponding assertion for knots,as mentioned above. The set fm-strand string linksg=�Cd forms a group withrespe
t to the 
omposition of string links, though it is not abelian.Problem 2.25 (M. Polyak) Establish the Goussarov-Habiro theory for vir-tual knots.Remark Polyak suggested that the following moves, !  ! ;(whi
h appear in [GPV00℄) might play a similar role as the C2 -move playsamong knots. They are related to the following diagrams respe
tively,; :Further, Habiro suggested that the move, ! ;should be added to the above moves. It is a problem to de�ne a sequen
e ofequivalen
e relations among virtual knots (an extension of the Cd -move) whi
hGeometry & Topology Monographs, Volume X (20XX)



50 Edited by T. Ohtsukiindu
es �nite type invariants of virtual knots. Are there surje
tive homomor-phisms from 
ertain modules of arrow graphs (oriented Ja
obi diagrams) to thegraded sets derived from su
h equivalen
e relations?(K. Habiro) We denote by MK the set of pairs (M;K) su
h that M is an inte-gral homology 3-sphere and K is an oriented knot in M . The HLd -equivalen
e(homology d-loop equivalen
e) in MK is the equivalen
e relation generated byeither of the following relations,(1) surgery on a tree 
lasper with d trivalent verti
es with null-homologousleaves,(2) surgery on a graph 
lasper with d trivalent verti
es with null-homologousleaves,(3) surgery by an element of the dth lower 
entral series subgroup of theTorelli group of 
ompa
t 
onne
ted surfa
es embedded in a null-homologousway.Here, \null-homologous" means null-homologous in knots 
omplements. Theserelations generate the same equivalen
e relation in MK .Problem 2.26 (K. Habiro) Des
ribe the abelian groupf(M;K) �HLd (S3;unknot)g= �HLd+1 for ea
h d.Remark (K. Habiro) Two pairs (M;K) and (M 0;K 0) in MK are HLd -equivalentif and only if v(M;K) = v(M 0;K 0) for any A-valued loop �nite type invariantv of loop degree < d for any abelian group A. Thus, the HL-equivalen
e givesthe Goussarov-Habiro theory for loop �nite type invariants.The homotopy d-loop equivalen
e is de�ned by using \null-homotopi
 leaves"instead of \null-homologous leaves" in the de�nition of the HLd -equivalen
e.These equivalen
es might be related to the rational Z invariant Zrat . Thehomotopy loop equivalen
e relates (ZHS, boundary link) to (ZHS, boundarylink). A high loop-degree part of Zrat might be invariant under the homotopyloop equivalen
e.The quotient set MK = �HL1 
an be identi�ed with the 
ommutative monoid ofS-equivalen
e 
lasses of Seifert matri
es. (See a remark of Problem 2.20.)De�ne the equivalen
e relation HL0d among knots in S3 to be the equivalen
erelation generated by surgery on a tree 
lasper with d trivalent verti
es withGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 51null-homologous leaves in the 
omplement of a knot su
h that at least one leafbounds a dis
 with zero interse
tion number with the knot. Then, there existsa split exa
t sequen
e,fknots in S3g= �HL0d�! MK = �HLd�! fZHS 'sg=�Yd ;where the �rst map takes a knot K to (S3;K) and the se
ond map is the mapforgetting knots.A re�nement of Problem 2.26 is to 
onsider the graded sets of the double se-quen
e given by the Cd -equivalen
e and the HLn -equivalen
e.2.11 Other problems(D. Bar-Natan)11Is there a Hilbert's Nullstellensatz for �nite type invariants of links?Let k be an algebrai
ally 
losed �eld and let I be an ideal in the polynomialring k[x1; � � � ; xn℄. The Hilbert Nullstellensatz (see e.g. [Eisen94℄) says thatthe ideal of polynomials in k[x1; � � � ; xn℄ that vanish on the variety de�ned bythe 
ommon zeros of all polynomials in I is the radi
al of I .Problem 2.27 (D. Bar-Natan) Is there a similar statement for �nite typeinvariants of links? Let I be an ideal in the algebra V of �nite type invariantsof links. Let Z be the set of links that are annihilated by all members of I , andlet J be the ideal in V of all invariants that vanish on Z . Clearly, J always
ontains the radi
al of I . Are they always equal?Example (D. Bar-Natan) Let I be the ideal generated by linking numbers. Inthis 
ase, Z is the set of algebrai
ally split links. Is it true that every �nitetype invariant that vanishes on algebrai
ally split links is a sum of multiples oflinking numbers? I believe it is true, and I believe it follows from the results ofAppleboim [App02℄, but I'm afraid Appleboim's paper is in
omplete and whileI believe it I 
annot vou
h for its validity.Remark (D. Bar-Natan) One may also ask, \what is the Zariski 
losure ofa given set of links?". I believe that in the light of the paragraphs above themeaning of this question should be 
lear. I know of at least one interestingexample: In [Ng98℄ Ng shows that the Zariski 
losure of the set of ribbon knotsis the set of knots whose Arf invariant vanishes.11This part is a quotation from http://www.ma.huji.a
.il/~drorbn/Mis
/Nullstellensatz/Geometry & Topology Monographs, Volume X (20XX)



52 Edited by T. OhtsukiIs the similarity index of two di�erent knots �nite?(M.-J. Jeong, C.-Y. Park)K. Habiro and T. Stanford independently showed that for ea
h positive integern, two knots K and L have the same values for any Vassiliev invariants of type< n if and only if they are LCSn-equivalent. Y. Ohyama introdu
ed trivialityindex of knots and K. Taniyama extended this to the similarity index of links;see [Ohy95℄. Ohyama showed that if two knots are n-similar then they havethe same value for any Vassiliev invariants of type < n. It is not diÆ
ult tosee that two knots are n-similar if they are LCSn -equivalent. D. Bar-Natangave a problem whether Vassiliev invariants 
an distinguish all of knots or not.This problem is equivalent to the problem, whether the similarity index of anytwo di�erent knots have �nite similarity index. We will give a new 
riterionto 
al
ulate the similarity index of knots and, based on this, raise problemsto 
al
ulate similarity index. For example, for two given knots, whi
h knotinvariants will give the best upper bound to 
al
ulate the similarity index ofknots, along our above new result? As a partial problem, 
an we show that thetriviality index of a non-trivial knot is �nite by using our results?Polynomial invariants and Vassiliev invariants(M.-J. Jeong, C.-Y. Park)In 1993, J. S. Birman and X.-S. Lin ([BiLi93℄) showed that, after a suitable
hange of variables, ea
h 
oeÆ
ient of the Jones, HOMFLY and Kau�manpolynomial is a Vassiliev invariant. So we 
an obtain various Vassiliev invariantsfrom the derivatives of knot polynomials.In 2001, by using some spe
i�
 kinds of tangles, we gave two operations � and� operations to get new polynomial invariants from a given Vassiliev invariant.These new polynomial invariants are also Vassiliev invariants. So we 
an obtainvarious Vassiliev invariants from the 
oeÆ
ients of these polynomial invariants.Let Vn be the spa
e of Vassiliev invariants of degrees � n. For An � Vn , let(An) be the set of Vassiliev invariants obtained from An by using �nite numbersof � and � operations repeatedly.Question 2.28 (M.-J. Jeong, C.-Y. Park) Find a minimal �nite subset Anof Vn su
h that span(An) = Vn .
Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 533 The Kontsevi
h invariantThe framed Kontsevi
h invariant Z(L) 2 A(tlS1;Q) of an oriented framedlink L with l 
omponents is de�ned by using monodromy along solutions ofthe formal version of the KZ equation. Forgetting its framing, the Kontsevi
hinvariant Z(L) of an oriented link L is de�ned in A(tlS1;Q)=FI . The Kont-sevi
h invariant is universal among quantum invariants in the sense that thequantum (g; R) invariant re
overs from the Kontsevi
h invariant through theweight system substituting a Lie algebra g and its representation R into Ja-
obi diagrams. Moreover, the Kontsevi
h invariant is universal among Vassilievinvariants in the sense that ea
h 
oeÆ
ient of the Kontsevi
h invariant is aVassiliev invariant and any Vassiliev invariant 
an be presented by a linear sumof 
oeÆ
ients of the Kontsevi
h invariant.3.1 Cal
ulation of the Kontsevi
h invariantProblem 3.1 For ea
h oriented knot K , 
al
ulate the Kontsevi
h invariantZ(K) for all degrees.Remark For ea
h d the degree d part of Z(K) is a Vassiliev invariant. Hen
e,it is algorithmi
ally possible to 
al
ulate it in a �nite pro
edure. It is a problemto 
al
ulate Z(K) for all degrees.Remark D. Bar-Natan, T. Le, and D. Thurston [BLT03℄ gave the followingpresentation of the Kontsevi
h invariant of the trivial knot O ,logt Z(O) = 12 log sinh(x=2)x=2 ; (16)where x is an element in B (see (22)), and B is a spa
e isomorphi
 to A(S1)(see (21)). The Kontsevi
h invariant of a 
able knot of a knot K 
an be
al
ulated by applying a 
abling formula [BLT03℄ to the Kontsevi
h invariantof K . The Kontsevi
h invariant of the 
onne
ted sum of knots is given bythe 
onne
ted sum of the Kontsevi
h invariant of the knots. Hen
e, we 
an
al
ulate the Kontsevi
h invariant of knots obtained from the trivial knot by�nite sequen
es of 
abling and 
onne
ted sum. To 
al
ulate the Kontsevi
hinvariant of other knots in a 
ombinatorial way, we probably need an asso
iator,whose 
ombinatorial dire
t presentation for all degrees is not known yet (seeProblem 3.13).Geometry & Topology Monographs, Volume X (20XX)



54 Edited by T. Ohtsuki3.2 Does the Kontsevi
h invariant distinguish knots?Conje
ture 3.2 The Kontsevi
h invariant distinguishes oriented knots. (SeeConje
ture 2.5 for an equivalent statement of this 
onje
ture.)Remark Kuperberg [Kup96b℄ showed that all �nite type invariants either dis-tinguish all oriented knots, or there exist prime, unoriented knots whi
h theydo not distinguish.Problem 3.3 Does there exists a non-trivial oriented knot K su
h that Z(K) =Z(O) for the trivial knot O? (See Problem 2.6 for an equivalent problem.)Conje
ture 3.4 Z(K) = Z(�K) for any oriented knot K , where �K de-notes K with the opposite orientation. (See Conje
ture 2.7 for an equivalentstatement of this 
onje
ture.)3.3 Chara
terization and interpretation of the Kontsevi
h in-variantThe spa
e A(S1) is an algebra with the produ
t given by 
onne
ted sum ofJa
obi diagrams on S1 . Sin
e the Kontsevi
h invariant Z(K) of a knot Kis group-like in A(S1), its logarithm logZ(K) belongs to A(S1)
onn , whereA(S1)
onn denotes the ve
tor subspa
e of A(S1) spanned by Ja
obi diagramson S1 with 
onne
ted uni-trivalent graphs.Problem 3.5 Chara
terize those elements of Â(S1)
onn of the form logZ(K),or those elements of B
onn of the form logt Z(K).Remark If the Kontsevi
h invariant was inje
tive, this problem would be a stepof the 
lassi�
ation problem of knots. It is known (see, for example, [Oht02℄)that those elements of A(S1)(�d)
onn of the form of the degree � d part of logZ(K)forms a latti
e, whi
h is isomorphi
 to the latti
e in A(S1)
onn spanned by Ja
obidiagrams over Z, and that the 
oeÆ
ients of logZ(K) are invariants whi
h areindependent to ea
h other. Hen
e, it would be meaningful to 
hara
terize theform of in�nite sums of 
oeÆ
ients of logZ(K), resp. logt Z(K).Wg;R�Z(K)� is a polynomial in q�1=2N for any simple Lie algebra g and itsrepresentation R, where N is the determinant of the Cartan matrix of g (see[Le00b℄), sin
e it is equal to the quantum (g; R) invariant of K . This somehow
hara
terizes the form of Z(K).Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 55The loop expansion 
hara
terizes the in�nite sum of subsequen
es of logt Z(K)in ea
h loop-degrees; see (24), (26), and (28) in the 
ases of low loop-degrees.Sin
e the image of the Kontsevi
h invariant is a 
ountable set, there should bemore restri
tive properties.Problem 3.6 (J. Roberts) Give a good topologi
al 
onstru
tion of the Kont-sevi
h integral.Remark (J. Roberts) The Kontsevi
h integral is, in my opinion, the deepestpart of the existing theory of quantum invariants, and it has two (
onje
turally)equivalent formulations, ea
h with its mysteries.(a). In Kontsevi
h's original formulation of his integral, the part relating tobraids is reasonably well-understood: it 
an be des
ribed using 
on�gurationspa
es of points in the plane, the Knizhnik-Zamolod
hikov equation, 1-minimalmodels in rational homotopy theory, Chen's iterated integrals and Magnus ex-pansions. The fa
t that this a
tually extends to a knot invariant does not seemto appear naturally in these pi
tures, however. Passing from braids to (Mor-si�ed) knots suggests thinking about 
on�guration spa
es of varying numbersof points in the plane, and allowing some kind of annihilation and 
reation ofpairs. Is there some way to utilise su
h spa
es? (A related question is Problem3.14.)(b). In the perturbative integral formulation, the diagrammati
 power series isintrodu
ed as a formal devi
e for keeping tra
k of whi
h linear 
ombinations ofthe individual (non-invariant) 
oeÆ
ient integrals give give knot invariants. Itisn't really 
lear from this point of view why this series should turn out to havegood properties su
h as multipli
ativity, Kri
ker/Rozansky rationality, et
. Isthere an \all-in-one" de�nition?3.4 The Kontsevi
h invariant in a �nite �eldProblem 3.7 Constru
t the Kontsevi
h invariant (i.e., a universal Vassilievinvariant) with 
oeÆ
ients in a �nite �eld.Remark If we 
ould �nd a solution (R;�) of the pentagon and hexagon relationswith 
oeÆ
ients in a �nite �eld, su
h a solution would give a 
ombinatorial
onstru
tion of the Kontsevi
h invariant with 
oeÆ
ients in that �eld. In this
ase we 
an not put R = exp� =2� unlike the 
ase of Q 
oeÆ
ients, be
ausep�1 of the order p of the �eld appears in the expansion of the exponential.Geometry & Topology Monographs, Volume X (20XX)



56 Edited by T. Ohtsuki3.5 The Kontsevi
h invariant in arrow diagramsConje
ture 3.8 (D. Bar-Natan, A. Haviv)��Z(O)� = 
losure exp�12� � ��! ;where Z(O) denotes the Kontsevi
h invariant of the trivial knot (see [BGRT00℄)and � is the map of Conje
ture 2.16.Remark (D. Bar-Natan, A. Haviv) This 
onje
ture is true in any semi-simpleLie algebra.Problem 3.9 (M. Polyak) Constru
t the \Kontsevi
h invariant" (i.e., a uni-versal �nite type invariant) of virtual knots in �!A(I). (See also Conje
ture2.17.)Remark (M. Polyak) It is shown by Goussarov (see [GPV00℄) that there existsa Gauss diagram formula for any Vassiliev invariant of 
lassi
al knots. His proofis an algorithmi
al proof, assuming the existen
e of su
h a Vassiliev invariant,and does not give a new proof of Kontsevi
h theorem \any weight system 
anbe integrated to an invariant of knots". It would be ni
e to have a new dire
t
ombinatorial proof, whi
h would imply Kontsevi
h theorem. Then, it wouldwork for virtual knots.Remark (M. Polyak) It is known (see, for example, [Oht02℄) that quantuminvariants of knots 
an be de�ned by using quasi-triangular quasi-Hopf algebraswith asso
iators �. When � = 1, su
h de�nition 
an naturally extend forvirtual knots. However, when � 6= 1 (as in the 
ombinatorial de�nition of theKontsevi
h invariant of 
lassi
al knots), this extension does not work.Problem 3.10 (D. Thurston) Constru
t a series of 
on�guration spa
e inte-grals whose value is in �!A(I) so that it gives all �nite type invariants of virtualknots.Remark (D. Thurston) A te
hni
al diÆ
ulty is to kill the hidden strata of the
on�guration spa
es (see also Problem 3.11). A way to kill a hidden strata isGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 57to use an involution on the strata, but, in this 
ase, su
h an involution takesthe following left diagram to the right diagram,; ;where the right diagram is equal to 0 by de�nition, while the left one is notne
essarily equal to 0.(M. Polyak) Ea
h of the following three approa
hes gives all Vassiliev invari-ants.� Constru
tion of the Kontsevi
h invariant using monodromy along solu-tions of the KZ equation.� Con�guration spa
e integrals motivated by the perturbative Chern-Simonstheory.� Gauss diagram formulas, whi
h 
ount 
on�gurations of 
rossings of knotdiagrams.The invariants derived from these three approa
hes are expe
ted to be natu-rally equivalent in the following sense.12 13 The integral of the se
ond approa
hgives an integral presentation of the mapping degree of a 
ertain map on a
on�guration spa
e, and it is shown in the degree 2 
ase [PoVi01℄ that theinvariants of the �rst and third approa
hes 
an be obtained by lo
alizing theintegral presentation with respe
t to appropriate volume forms on the targetspa
e. A te
hni
al diÆ
ulty to show this in a general degree is to 
ompute thelo
alization on the \hidden strata"; it is a part of the boundary of a 
on�gura-tion spa
e, whose 
ontribution to the derivative of the integral is killed by aninvolution on the strata.Problem 3.11 (M. Polyak) Find another way to kill the hidden strata, sothat the above three approa
hes 
an naturally present the mapping degree ofthe same map.12S. Poirier [Poi02℄ showed the equivalen
e between the invariants derived from the �rst andse
ond approa
hes, under the assumption of the vanishing of anomaly, by 
omparing theseinvariants for quasi-tangles (see Question 3.12).13D. Thurston suggests that Etingof{Kazhdan R matri
es [EiKa96℄ might be helpful torelate the invariants derived from the �rst and third approa
hes.Geometry & Topology Monographs, Volume X (20XX)



58 Edited by T. Ohtsuki3.6 The Chern-Simons series of 
on�guration spa
e integralsQuestion 3.12 (C. Les
op) Is the Kontsevi
h integral of a (zero-framed)knot equal to the Chern-Simons series of 
on�guration spa
e integrals of thesame knot (with Gauss integral 0)?The (normalized) Chern-Simons series of 
on�guration spa
e integrals is a uni-versal Vassiliev knot invariant that admits a natural and beautiful symmetri
de�nition that will be given below before des
ribing the present situation ofthis question that was �rst raised by Kontsevi
h in [Kon93℄.In 1833, Carl Friedri
h Gauss de�ned the �rst example of a 
on�guration spa
eintegral for an oriented two-
omponent link. Let us formulate his de�nition ina modern language. Consider an embeddingL : S11 t S12 ,! R3of the disjoint union of two 
ir
les S1 = fz 2 C s.t. jzj = 1g into R3 . With anelement (z1; z2) of S11�S12 that will be 
alled a 
on�guration, we may asso
iatethe oriented dire
tion 	((z1; z2)) of the ve
tor �������!L(z1)L(z2). 	((z1; z2)) 2 S2 .Thus, we have asso
iated a map	 : S11 � S12 �! S2from a 
ompa
t oriented 2-manifold to another one with our embedding. Thismap has an integral degree deg(	) that 
an be de�ned in several equivalentways. For example, it is the number of preimages of a regular value of 	
ounted with signs that 
an easily be 
omputed from a regular diagram of ourtwo-
omponent link asdeg(	) = ℄ 1 2� ℄ 2 1 = ℄ 2 1� ℄ 1 2 :It 
an also be de�ned as the following 
on�guration spa
e integraldeg(	) = ZS1�S1 	�(!)where ! is the homogeneous volume form on S2 su
h that RS2 ! = 1. It isobvious that this integral degree, that depends 
ontinuously on our embedding,is an isotopy invariant; and the reader has re
ognized that deg(	) is nothingbut the linking number of the two 
omponents of L.Se
tion 3.6 was written by C. Les
op.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 59We 
an again follow Gauss and asso
iate the following similar Gauss integralI(K) to a C1 embedding K : S1 ,! R3 . Here, we 
onsider the 
on�gurationspa
e C = S1�℄0; 2�[, and the map	 : C �! S2that maps (z1; �) to the oriented dire
tion of ����������!K(z1)K(z1ei�), and we setI(K) = ZC 	�(!):This Gauss integral is NOT an isotopy invariant, and it 
an be seen as anexer
ise that it takes any real value on any given isotopy 
lass of knots.However, we 
an follow Guadagnini, Martellini and Mint
hev and asso
iate
on�guration spa
e integrals to our embedding K and to any Ja
obi diagramon the 
ir
le � without small loop like . A 
on�guration of su
h a diagramis an embedding 
 of the set U [ T of its verti
es into R3 whose restri
tionto the set U of univalent verti
es fa
tors through the knot embedding K sothat the fa
torization indu
es the 
y
li
 order of U . Denote the set of these
on�gurations by C(K; �). C(K; �) is an open submanifold of (S1)U � (R3 )T .Denote the set of dashed edges of � by E , and �x an orientation for these edges.Then we 
an de�ne the map 	 : C(K; �)�! �S2�E whose proje
tion to the S2fa
tor indexed by an edge from a vertex v1 to a vertex v2 is the dire
tion of������!
(v1)
(v2). This map 	 is again a map between two orientable manifolds thathave the same dimension, namely the number of dashed half-edges of �, andwe 
an write the 
on�guration spa
e integral:I(K; �) = ZC(K;�)	�(�E!):For example, if � denotes the Jabobi diagram , then I(K; �) = I(K). Bottand Taubes have proved that this integral is 
onvergent [BoTa94℄. Thus, thisintegral is well-de�ned up to sign. In fa
t, an orientation of the trivalent ver-ti
es of � provides I(K; �) with a well-de�ned sign14 su
h that the produ
tI(K; �)[�℄ 2 A(S1;R) does not depend on the vertex orientation of �.14Sin
e S2 is equipped with its standard orientation, it is enough to orient C(K; �) �(S1)U � (R3 )T in order to de�ne this sign. This will be done by providing the set of thenatural 
oordinates of (S1)U � (R3 )T with some order up to an even permutation. This set isin one-to-one 
orresponden
e with the set of dashed half-edges of �, and the vertex-orientationof the trivalent verti
es provides a natural preferred su
h one-to-one 
orresponden
e up to some(even!) 
y
li
 permutations of three half-edges meeting at a trivalent vertex. Fix an order onE , then the set of half-edges be
omes ordered by (origin of the �rst edge, endpoint of the �rstedge, origin of the se
ond edge, . . . , endpoint of the last edge), and this order orients C(L; �).As an exer
ise, 
he
k that the sign of I(K; �)[�℄ does depend neither on our 
hoi
es nor onthe vertex orientation of �.Geometry & Topology Monographs, Volume X (20XX)



60 Edited by T. OhtsukiNow, the perturbative expansion of the Chern-Simons theory for knots in R3 isthe following sum running over all the Ja
obi diagrams without small loops andwithout vertex orientation:ZCS(K) =X I(K; �)℄Aut� [�℄ 2 A(S1;R)where ℄Aut� is the number of automorphisms of � as a uni-trivalent graphwhose univalent verti
es are 
y
li
ally ordered, but without vertex-orientationfor the trivalent verti
es. The degree one part of ZCS is I(K;�)2 and thereforeZCS is not invariant under isotopy. However, the evaluation15 of ZCS at rep-resentatives of knots with null Gauss integral is an isotopy invariant that is auniversal Vassiliev invariant of knots [BoTa94, AlFr97, Thu99a, Poi02℄. Now,the still open question raised by Kontsevi
h in [Kon93℄ is: Is the Kontsevi
hintegral of a zero framed representative of a knot K equal to the above series of
on�guration spa
e integrals of a representative of K with Gauss integral 0?This question has been redu
ed by Sylvain Poirier [Poi02℄ to the 
omputationof the following 
onstant in A(S1;R) = A([0; 1℄;R) that is 
alled the Bott andTaubes anomaly. In order to de�ne the anomaly, repla
e the above knot Kby a straight line D , and 
onsider a Ja
obi diagram � on the oriented line.De�ne C(D; �) and 	 as before. Let Ĉ(D; �) be the quotient of C(D; �)by the translations parallel to D and by the positive homotheties, then 	fa
tors through Ĉ(D; �) that has two dimensions less. Now, allow D to runamong all the oriented lines through the origin of R3 and de�ne Ĉ(�) as thetotal spa
e of the �bration over S2 where the �ber over the dire
tion of D isĈ(D; �). 	 be
omes a map between two smooth oriented16 manifolds of thesame dimension. Then we 
an again de�neI(�) = ZĈ(�)	�(�E!):Now, the anomaly is the following sum running over all Ja
obi diagrams on theoriented lines (again without vertex-orientation and without small loop):� =X I(�)℄Aut�[�℄ 2 A([0; 1℄;R):15A
tually, this evaluation is equal to ZCS(K) exp(� I(K;�)2 �) for any representative K ,where � 2 A([0; 1℄;R) is the Bott and Taubes anomaly.16 Ĉ(�) 
arries a natural smooth stru
ture and 
an be oriented as follows: orient C(D; �)as before, orient Ĉ(D; �) so that C(D; �) is lo
ally homeomorphi
 to the oriented produ
t(translation ve
tor of the oriented line, ratio of homothety) �Ĉ(D; �) and orient Ĉ(�) as thelo
al produ
t base � �ber.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 61Its degree one part is �1 = :It is not hard to see that for any integer n, �2n = 0. In [Poi02℄, Sylvain Poirierproved that if all �i vanish for i � 2, then the answer to the above Kontsevi
hquestion is YES, and he 
omputed �3 = 0. He also 
omputed �5 = 0 with thehelp of Maple. In [Les02℄, it is proved that � is a 
ombination of diagrams withtwo univalent verti
es. Poirier also gave an equivalent de�nition of the anomalythat allows one to see that, for any i > 1, �i is a 
ombination of diagrams withat least 6 univalent verti
es.As a 
orollary, all 
oeÆ
ients of the HOMFLY polynomial properly normalizedthat are Vassiliev invariants of degree less than seven 
an be expli
itly writtenas 
ombinations of the above 
on�guration spa
e integrals. A positive answerto the Kontsevi
h question would allow one to express any 
anoni
al Vassilievinvariant as an expli
it 
ombination of the above 
on�guration spa
e integrals.G. Kuperberg and D. Thurston have 
onstru
ted a universal �nite type invariantfor homology spheres as a series of 
on�guration spa
e integrals similar to theabove Chern-Simons series in [KuTh99℄. Their 
onstru
tion yields two naturalquestions that are stated in Question 11.9.3.7 Asso
iatorsAn asso
iator � is de�ned to be an invertible group-like element in A(###; C )satisfying that "2� = 1 2 A(##; C ) and the following relations,= ;
= where we put H = :

Geometry & Topology Monographs, Volume X (20XX)



62 Edited by T. OhtsukiHere, �i and "i are the 
omultipli
ation and the 
ounit a
ting on the i-th solidline; see [Bar97℄ for these notations. An asso
iator is derived from a Drinfel'dseries '(A;B) by � = '� ; � 2 A(###; C ); (17)where a Drinfel'd series is an invertible group-like power series '(A;B) of non-
ommutative indeterminates A and B satisfying 
ertain relations.The Drinfel'd asso
iator is given as follows. We 
onsider the di�erential equa-tion G0(z) = 12�p�1�Az + Bz � 1�G(z); (18)for an analyti
 fun
tion G of the variable z , where G(z) belongs to the formalpower series ring C hhA;Bii of non-
ommutative indeterminates A and B . Thereexists unique solutions G(��)� and G�(��) of the above di�erential equation ofthe forms G(��)�(z) = f(z)zA=2�p�1G�(��)(z) = g(1 � z)(1� z)B=2�p�1where f(z) and g(z) are analyti
 fun
tions with f(0) = g(0) = 1 2 C hhA;Biide�ned in a neighborhood of 0 2 C . The power series 'KZ(A;B) 2 C hhA;Biiis de�ned by G(��)� = G�(��)'KZ(A;B). The asso
iator derived from 'KZ(A;B)by (17) is 
alled the Drinfel'd asso
iator.Problem 3.13 Find a 
ombinatorial dire
t presentation of an asso
iator forall degrees, in parti
ular, an asso
iator with rational 
oeÆ
ients.Remark We still do not have a 
ombinatorial dire
t presentation of any asso-
iator for all degrees. This implies that we still do not know a 
ombinatorialdire
t presentation of the Kontsevi
h invariant of ea
h knot for all degrees (ex-
ept for the trivial knot); see Problem 3.1 and its remarks. Bar-Natan [Bar97℄showed a 
ombinatorial degree-by-degree proof of the existen
e of solutions ofthe de�ning relations of a pair (R;�). Our de�nition of � follows from thede�ning relations when R is given by exp �12 �.Remark The only asso
iator whose 
oeÆ
ients 
an be dire
tly presented forall degrees so far is the Drinfel'd asso
iator. We 
an present all degrees of theDrinfel'd asso
iator by a limit of iterated integrals (see (19)) of by multipleGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 63zeta fun
tions (see (20)). It is known [LeMu95℄ that all asso
iators are relatedto ea
h other by \twists", whi
h are some a
tions of symmetri
 elements inA(##; C ) on asso
iators.Remark 'KZ(A;B) is presented by the following limit ,'KZ(A;B) = lim"!0 "�B=2�p�1G"(1� ")"A=2�p�1; (19)where we regard "x as"x = exp(x log ") = 1 + x log "+ x2 (log ")22 + � � � :Further, G" is a solution of (18) given byG"(1� ") = 1 + 1Xm=1Z"�t1�����tm�1�"w(tm) � � �w(t1)dt1 � � � dtm;putting w(t) = 12�p�1�At + Bt� 1�:Remark In [LeMu95℄, 'KZ(A;B) is presented by'KZ(A;B) = 1 + 1Xl=1 Xa;b;p;q(�1)jbj+jpj�(a+ p;b+ q)�a+ pp ��b+ qq ��Bjqj(A;B)(a;b)Ajpj; (20)where the se
ond sum runs over a;b;p;q su
h that the sum of their length isequal to l and entries of them are non-negative integers. Here, the notationsare given by�(a;b) = �(1; 1; � � � ; 1| {z }a1�1 ; b1 + 1; 1; 1; � � � ; 1| {z }a1�1 ; b2 + 1; � � � ; 1; 1; � � � ; 1| {z }al�1 ; bl + 1);jaj = a1 + a2 + � � � + al;�ab� = �a1b1��a2b2� � � ��albl�;(A;B)(a;b) = Aa1Bb1 � � �AalBbl :for a = (a1; � � � ; al) and b = (b1; � � � ; bl), where the multiple zeta fun
tion isde�ned by �(a1; a2; � � � ; ak) = Xn1<n2<���<nk2Nn�a11 n�a22 � � �n�akk :Geometry & Topology Monographs, Volume X (20XX)



64 Edited by T. OhtsukiIn parti
ular,'KZ(A;B) = 1+ 124 [A;B℄� �(3)(2�p�1)3 ([A; [A;B℄℄+[B; [A;B℄℄)+� terms ofdegree � 4 � :Remark In [Bar97℄, an asso
iator with rational 
oeÆ
ients is given in low de-grees bylog'(A;B) = [A;B℄48 � 8[A; [A; [A;B℄℄℄ + [A; [B; [A;B℄℄℄11520+ [A; [A; [A; [A; [A;B℄℄℄℄℄60480 + [A; [A; [A; [B; [A;B℄℄℄℄℄1451520 + 13[A; [A; [B; [B; [A;B℄℄℄℄℄1161216+ 17[A; [B; [A; [A; [A;B℄℄℄℄℄1451520 + [A; [B; [A; [B; [A;B℄℄℄℄℄1451520� (inter
hange of A and B)+ (terms of degree � 8):Problem 3.14 (J. Roberts) Constru
t a rational Drinfel'd asso
iator in the
ontext of rational homotopy theory.Remark (J. Roberts) The theory of 1-minimal models provides a representa-tion of the pure braid group, whi
h is the fundamental group of the 
on�gu-ration spa
e of distin
t ordered points in C , the \pure braid spa
e" for short.This is the representation 
oming from the Kontsevi
h integral. A better wayto des
ribe it is as a representation of the fundamental groupoid of the purebraid spa
e, using \basepoints at in�nity" des
ribed by asso
iations (bra
ket-ings) of the points. In this pi
ture, the Drinfel'd asso
iator is the image of a
ertain path whi
h 
hanges the basepoint. Is there a theory of 1-minimal mod-els for fundamental groupoids whi
h gives a straightforward 
onstru
tion of a(rational-valued) asso
iator, as an alternative to the tri
ky iterative pro
eduresof [Bar97℄?3.8 Graph 
ohomologyProblem 3.15 (J. Roberts) What is graph 
ohomology the 
ohomology of?Remark (J. Roberts) In the theory of quantum knot invariants su
h as theJones polynomial, the topology and algebra (in this 
ase, the group SU(2)) areSe
tion 3.8 was written by J. Roberts.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 65entangled somewhat 
onfusingly. Passing to the theory of �nite type invariants,they be
ome separated: there is a purely topologi
al part (the Kontsevi
h in-tegral of a knot) and a purely algebrai
 part (the weight system asso
iated toSU(2)) whose intermediary is the spa
e of Ja
obi diagrams.Viewing this spa
e as (part of) Kontsevi
h's graph (
o)homology [Kon94℄, wesee that quantum invariants arise from a pairing between elements of graph
ohomology and homology. But what a
tually is this 
ohomology? A good geo-metri
 interpretation of it might lead to better understanding of the topologi
aland algebrai
 
onstru
tions involving it, and their 
omposite.Most of the intuition about graph 
ohomology has been built up from the al-gebrai
 side: it has been portrayed primarily as a kind of universal invarianttheory for Lie algebras. Vogel has pursued this idea the furthest, but he alsoshowed [Vog96℄ that not all weight systems 
ome from 
lassi
al Lie algebras.In fa
t, the work of Rozansky and Witten [RoWi97℄ and Kapranov [Kap99℄demonstrates that 
ompa
t holomorphi
 symple
ti
 manifolds 
an be used in-stead of Lie algebras to de�ne Vassiliev weight systems, and this gives quite adi�erent perspe
tive on graph 
ohomology, whi
h Simon Willerton and I havebeen studying [Rob01℄.In a similar vein, Bar-Natan, Le and Thurston [Thu00℄ have proved the so-
alled\wheeling 
onje
tures", diagrammati
 generalisations of the Du
o isomorphismof Lie theory. Their theorem is far too striking for a purely 
ombinatorialinterpretation to be satisfa
tory. Does it have a geometri
 interpretation?Kontsevi
h [Kon94℄ has given three topologi
al interpretations of graph 
oho-mology. The �rst is that it is the twisted 
ohomology of \outer spa
e", the
lassifying spa
e of the group of outer automorphisms of a free group. This isanalogous to the fa
t that a 
ertain 
omplex of fatgraphs gives the 
ohomologyof the moduli spa
e of Riemann surfa
es. The answer is unsatisfying be
ausethe natural geometri
 model for the 
lassifying spa
e is, unlike the Riemannmoduli spa
e, not a smooth orbifold, and if we are seeking geometri
 
onstru
-tions underlying the various kinds of diagrammati
 operations we en
ounter,smoothness would seem to be an essential property. Is there is a better model?A se
ond approa
h 
omes from 
on�guration spa
es of points in R3 . The 
om-plex of graphs (with distinguished legs) maps to the de Rham 
omplex of 
on-�guration spa
es, and gives a model for its 
ohomology. This kind of viewpointwas exploited by Kontsevi
h (and Taubes, and Axelrod and Singer) in de�ningthe perturbative invariants of 3-manifolds, and by Bott and Taubes [BoTa94℄for knots.Geometry & Topology Monographs, Volume X (20XX)



66 Edited by T. OhtsukiIn this 
ontext, Lie algebra weight systems are fun
tionals on the 
ohomologyof the 
on�guration spa
es, and might be thought of as homology 
lasses, oreven 
y
les. Hen
e the following problem, posed by Raoul Bott:Problem 3.16 (R. Bott) Give a geometri
 
onstru
tion of these homology
lasses 
oming from Lie algebras.The third and 
urrently best interpretation of graph 
ohomology is that it is the
ohomology of an in�nite-dimensional Lie algebra of formal Hamiltonian ve
tor�elds. Kontsevi
h uses this to explain (and vastly generalise) Rozansky-Wittenweight systems in terms of Gelfand-Fu
hs 
ohomology. Can this interpretationbe employed on the topologi
al rather than algebrai
 side? In other words, isthere a 
onstru
tion involving knots and algebras of formal ve
tor �elds whi
hyields the Kontsevi
h integral?3.9 The loop expansion of the Kontsevi
h invariantThe loop expansion is the series of the rational presentations of the Kontsevi
hinvariant in loop-degrees. It was 
onje
tured by [Roz99℄; the existen
e of therational presentations in all loop-degrees has been proved by Kri
ker [Kri00b℄,and its 
anoni
ality by Garoufalidis-Kri
ker [GaKr01℄.We have three isomorphi
 algebrasA(S1) �= B �= Bt; (21)where the �rst isomorphism is the formal Poin
are-Birkho�-Witt isomorphism,and B has the produ
t stru
ture related, by the isomorphism, to the produ
tstru
ture of A(S1) given by 
onne
ted sum. Further, the se
ond isomorphismis the wheeling isomorphism [BGRT00℄ between B and Bt , where Bt is B asa spa
e and has the produ
t given by the disjoint union of uni-trivalent graphs.We denote by B
onn the ve
tor subspa
e of Bt spanned by 
onne
ted uni-trivalent graphs, and denote by B(loop l)
onn the ve
tor subspa
e of B
onn spannedby 
onne
ted uni-trivalent graphs of loop-degree l , where the loop-degree of auni-trivalent graph is de�ned to be half of the number given by the number oftrivalent verti
es minus the number of univalent verti
es. Then,B
onn = 1Ml=0 B(loop l)
onn :Ea
h B(loop l)
onn 
an be presented by using the polynomial rings in H1(G) fortrivalent graphs G of loop-degree l subje
t to Aut(G) and the AS and IHXGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 67relations. We will present B(loop l)
onn for l = 0; 1; 2 in this way, to state the loopexpansion in these loop-degrees.When l = 0, we have the mapQ[x℄ �! B(loop 0)
onn ; xn 7�! ; (22)regarding x as a basis of H1(
ir
le). Sin
e the orientation-reversing automor-phism of S1 takes xn to �xn by the AS relation, the above map dedu
es thefollowing isomorphism, B(loop 0)
onn �= Q[x2 ℄: (23)For a knot K ,� logt Z(K)�(loop 0) = 12 log sinh(x=2)x=2 � 12 log�K(ex); (24)where logt is the logarithm in Bt regarding Z(K) as in Bt , and the lefthand side is the summand of logt Z(K) 2 B
onn in B(loop 0)
onn . This developmentfollows from the theory of [BaGa96℄. See also [Kri00b, GaKr01℄ (and referen
estherein) for a re
ent dire
t 
al
ulation.When l = 1, we have the mapQ[x1 ; x2; x3℄ �! B(loop 1)
onn ; xn11 xn22 xn33 7�! ;regarding H1(�-graph) as the ve
tor spa
e spanned by x1 , x2 , x3 subje
t tothe relation x1 + x2 + x3 = 0. Sin
e Aut(�-graph) �= S2 � S3 , the above mapdedu
es B(loop 1)
onn �= Q[x1 ; x2; x3℄=(S2 �S3; x1 + x2 + x3 = 0)�= �Q[x1 ; x2; x3℄=(x1 + x2 + x3 = 0)�S2�S3�= �Q[�1 ; �2; �3℄=(�1 = 0)�(even) �= Q[�2 ; �23 ℄; (25)where �i denotes the i-th elementary symmetri
 polynomial in x1 , x2 , and x3 .(To 
ompute B(loop 1)
onn in a pre
ise argument, we must also 
onsider the spa
eGeometry & Topology Monographs, Volume X (20XX)



68 Edited by T. Ohtsukiof \dumbbell diagram" with legs. Sin
e this spa
e is inje
tively mapped to theright hand side of the above formula, we omit its 
omputation here.) For aknot K there exists a polynomial P �K(t1; t2; t3), 
alled the 2-loop polynomial,satisfying that � logt Z(K)�(loop 1) = P �K(ex1 ; ex2 ; ex3)�K(ex1)�K(ex2)�K(ex3) : (26)The 2-loop polynomial P �K(t1; t2; t3) in t1; t2; t3 satisfying t1t2t3 = 1 is uniquelydetermined by ea
h knot K . It is an invariant of K satisfying thatP �K(t�1i ; t�1j ; t�1k ) = P �K(t1; t2; t3) for any signs and any fi; j; kg = f1; 2; 3g.Problem 3.17 Find a topologi
al 
onstru
tion of the 2-loop polynomial P �K .Remark As in (24) the loop-degree 0 part of the Kontsevi
h invariant is pre-sented by the Alexander polynomial, whi
h 
an be 
onstru
ted from the homol-ogy of the in�nite 
y
li
 
over of the knot 
omplement. It is shown, in [GaRo00℄,that the \�rst derivative" of the 2-loop polynomial is given in terms of linkingfun
tions asso
iated to the in�nite 
y
li
 
over of the knot 
omplement. It isexpe
ted [GaRo00℄ that the 2-loop polynomial would be des
ribed in terms ofinvariants of the in�nite 
y
li
 
over of the knot 
omplement.Remark A table of the 2-loop polynomial for knots with up to 7 
rossings is givenby Rozansky [Roz03℄. See also a 
omputer program [Roz℄, whi
h 
al
ulates the2-loop polynomial of ea
h knot. For example,12P �31 (t1; t2; 1t1t2 ) = �t21t2 + t21;12P �41 (t1; t2; 1t1t2 ) = 0;12P �51 (t1; t2; 1t1t2 ) = 2t41t22 � 2t41t2 + 2t41 � t21t2 + t21:The following problem is a step to Problem 3.17.Problem 3.18 (A. Kri
ker) Let KT be the knot obtained from a tangle Tas shown in Figure 12. Find a presentation of the 2-loop polynomial P �KT ofKT by using the Kontsevi
h invariant Z(T ) of T .Remark (A. Kri
ker) P �KT might be presented by the degree � 3 part of Z(T ).Generalize the presentation �K(t) = det(t1=2S � t�1=2ST ) of the Alexanderpolynomial �K(t) by a Seifert matrix S of K .Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 69
T KTFigure 12: The knot KT is obtained from the 2-parallel of a 2-strand tangle T byadding the tangle depi
ted in solid lines in the right pi
ture. The dotted lines implystrands possibly knotted and linked in some fashion.When l = 2, we have the map

xn11 xn22 � � � xn66 7�! ;
whi
h dedu
es the following isomorphism,B(loop 2)
onn �= Q[x1 ; x2; � � � ; x6℄=(S4; x1 + x2 + x3 = x1 + x6 � x5 = 0x2 + x4 � x6 = x3 + x5 � x4 = 0):Corresponding to fa
es of a tetrahedra, we put y1 = x1 � x2 � x6 ,y2 = x2 � x3 � x4 , y3 = x3 � x1 � x4 , and y4 = x4 + x5 + x6 . Then,B(loop 2)
onn �= Q[y1 ; y2; y3; y4℄=(S4; y1 + y2 + y3 + y4 = 0)�= �Q[y1 ; y2; y3; y4℄=(y1 + y2 + y3 + y4 = 0)�S4 ;where the a
tion of � 2 S4 takes a polynomial p(y1; y2; y3; y4) to(sgn�)p(y�(1); y�(2); y�(3); y�(4)). Hen
e,B(loop 2)
onn �= �Q[�2 ; �3; �4℄�(even) �= Q[�2 ; �23 ; �4℄; (27)Geometry & Topology Monographs, Volume X (20XX)



70 Edited by T. Ohtsukiwhere �i is the i-th elementary symmetri
 polynomial in y1 , y2 , y3 , andy4 . (To 
ompute B(loop 2)
onn in a pre
ise argument, we need some more 
om-putations, whi
h are omitted here.) For a knot K there exists a polynomialP 0K(t1; t2; � � � ; t6) satisfying that� logt Z(K)�(loop 2) = P 0K(ex1 ; ex2 ; � � � ; ex6)�K(ex1)�K(ex2) � � ��K(ex6) : (28)P 0K(ex1 ; ex2 ; � � � ; ex6) is uniquely determined by a knot K (hen
e, is an invariantof K ) in the 
ompletion of Q[�2 ; �23 ; �4℄.Problem 3.19 Find a topologi
al 
onstru
tion of the polynomial P 0K givenabove. == = = a + bFigure 13: The multi-linear relations. Here, f(t); g(t) 2 S , and a , b are s
alars.
=Figure 14: The push relationThe loop expansion in a general loop-degree is des
ribed as follows. Let R bea �eld, say Q , and let S be a subring of R(t) whi
h is invariant under theinvolution t 7! t�1 , where t is an indeterminate. A labeled Ja
obi diagram on; is a vertex-oriented trivalent graph, whose edges are labeled by pairs of lo
alorientations and elements of S . We de�ne AS(;;R) to be the ve
tor spa
e overR spanned by labeled Ja
obi diagrams on ; subje
t to the AS, IHX, multilinear,and push relations (see Figures 13 and 14). The loop-degree of a labeled Ja
obiGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 71diagram is half the number of trivalent verti
es of the Ja
obi diagram. For apolynomial A(t) with A(1) = 1 and A(t) = A(t�1), we have a mapAQ[t�1;1=A(t)℄(;;Q) �! B; (29)de�ned by 7�! 
0 + 
1 + 
2 + � � � + 
n + � � � ;where f(t) 2 Q[t�1 ; 1=A(t)℄ is written f(eh) = P1k=0 
khk . In parti
ular, themap AQ[t�1℄(;;Q) �! B (30)is de�ned by 7�! + + 12 + � � � + 1n! + � � � :The loop expansion of the Kontsevi
h invariant is des
ribed by the rational Zinvariant Zrat(K) 2 AQ[t�1;1=�K(t)℄(;;Q) whi
h is taken to logt Z(K) by themap (29). In parti
ular, when �K(t) = 1, Zrat(K) 2 AQ[t�1℄(;;Q). (The exis-ten
e of Zrat(K) has been shown in [Kri00b℄, and the 
anoni
ality of Zrat(K)has been shown in [GaKr01℄.)Problem 3.20 Find a topologi
al 
onstru
tion of the loop-degree l part of therational Z invariant Zrat(K) 2 AQ[t�1;1=�K(t)℄(;;Q) of a knot K , for ea
h l .Problem 3.21 Find a basis of the spa
e AQ[t�1;1=A(t)℄(;;Q)(loop l) , for ea
h l ,where A(t) is a polynomial with A(1) = 1 and A(t) = A(t�1). In parti
ular,�nd a basis of the spa
e AQ[t�1℄(;;Q)(loop l) .Conje
ture 3.22 ([Roz99, GaKr01℄) The map (29) is inje
tive. In parti
ular,the map (30) is inje
tive.Remark If this 
onje
ture is true, Zrat(K) is determined by the Kontsevi
hinvariant.Geometry & Topology Monographs, Volume X (20XX)



72 Edited by T. Ohtsuki3.10 The Kontsevi
h invariant of links in �� [0; 1℄Let � be a 
losed oriented surfa
e. We denote by A� the algebra of 
horddiagrams on �. It is de�ned to be the ve
tor spa
e over C spanned by thehomotopy 
lasses of 
ontinuous maps from 
hord diagrams to � modulo 4Trelations.Problem 3.23 (T. Kohno) Constru
t expli
itly a universal invariant of �nitetype for links in �� [0; 1℄ with values in A� .In the 
ase of genus 0 the above problem is solved by Kontsevi
h integral. Inhigher genus 
ase a suggestion for a 
onstru
tion of a universal invariant wasgiven by Deligne at Oberwolfa
h meeting 1995. In the 
ase of a pun
turedsurfa
e the problem was solved by Andersen, Mattes and Reshetikhin.Let G be a simple Lie group andMG(�) the moduli spa
e of G 
at 
onne
tionson �. The spa
e of smooth fun
tions on MG(�) denoted by C(MG(�)) has astru
ture of a Poisson algebra 
oming from a symple
ti
 stru
ture on MG(�).The algebra A� has also a Poisson algebra stru
ture (see [AMR96℄). If ea
h
omponent of A� is 
olored by a representation of G, then there is a naturalPoisson algebra homomorphism� : A� ! C(MG(�)):Problem 3.23 is related to the following problem.Problem 3.24 (T. Kohno) Give a deformation quantization of the Poissonalgebra A� whi
h des
ends to a deformation quantization of C(MG(�)).The above problem will give a new insight on quantization of MG(�). Itwould also be interesting to investigate a relation to the geometri
 quantizationof MG(�).Problem 3.25 (T. Kohno) Clarify the relation between a deformation quan-tization of C(MG(�)) at a spe
ial parameter and the spa
e of 
onformal blo
ksin WZW models.Problem 3.26 (T. Kohno) Determine the image and the kernel of the abovemap � .Se
tion 3.10 was written by T. Kohno.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 73The spa
e of 
onformal blo
ks in WZW model is de�ned as the spa
e of 
oin-variant tensors in the following way. Let p1; � � � ; pn be marked points on �and H1; � � � ;Hn be representations of the aÆne Lie algebra bg. The spa
e of
onformal blo
ks is de�ned to be the set of linear forms� : H1 
 � � � 
Hn �! Cinvariant under the a
tion of meromorphi
 fun
tions with values in g with polesat most at p1; � � � ; pn , where the a
tion is de�ned by the Laurent expansion atthese points. There is a twisted version of the above 
onstru
tion, where theabove meromorphi
 fun
tions are repla
ed by meromorphi
 se
tions of a g lo
alsystem.Problem 3.27 (T. Kohno) Compute the holonomy of the spa
e of 
onformalblo
ks of the twisted WZW model. In parti
ular, determine the a
tion of thebraid group of � on the spa
e of 
onformal blo
ks for ea
h G 
at 
onne
tionon �.There is also a notion of the algebra of 
hord diagrams on n strings withhorizontal 
hord on �, whi
h we shall denote by An(�).Problem 3.28 (T. Kohno) Let Pn(�) denote the pure braid group of � withn strings. Does there exist an inje
tive multipli
ative homomorphism� : Pn(�)! An(�)de�ned over Q ?

Geometry & Topology Monographs, Volume X (20XX)



74 Edited by T. Ohtsuki4 Skein modulesSkein module is an algebrai
 obje
t asso
iated to a manifold, usually 
on-stru
ted as a formal linear 
ombination of embedded (or immersed) subman-ifolds, modulo lo
ally de�ned relations. In a more restri
ted setting a skeinmodule17 is a module asso
iated to a 3-dimensional manifold, by 
onsideringlinear 
ombinations of links in the manifold, modulo properly 
hosen (skein)relations. It is a main obje
t of the algebrai
 topology based on knots. In the
hoi
e of relations one takes into a

ount several fa
tors:(i) Is the module we obtain a

essible (
omputable)?(ii) How pre
ise are our modules in distinguishing 3-manifolds and links inthem?(iii) Does the module re
e
t topology/geometry of a 3-manifold (e.g. surfa
esin a manifold, geometri
 de
omposition of a manifold)?(iv) Does the module admit some additional stru
ture (e.g. �ltration, grada-tion, multipli
ation, Hopf algebra stru
ture)? Is it leading to a Topo-logi
al Quantum Field Theory (TQFT) by taking a �nite dimensionalquotient?One of the simplest skein modules is a q -deformation of the �rst homologygroup of an oriented 3-manifold M , denoted by S2(M ; q). It is based on theskein relation (between oriented framed links in M ): = q ; it alsosatis�es the framing relation = q , where the diagrams in ea
h formulaimply framed links, whi
h are identi
al ex
ept in a ball, where they di�er asshown in the diagrams. Already this simply de�ned skein module \sees" non-separating surfa
es in M . These surfa
es are responsible for torsion part of theskein module [Prz98b℄.There is more general pattern: most of analyzed skein modules re
e
t varioussurfa
es in a manifold.The best studied skein modules use skein relations whi
h worked su

essfully inthe 
lassi
al knot theory (when de�ning polynomial invariants of links in R3 ).The original version of Chapter 4 was written by J. H. Przyty
ki. It was revised by T.Ohtsuki following suggestions given by the referee. Based on it, Przyty
ki wrote this 
hapter.17Alexander �rst wrote down the skein relation for his polynomial. Conway redis
overed therelation and pla
ed in the abstra
t setting of "linear skein". He predi
ted the 
orrespondingskein module for a tangle. General skein modules of 3-manifolds were �rst 
onsidered in 1987by Przyty
ki and Turaev independently [Prz91℄, [Tur88℄.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 754.1 The Kau�man bra
ket skein moduleLet M be an oriented 3-manifold, and put R = Z[A�1℄. The Kau�man bra
ketskein module S2;1(M) of M is de�ned to be the R module spanned by unori-ented framed links in M (in
luding the empty link) subje
t to the relations= A +A�1 ;= �A2 �A�2;where three diagrams in the �rst formula imply three framed links, whi
h areidenti
al ex
ept in a ball, where they di�er as shown in the diagrams. The Kau�-man bra
ket gives an isomorphism between S2;1(S3) and R. Thus, S2;1(M)is a generalization of the Jones polynomial (in its Kau�man bra
ket interpreta-tion). The Kau�man bra
ket skein module is best understood among the Jonestype skein modules. It 
an be interpreted as a quantization of the 
o-ordinatering of the 
hara
ter variety of SL(2; C ) representations of the fundamentalgroup of the manifold M , [Bul97b, PrSi98, BFK99, PrSi00℄.Problem 4.1 Cal
ulate S2;1(M) for ea
h oriented 3-manifold M . Find a
onvenient methodology to 
al
ulate it.Remark It is known that S2;1(L(p; q)) of the lens spa
e L(p; q) is a freeR module with [p=2℄ + 1 generators [HoPr93℄, and that S2;1(S1 � S2) �=R �L1i=1R=(1 � A2i+4) [HoPr95a℄. The Kau�man bra
ket skein modulesare also 
al
ulated for I -bundles over surfa
es [HoPr89, Prz91℄, the exteriors of(2; n) torus knots [Bul95℄, and Whitehead manifolds [HoPr95b℄. A 
onne
tedsum formula is given in [Prz00℄. Skein modules at the 4th roots of unity are
al
ulated in [Sik00℄. It is shown in [Lof99℄ that S2;1(M1[F M2 ) for orientable3-manifolds M1 and M2 with a 
ommon boundary F is expressed as a quotientmodule of a dire
t sum of tensor produ
ts of relative skein modules of M1 andM2 .Problem 4.2 (J. Przyty
ki) In
ompressible tori and 2-spheres in M yieldtorsion in S2;1(M) [Prz99℄. It is a question of fundamental importan
e whetherother surfa
es 
an yield torsion as well.Conje
ture 4.3 If every 
losed in
ompressible surfa
e in M is parallel to �M ,then S2;1(M) is torsion free.Geometry & Topology Monographs, Volume X (20XX)



76 Edited by T. OhtsukiRemark The Kau�man bra
ket skein module of the 3-manifold obtained by anintegral surgery along the trefoil knot is �nitely generated if and only if the3-manifold 
ontains no essential surfa
e [Bul97a℄.The test 
ase for the 
onje
ture is the manifold M = F0;3 � S1 , where F0;3 isa 2-sphere with 3 holes, be
ause it 
ontains immersed �1 -inje
tive torus.Problem 4.4 (J. Przyty
ki) Compute S2;1(F0;3 � S1).Problem 4.5 Let F be a surfa
e and I an interval. Des
ribe the algebraS2;1(F � I).Remark S2;1(F � I) is an algebra (usually non
ommutative). It is �nitelygenerated algebra for a 
ompa
t F [Bul99℄, and has no zero divisors [PrSi00℄.The 
enter of the algebra is generated by boundary 
omponents of F [BuPr00,PrSi00℄.Problem 4.6 Cal
ulate the skein homology based on the Kau�man bra
ketskein relation.Remark The skein homology were introdu
ed in [BFK98℄ (see also [KPS00℄).Problem 4.7 We de�ne the sl3 skein module Ssl3(M) of an oriented 3-manifoldM by the de�ning relations of the sl3 linear skein [Kup94, OhYa97℄. Cal
ulateSsl3(M) of ea
h 3-manifold M .Remark The quantum sl3 invariant of links gives an isomorphism betweenSsl3(S3) and the 
oeÆ
ient ring; see, e.g., [Oht02℄. Thus, Ssl3(M) gives ageneralization of the quantum sl3 invariant of links.4.2 The Hom
ypt skein moduleLet M be an oriented 3-manifold, and put R = Z[v�1; z�1℄. The Hom
yptskein module S3(M) of M is de�ned to be the R module spanned by orientedlinks in M subje
t to the relationv�1 � v = z ;Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 77where three diagrams in the formula imply three oriented links, whi
h are iden-ti
al ex
ept in a ball, where they di�er as shown in the diagrams. The Hom
yptpolynomial gives an isomorphism between S3(S3) and R. The Hom
ypt skeinmodules generalize skein modules based on Conway relation whi
h were hintedby Conway. S3(M) is related to the algebrai
 set of SL(n; C ) representationsof the fundamental group of the manifold M [Sik01℄.Problem 4.8 Cal
ulate S3(M) for ea
h oriented 3-manifold M . Find a 
on-venient methodology to 
al
ulate it.Remark It is known that S3(F � I) is an in�nitely generated free module[Prz92b℄, and that S3(S1 � S2) is isomorphi
 to the dire
t sum of R and anR-torsion module [GiZh01a℄. A 
onne
ted sum formula is given in [GiZh01b℄.Problem 4.9 Let F be a surfa
e and I an interval. Des
ribe the algebraS3(F � I).Remark S3(F � I) is a Hopf algebra (usually neither 
ommutative nor 
o-
ommutative) [Tur91, Prz92b℄. S3(F�I) is a free module (as mentioned above)and 
an be interpreted as a quantization [Tur88, HoKi90, Tur91, Prz92a℄.4.3 The Kau�man skein moduleLet M be an oriented 3-manifold, and put R = Z[a�1; x�1℄. The Kau�manskein module S3;1(M) of M is de�ned to be the R module spanned by unori-ented framed links in M subje
t to the relations+ = x + ! ; (31)= a ; (32)where the diagrams in ea
h formula imply framed links, whi
h are identi
alex
ept in a ball, where they di�er as shown in the diagrams.Problem 4.10 Cal
ulate S3;1(M) for ea
h oriented 3-manifold M . Find a
onvenient methodology to 
al
ulate it.Geometry & Topology Monographs, Volume X (20XX)



78 Edited by T. OhtsukiRemark S3;1(F � I) is known to be a free module. The 
ase of F being atorus was solved by Hoste, Kidwell and Turaev. It is 
al
ulated in [Lie99℄ for asurfa
e F with boundary. S3;1(S1�S2) is 
al
ulated in [ZhLu02℄. A 
onne
tedsum formula is given in [Zho02℄.Problem 4.11 Cal
ulate the higher skein modules based on the Kau�manskein relation W 3;1i (M) and Ŵ 3;1(M) (see below for their de�nitions).Remark The higher skein modules were introdu
ed in [Prz94℄. They aredis
ussed (in the 
ase of the Conway skein triple) in [Ron97, LiRo98℄ and[AnTu99, AnTu01℄. In the 
ase of the Kau�man skein relation, de�nitionsare as follows: Let RL denote the free R module spanned by the ambient iso-topy 
lasses of unoriented framed links in an oriented 3-manifold M modulo theframing relation (32), where R = Z[a�1; x�1℄. We regard singular links with a�nite number of double points as elements in RL by repla
ing a double pointwith the di�eren
e of the two sides of (31). We introdu
e a (singular links)�ltration RL = C0 � C1 � C2 � C3 � � � � , where the module Ci is generatedby singular links with i double points. We de�ne the ith higher Kau�manskein module as: W 3;1i (M) = RL=Ci+1 and the 
ompleted higher Kau�manskein module, Ŵ 3;1(M), as the 
ompletion of RL with respe
t to the �ltrationfCig.Problem 4.12 Constru
t invariants of 3-manifolds via a linear skein theorybased on the Kau�man skein module.Remark It is known that quantum invariants of 3-manifolds 
an be 
onstru
tedvia linear skein theories based on the Kau�man bra
ket skein modules (see[Li
97a℄) and the Hom
ypt skein modules ([Yok97℄).Update Beliakova and Blan
het did it [BeBl01℄.4.4 The q-homotopy skein moduleLet M be an oriented 3-manifold, and put R = Z[q�1; z℄. The q -homotopy skeinmodule HSq(M) of M is de�ned to be the R module spanned by oriented linksin M subje
t to the link homotopy relation = for self-
rossingsand the skein relation q�1 � q = z for \mixed 
rossings",Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 79i.e., we assume that the two strings of (or ) of the skein relationbelong to di�erent 
omponents of the link.We have an isomorphism between HSq(S3) and Z[q�1; t; z℄, regarding tk as thetrivial link with k 
omponents, and this isomorphism is given by the linkingnumbers [Prz01℄.Problem 4.13 Cal
ulate HSq(M) for ea
h 3-manifold M .Remark HSq(F �I) is a quantization [HoPr90, Tur91, Prz01℄, and as noted byKaiser it 
an be almost 
ompletely understood using singular tori te
hnique ofX.-S. Lin. HSq(M) is free if and only if �1(M) is abelian and 2b1(M) = b1(�M)[Kai01℄.4.5 The (4;1) skein moduleWe generalize the Kau�man bra
ket and Kau�man skein modules by 
onsider-ing the general, unoriented skein relation b0L0+ b1L1+ � � �+ bn�1Ln�1+ b1L1(see Figure 15). The �rst new 
ase to analyze, n = 4, is des
ribed in thisse
tion. We 
all it the (4;1) skein module and denote by S4;1(M ;R). Thisproblem is very interesting even for M = S3 .The de�nitions are as follows. Let M be an oriented 3-manifold, Lfr theset of unoriented framed links in M (in
luding the empty knot, ;) and R any
ommutative ring with unity. We �x a; b0; b3 to be invertible elements in R and�x b1; b2; b1 to be elements of R. Then we de�ne the (4;1) skein module as:S4;1(M ;R) = RLfr=I(4;1) , where I(4;1) is the submodule of RLfr generatedby the following two relations:the (4;1) skein relation: b0L0 + b1L1 + b2L2 + b3L3 + b1L1 = 0;the framing relation: L(1) = aL;where L0; � � � ; L1 are framed links whi
h are identi
al ex
ept in a ball, wherethey di�er as shown in Figure 15, and L(1) denotes a link obtained from L byadding +1 framing to some 
omponent of L.Problem 4.14 (J. Przyty
ki)(i) Find generators of S4;1(S3; R).(ii) For whi
h parameters of the (4;1) skein and framing relations, triviallinks are linearly independent in S4;1(S3;R)?Geometry & Topology Monographs, Volume X (20XX)



80 Edited by T. Ohtsuki
Figure 15: L3; � � � ; L0; L1 are framed links whi
h are identi
al ex
ept in a ball, wherethey di�er as shown in the pi
tures. Links Lk for k = 4; 5; � � � are similarly de�ned.(iii) For whi
h parameters of the (4;1) skein and framing relations, the trivialknot is not representing a torsion element of S4;1(S3; R)?A generalization of the Montesinos-Nakanishi 
onje
ture [PrTs01℄ said thatS4;1(S3; R) is generated by trivial links and that the (4;1) skein module (suit-ably de�ned) for n-tangles is generated by Qn�1i=1 (3i+1) 
ertain basi
 n-tangles.This would give a generating set for the (4;1) skein module of S3 or D3with 2n boundary points (for n-tangles). However, the Montesinos-Nakanishi3-move 
onje
ture has been disproved by M.Dabkowski and J.H.Przyty
ki inFebruary 2002 [DaPr02℄ and [Prz02℄. Therefore Qn�1i=1 (3i +1) is only the lowerbound for the number of generators.In [PrTs01℄ we extensively analyze the possibilities that trivial links are linearlyindependent; if b1 = 0, then this may happen only if b0b1 = b2b3 . These leadsto the following 
onje
ture (
ases (1){(2)):Conje
ture 4.15 (J. Przyty
ki, see [Mor00℄)(1) There is a polynomial invariant of unoriented links, P1(L) 2 Z[x; t℄ whi
hsatis�es:(i) Initial 
onditions: P1(Tn) = tn , where Tn is a trivial link of n
omponents.(ii) Skein relation P1(L0) + xP1(L1) � xP1(L2) � P1(L3) = 0 whereL0; L1; L2; L3 is a standard, unoriented skein quadruple (Li+1 isobtained from Li by a right-handed half twist on two ar
s involvedin Li ; 
ompare Figure 15.)(2) There is a polynomial invariant of unoriented framed links, P2(L) 2Z[A�1; t℄ whi
h satis�es:(i) Initial 
onditions: P2(Tn) = tn ,Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 81(ii) Framing relation: P2(L(1)) = �A3P2(L) where L(1) is obtained froma framed link L by a positive half twist on its framing.(iii) Skein relation: P2(L0) +A(A2 +A�2)P2(L1) + (A2 +A�2)P2(L2) +AP2(L3) = 0.(3) There is a rational fun
tion invariant of unoriented framed links, P3(L) 2Z[a�1; x; y; (x + y + xy + y2)�1℄ whi
h satis�es:(i) Initial 
onditions: P3(Tn) = (�a3(x+y+xy+x2)+a7(x+y+1)2�a�1x+y+xy+y2 )n�1 ,(ii) Framing relation: P3(L(1)) = aP3(L),(iii) Skein relation: P3(L0)+axP3(L1)+a2yP3(L2)�a3(x+y+1)P3(L3) =0.(4) The invariant predi
ted in (1) (respe
tively (2) and (3)) is not uniquelyde�ned (if it exists).Note that a solution to (3) be
omes a solution to (1) under the substitutiona = 1, x = �y and that a solution to (3) be
omes a solution to (2) under thesubstitution a = �A3 , x = �1�A�4 , y = A�4+A�8 . As for the uniqueness of(4), note that all su
h invariants agree on trivial links and therefore they agreeon the spa
e spanned by trivial links in the related 
ubi
 skein module.The above 
onje
tures assume that b1 = 0 in our skein relation. Let 
onsiderthe possibility that b1 is invertible in R. Using the \denominator" of our skeinrelation (the �rst line of Figure 16) we get the relation whi
h allows to 
omputethe e�e
t of adding a trivial 
omponent to a link L (we write tn for the triviallink Tn ): (a�3b3 + a�2b2 + a�1b1 + b0 + b1t)L = 0: (33)When 
onsidering the \numerator" of the relation and its mirror image (Figure16) we obtain formulas for Hopf link summands, and be
ause unoriented Hopflink is amphi
heiral we 
an eliminate it from our equations to get the formula(34):b3(L#H) + (ab2 + b1t+ a�1b0 + ab1)L = 0:b0(L#H) + (a�1b1 + b2t+ ab3 + a2b1)L = 0:((b0b1 � b2b3)t+ (a�1b20 � ab23) + (ab0b2 � a�1b1b3) + b1(ab0 � a2b3))L = 0:(34)It is possible that (33) and (34) are the only relations in the module. Pre
isely,we ask whether S4;1(S3;R) is the quotient ring R[t℄=(I) where ti representsthe trivial link of i 
omponents and I is the ideal generated by (33) and (34) forGeometry & Topology Monographs, Volume X (20XX)



82 Edited by T. Ohtsuki

Figure 16:L = t. The substitution whi
h realizes the relations is: b0 = b3 = a = 1, b1 =b2 = x, b1 = y . This may lead to the polynomial invariant of unoriented linksin S3 with values in Z[x; y℄ and the skein relation L3+xL2+xL1+L0+yL1 = 0.Problem 4.16 (J. Przyty
ki) For whi
h 
oeÆ
ients of the (4;1) skein rela-tion is the number of Fox 7-
olorings measured by the (4;1) skein module?Remark We denote by Colp(L) the (Z=pZ)-linear spa
e (for p prime) of Foxp-
olorings of a link L (for its de�nition, see [Prz98a℄) and 
olp(L) denotesthe 
ardinality of the spa
e. It is known that Colp(L) 
an be identi�ed withH1�M2(L);Z=pZ�, where M2(L) denotes the double 
over of S3 bran
hedalong L. Sin
e the double 
overs of tangles de�ning L0; L1; � � � ; Lp�1; L1give all subspa
es of H1(T 2;Z=pZ) respe
tively (where T 2 is the double 
overof (S2; 4 points)), 
olp of those links are equal ex
ept for 
olp of one linkwhi
h is equal to p times the others [Prz98a℄. This leads to the relationof type (p;1). A relation between the Jones polynomial (or the Kau�manbra
ket) and 
ol3(L) has the form: 
ol3(L) = 3jVL(e�p�1=3)j2 and a for-mula relating the Kau�man polynomial and 
ol5(L) has the form: 
ol5(L) =5jFL(1; e2�p�1=5+e�2�p�1=5)j2 . This seems to suggest the existen
e of a similarformula18 for 
ol7(L).18Fran�
ois Jaeger told Przyty
ki that he knew how to get the spa
e of Fox p-
olorings froma short skein relation (of type ( p+12 ;1)). Fran�
ois died prematurely in 1997 and his proofhas never been re
orded.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 834.6 Other problemsWe extend the family K of oriented knots in a 3-manifold M by singular knots,and resolve a singular 
rossing by = � . These allows usto de�ne the Vassiliev-Goussarov �ltration: RK = C0 � C1 � C2 � C3 � � � ,where R is a 
ommutative ring with unity and Ck is generated by knots with ksingular points. Regarding the quotient Wk(M) = RK=Ck+1 as an invariant ofM , we 
all it the k th Vassiliev-Goussarov skein module of M . The 
ompletionof the spa
e of knots with respe
t to the Vassiliev-Goussarov �ltration, R̂K ,is a Hopf algebra (for M = S3 ). Fun
tions dual to Vassiliev-Goussarov skeinmodules are 
alled �nite type or Vassiliev invariants of knots; see [Prz94℄.Problem 4.17 Cal
ulate Wk(M) for ea
h 3-manifold M .Remark When M = S3 , and 
oeÆ
ients are from Q then the graded spa
eCk=Ck+1 
an be des
ribed by 
hord diagrams of degree k ; see Chapter 2.Problem 4.18 De�ne a skein module of 3-manifolds, and 
al
ulate it.Remark The quantum Hilbert spa
e (or the spa
e of 
onformal blo
ks) of(S2; 4 points) is known to be �nite dimensional. This is a reason why aquantum invariant of links satis�es a skein relation; it is a linear relation oftangles bounded by (S2; 4 points) whose invariants are linearly dependent inthe quantum Hilbert spa
e. The quantum Hilbert spa
e of a 
losed surfa
e,say, a torus, is also known to be �nite dimensional. Hen
e, a quantum invari-ant of 3-manifolds satis�es a \skein relation"; it should be a linear relation of3-manifolds bounded by a surfa
e. A skein module of 3-manifolds might bede�ned to be a module spanned by 
losed oriented 3-manifolds subje
t to asuitably 
hosen \skein relation" among 3-manifolds. It is a problem to de�nesu
h a skein module whi
h 
an be 
al
ulated.

Geometry & Topology Monographs, Volume X (20XX)



84 Edited by T. Ohtsuki5 QuandlesA quandle is a set X equipped with the binary operation � satisfying thefollowing 3 axioms.(1) x � x = x for any x 2 X .(2) For any y; z 2 X there exists a unique x 2 X su
h that z = x � y .(3) (x � y) � z = (x � z) � (y � z) for any x; y; z 2 X .The notions of subquandle, homomorphism, isomorphism, automorphism areappropriately de�ned. Ea
h x in a quandle X de�nes a map Sx : X ! Xby Sx(y) = y � x. This map is an automorphism of X by the axioms (2) and(3). The inner automorphism group is a group of automorphisms generated bySx (x 2 X ). An orbit under the a
tion of the inner automorphism group ona quandle X is simply 
alled an orbit of X . This forms a subquandle of X .A quandle is 
alled 
onne
ted19 if the a
tion of its inner automorphism groupis transitive on it (i.e., if X has only one orbit). A quandle is 
alled simple ifevery surje
tive homomorphism from the quandle is either an isomorphism orthe 
onstant map to the one-element quandle. The dual quandle of X is theset X with the dual binary operation given by x�y = S�1y (x).The 
onjugation quandle of a group is the group with the binary operationx � y = y�1xy . This kind of quandles is a prototype of quandles; the de�ningrelations of a quandle are relations satis�ed by the 
onjugation of a group. Any
onjuga
y 
lass of a group is a subquandle of the 
onjugation quandle of thegroup. The dihedral quandle Rn of order n is the subquandle of the 
onjuga-tion quandle of the dihedral group of order 2n, 
onsisting of re
e
tions. AnAlexander quandle is a quotient module Z[t�1℄=J , where t is an indeterminateand J is an ideal of the Laurent polynomial ring Z[t�1℄, equipped with thebinary operation x � y = tx+ (1� t)y . The dihedral quandle Rn is isomorphi
to Z[t�1℄=(n; t+ 1).5.1 Classi�
ation of quandlesIt was a 
lassi
al problem in group theory to 
lassify the isomorphism 
lassesof groups of order n for ea
h n. The following problem is a 
orrespondingproblem for 
onne
ted quandles.Chapter 5 was written by T. Ohtsuki, following suggestions and 
omments given by S.Kamada and M. Saito.19We 
all this property 
onne
ted here following [Joy82℄. This is also 
alled weakly homoge-neous in some literatures.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 85Problem 5.1 Classify the isomorphism 
lasses of 
onne
ted quandles of ordern for ea
h positive integer n.See Table 4 for a list of 
onne
ted quandles of order n for some n.n # Conne
ted quandles of order nSelf-dual Not self-dual1 1 A trivial quandle2 03 1 R34 1 �2=(t2 + t+ 1)5 3 R5 �5=(t� 2), its dual6 2 2 subquandles of Conj(S4)7 5 R7 �7=(t� 2), �7=(t� 3), their duals8 � 3 An abelian extension �2=(t3 + t+ 1), its dualof �2=(t2 + t+ 1)9 8 R9, �3=(t2 � t+ 1), �9=(t� 2), �3=(t2 + t� 1),R3 �R3, �3=(t2 + 1) their duals10 � 1 A subquandle of Conj(S5)11 9 R11 �11=(t� a) (a = 2; 3; � � � ; 9)12 � 2 R3 � ��2=(t2 + t+ 1)�,An i
osahedral quandle13 11 R13 �13=(t� a) (a = 2; 3; � � � ; 11)14 � 015 � 4 R3 �R5, R3 � ��5=(t� 2)�, its dualA subquandle of Conj(S5)...Prime p p� 2 Rp �p=(t� a) (a = 2; 3; � � � ; p� 2)Table 4: A table of some 
onne
ted quandles. The se
ond 
olumn shows the numbersof isomorphism 
lasses of 
onne
ted quandles of order n . We denote Z[t�1℄=(n) by�n . Conj(Sm) denotes the 
onjugation quandle of the mth symmetri
 group Sm . Ani
osahedral quandle is a quandle whose elements are the verti
es of an i
osahedron su
hthat Sx of ea
h element x is given by a rotation of the i
osahedron 
entered at x .Remark (M. Gra~na) It is shown, in [EGS01℄ in terms of set theoreti
al solutionsof the quantum Yang-Baxter equation, that a 
onne
ted quandle of prime orderp is isomorphi
 to the Alexander quandle Z[t�℄=(p; t�a) for some a. It is shownin [AnGr02, Nel02℄ that two 
onne
ted Alexander quandles are isomorphi
 ifGeometry & Topology Monographs, Volume X (20XX)



86 Edited by T. Ohtsukiand only if they are isomorphi
 as Z[t�1℄-modules. These give the 
lassi�
ationof 
onne
ted quandles of prime order shown in Table 4.Remark (M. Gra~na) It is shown in [AnGr02℄ that a simple quandle of primepower order is an Alexander quandle; it is a �nite �eld F su
h that t a
ts bymultipli
ation by some primitive element w (i.e., w generates F as an algebra).Further, it is shown in [Gra02b℄ that a 
onne
ted quandle of prime square orderis an Alexander quandle. This gives the 
lassi�
ation of 
onne
ted quandles oforder 9 shown in Table 4.Remark S. Yamada made the list of isomorphism 
lasses of quandles (and ra
ks)of order � 7 by 
omputer sear
h. The list of 
onne
ted quandles of order � 7in Table 4 follows from it. S. Nelson [Nel02℄ 
lassi�es the Alexander quandlesof order � 15; 
onne
ted ones among them are listed in Table 4.Remark The following modi�
ation of Problem 5.1 gives an algorithm to listup 
onne
ted quandles: 
lassify the isomorphism 
lasses of 
onne
ted quandles�xing the 
onjuga
y 
lass of the union of Sx and an identity map. For a quandleX we denote by SX the set of Sx (x 2 X ), whi
h is regarded as a subset of Snwhen X is of order n. The map X ! Sn , taking x 7! Sx , is often inje
tive,though in general the map X ! SX is a quotient map, and the order of SXdivides n when X is 
onne
ted. Let us investigate this problem in some simple
ases.Let X be a 
onne
ted quandle of order n whose SX in
ludes (12) 2 Sn . Then,for any i there is a sequen
e 1 = a0; a1; � � � ; ak = i su
h that (a0a1); (a1a2); � � � 2SX sin
e X is 
onne
ted. Further, sin
e SX is 
losed with respe
t to 
onjuga-tion, SX in
ludes (1i) 2 Sn , and hen
e any (ij) 2 Sn . Therefore, n = 3, andX is isomorphi
 to the dihedral quandle R3 .Let X be a 
onne
ted quandle of order n whose SX in
ludes (123) 2 Sn .Suppose that SX further in
luded (145) 2 Sn . Then, sin
e SX is 
losedwith respe
t to 
onjugation, SX would in
lude (ijk) 2 Sn for any fi; j; kg �f1; 2; 3; 4; 5g. This would 
ontradi
t, sin
e the order of SX is at most n. Hen
e,n = 4, and X is isomorphi
 to the 
onjugation subquandle of A4 
onsisting of(123), (134), (142), and (243), whi
h is isomorphi
 to Z[t�1℄=(2; t2 + t+ 1).Let X be a 
onne
ted quandle of order n whose SX in
ludes (1234) 2 Sn .If SX further in
luded (1567) 2 Sn , a 
ontradi
tion would follow from a sim-ilar argument as above. Hen
e, it is suÆ
ient to 
onsider the 
ases that SXin
lude (1234) and either of (1256), (2156), (1526), (1536), or (ijk5) for anyfi; j; kg = f1; 2; 3g. It follows from some 
on
rete 
omputations that su
h aGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 87X is isomorphi
 to either of the Alexander quandle Z[t�1℄=(5; t � 2), its dualquandle, or the 
onjugation subquandle of S4 in
luding (1234).5.2 Representations of knot quandlesConsider the 
onjugation quandle of the fundamental group �1(S3 �K) of the
omplement of a knot K . The redu
ed knot quandle Q̂(K) is its subquandlegenerated by meridians of K . A knot quandle20 Q(K) is a quandle generatedby meridians of K (for its pre
ise de�nition, see [Joy82℄) whi
h is almost equalto Q̂(K); to be pre
ise, there is a surje
tive (almost, bije
tive) homomorphismQ(K)! Q̂(K).Homomorphisms to a �xed group/quandle are often 
alled representations. Itwas said, before quantum invariants were dis
overed, that to 
ount the numbersof representations of knot groups to a �xed �nite group was a most powerfulmethod to distinguish two given knots. The following problem is a re�nementof it. A motivation is to 
onstru
t a methodology to 
ount the number ofrepresentations of a knot quandle to a �xed quandle of �nite order.Problem 5.2 Des
ribe (the number of) representations of a knot quandle to a�xed 
onne
ted quandle of �nite order, say, by using knot invariants known sofar, or by redu
ing the problem to the 
ase of smaller target quandles.Remark Sin
e a knot quandle is 
onne
ted, the image of a representation toa quandle X is in
luded in an orbit of X , whi
h forms a subquandle of X .Hen
e, the number of representations to X is equal to the sum of the numbersof representations to the quandles whi
h are obtained as orbits of X . Repeatingthis pro
edure, the number of representations to X 
an be presented by thesum of the numbers of representations to 
ertain 
onne
ted quandles. Hen
e,it is suÆ
ient to 
onsider this problem when a target quandle is 
onne
ted.21Remark The problem to 
ount the number of representations of a knot groupto a �xed �nite group 
an be redu
ed to Problem 5.2. Be
ause it is equal tothe number of representations of a knot quandle to the 
onjugation quandle ofthe group, and the problem to 
ount it 
an be redu
ed to Problem 5.2 by theabove remark.20Knot quandle was introdu
ed by Joy
e [Joy82℄ and independently by Matveev [Mat82℄;see [FeRo92℄ for an exposition.21This argument is not available for the link 
ase, sin
e a link quandle is not 
onne
ted.Geometry & Topology Monographs, Volume X (20XX)



88 Edited by T. OhtsukiRemark The number of representations of a knot quandle to an Alexanderquandle 
an be presented by using the ith Alexander polynomials of the knot[Ino01℄. In parti
ular, the number of representations to a dihedral quandle 
anbe obtained as its 
orollary.Remark Let X be a 
onne
ted �nite quandle, and let hX(K) denote the num-ber of representations of the knot quandle of a knot K to X . Then, hX ismultipli
ative with respe
t to 
onne
ted sum of knots. It is known (see, for ex-ample, [Oht02℄) that any Q -valued Vassiliev invariant is equal to a polynomialin some primitive Vassiliev invariants, where primitive Vassiliev invariants areadditive with respe
t to 
onne
ted sum of knots. Hen
e, hX is not a Vassilievinvariant, unless it is 
onstant. (See also [Alt96℄ for another proof.)Conje
ture 5.3 Let hX be as above. Then, log hX is not a Vassiliev invariant,unless it is 
onstant.5.3 (Co)homology of quandlesSe
ond 
ohomology 
lasses of a quandle are used in order to de�ne quandle
o
y
le invariants of knots. They are introdu
ed as follows. Let A be an abeliangroup, written additively, and let Cn(X;A) be the abelian group 
onsisting ofmaps Xn ! A, where Xn denotes the dire
t produ
t of n 
opies of X . WeputC1Q(X;A) = C1(X;A);C2Q(X;A) = ff 2 C2(X;A) j f(x; x) = 0 for any x 2 Xg;C3Q(X;A) = fg 2 C3(X;A) j g(x; x; y) = 0 and g(x; y; y) = 0 for any x; y 2 Xg:The 
oboundary operators di : CiQ(X;A)! Ci+1Q (X;A) are given byd1f(x; y) = f(x)� f(x � y);d2g(x; y; z) = g(x; z) � g(x; y) � g(x � y; z) + g(x � z; y � z);for f 2 C1Q(X;A) and g 2 C2Q(X;A). We de�ne the se
ond quandle 
ohomol-ogy group by H2Q(X;A) = (kernel d2)=(image d1). It is known that H2Q(X;A)is isomorphi
 to Hom�HQ2 (X);A� by the universal 
oeÆ
ient theorem, notingthat HQ1 (X) is free abelian (see [CJKS01b℄). Here, HQ2 (X) denotes the se
-ond homology group of the dual 
omplex of fC?Q(X;Z); d?g. See [CJKS01b℄for the de�nition of the nth quandle (
o)homology group. Therefore, to obtainH2Q(X;A) for any A, it is suÆ
ient to 
ompute HQ2 (X).Geometry & Topology Monographs, Volume X (20XX)
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Conne
ted quandle X Order HQ2 (X) HQ3 (X)R3 3 0 Z=3ZZ[t�1℄=(2; t2 + t+ 1) 4 Z=2Z Z=2Z�Z=4ZR5 5 0 Z=5ZZ[t�1℄=(5; t� 2) 0 0R7 0 Z=7ZZ[t�1℄=(7; t� 2) 7 0 0Z[t�1℄=(7; t� 3) 0 0Z[t�1℄=(2; t3 + t+ 1) 8 0 Z=2ZR9 0 Z=9ZZ[t�1℄=(9; t� 2) 0 Z=3ZZ[t�1℄=(3; t2 + 1) 9 Z=3Z (Z=3Z)3Z[t�1℄=(3; t2 � t+ 1) Z=3Z Z=3Z�Z=9ZZ[t�1℄=(3; t2 + t� 1) 0 0Z[t�1℄=(p; t� a) p 0for any prime p and any a 6= 0; 1 2 Z=pZTable 5: The 
ohomologies of the quandles, ex
ept for the last one, in the table aredue to [LiNe01℄. From a table in [LiNe01℄ we omit one of two dual quandles andquandles that are not 
onne
ted (see remarks on Problem 5.6). The 2nd homology ofZ[t�1℄=(p; t�a) is due to [Mo
01℄. See [LiNe01, Mo
01℄ for 
omputations of 
ohomologygroups of some more quandles.

Geometry & Topology Monographs, Volume X (20XX)



90 Edited by T. OhtsukiProblem 5.4 Compute HQ2 (X) for ea
h 
onne
ted quandle X . More generally,�nd a 
onvenient methodology to 
ompute quandle (
o)homology groups.See Table 5 for some quandle homology groups given in [LiNe01℄; see also[Mo
01℄ for 
omputations of quandle 
ohomology groups of many Alexanderquandles. There are maple programs [JeSa℄ for 
omputing quandle 
ohomologygroups.Remark We 
onsider only 
onne
ted quandles in this problem, sin
e 
ompu-tations of quandle 
o
y
le invariants of knots 
an be redu
ed to the 
ases of
onne
ted quandles (see a remark on Problem 5.6).Remark Ra
k (
o)homology groups (see [CJKS01b℄) of X are isomorphi
 to(
o)homology groups of the ra
k spa
e (see [FRS95℄) of X , whi
h 
an be givenby a 
ell 
omplex whose n-
ells 
orrespond to Xn and whose (
o)boundaryoperator 
orresponds to the (
o)boundary operator of the quandle (
o)homologygroups. Quandle (
o)homology groups of a quandle X are isomorphi
 to the(
o)homology groups of the quandle spa
e of X (a subspa
e of the ra
k spa
eof X ). The ra
k spa
e and the quandle spa
e are 
lassifying spa
es of X in
ertain senses.Problem 5.5 (J. S. Carter) Compute HQi (Smn ) of Smn whi
h denotes thequandle of the nth symmetri
 group with the binary operation given by x�y =y�mxym .5.4 Quandle 
o
y
le invariantThe quandle 
o
y
le invariant, introdu
ed in [CJKLS99, CJKLS99℄, is de�nedas follows. For � 2 H2(X;A) we 
hoose a 2-
o
y
le � representing �. Anyrepresentation of a knot quandle Q(K) to X is presented by a 
oloring of aknot diagram of K , where a 
oloring of an oriented knot diagram is a map ofthe set of over-ar
s of it to X satisfying the 
ondition depi
ted in the pi
turesof (35) at ea
h 
rossing of the knot diagram. We de�ne the weight of a 
rossingof a 
olored diagram byW� x x�yy � = �(x; y) 2 A; W� yx x�y � = �(x; y)�1 2 A;(35)Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 91where we write A multipli
atively here. The quandle 
o
y
le invariant of aknot K is de�ned by ��(K) =XC Y� W (�; C) 2 Z[A℄;where the sum runs over all 
oloring C of a diagram of K , and the produ
truns over all 
rossing � of the diagram, and Z[A℄ denotes the group ring of A.��(K) only depends on K and �.Problem 5.6 Compute the quandle 
o
y
le invariant ��(K) of ea
h knot Kfor a se
ond 
ohomology 
lass � of a 
onne
ted quandle.Remark When X = R4 (whi
h is not 
onne
ted), it is shown as follows (seealso [CJKS01a℄ for numeri
al 
omputation) that ��(K) = 4 for any K and �,though R4 has non-trivial 
ohomology groups sin
e HQ2 (R4) = Z2� (Z=2Z)2.The quandle R4 has two orbits, whi
h form subquandles isomorphi
 to T2 ,where Tn denotes the trivial quandle (i.e., x � y = x for any x; y) of order n.Further, T2 has two orbits, whi
h form subquandles isomorphi
 to T1 . Sin
eQ(K) is 
onne
ted, any representation of Q(K) to R4 is trivial (i.e., a 
onstantmap). Hen
e, any 
oloring is trivial (i.e., 
olored by a single element of X ).Sin
e �(x; x) = 0 for any 2-
o
y
le �, ��(K) = 4 by de�nition.When X = Z[t�1℄=(9; t � 4) (whi
h is not 
onne
ted), it follows from a similarargument (see also [CJKS01a℄ for numeri
al 
omputation) that ��(K) = 9 forany K and �, noting that this X has three orbits, whi
h form subquandlesisomorphi
 to T3 .In general, let X1;X2; � � � be the orbits of X . These form subquandles of X .We denote by ik : Xk ! X the in
lusions. Then, it follows from a similarargument as above that ��(K) =Pk �i?k�(K). Repeating this pro
edure, the
omputations of ��(K) of a knot K 
an be redu
ed to those for 
onne
tedquandles.22Remark The 
ohomology group H2Q(X ;A) of the dual quandle X of a quandleX is isomorphi
 to H2Q(X;A) by an isomorphism taking a 2-
o
y
le � to �where �(x; y) = �(x � y; y). It follows that ��(K) = ��(K), where K de-notes the mirror image of K . Therefore, the 
omputations of quandle 
o
y
leinvariants for X 
an be redu
ed to those for X .22This argument is not available for the link 
ase, sin
e a link quandle is not 
onne
ted.Geometry & Topology Monographs, Volume X (20XX)



92 Edited by T. OhtsukiRemark When � = 0, by de�nition ��(K) is equal to the number of represen-tations Q(K)! X . In parti
ular, when X is an Alexander quandle, it 
an bepresented by using the ith Alexander polynomials, as mentioned in a remarkof Problem 5.2.Remark ([CJKS01a℄) When X = Z[t�1℄=(2; t2+ t+1), H2Q(X;Z=2Z) = Z=2Z.For its non-trivial 
ohomology 
lass �,
��(K) = 8>>>>>>>>><>>>>>>>>>:

4(1 + 3u) for K = 31; 41; 72; 73; 81; 84; 811; 813, and9 
ertain knots with 9 
rossings;16(1 + 3u) for K = 818; 940,16 for K = 85; 810; 815, 819{821, and16 
ertain knots with 9 
rossings;4 for the other knots K with at most 9 
rossings;where u denotes the generator of Z=2Z. See [CJKS01a℄ for details.When X = Z[t�1℄=(3; t2 + 1), H2Q(X;Z=3Z) = Z=3Z. For a non-trivial 
oho-mology 
lass � of it,��(K) = 8>>>>>><>>>>>>:9(1 + 4u+ 4u2) if K = 41; 52; 83; 817; 818; 821, and9 
ertain knots with 9 
rossings;27(11 + 8u+ 8u2) if K = 940,81 if K = 63; 82; 819; 824; 912; 913; 946,9 for the other knots K with at most 9 
rossings;where u denotes a generator of Z=3Z. See [CJKS01a℄ for details.Remark It is known, see [CENS01℄, that ea
h � 2 H2Q(X;A) gives an abelianextension A ! Y p! X , where Y = A � X , whi
h forms a quandle with thebinary operation given by (a1; x1) � (a2; x2) = �a1 + �(x1; x2); x1 � x2� using a2-
o
y
le � representing �, and p denotes the natural proje
tion.Let a1; a2; � � � ; aN be a sequen
e of generators of Q(K) asso
iated with overpaths of a diagram of K whi
h are 
hosen as going around K . Adja
entgenerators a1 and a2 are related by a1 � b = a2 (or a1 = a2 � b) for somegenerator b. Let g�(b) be a pre-image of �(b) under the proje
tion p. Then,Sg�(b) (resp. S�1g�(b) ) indu
es a map p�1(a1)! p�1(a2), whi
h does not depend onthe 
hoi
e of a pre-image of �(b). Composing su
h maps, we have a sequen
e ofmaps p�1(a1) ! p�1(a2) ! � � � ! p�1(aN ) ! p�1(a1). The 
omposite map ofGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 93these maps 
an be expressed a 7! a+m(�) (a 2 A) for some m(�) 2 A. Then,the quandle 
o
y
le invariant 
an be presented by ��(K) = P�m(�) 2 Z[A℄,where the sum runs over all representations � of Q(K) to X .In parti
ular, as shown in [CENS01℄, the number of representations Q(K)! Xthat 
an lift to representations Q(K) ! Y is equal to the 
oeÆ
ient of theunit of A in ��(K). For example, when A = Z=2Z, it follows that, writing��(K) = a+ bt (where t is the generator of Z=2Z), a is equal to the numberof representations Q(K)! X that 
an lift to representations Q(K)! Y , andb is equal to the number of those that do not.In this way we 
an 
ompute ��(K) in terms of the abelian extension asso
iatedto �.Problem 5.7 Find relations between quandle 
o
y
le invariants and knot in-variants known so far, su
h as quantum invariants.Remark When � = 0 and X is an Alexander quandle, ��(K) 
an be presentedby using the ith Alexander polynomial, as mentioned in a remark of Problem5.6.Remark (M. Gra~na) The quandle 
o
y
le invariants 
an be presented by knotinvariants derived from 
ertain ribbon 
ategories [Gra02a℄.A 
entral extension of a group G gives an abelian extension of the 
onjugationquandle of G. It is known that an abelian extension of a group G 
an be
hara
terized by the 
ohomology group H2(G;A) for a G-module A. Motivatedby this 
ohomology group we introdu
e H2Q(X;A) of a quandle X for an \X -module" A as follows. We 
all an abelian group A an X -module of a quandleX if there is a map � : X ! Aut(A) satisfying that �(x � y) = �(y)�1�(x)�(y)for any x; y 2 X . For simpli
ity, we often write �(x)�1a as x�1a omitting �.Let CiQ(X;A) be as before. We give the 
oboundary operators byd1f(x; y) = y�1�f(x) + xf(y)� f(y)�� f(x � y);d2g(x; y; z) = (y � z)�1g(x; z) � z�1g(x; y) + (y � z)�1�(x � z)� 1�g(y; z)� g(x � y; z) + g(x � z; y � z);for f 2 C1Q(X;A) and g 2 C2Q(X;A). We de�ne the se
ond quandle 
ohomol-ogy group by H2Q(X;A) = (kernel d2)=(image d1).Geometry & Topology Monographs, Volume X (20XX)



94 Edited by T. OhtsukiProblem 5.8 Compute H2Q(X;A) for ea
h X -module A.Remark This 
ohomology group might be isomorphi
 to the 
ohomology groupof a quandle spa
e of X (see a remark on Problem 5.4) with 
oeÆ
ients in thelo
al system 
orresponding to the X -module A.For an X -module A, ea
h � 2 H2Q(X;A) gives an extension A ! Y ! X ,where Y = A�X , whi
h forms a quandle with the binary operation given by(a1; x1) � (a2; x2) = �x�12 (a1 + x1a2 � a2) + �(x1; x2); x1 � x2� using a 2-
o
y
le� representing �.Problem 5.9 Let the notation be as above. Then, extending the de�nition ofthe quandle 
o
y
le invariant, de�ne a knot invariant asso
iated with �, whi
his, roughly speaking, an invariant obtained by 
ounting representations of aknot quandle Q(K) to X with information whether ea
h representation 
anlift to a representation Q(K)! Y .5.5 Other problemProblem 5.10 (M. Polyak) De�ne a quantum quandle.Remark A quantum group is a quantization of a group, in the sense that it 
anbe regarded as a non-
ommutative perturbation of a (
ertain) fun
tion algebraon a group. It is a problem to formulate an appropriate quantization of aquandle.

Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 956 Braid group representationsFor n = 1; 2; : : : , the braid group Bn is the group generated by �1; : : : ; �n�1modulo the relations:� �i�j = �j�i if ji� jj > 1,� �i�j�i = �j�i�j if ji� jj = 1.6.1 The Temperley-Lieb algebraFor � 2 C , the Temperley-Lieb algebra TLn(�) is the asso
iative C -algebragenerated by 1; e1; : : : ; en�1 modulo the relations:� eiej = ejei if ji� jj > 1,� eiejei = ei if ji� jj = 1,� eiei = �ei .We will simply write TLn , where � is understood. There is a map from Bn toTLn given by �i 7�! A+A�1ei;��1i 7�! A�1 +Aei;where A 2 C is su
h that � = �A2 �A�2 .These de�nitions 
an be motivated in terms of tangle diagrams in R� I . Theseare similar to knot diagrams, ex
ept that they 
an in
lude ar
s with endpointson R � f0; 1g. Two tangles are 
onsidered the same if they are related by asequen
e of isotopies and Reidemeister moves of the se
ond and third type. Thegenerators of Bn and TLn 
an be de�ned to be the tangle diagrams suggestedby Figure 17. The ar
s of these diagrams have endpointsf1; 2; : : : ; ng � f0; 1g:The produ
t ab of two su
h diagrams a and b is obtained by pla
ing a on topof b and then shrinking the result verti
ally to the required height. The thirdrelation in the Temperley-Lieb algebra allows one to delete a 
losed loop at theexpense of multiplying by � . Using these de�nitions, the map from Bn to TLnis given by resolving all 
rossings using the Kau�man skein relation.Chapter 6 was written by S. J. Bigelow.Geometry & Topology Monographs, Volume X (20XX)



96 Edited by T. Ohtsuki
Figure 17: The generator �3 of B5 (the left pi
ture) and the generator e3 of TL5 (theright pi
ture).Problem 6.1 ([Jon00, Problem 3℄) Is the representation of the braid groupinside the Temperley-Lieb algebra faithful?Remark We are mostly interested in the 
ase � is a trans
endental. The answeris yes for n � 3, and unknown for all other values of n.The Jones polynomial of the 
losure of a braid � is a 
ertain tra
e fun
tion ofthe image of � inside the Temperley-Lieb algebra. If � 2 Bn n f1g maps to theidentity in TLn , and 
 2 Bn is any braid whose 
losure is the unknot, then the
losure of �
 would have Jones polynomial one. It should be easy to arrangefor this to be a non-trivial knot. Thus a negative answer to Problem 6.1 wouldalmost 
ertainly lead to a solution to Problem 1.1.6.2 The Burau representationFor k = 0; 1; : : : ; bn2 
, let V nn�2k be the ve
tor spa
e spanned by tangle diagramsin R � I with no 
rossings and endpointsf(1; 0); (2; 0); : : : ; (n� 2k; 0)g [ f(1; 1); (2; 1); : : : ; (n; 1)gmodulo the relations:� a tangle is zero if it 
ontains an edge with both endpoints on R � f0g,� a 
losed loop may be removed at the expense of multiplying by � .Let TLn a
t on V nn�2k by sta
king tangle diagrams in the usual way. For generi
values of � , TLn is semisimple and these are its irredu
ible representations.We obtain irredu
ible representations of Bn by taking its indu
ed a
tion onV nn�2k . By a result of Long [Lon86℄, the representation of Bn inside TLn isfaithful if and only if ea
h of these irredu
ible representations is faithful. Notethat the a
tion of Bn on the one-dimensional spa
e V nn is never faithful forn > 2. Also if n > 2 is even then the a
tion of Bn on V n0 is easily shown to beunfaithful. The a
tion of Bn on V nn�2 is the famous Burau representation.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 97Problem 6.2 Is the Burau representation of B4 faithful?Remark The Burau representation of Bn is known to be faithful for n � 3 andnot faithful for n � 5 [Big99℄.The representation of B4 in TL4 is faithful if and only if the Burau represen-tation of B4 is faithful.Remark The Burau representation of B4 is faithful if and only if a 
ertain pairof three-by-three matri
es generate a free group. The matri
es given in [Bir74℄
ontain a misprint, but their des
ription as words in the generators is 
orre
t.The Burau representation of B4 is faithful if and only if a 
ertain interse
tionpairing dete
ts interse
tion of ar
s in the four-times pun
tured disk [Big99℄.Cooper and Long have expli
itly 
al
ulated the kernel of the Burau represen-tation modulo the primes 2, 3 and 5 [CoLo98℄.Problem 6.3 (S.J. Bigelow) Is the a
tion of B6 on V 62 faithful?Remark The Burau representation of B6 is unfaithful [LoPa93℄. Thus therepresentation of B6 in TL6 is faithful if and only if the a
tion of B6 on V 62 isfaithful.No approa
h to this problem is known ex
ept for a brute for
e 
omputer sear
h.However su
h a sear
h might �nd an example more easily than any of the moresubtle approa
hes to the Burau representation of B4 .Remark We 
ould also ask whether the a
tion of B5 on V 51 is faithful. A
omputer sear
h of this representation would be easier be
ause the matri
esinvolved are smaller (�ve-by-�ve instead of nine-by-nine). On the other hand,this representation is more likely to be faithful, sin
e if the representation ofB6 in TL6 is faithful then so is the representation of B5 in TL5 .6.3 The He
ke and BMW algebrasWe now introdu
e two algebras whi
h 
an be de�ned in a similar way to theTemperley-Lieb algebra. The He
ke algebra is the set of formal linear 
ombina-tions of braids modulo the relation:A �A�1 = (A2 �A�2) ;Geometry & Topology Monographs, Volume X (20XX)



98 Edited by T. Ohtsukiwhere A 2 C . The BMW algebra is the set of formal linear 
ombinations oftangles whose edges have endpoints f1; 2; : : : ; ng�f0; 1g, modulo the relations:+ = m0B� + 1CA= l ;where m; l 2 C . See [Mur87℄ and [BiWe89℄ for an analysis of the BMW algebra.The Temperley-Lieb algebra 
an be embedded into the He
ke algebra, whi
h inturn 
an be embedded into the BMW algebra.These algebras are semisimple for generi
 values of their parameters. The irre-du
ible representations of the BMW algebra 
orrespond to partitions of n� 2kfor k = 0; 1; : : : ; bn2 
. The irredu
ible representations of the He
ke algebra 
orre-spond to partitions of n. The irredu
ible representations of the Temperley-Liebalgebra 
orrespond to partitions of n into two parts.Lawren
e [Law96℄ has used a topologi
al 
onstru
tion to obtain the irredu
iblerepresentations of the He
ke algebra. The 
onstru
tion uses the de�nition ofthe braid group as the mapping 
lass group of a pun
tured disk to obtain ana
tion on the homology of a related spa
e.Problem 6.4 (S.J. Bigelow) Generalise Lawren
e's 
onstru
tion to obtainthe irredu
ible representations of the BMW algebra.Remark Zinno [Zin01℄ has shown how to obtain the representation of the BMWalgebra 
orresponding to the partition of n� 2 into one part.Problem 6.5 (S.J. Bigelow) Find a larger family of irredu
ible representa-tions of Bn whi
h in
ludes those 
oming from the BMW algebra.Remark This might be de�ned using tangles and some more 
ompli
ated rela-tions, or by generalising Lawren
e's approa
h.6.4 Other problemsProblem 6.6 Classify all irredu
ible representations of Bn .Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 99Remark This is probably impossibly hard. However it seems that interest-ing partial results are possible. Formanek [For96℄ has 
lassi�ed all irredu
ible
omplex representations of Bn having degree at most n� 1.Problem 6.7 (S.J. Bigelow) Is there a faithful representation of Bn into agroup of matri
es over �Q ?Remark There is a faithful representation of B3 into GL(2;Z). The problemis open for all n � 4.There is a faithful representation of Bn into a group of matri
es over Z[q�1; t�1℄.Krammer's proof of this fa
t [Kra02℄ works when t is assigned any value between0 and 1. However it is not known whether there is an algebrai
 value of q forwhi
h the representation remains faithful.
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100 Edited by T. Ohtsuki7 Quantum and perturbative invariants of 3-manifolds7.1 Quantum invariantsWitten [Wit89℄ proposed that, for a semi-simple 
ompa
t Lie group G and apositive integer k , a topologi
al invariant of a 
losed oriented 3-manifold M isgiven by the path integralZGk (M) = Z e2�p�1kCS(A)DA; (36)whi
h is a formal integral over gauge equivalen
e 
lasses of 
onne
tions A onthe trivial G bundle on M . Here, the Chern-Simons fun
tional CS : A ! R isde�ned by CS(A) = 18�2 ZM tra
e(A ^ dA+ 23A ^A ^A); (37)for a 
onne
tion A, regarding it as a g-valued 1-form on M , where g denotesthe Lie algebra of G.This invariant had been re
onstru
ted in mathemati
ally rigorous ways, �rst byReshetikhin and Turaev [ReTu91℄, and by many resear
hers; we denote it by thequantum G invariant �Gr (M) putting r = k+h_ with the dual Coxeter numberh_ of g. For example, when M is obtained from S3 by integral surgery alonga framed knot K with a positive framing, �SU(2)r (M) for r � 3 and �SO(3)r (M)for odd r � 3 are given by�SU(2)r (M) = � r�1Xn=1[n℄Qsl2;Vn(U+)��1 r�1Xn=1[n℄Qsl2;Vn(K)���q=exp(2�p�1=r);�SO(3)r (M) = � X0<n<rr is odd[n℄Qsl2;Vn(U+)��1 X0<n<rr is odd[n℄Qsl2;Vn(K)���q=exp(2�p�1=r);where [n℄ = (qn=2 � q�n=2)=(q1=2 � q�1=2), and U+ denotes the trivial knotwith +1 framing, and Qsl2;Vn(K) denotes the quantum invariant of K asso
i-ated with the irredu
ible n-dimensional representation of the quantum groupUq(sl2); for details see [KiMe91℄ (see also [Oht02℄ for the notation). It is known[KiMe91℄ that�SU(2)r (M) = (�SU(2)3 (M)�SO(3)r (M) if r � 3 mod 4;�SU(2)3 (M)�SO(3)r (M) if r � 1 mod 4;where �SU(2)3 (M) is an invariant determined by the 
ohomology ring and thelinking pairing of M , whi
h is equal to zero for some M (see (38)). For detailson quantum G invariants, see e.g. [Oht02℄ and referen
es therein.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 101Problem 7.1 (see [Kir97, Problem 3.108℄) Does there exist a 
losed 3-manifold M , other than S3 , su
h that �SO(3)r (M) = �SO(3)r (S3) for all oddr � 3?Remark (see [Kir97, Remark on Problem 3.108℄) Suppose that �SO(3)r (M) =�SO(3)r (S3) for a 
losed 3-manifold M and all odd r � 3. If the Betti numberof M was positive, �SO(3)r (M) is divisible by q � 1. Hen
e, M is a rationalhomology 3-sphere. We have that �SO(3)(M) = �SO(3)(S3). Sin
e the leadingtwo 
oeÆ
ients of �SO(3)(M) are given by the order of the �rst homology groupand Casson invariant of M , M is an integral homology 3-sphere with Cassoninvariant zero.Note that �SO(3)r �L(65; 8)� = �SO(3)r �L(65; 18)� for all odd r � 3; see [Yam95℄.Remark There is a 
enter in the mapping 
lass group of the 
losed surfa
e ofgenus 2, shown below.
A mutation of a 3-manifold M is de�ned to be a 3-manifold obtained from Mby 
utting along a separating 
losed surfa
e of genus 2 in M and by gluingagain after twisting by the above map. It is shown in [Kaw94℄ that �SO(3)r (M)does not depend on a 
hange by any mutation of M .Problem 7.2 (S. K. Hansen, T. Takata) Find pairs of non-homeomorphi
rational homology 3-spheres that 
an be distinguished by their quantum Ginvariants �Gr or their quantum PG invariants �PGr for some level r and somesimply 
onne
ted 
ompa
t simple Lie group G but not by their LMO invariants.Remark (S. K. Hansen, T. Takata) For example, the LMO invariants of the lensspa
es L(25; 4) and L(25; 9) are equal ([BaLa00℄), but their quantum SU(2)invariants for r = 5 are not equal.Problem 7.3 (S. K. Hansen, T. Takata) Do the family of quantum G in-variants �Gr or the family of quantum PG invariants �PGr , G running throughall simply 
onne
ted 
ompa
t simple Lie groups and r running through all al-lowed levels, separate rational homology 3-spheres? How well do these familiesof invariants separate 
losed oriented 3-manifolds?Geometry & Topology Monographs, Volume X (20XX)



102 Edited by T. OhtsukiRemark (S. K. Hansen, T. Takata) It is well known that the LMO invariantis a weak invariant outside the 
lass of rational homology 3-spheres; see thelast remark on Problem 11.1. On the 
ontrary there are 3-manifolds witharbitrary high �rst Betti number and non-trivial quantum SU(2) invariants asthe example of Seifert manifolds shows. We note that the non-triviality of theinvariants of Seifert manifolds e.g. follows from the fa
t that these invariantshave non-trivial asymptoti
 expansion in the limit of large quantum level; see[Roz97℄, [Han99℄, and Se
tion 7.2. It is likely to believe, e.g. from the asymptoti
expansion 
onje
ture of Andersen, see Conje
ture 7.7, that the quantum Ginvariants are quite strong invariants also outside the 
lass of rational homology3-spheres. It is known, however, that the family of quantum SU(n) invariants,n running through all integers > 1, is not a 
omplete invariant, that is to saythat this family of invariants 
an not separate all 
losed oriented 3-manifolds,
f. [Li
97b℄. It is still an open question if this is also the 
ase if we in
ludethe quantum invariants for all the other simply 
onne
ted 
ompa
t simple Liegroups.Problem 7.4 Find a 3-dimensional topologi
al interpretation of quantum in-variants of 3-manifolds.Remark Certain spe
ial values have some interpretations. For a 
losed oriented3-manifold M ,�SU(2)3 (M) = (0 if there exists � 2 H1(M ;Z=2Z) with �3 6= 0,p2rankH1(M ;Z=2Z)e��(M)�p�1=4 otherwise, (38)where �(M) denotes the Brown invariant. Further, for a 
losed oriented 3-manifold M , �SU(2)4 (M) =X� e��(M;�)�3�p�1=8;where the sum runs over all spin stru
tures � of M and �(M;�) denotes theRohlin invariant of a spin stru
ture � of M . For details, see [KiMe91℄.It is known [Mur95℄ that, for any rational homology 3-sphere M and any primep > jH1(M ;Z)j,jH1(M ;Z)j � �SO(3)p (M) � � jH1(M ;Z)jp ��1 + 6�(M)(� � 1)�mod (� � 1)2 in Z[�℄, putting � = e2�p�1=p , where �(M) denotes the Casson-Walker invariant of M and � �p� denotes the Legendre symbol.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 103Remark The Chern-Simons path integral (36) by Witten [Wit89℄ gives a 3-dimensional physi
al interpretation of a quantum invariant of 3-manifolds. His-tori
ally speaking, the quantum invariants of 3-manifolds were introdu
ed, mo-tivated by Witten's Chern-Simons path integral.Conje
ture 7.5 ([GP98℄) For non-vanishing �Gr (M), the absolute valuej�Gr (M)j only depends on the fundamental group �1(M).7.2 The asymptoti
 expansion 
onje
tureThe perturbative expansion of the Chern-Simons path integral (36) is given bythe semi-
lassi
al approximation and its higher loop perturbations. Roughlyspeaking, the semi-
lassi
al approximation is obtained from the path integralby ignoring the 
ontribution from the third order term of the Chern-Simonsfun
tional, and the higher loop perturbation 
ontributions are the 
orre
tionsto this semi-
lassi
al 
ontribution.To the best of our knowledge, there is today, no 
omplete perturbative treatmentof the Chern-Simons quantum �eld theory available, even from a mathemati
alphysi
s point of view. In the following few paragraphs we shall try to outlinethe main a
tivities seen so far in this dire
tion.The the �rst formula for the semi-
lassi
al approximation of the Chern-Simonspath integral was given by Witten in [Wit89℄, des
ribing it as a sum of 
ontri-butions, one for ea
h gauge equivalen
e 
lasses of 
at 
onne
tion, involving theChern-Simons value, the Reidemeister torsion and a 
ertain spe
tral 
ow forea
h su
h gauge equivalen
e 
lass. To test this predi
tion, Freed and Gompf[FrGo91℄ made for 
ertain Seifert �bered manifolds some 
omputer studies ofthe large k behavior of ZSU(2)k (M) and based on these 
al
ulations and fur-ther dis
ussion of the semi-
lassi
al approximation of the path integral, theyproposed the following formula for the semi-
lassi
al approximation (r = k+2)ZSU(2)k (M) �r!1e�3�p�1(1+b1(M))=4�X[A℄ e2�p�1rCS(A)r(h1A�h0A)=2e�2�p�1(IA=4+h0A=8)�M (A)1=2;The �rst version of Se
tion 7.2 was written by T. Ohtsuki, following seminar talks givenby J.E. Andersen. Based on it, J.E. Andersen wrote this se
tion.Geometry & Topology Monographs, Volume X (20XX)



104 Edited by T. Ohtsukiwhere the sum is over the gauge equivalen
e 
lasses of 
at 
onne
tions A. Letus explain the quantities involved in this expression and in whi
h 
ases one 
anmake sense of this expression as it stands.For any 
at 
onne
tion A, we have the 
ohomology groups Hi(M;dA) of the
ovariant derivative 
omplex dA : 
?(M ; g) ! 
?+1(M ; g) given by dAf =df + [A; f ℄, and hiA is the dimension of Hi(M;dA). Further asso
iated to this
omplex we have the Reidemeister torsion �M(A) 2 
i�detHi(M;dA)�(�1)i �=�detH0(M;dA) 
 �detH1(M;dA)���2 (by Poin
ar�e duality). If one now as-sumes that all the gauge equivalen
e 
lasses of 
at 
onne
tions A are isolated,in fa
t Freed and Gompf assumed H1(M;dA) = 0, so that the above sum is�nite and su
h that the square root of the Reidemeister torsion �M (A)1=2 isa well-de�ned number (on
e a volume on H0(M;dA) has been �xed, but forirredu
ible 
onne
tions H0(M;dA) = 0).The quantity IA 2 Z=8Zdenotes the spe
tral 
ow of the operator �?dAt �dAt?dAt? 0 �on 
1(M ; g) 
 
3(M ; g), where At is a path of 
onne
tions running from thetrivial 
onne
tion to A. They also looked at some examples where H1(M;dA) 6=0 and 
he
ked the overall growth predi
ted by the above formula.Following this Je�rey [Jef92℄ proposed the following more general interpretationof the square root of Reidemeister torsion in the 
ases where the 
onne
tionsare not isolated: Assume that the moduli spa
e of 
at 
onne
tions M on M issmooth and that the tangent spa
e at ea
h equivalen
e 
lass of 
at 
onne
tionA equals H1(M;dA). Sin
e H0(M;dA) � g the invariant inner produ
t we have
hosen on g indu
es a volume element on H0(M;dA). In total this means thatthe square root of the Reidemeister torsion indu
es a measure on the modulispa
e when we pair it with the indu
ed volume element on H0(M;dA) dividedby the order of the 
enter of G and one arrives at (r = k + h_ )ZGk (M) �r!1e��p�1(dim G)(1+b1(M))=4� Z[A℄2M e2�p�1rCS(A)r(h1A�h0A)=2e�2�p�1(IA=4+(h0A+h1A)=8)�M (A)1=2:For some mapping tori of genus 1 surfa
es and lens spa
es, Je�rey veri�ed thisform of the semi-
lassi
al approximation. Garoufalidis [Gar92℄ independentlyproved the semi-
lassi
al approximation for lens spa
es and studied in vari-ous examples the growth rate predi
ted by these approximations. Rozansky[Roz95a℄ proposed a further re�ned version of the above semi-
lassi
al approxi-mation, and o�ered 
al
ulations for a very large 
lass of Seifert �bered manifoldsGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 105as eviden
e. He proposed to divide the volume element on H0(M;dA) by thevolume of the stabilizer of A, and to use the resulting quantity paired with thesquare root of the Reidemeister torsion as the measure on M (generalizing thedivision by the order of the 
enter above). This gave a natural explanation offa
tors not a

ounted for in both the work of Freed and Gompf and the work ofJe�rey. He also proposed 
orre
tions to the formula for the growth rate of theinvariant (i.e. the power of r in the above), in 
ases where not all dire
tions inH1(M;dA) are tangent to paths of 
at 
onne
tions (see [Roz95a℄ and [Roz95b℄).Axelrod and Singer [AxSi92, AxSi94℄ (see also [Kon94℄) 
onsidered the higherloop 
ontributions in the perturbation expansion and proposed the following:ZGk (M) �k!1 Z[A℄2M� semi-
lassi
alapproximation ��exp0� 1Xl=1 
lk�l(2l)!(3l)! Xe(�)=�lZ�(M;A)jAut(�)j 1A ;(39)for some s
alar 
, where the right sum runs over 
onne
ted trivalent graphs �whose Euler number is equal to �l , and jAut(�)j denotes the order of the groupof automorphisms of �. Further, in the 
ase where A is a
y
li
 or when A 2Mis 
ontained in a smooth 
omponent, Axelrod and Singer was able to 
onstru
tZ�(M;A) as a topologi
al invariant of (M;A); roughly speaking, it is given asfollows in the a
y
li
 
ase. We identify the set of 
onne
tion around A with
1(M; g). The se
ond order part of the Chern-Simons fun
tional gives a bilinearform on 
1(M; g)
2 , and it determines a 2-form L 2 
2(M �M; g
 g) and its\inverse". Further, the third order part of the Chern-Simons fun
tional gives atrilinear form T on 
1(M; g)
3 . We obtain Z�(M;A) by 
ontra
ting L
(3l) byT
(2l) \along the trivalent graph �" (roughly regarding L as in 
1(M; g)
2 );we determine the a
tion of T
(2l) on L
(3l) 2 
1(M; g)
(6l) by putting 
opiesof L on 3l edges of � and putting 
opies of T on 2l verti
es of �. For a pre
ise(mathemati
al) 
onstru
tion (and its topologi
al invarian
e) of Z�(M;A), see[AxSi92, AxSi94℄.From the mathemati
al viewpoint we regard ZGk (M) asZGk (M) = �Gk+h_ (M)�Gk+h_ (S1 � S2)for the quantum G invariant �Gr (M). Then, the asymptoti
 expansion ofZGk (M) is predi
ted by the semi-
lassi
al approximation and its higher loop
orre
tions stemming from a perturbative expansion of the Chern-Simons pathintegral, explained above in some 
ases. This leads us to the following somewhatvague 
onje
ture.Geometry & Topology Monographs, Volume X (20XX)



106 Edited by T. OhtsukiConje
ture 7.6 (The perturbative expansion 
onje
ture) The asymptoti
expansion of ZGk (M) of a 
losed oriented 3-manifold M is given byZGk (M) �k!1 e��p�1(dim G)(1+b1(M))=4� Z[A℄2Me2�p�1rCS(A)r(h1A�h0A)=2e�2�p�1(IA=4+(h0A+h1A)=8)�M (A)1=2� exp0� 1Xl=1 
lk�l(2l)!(3l)! Xe(�)=�lZ�(M;A)jAut(�)j 1A ;putting r = k + h_ , where the right hand side 
an be given in the mathemat-i
al viewpoint in 
ertain 
ases, as mentioned above, but whi
h needs furtherinterpretation in general.Remark The semi-
lassi
al approximation stated above (the upper two lines inthe above formula), has been 
on�rmed for lens spa
es (�rst partially [FrGo91℄)and then by [Jef92, Gar92℄, for 
ertain mapping tori of di�eomorphisms of atorus [Jef92℄, and for all �nite order mapping tori of automorphisms of any
losed orientable surfa
e of genus at least 2 [And95℄. For a large 
lass ofSeifert �bered manifolds [Roz95b℄ and [Roz97℄ o�ered 
al
ulations whi
h pro-vided eviden
e that the phases in the semi-
lassi
al approximation is given bythe Chern-Simons invariants and the measure is given by the square root of theReidemeister torsion as explained above. Also, expressions for the higher loop
orre
tions was o�ered. Later the ne
essary analyti
 estimates was provided in[Han99℄ so as to 
on�rm this. See also the dis
ussion below. For now, there areno examples of hyperboli
 manifolds, where parts of the above 
onje
ture hasbeen 
on�rmed.For other versions of Conje
ture 7.6, see [Kir97, Problem 3.108℄, [Gar98℄.The formula in Conje
ture 7.6 might not give an exa
t des
ription of the asymp-toti
 behavior of ZGk (M) even in the semi-
lassi
al part, neither is it in all 
aseswell-de�ned. Moreover, it might be diÆ
ult at present to 
al
ulate the 
on
retevalue of the higher loop 
orre
tions in the asymptoti
 expansion of Conje
ture7.6 for given M , A, and �. Nor do we have de�nitions for these terms, whi
hhas been proven to be well de�ned topologi
al invariants in all 
ases.The following 
onje
ture o�ers a kind of reverse viewpoint on Conje
ture 7.6,avoiding su
h ambiguities and diÆ
ulties.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 107Conje
ture 7.7 (The asymptoti
 expansion 
onje
ture, J.E. Andersen [And95℄)Let f
0 = 0; 
1; � � � ; 
mg be the set of values of the Chern-Simons fun
tionalof 
at G 
onne
tions on a 
losed oriented 3-manifold M . There exist dj 2 Q ,~Ij 2 Q=Z, vj 2 R+ , and aej 2 C for j = 0; 1; � � � ;m and e = 1; 2; 3; � � � su
hthat (r = k + h_ )ZGk (M) �r!1 mXj=0 e2�p�1r
jrdje�p�1~Ij=4vj�1 + 1Xe=1 aejr�e�;that is, for all E = 0; 1; 2; : : : , there exists a 
onstant 
E su
h that���ZGk (M)� mXj=0 e2�p�1r
jrdje�p�1~Ij=4vj�1 + EXe=1 aejr�e���� � 
Erd�E�1for all r = 2; 3; 4; � � � . Here, d = maxfd0; � � � ; dmg.Remark (J.E. Andersen) If su
h an expansion in the above 
onje
ture exists,then 
j , dj , ~Ij , vj , and aej are uniquely determined by ZGk+2(M) for k =0; 1; 2; 3; 4; � � � .Problem 7.8 (J.E. Andersen) If su
h an expansion exists, understand howit is related to the expansion of Ohtsuki and the expansion of Habiro.It will of 
ourse be important to establish, that an expansion of this type ex-ists, however, of far greater importan
e will be to give independent topologi
almeaning to the many resulting new invariants, e.g. to prove that the phases arethe Chern-Simons values 
j . From the dis
ussion above on the semi-
lassi
alapproximation we derive the following 
onje
ture:Conje
ture 7.9 (Topologi
al interpretations of the dj 's) Let Mj be theunion of 
omponents of the moduli spa
e of 
at 
onne
tions M whi
h hasChern-Simons value 
j . Thendj = 12 maxA2Mj(h1A � h0A);where max here means the maximum value that (h1A�h0A) assumes on a Zariskiopen subset of Mj .Note that this 
onje
ture might be rather optimisti
, and may only hold in thenon-degenerate 
ases. However, we do not know of any 
ases where it fails (see[Gar98℄).Geometry & Topology Monographs, Volume X (20XX)



108 Edited by T. OhtsukiRemark (J.E. Andersen) The spe
ial max proposed in Conje
ture 7.9 is 
er-tainly needed, as shown by the example of the mapping torus of the di�eomor-phism �Id of a torus. The quantum SU(2) invariant of this manifold is easilyseen to be r� 1, sin
e �Id is represented trivially for all levels, however, thereare 
at SU(2) 
onne
tions for whi
h (h1A � h0A) > 2.The Conje
ture 7.9 implies the following growth rate.Conje
ture 7.10 (The growth rate 
onje
ture) Let d = maxfd0; : : : ; dng:Then jZGr (M)j = O(rd):It is well known that the quantum invariants only grows like r to some power.The power is bounded from above by some simple fun
tion (depending on G)of the Heegaard genus of the manifold.Remark (J.E. Andersen)1. Suppose that M is a 
losed 3-manifold satisfying that �Gr (M) = �Gr (S3) forall r . If the growth rate 
onje
ture 7.10 is true for the group G, then there isno non-
entral representation of �1(M) to G.2. Kronheimer and Mrowka have proposed a program using Seiberg-Wittentheory and Floer homology to establish that any 3-manifold M obtained fromS3 by +1 surgery along a non-trivial knot K has a non-trivial (and thereforenon-abelian) representation of �1(M) to SU(2). Suppose that this is the 
aseand the growth rate 
onje
ture 7.10 is true. Then, JK;
 = JU;
 for all 
 =1; 2; � � � if and only if K is the trivial knot U , where JK;
 denotes the 
oloredJones polynomial of a knot K with a 
olor 
.At this time we do not know of a topologi
al interpretation of the values of ~Ijand vj whi
h makes sense in all 
ases. Let us simply just propose the followingConje
ture 7.11 There is a 
onstru
t of the right measure, say �M (A)1=2 forA 2 Mi , from the square root of the Reidemeister torsion generalizing thenon-degenerate 
ase explained above and su
h thate�p�1~Ij=4vj = ZA2Mi e�p�1(�2IA+h0A+h1A)=4�M (A)1=2:Conje
tures 7.7 and 7.9 together with Conje
ture 7.11 were �rst proved formapping tori of all �nite order di�eomorphisms of all surfa
es of genus at leasttwo in [And95℄. Re
ently, Conje
ture 7.7 was proved for all Seifert �beredspa
es in [Han99℄ by supplementing the 
al
ulations in [Roz95b℄ and [Roz97℄with the need analyti
 estimates.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 109Example Let us illustrate the asymptoti
 behavior of the quantum SU(2) in-variant of the lens spa
e L(5; 1) of type (5; 1). For simpli
ity, we let r be anodd prime. Sin
e �SU(2)3 �L(5; 1)� = 1, putting � = exp(2�p�1=r), we havethat �SU(2)r �L(5; 1)� = �SO(3)r �L(5; 1)� = �5r� ��3�5? �10? � ��10?�2? � ��2? ;where k? denotes the inverse of k in Z=rZ. Sin
e �SU(2)r (S1�S2) =p r2= sin(�r ),we have thatZSU(2)r�2 �L(5; 1)� = �SU(2)r �L(5; 1)��SU(2)r �S1 � S2� =r2r sin �r �5r� ��3�5? �10? � ��10?�2? � ��2? :(40)On the other hand, as in [Jef92℄, the semi-
lassi
al approximation is given asfollows. The lens spa
e L(5; 1) has three 
at 
onne
tions An (n=0,1,2); ea
hAn is determined by the representation of �1�L(5; 1)� �= Z=5Z to SU(2) whi
htakes a generator of Z=5Z to  e2�p�1n=5 00 e�2�p�1n=5!. As in [Jef92℄, wehave that CS(An) = n2=5, h0An = 1, h1An = 0, �M (An)1=2 = 4p2p5 sin2 2�n5 , andIn(mod 4) = 1 if n < 5=2, and �1 if n > 5=2. Hen
e,ZSU(2)r�2 �L(5; 1)� �r!1 2r�25r Xn=0;1;2 e2�p�1rn2=5 sin2 2�n5 ; (41)noting that the notatin of lens spa
es in [Jef92℄ is equal to the notation of theirmirror images in [KiMe91, Gar92℄.The sequen
e of �SU(2)r �L(5; 1)� for odd primes r splits into four subsequen
esa

ording to r � �1;�3 mod 10, and ea
h subsequen
e 
an be approximatedby a fun
tion of a polynomial order. Let us des
ribe the subsequen
e, say, withr � �1 mod 10, as follows. Sin
e 10? = (r + 1)=10, we 
al
ulate (40) asZSU(2)r�2 �L(5; 1)� =r2r sin �r e�6�p�1=5r e�p�1=5r � !�1e��p�1=5re�p�1=r � e��p�1=r�r!1 1� !�1p�2 r�1=2;putting ! = exp(2�p�1=5). On the other hand, the right hand side of (41) is
al
ulated as2r�25r �e�2�p�1=5 sin2 2�5 + e2�p�1=5 sin2 4�5 � = ! � 1p�2 r�1=2;Geometry & Topology Monographs, Volume X (20XX)



110 Edited by T. Ohtsukinoting that p5 = 1 + 2! + 2!�1 (Gaussian sum). Therefore, it was veri�edthat the semi-
lassi
al approximation is 
orre
t for this subsequen
e.This is related to the perturbative invariant�SO(3)�L(5; 1)� = q�3=5 q1=10 � q�1=10q1=2 � q�1=2 2 Q[[q � 1℄℄as follows. We regard it as a holomorphi
 fun
tion of q in a suitable domain.The asymptoti
 behavior of �SO(3)r �L(5; 1)� , say, for the above mentioned sub-sequen
e, 
an be presented by using this holomorphi
 fun
tion around q1=5 = ! .Example It is known, see [LaZa99, Le00℄, that�SO(3)r ��(2; 3; 5)� = 11� � r�1Xn=0 �n(1� �n+1)(1 � �n+2) � � � (1� �2n+1)for Poin
are homology 3-sphere �(2; 3; 5), where we put � = exp(2�p�1=r).It is an exer
ise to 
ompute the asymptoti
 behaviour of ZSU(2)r�2 ��(2; 3; 5)�as r ! 1 related to Conje
ture 7.7, and to formulate a relation with theperturbative invariant given by�SO(3)��(2; 3; 5)� = 11� q 1Xn=0 qn(1 � qn+1)(1 � qn+2) � � � (1� q2n+1):
7.3 The volume 
onje
tureIt is known (see Conje
ture 7.10 and its remark) that the asymptoti
 behaviourof the quantum SU(2) invariant �SU(2)N (M) as N !1 is a polynomial growthin N . Nevertheless, this asymptoti
 behaviour might be regarded as an expo-nential growth in the sense of the following 
onje
ture, whi
h is a 3-manifoldversion of the volume 
onje
ture (Conje
ture 1.19).Conje
ture 7.12 (H. Murakami [Mur00b℄) For any 
losed 3-manifold M ,2�p�1 � o-limN!1 log �SU(2)N (M)N = CS(M) +p�1vol(M);Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 111where vol(M) and CS(M) denote the hyperboli
 volume23 and the Chern-Simons invariant24 of M respe
tively, and o-lim denotes the \optimisti
 limit"introdu
ed in [Mur00b℄.Remark As mentioned in [Mur00b℄ the \de�nition" of the optimisti
 limit is notrigorous yet, be
ause there is some ambiguity in the present de�nition, whereformal approximation, su
h as (4) and (5), are used. It is a problem to �nd arigorous formulation of the optimisti
 limit.Remark It is shown [Mur00b℄, by using formal approximations, that Conje
ture7.12 is \true" for 
losed 3-manifolds obtained from S3 by surgery along the�gure-eight knot.Remark R. Benedetti gave another formulation of the volume 
onje
ture byusing quantum hyperboli
 invariants; see Conje
ture 7.25.Remark The statement of Conje
ture 7.12 should extend for knot (link) 
om-plements M , whi
h should be related to the volume 
onje
ture for knots (Con-je
ture 1.21).Remark By formally applying the (in�nite dimensional) saddle point method tothe Chern-Simons path integral, the value (42) appears at a 
riti
al point of theChern-Simons fun
tional. This might give a physi
al explanation of Conje
ture7.12. Can we justify it in mathemati
s? There is an approa
h, by using knottedtrivalent graphs (see Conje
ture 12.7), to justify the Chern-Simons path integralmathemati
ally, whi
h might be helpful to apply the saddle point method to itrigorously.Problem 7.13 (H. Murakami) Cal
ulate o-lim log �SU(2)N (M)N for Seifert �bered3-manifolds M .Remark When M is a mapping torus of a homeomorphism of a surfa
e, aquantum invariant of M 
an be presented by the tra
e of the linear map on thequantum Hilbert spa
e asso
iated to the homeomorphism. Su
h a presentationmight be useful to 
ompute the asymptoti
 behaviour of �SU(2)N (M).23When M is not hyperboli
, we de�ne vol(M) to be v3jjM jj , where jjM jj is the simpli
ialvolume and v3 is the hyperboli
 volume of the regular ideal tetrahedron.24It is also 
onje
tured (see Problem 7.16) that there exists an appropriate de�nition ofCS(M) of any 
losed 3-manifold M , though CS(M) is de�ned only for hyperboli
 3-manifoldsM at present.Geometry & Topology Monographs, Volume X (20XX)



112 Edited by T. OhtsukiRemark When we 
hoose a simpli
ial de
omposition of M , (the absolute valueof) its quantum invariant 
an be expressed by using quantum 6j -symbols. The
omputation of the asymptoti
 behaviour of �SU(2)N (M) might be redu
ed to the
omputation of limits of quantum 6j -symbols. J. Roberts [Rob99℄ showed thata limit of 
lassi
al 6j -symbols is given by the Eu
lidean volume of a tetrahedron.Further, J. Murakami and M. Yano [MuYa01℄ re
ently showed that a limit ofquantum 6j -symbols is related to the hyperboli
 volume of a tetrahedron viaformal approximation su
h as (4) and (5).Problem 7.14 (D. Thurston) Find a series of invariants of a 3-manifold (de-pending on roots of unity) that grows as its hyperboli
 volume (or its simpli
ialvolume).Problem 7.15 (D. Thurston) Find a 
orre
t generalization of the volume
onje
ture to other non-
ompa
t Lie groups.Remark The volume 
onje
ture is related to the SL(2; C ) Chern-Simons theory,whi
h (formally) dedu
es the hyperboli
 volume and the Chern-Simons invari-ant. It is a problem to �nd (or formulate) su
h invariants of 3-manifolds forother non-
ompa
t Lie groups.The Chern-Simons fun
tional CS(A) 2 C of a SL(2; C ) 
onne
tion A on a
losed 3-manifold M is de�ned by the formula (37), where we regard A in theformula as a sl(2; C )-valued 1-form on M in this 
ase. Sin
e a gauge transfor-mation of A 
hanges CS(A) by an integer, CS([A℄) of the gauge equivalen
e
lass of A is de�ned to be in C =Z. The Chern-Simons invariant CS(M) 2 R=Zand the volume vol(M) 2 R>0 of a 
losed hyperboli
 3-manifold M is givenby25 CS([A0℄) = CS(M) +p�1vol(M); (42)where [A0℄ is the gauge equivalen
e 
lass of a SL(2; C ) 
at 
onne
tion A0 asso-
iated to the 
onjuga
y 
lass of a holonomy representation �1(M) ! SL(2; C )of the hyperboli
 stru
ture on M . Further, when M is the 
omplement of ahyperboli
 knot (link) in a 
losed 3-manifold, CS(M) 
an be de�ned similarly.25The Chern-Simons invariant was introdu
ed by Chern and Simons [ChSi71℄ as an invariantof 
ompa
t (4n � 1)-dimensional Riemannian manifolds. For hyperboli
 3-manifolds, Meyer-ho� [Mey86℄ extended CS(M) for M with 
usps. See also [Neu98, CGHN00℄ for CS(M) ofhyperboli
 3-manifolds M as a 
ounterpart of vol(M).Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 113Problem 7.16 (S. Morita [KoNe87℄) De�ne the Chern-Simons invariantCS(M) as a topologi
al invariant of any 
losed oriented 3-manifold M , andof any knot (link) 
omplement M in a 
losed 3-manifold.This problem in
ludes two problems: to de�ne CS(M) (topologi
ally or 
om-binatorially) as a topologi
al invariant, and to de�ne it for non-hyperboli
 3-manifolds.Remark The hyperboli
 volume (whi
h is a 
ounterpart of the Chern-Simonsinvariant) has a de�nition as a 
onstant multiple of the simpli
ial volume, whi
his 
ombinatorial, and 
an be applied, not only for hyperboli
 3-manifolds, butalso for any other 3-manifolds.Remark (S. Kojima) The Chern-Simons invariant CS(M) of non-hyperboli
3-manifolds M should be de�ned satisfying the following two requirements.One is that CS(�M) = �CS(M), where �M denotes M with the oppositeorientation. The other is the requirement explained as follows. Let K be ahyperboli
 knot in a 3-manifold N . Then, it is known that NK;(p;q) has ahyperboli
 stru
ture ex
ept for �nitely many (p; q), where NK;(p;q) denotes the3-manifold obtained from N by Dehn surgery along the slope of type (p; q), andthat su
h hyperboli
 stru
tures 
an be obtained in a deformation spa
e of thehyperboli
 stru
tures of N�K parameterized by a natural 
omplex parameter,whi
h 
an be presented by two real parameters p and q . Moreover, the fun
tionCS(M) +p�1vol(M) (43)is a holomorphi
 fun
tion of the 
omplex parameter. Note that vol(M) 
anextend for non-hyperboli
 3-manifolds M by rede�ning it to be a 
onstantmultiple of the simpli
ial volume jjM jj. CS(M) should be de�ned su
h that,for appropriate26 knots K in any 
losed 3-manifold N , the fun
tion (43) onthe family fNK;(p;q)gp;q 
an extend to a holomorphi
 fun
tion of a 
omplexparameter presented by p and q appropriately.Problem 7.17 (T. Ohtsuki) Give a \
omplex stru
ture" to the set of 3-manifolds. More pre
isely, �nd an embedding (or, an immersion) of the setof 3-manifolds to some 
omplex variety su
h that its restri
tion to the setfNK;(p;q) j p2 + q2 >> 0g 
an be extended to a holomorphi
 map of the abovementioned 
omplex parameter for any (hyperboli
) knot K in any 3-manifoldN .26These knots should in
lude, not only all hyperboli
 knots, but also other knots. Theymight not in
lude the trivial knot.Geometry & Topology Monographs, Volume X (20XX)



114 Edited by T. OhtsukiWe would expe
t some stru
tures of the set of 3-manifolds su
h as mentioned inProblems 7.17 and Problem 10.16. Su
h stru
tures would yield new viewpointsin the study of (the set of, and invariants of) 3-manifolds.Remark As mentioned above, the set fNK;(p;q) j p2+q2 >> 0g 
an be embeddedin C , on whi
h the fun
tion (43) is holomorphi
. In this sense, the in�nitefamily of NK;(p;q) has a \
omplex stru
ture" around the in�nity point of (p; q).The volume 
onje
ture says that the fun
tion (43) would be obtained as a
ertain limit of some series of quantum invariants. This suggests that the above\
omplex stru
ture" would extend to the whole set of 3-manifolds.7.4 Quantum hyperboli
 invariants of 3-manifoldsThe main referen
es for this se
tion are [Bas01, BaBe01a, BaBe01b℄, a reviewbeing [BaBe02℄. In [BaBe01b℄ the ideas of se
tions 7-9 in [BaBe01a℄ are devel-opped with some important di�eren
es in the way they are 
on
retized.Let W be a 
ompa
t 
losed oriented 3-manifold, L �W be a non-empty link,� be a 
at prin
ipal B -bundle on W ; B is the upper triangular Borel subgroupof SL(2; C ). In [BaBe01a℄ one 
onstru
ts a family of \quantum hyperboli
invariants" (QHI) KN (W;L; �) 2 C , where N > 1 is any odd integer. This
onsists of two main steps:(1) For every triple (W;L; �), the 
onstru
tion of so-
alled D -triangulationsT = (T;H;D), where: (T;H) is a (singular) triangulation of (W;L) su
hthat ea
h edge has distin
t verti
es and H 
ontains all the verti
es of T ;the \de
oration" D is made of a full simpli
ial B -1-
o
y
le representing� on W , a bran
hing (for instan
e one indu
ed by a total ordering of theverti
es of T ), and an integral 
harge. For these notions, see [BaBe02℄.(2) The proof that a suitable state sum HN (T ) does not depend on the 
hoi
eof the D -triangulation T up to multipli
ation by N -th roots of unity, sothat KN (W;L; �) = KN (T ) = HN (T )N a
tually de�nes an invariant.The proof of the existen
e of D -triangulations is diÆ
ult essentially due tostrong global 
onstraints in D . The main building-blo
ks of the state sumsHN (T ) are the \quantum-dilogarithm" 6j -symbols of the N -dimensional 
y
li
representations of a quantum Borel subalgebra of U!(sl(2; C )), where ! =exp(2�i=N). Kashaev proposed in [Kas94℄ a 
onje
tural purely topologi
alSe
tion 7.4 was written by S. Baseilha
 and R. Benedetti.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 115invariant KN (W;L) whi
h should have been expressed by a state sum of thiskind (although in his proposal there were no 
at bundles and no notion ofD -triangulation); in fa
t, KN (W;L) appears as a spe
ial 
ase of KN (W;L; �)when � is the trivial 
at B -bundle on W . The algebrai
 properties of the6j -symbols ensure the invarian
e of KN (T ) up to 
ertain elementary moves onD -triangulations. Then, the proof of the full invarian
e of KN (T ) 
onsists in
onne
ting by su
h elementary moves any two D -triangulations of (W;L; �),whi
h is not so easy to a
hieve.Problem 7.18 (S. Baseilha
, R. Benedetti) Generalize the 
onstru
tion ofthe QHI for 
at prin
ipal G-bundles, for Lie groups G di�erent from B .Remark A basi
 ingredient of the B -QHI is the relationship between the 
y
li
representation theory of a quantum Borel subalgebra of U!(sl(2; C )), and 
atB -bundles en
oded by simpli
ial full 1-
o
y
les. This relationship relies onthe theory of quantum 
oadjoint a
tion of [DePr93℄, whi
h holds for other Liegroups su
h as G = SL(2; C ).Problem 7.19 (S. Baseilha
, R. Benedetti) Fix (W;L) and vary �. StudyKN as a fun
tion of the bundle, that is as a fun
tion de�ned on the 
hara
tervariety of W with respe
t to B : regularity, �bers, and so on.Remark Denote by z the B -1-
o
y
le in T that represents �. The state sumKN (T ) is a rational fun
tion of the upper diagonal entries of the whole set ofvalues of z . Moreover, the 6j -symbols are rational fun
tions of the moduli ofthe idealized triangulation bF (T ) de�ned below.Every � 2 H1(W ; C ) leads to two 
at B -bundles �� and �0� de�ned as fol-lows. The �rst one is obtained via the natural identi�
ation of (C ;+) with theparaboli
 subgroup Par(B) of B . The se
ond one is obtained by means of theexponential map of (C ;+) onto the multipli
ative C � , and the identi�
ation ofC � with the diagonal Cartan subgroup C(B) of B . Similarly, every 
lass inH1(W ;Z=pZ) leads to a B -bundle by the natural embedding of Z=pZ into thegroup S1 � C � .Problem 7.20 (S. Baseilha
, R. Benedetti) Spe
ialize Problem 7.19 to bun-dles 
oming from the ordinary 
ohomology as above. For real additive ones,analyze the behaviour of the QHI with respe
t to Thurston's norm. Are they
onstant on the fa
es of the 
orresponding unit sphere ?Geometry & Topology Monographs, Volume X (20XX)



116 Edited by T. OhtsukiRemark The \proje
tive invarian
e" property of the QHI (see [BaBe01a, BaBe02℄)implies in parti
ular that they are 
onstant on the rays of H1(W ;R).Problem 7.21 (S. Baseilha
, R. Benedetti) Understand the `phase fa
tor'(i.e. the ambiguity due to N -th roots of unity) of the state sum HN (T ).Possibly derive from it an invariant for (W;L; �) endowed with some extra-stru
ture, thus re�ning KN (W;L; �).Remark The phase fa
tor uniquely depends on the bran
hing and the integral
harge in the de
oration D . On one hand, it is known that bran
hings 
an beused to en
ode, for instan
e, 
ombings, framings, spin stru
tures and so on.On another hand, 
ombings indu
e the extra-stru
ture that allows Turaev'sre�nement of Reidemeister torsions.Problem 7.22 (S. Baseilha
, R. Benedetti) Determine a suitable (2 + 1)`de
orated' 
obordism theory supporting a (non purely topologi
al) QFT 
on-taining the already de�ned QHI. Study in parti
ular the behaviour of the QHIwith respe
t to 
onne
ted sums.Problem 7.23 (S. Baseilha
, R. Benedetti) Develop a 4-dimensional theoryof QHI based on Turaev's shadow theory.Remark A �rst step should be to determine the right notion of D -shadowtogether with a geometri
 interpretation. In this dire
tion, F. Costantino is
ompleting his PhD thesis at Pisa, where he shows in parti
ular that `bran
hedshadows' do en
ode Spin
 stru
tures.Problem 7.24 (S. Baseilha
, R. Benedetti) Determine the a
tual relationshipbetween KN (S3; �) and the 
oloured Jones polynomial JN (�) (evaluated at ! =exp(2i�=N) and normalized by JN (unknot) = 1), as fun
tions of links.Remark (1) In [MuMu01℄ it is shown that JN may be de�ned by means ofusual (1; 1)-tangle presentations (as for the Alexander polynomial), using anenhan
ed Yang-Baxter operator whose R-matrix is derived from the quantum-dilogarithm 6j -symbols. This suggests that there 
ould be a relationship be-tween KN (S3; �) (ne
essarily asso
iated to the trivial 
at B -bundle on S3 ) andJN (�)N . The most immediate guess would be that KN (S3; L) = JN (L)N forea
h L. In fa
t, one 
an give an R-matrix formulation of KN (S3; �) involvingR-matri
es depending on parameters. These parameters are spe
i�ed in termsof the de
orations of spe
ial D -triangulations adapted to planar link diagramsGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 117[BaBe01
℄. So KN (S3; �) 
an be 
omputed by using suitably de
orated linkdiagrams, and the de
oration must satisfy non trivial global 
onstraints. Inthis setup, (1; 1)-tangle presentations do not play any role. On another side,the 
onstant R-matrix used for JN 
orresponds to one �xed parti
ular 
hoi
ein the parameters. This is not enough to 
on�rm the above guess.(2) A motivation of Problem 7.24 is also to make working for JN a theory ofs
issors 
ongruen
e 
lasses, as des
ribed below for the QHI.The so-
alled Volume Conje
tures 
on
ern the asymptoti
 behaviour of theinvariants 
onstru
ted on the base of the quantum dilogarithm 6j -symbols,that is of KN (W;L; �) or JN (L) (for L � S3 ), when N ! 1. They areoriginally motivated by the asymptoti
 behaviour of the quantum dilogarithm6j -symbols, whose dominant term involves dilogarithm fun
tions that may beused to 
ompute the volume of oriented ideal hyperboli
 tetrahedra. In the
ase of JN (L) there are also some numeri
al 
omputations (sometimes usingformal manipulations) - see for instan
e the �rst se
tion of the present volumefor details. In the 
ase of QHI, we develop in [BaBe01a, BaBe01b℄ (see also[BaBe02℄) a theory of s
issors 
ongruen
e 
lasses for triples (W;L; �) whi
hgives a natural framework for a formulation of a volume 
onje
ture.This goes roughly as follows. One 
onstru
ts a `Blo
h-like' group P(D) basedon D -de
orated tetrahedra, whi
h maps via an expli
it idealization map bF ontoan enri
hed version P(I) of the 
lassi
al Blo
h group, built on hyperboli
 idealtetrahedra. Any D -triangulation T of (W;L; �) leads to elements 
D(W;L; �) 2P(D) and 
I(W;L; �) = bF (
D(W;L; �)) 2 P(I). They are respe
tively 
alledthe D - and I -s
issors 
ongruen
e 
lasses of (W;L; �). The QHI essentiallydepend on the D -
lass, and for any given D -triangulation T the 6j -symbolso

uring in HN(T ) depend on the moduli of the hyperboli
 tetrahedra of theidealization bF (T ) of T . By using the 
lassi
al Rogers dilogarithm one 
an alsode�ne a dilogarithmi
 invariant R(W;L; �) whi
h only depends on the I -
lass.Conje
ture 7.25 (S. Baseilha
, R. Benedetti) (Real Volume Conje
ture forQHI) For any triple (W;L; �) one has:limN!1 (2�=N2) log(jKN (W;L; �)j) = Im R�
I(W;L; �)� :Remark From the expli
it formula of HN (T ) one easily shows that the left-handside of Conje
ture 7.25, if it exists, only depends on the moduli of the hyperboli
tetrahedra of bF (T ). A natural problem is to �nd a geometri
 interpretationof the dilogarithmi
 invariant. Indeed, for s
issors 
ongruen
e 
lasses builtGeometry & Topology Monographs, Volume X (20XX)



118 Edited by T. Ohtsukiwith ideal triangulations of genuine (non-
ompa
t �nite volume) hyperboli
3-manifolds M , a similar dilogarithmi
 invariant gives i(Vol(M) + iCS(M)),where Vol is the Volume and CS is the Chern-Simons invariant (see [Neu92℄).In [BaBe02℄ one proposes a 
omplex version of Conje
ture 7.25, for the wholeKN (not only its modulus).7.5 Perturbative invariantsThe perturbative SO(3) invariant �SO(3)(M) =P1d=0 �d(q� 1)d 2 Q[[q � 1℄℄ ofa rational homology 3-sphere M is the invariant 
hara
terized by the propertythat Pkd=0 �d(e2�p�1=r � 1)d for any k is 
ongruent to � jH1(M ;Z)jr � �SO(3)r (M)modulo r for in�nitely many primes r ; for a detailed de�nition see [Oht96b,Oht02℄. (It is known, see [Roz98, Hab02℄, that �SO(3)(M) 2 Z[[q� 1℄℄ for anyintegral homology 3-sphere M .) The perturbative PG invariant �PG(M) of arational homology 3-sphere M , say, for G = SU(N), is de�ned in Q[[q � 1℄℄similarly, related to the quantum invariant �PGr (M); see [Le00a, Le00℄.Problem 7.26 For ea
h rational homology 3-sphere M , 
al
ulate �SO(3)(M)and �PSU(N)(M) for all degrees.Remark The value of �SO(3)r �L(a; b)� of the lens spa
e L(a; b) is 
on
retely
al
ulated in [Jef92, Gar92℄. It follows from those values that�SO(3)�L(a; b)� = q�3s(b;a) q1=2a � q�1=2aq1=2 � q�1=2 ;where we regard it as in Q[[q � 1℄℄ and s(b; a) denotes the Dedekind sum.Con
rete presentations of �SO(3)(M) for Seifert �bered 3-manifolds M are givenin [LaRo99℄.Lawren
e [Law97℄ has given holomorphi
 expression for the perturbative SO(3)invariants of rational homology 3-spheres obtained by integral surgery along(2; n) torus knot.Habiro's expansion (45) gives a presentation of �SO(3)(M). See examples ofProblem 7.31, for presentations of �SO(3)��(2; 3; 5)� and �SO(3)��(2; 3; 7)� ,whi
h are due to [Le00℄. See also [LaZa99℄ for a 
omputation of �SO(3)��(2; 3; 5)� .Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 119Remark From the value of �PSU(N)r �L(a; b)� of the lens spa
e L(a; b) 
al
ulatedin [Tak96℄, we obtain�PSU(N)�L(a; b)� = q�N(N2�1)s(b;a)=2 [1=a℄N�1[2=a℄N�2 � � � [(N � 1)=a℄[1℄N�1[2℄N�2 � � � [N � 1℄ ;where we regard it as in Q[[q � 1℄℄ putting [�℄ = (q�=2 � q��=2)=(q1=2 � q�1=2).Takata [Tak97℄ 
omputed the quantum PSU(N) invariant of Seifert �beredmanifolds M . Con
rete presentations of �PSU(N)(M) might follow from the
omputation.Remark �PSU(N)(M) is re
overed from the LMO invariant by�PSU(N)(M) = jH1(M ;Z)j�n(n�1)=2Ŵsln�ẐLMO(M)�:In parti
ular, noting PSU(2) = SO(3),�SO(3)(M) = jH1(M ;Z)j�1Ŵsl2�ẐLMO(M)�:For details see [Oht02℄. In this sense Problem 7.26 is related to Problem 11.1.Problem 7.27 (J. Roberts) Explain the appearan
e of modular forms in theWitten invariants.Remark (J. Roberts) Lawren
e and Zagier dis
overed in [LaZa99℄ that theperturbative series for the Poin
ar�e homology sphere was 
lose to a modularform. Is this a random 
oin
iden
e, or is there a more systemati
 explanation?Does su
h a relation ever hold for a hyperboli
 3-manifold?Problem 7.28 Chara
terize those elements of Z[[q�1℄℄ of the form �SO(3)(M)of integral homology 3-spheres M .Remark The degree � d part of �SO(3)(M) 
an have any value in the degree� d part of Z[[q� 1℄℄. Hen
e, it is meaningful to 
onsider this problem for theform �SO(3)(M) for all degrees.Remark Problem 7.28 is related to Problem 7.31, whi
h is on the 
hara
teriza-tion of Habiro's expansion (45). See examples of Problem 7.31, for 
al
ulationsof Habiro's expansions of �SO(3)��(2; 3; 5)� and �SO(3)��(2; 3; 7)� .Geometry & Topology Monographs, Volume X (20XX)



120 Edited by T. OhtsukiLet q be an indeterminate, and let � be an r-th root of unity. SetR1 = lim �n Z[q; q�1℄=�(q � 1)(q2 � 1) � � � (qn � 1)�:For an integral homology 3-sphere M , relations between �SU(2)r (M) (whi
hequals �SO(3)r (M) for odd r , in this 
ase) and �SO(3)(M) 
an be des
ribed inthe following 
ommutative diagram.Isl2(M) 2 R1 inje
tion�����! Z[[q� 1℄℄ � Q[[q � 1℄℄ 3 �SO(3)(M)put q = �??y ??yput q = ��SU(2)r (M) = �SO(3)r (M) 2 Z[�℄ inje
tion�����! Zr[�℄ (44)Here, the two horizontal maps are de�ned to be natural inje
tions, and the twoverti
al maps are de�ned by substituting q = � .It was 
onje
tured by Lawren
e [Law95℄, and proved by Rozansky [Roz98℄,that �SO(3)(M) 2 Z[[q� 1℄℄ for any integral homology 3-sphere M , and thatthe images of �SO(3)(M) and �SO(3)r (M) 
oin
ide in Zr[�℄ in the above diagramfor any odd prime power r . See [Roz98℄ for their numeri
al examples.Habiro [Hab02℄ showed27 that there exists an R1 -valued invariant Isl2(M) of anintegral homology 3-sphere M whose images in Q[[q�1℄℄ and Z[�℄ in the abovediagram are equal to �SO(3)(M) and �SU(2)r (M) respe
tively for any positiveinteger r . (Here we set �SU(2)r (M) = 1 for r = 1; 2.) This gives another proofof the above mentioned 
onje
ture of Lawren
e for integral homology 3-spheres.This also implies that �SO(3)(M) 
an be presented by�SO(3)(M) = 1Xn=0�0n(q � 1)(q2 � 1) � � � (qn � 1) (45)with some �0n 2 Z[q; q�1℄ (in the above sense) su
h that�SU(2)r (M) = X0�n<r �0n(� � 1)(�2 � 1) � � � (�n � 1):Note that the presentation (45) is not unique.(K. Habiro) Let g be a �nite dimensional simple 
omplex Lie algebra. Letd 2 f1; 2; 3g be su
h that d = 1 in the ADE 
ases, d = 2 in the BCF 
ases27Hen
e, �SO(3)(M) is as powerful as the set of �SU(2)r (M) for any integer r � 3, and aspowerful as the set of �SO(3)r (M) for any odd r � 3, for any integral homology 3-sphere M .Further, the LMO invariant dominates �SU(2)r (M) for any integer r � 3.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 121and d = 3 in the G2 
ase. If M is a 
losed 3-manifold and if � is a root ofunity of order r divisible by d, then the quantum g invariant �g� (M) 2 Q[�℄ ofM at � is de�ned.Conje
ture 7.29 (K. Habiro, T. Le) For ea
h g as above, there is a (unique)invariant Ig(M) 2 R1 of an integral homology 3-sphere M su
h that for ea
hroot of unity � of order r divisible by d we haveIg(M)��q=� = �g� (M):Remark When (r;det(aij)) = 1, where (aij) is the Cartan matrix of the Liealgebra g, the proje
tive g-invariant �Pg� (M) 
an be de�ned [Le00℄. ThenHabiro and Le also 
onje
ture that Ig(M)jq=� = �Pg� (M), if (r;det(aij)) = 1.Note that for an integral homology 3-sphere, �Pg� (M) = �g� (M) when both arede�ned (i.e., when r is divisible by d and (r;det(aij)) = 1). If this is the 
ase,then we have i�Ig(M)� = �g(M)where �g(M) 2 Q[[q � 1℄℄ is the perturbative g invariant of M [Le00℄, andi : R1 ! Z[[q� 1℄℄ is the upper inje
tion in (44).Remark The above 
onje
ture implies that the quantum g invariant �g� (M) ofan integral homology sphere M takes values in the ring of 
y
lotomi
 integersZ[�℄, and also that the perturbative invariant �g(M) takes values in Z[[q� 1℄℄.Update Habiro and Le [HaLe03℄ proved Conje
ture 7.29.Conje
ture 7.30 (K. Habiro) Suppose that Conje
ture 7.29 would hold. Fora new indeterminate t, setR01 = lim �n R1[t℄=((t� q)(t� q2) � � � (t� qn))Then there exists an invariant Isl(M) 2 R01 of an integral homology 3-sphereM su
h that Isl(M)jt=qn = Isln(M) for any n � 1, where we set Isl1(M) = 1.Problem 7.31 Chara
terize those elements of Habiro's expansion (45) of�SO(3)(M) of integral homology 3-spheres M .Geometry & Topology Monographs, Volume X (20XX)



122 Edited by T. OhtsukiExample For the Poin
are homology 3-sphere �(2; 3; 5) (obtained by surgeryon a left-hand trefoil with framing �1) and the Brieskorn sphere �(2; 3; 7)(obtained by surgery on a right-hand trefoil with framing �1), it is 
omputedin [Le00℄ that�SO(3)��(2; 3; 5)� = 11� q 1Xn=0 qn(1� qn+1)(1� qn+2) � � � (1� q2n+1);�SO(3)��(2; 3; 7)� = 11� q 1Xn=0 q�n(n+2)(1� qn+1)(1� qn+2) � � � (1� q2n+1):See also [LaZa99℄ for a 
omputation of �SO(3)��(2; 3; 5)� .Remark Su
h an in�nite sum as (45) would be interesting from the numbertheoreti
al viewpoint. For example,1 + 1Xn=1 qn(q � 1)(q2 � 1) � � � (qn � 1) =Xk2Zk 6=0(�1)k+1q 32k2� 12k�1:A similar in�nite sum appears in (12); see also [Sik01℄.

Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 1238 Topologi
al quantum �eld theoryThe notion of topologi
al quantum �eld theory (TQFT) was introdu
ed in[Ati89, AHLS88℄, motivated by the operator formalism of a partition fun
tionin a quantum �eld theory whi
h does not depend on the metri
 of the spa
e.In the mathemati
al viewpoint, any quantum invariant of 3-manifolds 
an beformulated by a TQFT, whi
h enables us to 
ompute the invariant by the 
ut-and-paste method.A TQFT is a fun
tor whi
h takes an oriented 
losed surfa
e � to a �nite dimen-sional 
omplex ve
tor spa
e V (�), and takes an oriented 
ompa
t 3-manifoldM with boundary � to a ve
tor Z(M) 2 V (�), satisfying the following 5axioms.(1) V (��) = V (�)? , where �� denotes � with the opposite orientation andV (�)? denotes the dual ve
tor spa
e of V (�).(2) V (�1 t�2) = V (�1)
 V (�2), where �1 t�2 denotes the disjoint unionof two surfa
es �1 and �2 .(3) V (;) = C , where ; denotes the empty surfa
e.(4) For 3-
obordisms M1 and M2 with �M1 = (��1) t �2 and �M2 =(��2)t�3 we have that Z(M1 [�2M2) = Z(M2)ÆZ(M1) as linear maps28V (�1)! V (�3).(5) Z(�� I) is equal to the identity map of V (�).To be pre
ise, in many (but not in all) examples we need \extended 3-manifolds"instead of 3-manifolds to formulate a TQFT, where an extended 3-manifold isa 3-manifold M equipped with some kind of framing, e.g. a p1 -stru
ture � onM (see [BHMV95℄)29. Namely, we extend the above de�nition of TQFT to afun
tor from the 
ategory of extended 3-
obordisms in an appropriate way (see[BHMV95℄). Then, ea
h quantum invariant 
an be formulated as a TQFT ofthe 
ategory of extended 3-
obordisms. In the remaining part of this se
tionwe 
all su
h a TQFT simply a TQFT.The �rst version of the introdu
tory part of Chapter 8 and Se
tions 8.1{8.4 was writtenby T. Ohtsuki, following seminar talks given by G. Masbaum. Based on it, G. Masbaum wrotethis introdu
tory part and these se
tions. Se
tion 8.5 was written by T. Kerler.28For a 3-
obordism M with �M = (��1)t�2 the ve
tor Z(M) belongs to V (��1t�2) =V (��1)
V (�2) = V (�1)?
V (�2) by the axioms (1) and (2). Hen
e, Z(M) 
an be regardedas a linear map V (�1)! V (�2).29There is another formulation of a \framing" of a 3-manifold using signature 
o
y
le; see[Tur94℄.Geometry & Topology Monographs, Volume X (20XX)



124 Edited by T. Ohtsuki8.1 Classi�
ation and 
hara
terization of TQFT'sTo understand TQFT's is an important problem in order to investigate the 3-
obordism 
ategory, similarly as the representation theory is important in orderto investigate groups and algebras.Problem 8.1 Find (and 
lassify) all TQFT's.Remark The operator formalism of the Chern-Simons path integral suggests theexisten
e of many TQFT's. It is known, see [Tur94, BaKi01℄, that a modular
ategory is derived from a quantum group at a root of unity and a TQFT isderived from a modular 
ategory. The underlying 3-manifold invariant is 
alledthe Reshetikhin-Turaev invariant. Some other TQFT's might be obtained fromquantum groupoids [NTV00℄. A TQFT for the LMO invariant is dis
ussed in[MuOh97℄.Another major 
onstru
tion of TQFT's is derived from sets of 6j -symbols;for the 
onstru
tion see [TuVi92, BaWe96℄. When a set of 6j -symbols arisesfrom a subfa
tor, the underlying 3-manifold invariant is 
alled the Turaev-Viro-O
neanu invariant (see Se
tion 9.4). Further, when a set of 6j -symbols 
omesfrom a quantum group, su
h a TQFT is isomorphi
 to a tensor produ
t of twoTQFT's derived from the quantum group [Tur94℄. See Problems in Chapter 9for 
on
rete problems for TQFT's derived from 6j -symbols.There are TQFT's derived from �nite groups, whose invariants are 
alled theDijkgraaf-Witten invariants [DiWi90℄. Su
h TQFT's 
an alternatively be for-mulated by using 
ertain sets of 6j -symbols.It is known [Ati90a℄ that the ve
tor spa
e V (�) of a TQFT (V;Z) derived froma quantum group is isomorphi
 to the spa
e of 
onformal blo
ks of a 
onformal�eld theory (CFT) of the Wess-Zumino-Witten model. Some other (possibly,\new") TQFT's might be obtained from the orbifold 
onstru
tion of CFT. It isa problem to understand TQFT's derived from the Rozansky-Witten invariant(see [RSW01℄); their isomorphism types might be des
ribed by known TQFT's,or they might be \new" TQFT's.The following problem is a part of Problem 8.1 in the sense that some TQFT'sare derived from modular 
ategories, as mentioned in a remark after Problem8.1.Problem 8.2 Find (and 
lassify) all modular 
ategories.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 125For a TQFT (V;Z), put P(V;Z)(t) =P1g=0 �dimV (�g)�tg , where �g denotes a
losed surfa
e of genus g . The following problem is a re�nement of Problem8.1.Problem 8.3(1) Chara
terize the power series of the form P(V;Z)(t).(2) For ea
h power series P (t) (satisfying the 
hara
terization of (1)), 
lassifyall TQFT's (V;Z) su
h that P(V;Z)(t) = P (t).Remark A 
on
rete form of su
h a power series for a TQFT derived froma quantum group is given by Verlinde formula [Ver88℄. For example, su
h apower series of the TQFT derived from Uq(sl2) at level k is presented by1Xg=0 tg�k + 22 �g�1 k+1Xj=1 � sin �jk + 2�2�2g:8.2 Spin TQFT'sThere are some re�nements of TQFT's.A spin TQFT is a TQFT on the 
ategory of spin 3-
obordisms, whose invariantsdepend on spin stru
tures; su
h a TQFT 
an be formulated by extending thede�nition of a usual TQFT (see [BlMa96℄). It is shown [BlMa96℄ that a spinTQFT 
an be obtained from the modular 
ategory of Uq(sl2) at level k � 2(mod 4).Problem 8.4 Find other spin TQFT's.Remark Some examples of spin TQFT's 
an be 
onstru
ted from the re�nedquantum invariants of [BeBl01, Theorem 6.2℄.Remark A spin TQFT is expe
ted to be a re�nement of a usual TQFT in thesense that a spin TQFT (V s; Zs) should be related to a usual TQFT (V;Z) su
hthat V (�) for 
onne
ted � 
an be des
ribed by the dire
t sum of V s(�; ��)over the spin stru
tures �� on � (see [BlMa96℄) and Z(M) of a 
losed manifoldM 
an be des
ribed by the sum of Zs(M;�M ) over the spin stru
tures �M onM .Geometry & Topology Monographs, Volume X (20XX)



126 Edited by T. OhtsukiA spin
 TQFT should be a TQFT on the 
ategory of spin
 3-
obordisms, whoseinvariants depend on spin
 stru
tures.Problem 8.5 Formulate and �nd spin
 TQFT's.Remark The Seiberg-Witten invariant (for its exposition see, e.g., [Mar99℄)and the torsion invariant � (see [Tur01℄) are de�ned for 
losed 3-manifoldswith spin
 stru
tures. Are there TQFT's whi
h are related to these invariants?8.3 Homotopy QFT'sV. Turaev [Tur99, Tur00℄ introdu
ed and developed HQFT (homotopy QFT)with a target spa
e X in dimension d+ 1.Problem 8.6 (V. Turaev)(1) Extend HQFT's to spin and spin
 settings.(2) Find algebra stru
tures behind spin and spin
 HQFT's in dimension 1+1.Problem 8.7 (V. Turaev) Study (spin and spin
) HQFT's with the targetspa
e K(H; 2) in dimensions 1 + 1; 2 + 1, and 3 + 1 for H = ZN .Remark It is shown by V. Turaev that HQFT's with the target spa
e K(�; 1) indimension 1+1 
an be des
ribed by 
rossed � -algebras, and that any modularG-
ategory gives rise to a HQFT with the target spa
e K(G; 1) in dimension2 + 1 [Tur00℄. HQFT's with the target spa
e K(H; 2) in dimension 1 + 1 werestudied and 
lassi�ed by M. Brightwell and P. Turner [BrTu00℄.8.4 Geometri
 
onstru
tion of TQFT'sAssume that the surfa
e � is equipped with the stru
ture of a smooth algebrai

urve over C . We denote by H0(M�;L
k) the spa
e of se
tions of L
k onM� ,where M� is the moduli spa
e of semi-stable rank N bundles with trivialdeterminant over �, and L is the determinant line bundle on M� . It is knownthat H0(M�;L
k) is isomorphi
 to V (�) of a TQFT (V;Z) derived fromthe quantum group Uq(slN ) at a (k + N)-th root of unity. In this sense,H0(M�;L
k) gives a geometri
 
onstru
tion of su
h a V (�).Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 127Problem 8.8 Find a geometri
 
onstru
tion of a TQFT based on H0(M�;L
k).Namely, �nd a geometri
 way to asso
iate a ve
tor in H0(M�;L
k) to a 3-manifold M with �M = �.Remark In physi
s su
h a ve
tor is obtained by applying an in�nite dimensionalformal analogue of the geometri
 invariant theory and the symple
ti
 quotientto the Chern-Simons path integral; see [Ati90a℄. It is a problem to justify thisargument in some mathemati
al sense.Here is a 
on
rete problem whi
h may be of interest in studying the relationshipbetween V (�) and H0(M�;L
k). The group J (N)(�) of N -torsion points onthe Ja
obian J(�) a
ts on M� by tensoring. This gives an a
tion of a 
entralextension E(�) of J (N)(�) on H0(M�;L
k).Problem 8.9 (G. Masbaum) Study this a
tion of the �nite group E(�) onH0(M�;L
k), and des
ribe the indu
ed de
ompositions of this ve
tor spa
ea

ording to the 
hara
ters of E(�). Also relate these de
ompositions to de-
ompositions of V (�) for the TQFT (V;Z) derived from the quantum groupUq(sl2) at a (k +N)-th root of unity.Remark This was done for N = 2 in [AnMa99℄.Remark The group J (N)(�) is isomorphi
 to H1(�;Z=N) and the extensionE(�) is des
ribed using the Weil pairing, whi
h 
orresponds to the interse
tionform on H1(�;Z=N). For N = 2, an a
tion of E(�) on the ve
tor spa
e V (�)is des
ribed in [BHMV95, Se
tion 7℄, and it was shown in [AnMa99℄ that V (�)and H0(M�;L
k) are isomorphi
 as representations of E(�); here the torsionpoints on the Ja
obian J(�) 
orrespond to simple 
losed 
urves on the surfa
e�. For example, if k � 2 mod 4, one obtains de
ompositions indexed by spinstru
tures (theta-
hara
teristi
s) on �. For N � 3, the a
tion of E(�) and thespin de
ompositions of V (�) were 
onstru
ted in [Bla01℄.Let Mg denote the mapping 
lass group of a 
losed surfa
e �g of genus g ,and let ~Mg denote its 
entral extension (see [Ati90b, MaRo95℄) arising in the
ategory of extended 3-
obordisms.Problem 8.10 For a given TQFT (V;Z), determine whether the image of ~Mgin End�V (�g)� is �nite.Geometry & Topology Monographs, Volume X (20XX)



128 Edited by T. OhtsukiRemark Using physi
al arguments, Bantay [Ban01℄ (see also referen
es therein)showed that for every CFT the image of ~M1 in End�V (S1�S1)� is �nite. Thishad been rigorously proved by Gilmer [Gil99℄ for the SU(2) 
ase.In higher genus, it is known [Fun99, Masb99℄ that the image of Mg (g � 2) isin�nite in general.Problem 8.11 (G. Masbaum) Is there a relation between the Nielsen-Thurston
lassi�
ation of mapping 
lasses of �g and their images on V (�g) for TQFT's(V;Z)?Remark The Nielsen-Thurston 
lassi�
ation says that any mapping 
lass of asurfa
e is either �nite order, redu
ible, or pseudo-Anosov (see, e.g., [CaBl88℄).It is known that a Dehn twist is taken to a matrix of �nite order by any TQFTderived from a modular 
ategory of a quantum group. On the other hand, it isshown in [Masb99℄ that a 
ertain produ
t of two non-
ommuting Dehn twistsis taken to a matrix of in�nite order in the SU(2) TQFT at level k unlessk = 1; 2; 4; 8.8.5 Half-proje
tive and homologi
al TQFT'sIn [Gil01℄ it is shown that, for a restri
ted set of 
obordisms, the Reshetikhin-Turaev TQFT at a prime p-th root of unity �p 
an be de�ned, at least ab-stra
tly, as a fun
tor Vp : Cob ! Z[�p℄-mod, meaning the 
ategory of free Z[�p℄-modules. Note that there is a well de�ned ring epimorphism Z[�p℄�� Fp [y℄=yp�1 ,whi
h sends �p 7! 1 + y and maps integer 
oeÆ
ients 
anoni
ally onto the �-nite �eld Fp = Z=pZ. Thus an endomorphism, whi
h for a 
hoi
e of basisof the free Z[�p℄-modules is given by a matrix with entries in Z[�p℄, will berepresented by the same matrix with redu
ed 
oeÆ
ients now in Fp [y℄=yp�1 .Colle
ting the 
oeÆ
ients for ea
h degree we 
an thus reexpress su
h a matrixas a sum of matri
es over Fp multiplied with powers of y, or, more su

in
tly,use Mat(Fp [y℄=yp�1) = Mat(Fp)[y℄=yp�1 . This means that in the ring-redu
tionthe TQFT assigns to 
obordisms a polynomial Vp(M) = Pp�2j=0 yj � V [j℄p (M),where ea
h V [j℄p (M) is a matrix over Fp and is well de�ned for given bases.Re
all also the notion of a half-proje
tive TQFT with respe
t to an elementx 2 R in the base ring, introdu
ed in [Ker98℄. It is de�ned, by perturbing fun
-toriality into V(N ÆM) = x�(M;N)V(N)V(M), where �(M;N) = rank�H1(N ÆM) Æ! H0(N \M)�.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 129Problem 8.12 (T. Kerler) [Cy
lotomi
 integer TQFT's℄(1) Find expli
it/
omputable bases for the Vp(�g) as free modules over Z[�p℄.(2) Show that Vp 
an be extended to all 
obordisms as a half-proje
tiveTQFT with x = (�p � 1) p�32 2 R = Z[�p℄.(3) Determine the stru
ture of the V [j℄p (M) and in how far they have liftsfrom Fp to Z, analogous to the Ohtsuki invariants for 
losed 3-manifolds.(4) Find a universal TQFT that 
ombines all Vp , at least perturbatively, intoone.In the 
ase of p = 5 the program for items (1){(3) has been mostly 
arried outin [Ker02b℄, for primes p � 7 not mu
h is known though. Some expli
it baseshave been found for genus g = 1 by Gilmer, but the situation for higher generag � 3 is unknown. An immediate appli
ation of item (2) is that the quantumorder, as introdu
ed in [CoMe01℄, is also an upper bound for the 
ut-number of a3-manifold. A 
losely related statement for (2) would also yield a very di�erentproof for the fa
t that the Ohtsuki invariants are of �nite type. In item (3) the\lift" must depend on p sin
e the dimensions of the ve
tor spa
es do, and mustalso involve further quotients that arise sin
e the irredu
ible TQFT's over Zdo not mat
h the required dimensions either, but they be
ome redu
ible whenredu
ed to Fp . Item (4) is rather vague at this point, indi
ating for some sortof in�nite �ltered spa
e with �nite graded 
omponents.Any TQFT V : Cob ! R-mod implies a sequen
e of representation V[g℄ : �g !GLR(V(�g)) of the mapping 
lass groups. We say that a TQFT is homologi
alif ea
h of these representations fa
tors through the quotient �g�� Sp(2g;Z)(given by the a
tion on H1(�g)), and we say it is stri
tly homologi
al if ea
hof the Sp(2g;Z)-representations is algebrai
, i.e., either faithful or zero. Aparti
ular example of stri
tly homologi
al TQFT's over R = Z are the Lefs
hetz
omponents V(j) of the Frohman-Ni
as TQFT, see [FrNi92, Ker00℄. From thesewe 
an generate a larger family Q0 of su
h TQFT's by taking all dire
t sums ofV(j) 's. For example all the TQFT's 
onstru
ted in [Don99℄ lie in Q0 . An evenlarger family Q� is found by taking also tensor produ
ts and their irredu
iblesummands.Problem 8.13 (T. Kerler) [Homologi
al TQFT's℄(1) Find the irredu
ible 
omponents and ring stru
ture (w.r.t � and 
) ofQ� .(2) Determine whether all stri
tly homologi
al TQFT's lie in Q� .Geometry & Topology Monographs, Volume X (20XX)



130 Edited by T. Ohtsuki(3) Identify the homologi
al TQFT's that arise from the gauge theory ofhigher rank groups (su
h as PSU(n) in [FrNi94℄) with elements in Q� .(4) Identify the irredu
ible fa
tors of the 
onstant orders V [0℄p of the 
y
lo-tomi
 integer expansion of the Reshetikhin-Turaev theory with elementsin Q� .The �rst item is in some sense about �nding the representation ring of Sp(2;Z)�Sp(4;Z)� : : :� Sp(2g;Z)� : : : equipped with further generators and relationsgiven by the standard handle atta
hments. The 
onstraints given by the lattermay be just good enough to ensure that the answer to item (2) is positive. Theappli
ation of (3) is a better understanding and possibly a 
losed form for thepolynomials from [FrNi94℄ that express the PSU(n)-invariants in terms of the
oeÆ
ients of the Alexander polynomial. Eviden
e seems to suggest that theTQFT's from (4) stem from p�32 -fold symmetri
 produ
ts of elements in Q0 .A plausible 
orollary would be that for a 
losed manifold with b1(M) � 1 wehave Vp(M) = (�p � 1) p�32 P p�32 (�CWL(M)) + O((�p � 1) p�12 ) ; (46)where �CWL is the Casson-Walker-Les
op invariant, and Pj is a polynomial ofdegree j with integer 
oeÆ
ients. (Note our normalization Vp(S3) = 1). Asremarked in [Ker02a℄ the identity in (46) is true for p = 5 and general M withb1(M) � 1. Moreover, work in progress shows that (46) holds also for generalp if M is a torus-bundle over a 
ir
le.The homologi
al TQFT's are the starting point for a more general, pertur-bative view point on TQFT's that should parallel and extend that of the �-nite type theory of homology-3-spheres. At least for �xed p one 
an under-stand, for example, the Reshetikhin-Turaev theory as deformation of the Q� -theories. The notion that is somewhat parallel to that of �nite type for 
losed3-manifolds is what we shall 
all �nite length. More pre
isely, the representa-tions V[g℄ : �g ! GLR(V(�g)) of the mapping 
lass groups extend linearly tohomomorphisms V[g℄ : Z[�g℄! EndR(V(�g)). Denote by IIg � Z[�g℄ the aug-mentation ideal of the Torelli group. The length of V is the maximal L 2 N su
hthat V[g℄((IIg)L+1) = 0. Clearly, the L = 0-theories are just the homologi
alones. The L = 1-theories 
an be thought of as elements of some Ext(V;W) withV; W 2 Q� . Restri
ted to representations of the �g 's they fa
tor (in 
har 6= 2)through the Johnson-Morita-homomorphism �g ! V3H1(�g) o Sp(2g;Z), forwhi
h su
h extension are expli
itly 
onstru
tible [Ker01b℄.Problem 8.14 (T. Kerler) [Length = 1 TQFT's℄Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 131(1) Des
ribe and 
onstru
t algebrai
 L = 1-extensions of �g -representationsto TQFT's, preferably as \simple" generalizations of the Frohman-Ni
as-U(1)-theory.(2) Produ
e a 
lassi�
ation of L = 1-TQFT's in the sense of an extensiontheory of Q� .(3) Identify the �g -representations on relative SU(2)-moduli spa
e from [CLM00℄with these TQFT's, and �nd similar, higher rank theories.(4) Identify the V [0℄p as L = 1-theories, if possible.The 
on
eivable generalizations of the TQFT 
onstru
tion of Frohman andNi
as des
ribed in (1) in
lude using di�erent, possibly non-
ompa
t gaugegroups instead of U(1) and using more re�ned versions of interse
tion homolo-gies for strati�ed moduli spa
es. Given the theory for Q� the solution to item(2) will lead to well de�ned problems in sp-invariant theory. Constru
tions ofL = 1-theories follow the s
hemes from (1) and (3). The identi�
ation in (4) is
arried out for p = 5 in [Ker01b℄.The notion of �nite length 
an be re�ned into the notion of q=l-solvable in-trodu
ed in [Ker02a℄, indi
ating a TQFT over R = M [y℄=yl+1 su
h that the
onstant order TQFT over the ground ring M is of length q . This, 
learly,de�nes a spe
ial 
ase of a TQFT of length � (q � l+ q + l) . Murakami's result[Mur95℄ 
an be restated as saying that the Reshetikhin-Turaev theory gives riseto a 1/1-solvable TQFT V [�1℄p with ground ring Fp (i.e., a TQFT of length 3over Fp [y℄=y2 ) su
h thatV [�1℄p (M) = 1 + y16�CWL(M) (47)for any 
losed homology sphere M . Following Ohtsuki's work Murakami's iden-tity (with some extra renormalizations by the order of H1(M)) extends also torational homology spheres. Let us 
all a theory with this property a TQFT ofCasson type.Re
all, that the similar relation (46) for �CWL for manifolds with b1(M) � 1is already 
ontained in the information of a homologi
al (L = 0) TQFT, and isindeed a spe
ial evaluation of the Turaev-Milnor Torsion, see [Ker02a℄. Giventhe ri
her stru
ture of a 1/1-solvable TQFT we will expe
t new invariants �that are re�nements of �CWL and the torsion invariants.To be more pre
ise, note that for a pair (M;'), where ' : �1(M)!! Z de�nesa 
y
li
 
over, any TQFT V yields an invariant V(M;') = tra
e(V(C�)) whereC� = M � � : � ! � and � � M is any surfa
e dual to '. In this way theGeometry & Topology Monographs, Volume X (20XX)



132 Edited by T. OhtsukiFrohman Ni
as theories V(j) yields the 
oeÆ
ients of the Alexander Polynomial,and, as shown in [Ker02a℄, thus also �CWL .A more re�ned invariant, whi
h, roughly speaking, generalizes the Alexandermodule, is the Turaev-Viro module MTV (M;'). It is des
ribed by Gilmerin [Gil97℄. MTV (M;') is given, up to 
onjuga
y, by V(�)Æker(V(C�)N )(with N large enough) together with the a
tion of V(C�) on it. The tra
es ofV(C�) or its powers are the most obvious well de�ned numeri
al invariants ofMTV (M;'). The dimension of the module is yet another su
h invariant.For a 1/1-solvable theory V the invariant V(M;') takes values in M [y℄=y2 and
an hen
e be written as V(M;') = �V'(M) + y � �V'(M), where �V and �Vare now M -valued invariants. If y 
oin
ides with the half proje
tive parameter�V does not depend on ', and we expe
t it to be some fun
tion of �CWL .Moreover, if V des
ends from a 1/2-solvable TQFT with the same propertyalso �V would be independent of '.For the modular TQFT over F5 [y℄=y2 obtained from the Reshetikhin Turaevtheory this invariant has already been de�ned in [Ker02a℄, and we may expe
tit to lift, similarly, to an invariant �Z over Z. For p > 5 we expe
t, as in the
ase of �CWL , the next order terms in the expansions (46) of the ReshetikhinTuraev theories to be polynomial expressions in �CWL and �Z.Problem 8.15 (T. Kerler) [q=l-solvable and Casson TQFT's℄(1) Lift the 1/1-solvable TQFT's of Casson type over Fp to a universal 1/1-solvable TQFT's of Casson type over Z.(2) Des
ribe the resulting invariant �Z for 3-manifolds with b1(M) � 1.(3) Develop a perturbation theory for general q=l-solvable TQFT's.(4) Relate those with the various, standard resolutions of �g .(5) Relate them also to the traditional �nite type theory for 
losed 3-manifolds.(6) Des
ribe the Reshetikhin-Turaev theories in this pattern.Preparations for item (1) 
an be found in [Ker02a℄ in whi
h formulae for theCasson invariant over Z are derived that have the same form as general TQFTformulae. Item (2) is immediate from the pre
eding dis
ussion. The remainingitems are logi
al 
ontinuations.The 
ategory of 3-dim 
obordisms Cob� between 
ompa
t, oriented surfa
eswith one boundary 
omponent has a natural stru
ture of a braided tensor 
at-egory. Another, 
ategory Alg 
an be de�ned entirely algebrai
ally in terms ofGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 133generators and relations with respe
t to a tensor produ
t and a 
ompositionprodu
t. On the level of obje
ts it has exa
tly one generator, say A, so that allother obje
ts are of the form A
g with 1 = A
0 . The morphisms are given byall words that 
an be generated by taking 
omposition and tensor produ
ts ofelementary morphisms m : A
A! A, � : A! A
A, e : 1! A, " : A! 1,. . . , that appear in the de�nition of a braided, ribbon Hopf algebra with in-tegrals and a non-degenerate pairing. For example, in [Ker01a℄ a surje
tivefun
tor Alg�� Cob� is 
onstru
ted, whi
h, in the genus one restri
tion in fa
tan isomorphism.Problem 8.16 (T. Kerler) [3-dim 
obordisms from Hopf algebras℄(1) Find further relations on Alg , besides the ones arising from the axiomat-i
s of Hopf algebras, that would make Alg ! Cob� an isomorphism.(2) Find relations on Alg su
h that the maps AutAlg(A
g)! �g �= AutCob�(�g;1)are isomorphisms.(3) Relate this to obstru
tions, su
h as Steinberg and Whitehead groups, viastrati�ed fun
tion spa
es.(4) What are the analogous algebrai
 stru
tures in higher dimensions.The �rst problem is easily stated, but presumably very diÆ
ult as it implies afaithful translation of 3-dimensional topology into an algebrai
 gadget. In thisrespe
t it is vaguely parallel to the geometrization and Poin
ar�e 
onje
tures.The easier problem stated in item (2) 
an, in theory, be atta
ked head-on,given the known presentations of the mapping 
lass groups. The third pointhints to the fa
t that the generators in Alg 
orrespond to Morse-theoreti
allyelementary 
obordisms, and the relations 
an be interpreted, similarly, in termsof handle slides and 
an
ellation. This is, thus, reminis
ent of the de�nitions of,e.g., Steinberg groups of 3-manifolds. The problem in item (4) is, again, easilystated but even in 4 dimensions lingers in almost 
omplete total darkness. Itis not hard to understand that higher 
ategory theory has to be invoked andnot just one \obje
t" A suÆ
es as a \generator". Any partial answers mayopen the possibility of 
onstru
ting fun
torial 4-manifold invariants by \linearrepresentation" of su
h stru
tures.In [KeLy01℄ ETQFT's V are de�ned as double fun
tors from the double 
ate-gory of relative, 2-framed 1+1+1-dim 
obordisms Cob� to the double 
ategoryof linear, abelian 
ategories over a perfe
t �eld. (The \E" stands for \extendedto surfa
es with boundaries"). Applied to a single 
ir
le, thought of as a 0-obje
t in Cob� , it yields an abelian 
ategory CV = V (S1), whi
h we 
all theGeometry & Topology Monographs, Volume X (20XX)



134 Edited by T. Ohtsukiasso
iated 
ir
le 
ategory. The main result of [KeLy01℄ is a 
onstru
tion of aV C , for ea
h given modular tensor 
ategory C (meaning a bounded, ribbon,braided tensor 
ategory with some additional properties) su
h that CV C = C .The 
onstru
tion is made for all semisimple C , and is extended, in the 
ase ofnon-semisimple C , to both to the situation of 
onne
ted surfa
es with boundaryas well as dis
onne
ted, 
losed surfa
es using the previously mentioned notionof half-proje
tive TQFT's.Problem 8.17 (T. Kerler) [Extended and half-proje
tive TQFT's℄(1) Des
ribe in how far an ETQFT V with 
ir
le 
ategory C 
an di�er fromV C , thus introdu
ing a equivalen
e notion that would establish a bije
tive
orresponden
e between the 
lass of ETQFT's and the 
lass of modulartensor 
ategories.(2) Find an extended notion of half-proje
tivity that in
ludes also surfa
esthat are both dis
onne
ted and have boundary.(3) Find 
onstru
tions and axioms of ETQFT's that apply to more relaxednotions of boundedness or modularity.The fun
tor Alg ! Cob� already imposes that a 
ir
le 
ategory CV must ful�llabout all axioms of a modular tensor 
ategory, and 
ontain a Hopf algebraobje
t with properties. Given some rigidity assumption it a
tually must be thesame 
hosen in the 
onstru
tion of V C . What may still di�er is the 
hoi
eof algebra stru
tures of the same obje
t in the same 
ategory, whi
h is thusthe main sour
e of possible ambiguities. Already in [KeLy01℄ it is 
lear thatthere are several 
hoi
es. The 
orre
t axiomati
s for item (2) should followfrom a 
areful analysis of the double 
omposition laws for surgery tangles from[KeLy01℄ and generalization of [Ker98℄. Item (3) is relevant to in
lude moregeneral notions of TQFT's as they would be of interest in the theory of �nitetype invariants.The Reshetikhin-Turaev theory typi
ally starts with non-semisimple modular
ategory C , typi
ally the representation 
ategory of a non-semisimple quantumgroups Uq(g), and then 
onsiders a 
anoni
al semisimple sub-quotient C , see[Ker92℄. Thus VC yields a semisimple TQFT. It is known that this is di�erentfrom the non-semisimple TQFT VC , whi
h in the 
ase of a quantum group isobtained via the Hennings algorithm.TQFT's 
an also be generated from a rigid, monoidal 
ategory B without anybraiding. One way is to take the Drinfel'd double D(B), whi
h is then a modular
ategory for some 
hoi
e of ribbon element, and use VD(B) . For semisimple BGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 135one 
an also extra
t the 6j-symbol data and follow the Turaev-Viro 
onstru
tionto obtain a TQFT WB .Problem 8.18 (T. Kerler) [Non-semisimple vs. semisimple TQFT's, thedouble 
onje
ture℄(1) Clarify the di�eren
e in the 
ontent of VC and VC ! Are there homologi
alTQFT's H su
h that VC is in some essential way equivalent to VC 
H?(2) Find a 
onstru
tion of WB that generalizes the Turaev-Viro TQFT's tonon-semisimple B 's, similar to the way [KeLy01℄ generalized the Reshetikhin-Turaev 
onstru
tion. In the 
ase of quantum groups and 
losed 3-manifoldsthis should reprodu
e a version of the Kuperberg invariant.(3) What is the relation between WB and VD(B)? Are they in some senseisomorphi
 TQFT's?For the 
ase of Uq(sl2) there is eviden
e from the genus=1 
ase that su
h an His indeed given by the Frohman-Ni
as-U(1)-theory. Item (2) is rather naturalas a problem. As is apparent in [Kup96
℄ one may expe
t te
hni
al 
hallengesrequiring \minimal" 
ell de
ompositions of 
obordisms, as opposed to generaltriangulations, as well as \
ombings" instead of framings.The last 
onje
ture appears also as Question 5 in [Ker97℄ whi
h was motivatedby works of and dis
ussions with D. Kazhdan and S. Gelfand in 1994. Sin
eit is a rather nearby 
onje
ture from a formal point of view it may have beenposed already earlier. For 
ategories arising from subfa
tors and 
losed man-ifolds results answering this 
onje
ture have been obtained in [KSW02℄. Asoutlined in [Ker97℄ further, more general results in this dire
tion should yielda deeper understanding of both TQFT 
onstru
tions involved as well as entaila topologi
al pi
ture for the Drinfel'd double 
onstru
tion.

Geometry & Topology Monographs, Volume X (20XX)



136 Edited by T. Ohtsuki9 The state-sum invariants of 3-manifolds derivedfrom 6j-symbolsTuraev and Viro [TuVi92℄ introdu
ed a formulation of a state-sum invariant of3-manifolds as a state-sum on triangulations of 3-manifolds derived from 
ertain6j -symbols. After that, O
neanu gave a general formulation of this state-sumfor general 6j -symbols and 
onstru
ted 3-manifold invariants from subfa
torsbased on this formulation. This general formulation was also given by Barrettand Westbury [BaWe96℄.9.1 Monoidal 
ategories, 6j -symbols, and subfa
torsConsider a 
olle
tion, fVigi2I , of (irredu
ible) modules over C (of a quantumgroup or a subfa
tor) whi
h is 
losed under tensor produ
t, i.e., for any i; j 2 I ,Vi 
 Vj �= �k2IHki;j 
 Vk for some Nki;j dimensional ve
tor spa
e Hki;j , whi
hexpresses the multipli
ity of Vk in Vi 
 Vj . Su
h a 
olle
tion (with a 
ertainproperty) is 
alled a monoidal 
ategory, where ea
h Vi is 
alled a simple obje
tof the 
ategory (for details see [BaKi01℄). A monoidal 
ategory is provided bya 
ertain set of representations of a quantum group (see, e.g., [Kas94℄), andalso by a 
ertain set of N -N bimodules arising from a subfa
tor N � M (asexplained below). The algebra spanned by I with the multipli
ation given bya � b =P
2I N 
a;b
 for a; b 2 I is 
alled the fusion rule algebra.Let fVigi2I be a monoidal 
ategory (with a �nite set I ) provided by a quantumgroup (at a root of unity) or a subfa
tor (of �nite depth). Fix the abovementioned isomorphism Vi 
 Vj �= �k2IHki;j 
 Vk for ea
h i; j . Then, we havetwo bases of the ve
tor spa
e Hom(Vl; Vi
Vj 
 Vk) for ea
h i; j; k; l as follows.Consider the maps Vl �! Vn 
 Vk �! (Vi 
 Vj)
 Vkdetermined by basis ve
tors A 2 Hln;k and B 2 Hni;j . The 
omposition of thesemaps gives a ve
tor of Hom(Vl; Vi 
 Vj 
 Vk). Thus, we obtain a basis of thisve
tor spa
e 
onsisting of ve
tors labeled by triples (n;A;B). Moreover, weobtain another basis 
onsisting of ve
tors labeled by triples (m;C;D), whereC 2 Hli;m , D 2 Hmj;k , by 
onsidering the following maps,Vl �! Vi 
 Vm �! Vi 
 (Vj 
 Vk):The introdu
tory part of ea
h se
tion of Chapter 9 was written by T. Ohtsuki, followingsuggestions given by Y. Kawahigashi and J. Roberts.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 137The 
olle
tion of the entries of the matrix whi
h relates these two bases is a typ-i
al example of a set of 6j -symbols, where a set of 6j -symbols is de�ned to be asolution of 
ertain polynomial equations: the tetrahedral symmetry, the unitar-ity, and the pentagon relation. Ea
h 6j -symbol is labeled by i; j; k; l;m; n 2 I ,and A 2 Hln;k , B 2 Hni;j , C 2 Hli;m , and D 2 Hmj;k . This 6j -symbol will beasso
iated to a tetrahedron labeled by them.A subfa
tor is a pair of in�nite dimensional algebras N and M with an in
lusionrelation N �M satisfying some property. A major 
lass of subfa
tors is a 
lassof WZW model subfa
tors of level k = 1; 2; � � � , whi
h are related to quantumgroups. Another well-known 
lass is a 
lass of subfa
tors of the Jones index< 4; they are 
lassi�ed to be of types An;D2n; E6 , or E8 . A left X right Ymodule Z is 
alled a X -Y bimodule, and is written XZY . For a subfa
torN � M , 
onsider irredu
ible N -N bimodules appearing as dire
t summandsof N -N bimodules in the following sequen
e,NNN ; NMM 
M MMN ; NMM 
M MMN 
N NMM 
M MMN ; � � � :The 
olle
tion of (isomorphism 
lasses of) su
h irredu
ible modules provides amonoidal 
ategory fVigi2I . It is known that I is a �nite set when the subfa
toris of �nite depth (this always holds when its index < 4). For a fusion rulealgebra with a set of 6j -symbols there exists a subfa
tor (if quantum dimensionsare positive) su
h that the diagram in Figure 18 
ommutes. For details of thisparagraph see [GHV89, EvKa98℄.Thus, the following 
lassi�
ation problems are almost equivalent. Ea
h of themis fundamental, but probably impossibly hard. (See also Problem 8.2.)Problem 9.1(1) Find (and 
lassify) all semi-simple monoidal 
ategories (with �nitely manyisomorphism 
lasses of simple obje
ts).(2) Find (and 
lassify) (�nite dimensional) fusion rule algebras and sets of6j -symbols.(3) Find (and 
lassify) all subfa
tors (of �nite depth).Remark Major sets of 6j -symbols, what we 
all quantum 6j -symbols, are thesets of 6j -symbols derived from quantum groups, resp. WZW model subfa
tors.Geometry & Topology Monographs, Volume X (20XX)



138 Edited by T. OhtsukiQuantum groups, quantum groupoids(at roots of unity)?Choose 
ertain sets ofrepresentationsSemi-simple monoidal 
ategories(with �nitely many isomorphism
lasses of simple obje
ts) -Take a 
ertain matrixrelated to asso
iativity (Finite dimensional)fusion rule algebrasand sets of 6j -symbols���IChoose 
ertainbimodules ���	Subfa
tors (of �nite depth)Figure 18: 6j -symbols and related obje
tsAnother 
lass of 6j -symbols is derived from �nite groups; for a 3-
o
y
le � ofa �nite group G, a set of 6j -symbols is given byW� � = (�(g1; g2; g3) if g12 = g1g2; g23 = g2g3, and g123 = g1g2g3,1 otherwise,where the tetrahedra is given a trivial fa
e 
oloring. There are still other in-�nitely many sets of 6j -symbols arising from subfa
tors; see Table 6. These6j -symbols might have a universal presentation given by a tetrahedron in thetheory of knotted trivalent graphs (see Se
tion 12.4).9.2 The state-sum invariants derived from monoidal 
ategoriesA state-sum invariant of 3-manifolds is de�ned by using su
h a set of 6j -symbolswith a monoidal 
ategory fVigi2I , as follows. Choose a simpli
ial de
ompositionof a 
losed 3-manifold M , and �x a total order of its verti
es, whi
h indu
esorientations of edges. Further, 
hoose an edge 
oloring �, whi
h is a map of30To be pre
ise, the even part of the subfa
tor of type D2n is braided, and its S -matrix isnon-degenerate.31This is trivially braided.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 139subfa
tor monoidal S-matrix
ategoryWZW model subfa
tors of level k = 1; 2; � � � braided non-degenerateSU(N)k, SO(N)k, Sp(N)k, � � �subfa
tors of type An (= SU(2)n) braided non-degenerateindex < 4 type D2n braided30 non-degenerate30type E6; E8 not braided nonesubfa
tors of (generalized) Haagerup, not braided noneindex > 4: Asaeda-Haagerup, � � �exoti
 subfa
tors, quantum doubles of braided non-degenerate� � � Haagerup subfa
tor, � � �subfa
tors 3-
o
y
les of �nite groups not braided nonefrom | representations of �nite groups braided31 degenerateTable 6: Subfa
tors, their monoidal 
ategories, and S -matri
esthe set of edges to I , and 
hoose a fa
e 
oloring ', whi
h is a 
olle
tion of su
hassignments that a basis ve
tor of Hki;j is assigned to a trianglewith an edge 
oloring. To a tetrahedron � with an edge 
oloring � and a fa
e
oloring ', we asso
iate the above mentioned 6j -symbol, whi
h we denote byW (�;�; '). Then, a state-sum invariant of M is de�ned byZ(M) = w�vX� �YE ��(E)�X' Y� W (�;�; '); (48)where the sums of � and ' run over all edge 
olorings and all fa
e 
olorings, andthe produ
ts of E and � run over all edges and all tetrahedra of the simpli
ialde
omposition of M , and �i is a 
onstant, whi
h 
orresponds to a \quantumdimension", and w =Pi2I �2i , and v is the number of verti
es of the simpli
ialde
omposition. It is known (see [BaWe96℄, [EvKa98, Chapter 12℄) that theinvariant (48) is a topologi
al invariant of M . The de�nition of the invariant(48) 
an naturally be extended to an invariant of 3-manifolds with boundaries,and a TQFT 
an be formulated based on it.In parti
ular, for the set of 6j -symbols arising from representations of the quan-tum group Uq(Sl2) at a root of unity, the invariant (48) is 
alled the Turaev-Viroinvariant [TuVi92℄. In its de�nition it is not ne
essary to introdu
e fa
e 
ol-orings (be
ause Nki;j is always equal to 0 or 1 for any i; j; k in this 
ase) andorientations of edges (be
ause ea
h representation of Uq(sl2) is self-dual).The monoidal 
ategory of a set of quantum 6j -symbols is a modular 
ategory,Geometry & Topology Monographs, Volume X (20XX)



140 Edited by T. Ohtsukiand we 
an 
onstru
t the Reshetikhin-Turaev invariant from it (see Se
tion 9.3).The square of the absolute value of the invariant is equal to the value of thestate-sum invariant derived from these 6j -symbols.The state-sum invariant derived from the set of 6j -symbols given by a 3-
o
y
le� of a �nite group G is 
alled the Dijkgraaf-Witten invariant [DiWi90℄. Inparti
ular, when � = 1, it is equal to the number of 
onjuga
y 
lasses ofrepresentations �1(M) ! G. It is further equal to the state-sum invariantderived from the set of 6j -symbols obtained from the representations of the�nite group G.When a set of 6j -symbols arises from a subfa
tor, the state-sum invariantderived from these 6j -symbols is 
alled the Turaev-Viro-O
neanu invariant.There are in�nitely many subfa
tors other than the above 
ases as shown inTable 6. The Turaev-Viro-O
neanu invariants derived from su
h subfa
torsmight be new invariants of 3-manifolds.Problem 9.2 (Y. Kawahigashi) Suppose we have a three-dimensional TQFT.Can we determine whether it arises from a fusion rule algebra and 6j -symbols?If yes, 
an we des
ribe all fusion rule algebras with 6j -symbols produ
ing theTQFT?Remark (Y. Kawahigashi) By a result of O
neanu, we have at most only�nitely many su
h fusion rule algebras with 6j -symbols, up to equivalen
e of6j -symbols.Problem 9.3 (Y. Kawahigashi) Suppose we have two fusion rule algebraswith 6j -symbols and that two TQFT's arising from them are isomorphi
. Whatrelation do we have for the two sets of 6j -symbols?Remark (Y. Kawahigashi) Are they equivalent in the sense of [Sat97℄?Problem 9.4 (Y. Kawahigashi) Suppose we have a TQFT arising from afusion rule algebra with 6j -symbols. Using a fusion rule subalgebra and 6j -symbols restri
ted on it, we 
an 
onstru
t another TQFT. What relation do wehave for these TQFT's?Remark (Y. Kawahigashi) How about the 
ase where the fusion rule subalgebraarises from �-indu
tion? The �-indu
tion produ
es a fusion rule algebra with6j -symbols from a semisimple ribbon 
ategory with �nitely many isomorphism
lasses of simple obje
ts and a spe
i�
 
hoi
e of an obje
t satisfying 
ertainaxioms. See [BEK01℄, [KiOs02℄ and their referen
es. If the original ribbon
ategory is modular, we have some answer in [BEK01℄, so it is parti
ularlyinteresting when the S -matrix is not invertible.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 1419.3 The state-sum invariants derived from ribbon 
ategoriesA ribbon 
ategory is a monoidal 
ategory fVigi2I equipped with a braidingV 
W ! W 
 V and a twist V ! V for any obje
ts V and W whi
h aremaps satisfying 
ertain properties. We obtain an invariant of framed links froma ribbon 
ategory by asso
iating a braiding to a 
rossing of a link diagram anda twist to a full-twist of a framing of a link. A monoidal 
ategory is 
alled semi-simple if any obje
t is isomorphi
 to a dire
t sum of simple ones. The S-matrixS = (Sij)i;j2I of a semi-simple ribbon 
ategory fVigi2I is de�ned by putting Sijto be the invariant of the Hopf link whose 
omponents are asso
iated with Viand Vj . A modular 
ategory is a semi-simple ribbon 
ategory with �nitely manyisomorphism 
lasses of simple obje
ts whose S-matrix is invertible. We obtainthe Reshetikhin-Turaev invariant of 3-manifolds and its TQFT from a modular
ategory by using surgery presentations of the 3-manifolds. See [BaKi01℄ fordetails of this paragraph.Monoidal 
ategory =) State-sum invariant of 3-manifolds and its TQFT?+ braiding+ twistRibbon 
ategory =) Invariant of framed links?+ semi-simple+ �niteness of I+ invertibility of SModular 
ategory =) Reshetikhin-Turaev invariant of 3-manifolds and its TQFTFigure 19: Monoidal, ribbon, modular 
ategories and their 
onsequen
esThe quantum 6j -symbols are typi
al 6j -symbols whi
h indu
e modular 
ate-gories. The square of the absolute value of the Reshetikhin-Turaev invariantderived from a modular 
ategory is equal to the value of the state-sum invari-ant derived from the 
ategory. It is suggested by O
neanu that the monoidal
ategory of the quantum double of ea
h of su
h subfa
tors would be braided,and that the Reshetikhin-Turaev invariant derived from this quantum doublewould be equal to the Turaev-Viro-O
neanu invariant derived from the originalsubfa
tor.Problem 9.5 (Y. Kawahigashi) Suppose we have a semisimple ribbon 
at-egory C with �nitely many isomorphism 
lasses of simple obje
ts. If the S -Geometry & Topology Monographs, Volume X (20XX)



142 Edited by T. Ohtsukimatrix is invertible, we 
an 
onstru
t the Reshetikhin-Turaev invariant andthe state-sum invariant from C and the latter is the square of the absolutevalue of the former. If the S -matrix is not invertible, do we still have a similardes
ription of the state-sum invariant?Remark See also Problem 9.11 for a similar problem for the Turaev-Viro-O
neanu invariants.Problem 9.6 (Y. Kawahigashi) Suppose we have a semisimple ribbon 
at-egory C1 with �nitely many isomorphism 
lasses of simple obje
ts, but theS -matrix is not invertible. Then we 
an 
onstru
t a new modular 
ategoryC2 
ontaining C1 as a full sub
ategory by the \quantum double" 
onstru
tion[O
n94, O
n01, Izu94℄, but there may be another extension of C1 to a modular
ategory. Theorem 2.13 in [O
n94℄ 
laims that we have a \minimal" exten-sion in an \essentially unique" way. Do we indeed have existen
e and 
ertainuniqueness of su
h an extension? If so, what is the relation between the twoTQFT's arising from C1 and its minimal extension?Problem 9.7 (Y. Kawahigashi) Suppose we have a semisimple ribbon 
at-egory C1 with a degenerate S -matrix as in Problem 9.6. By the method in[M�ug00℄, we 
an also make a modular tensor 
ategory C2 from C1 . What isthe relation between the two TQFT's arising from C1 and C2?Problem 9.8 (Y. Kawahigashi) There are some fusion rule algebras with6j -symbols that do not seem to arise from quantum groups in [AsHa99℄ andmore 
onje
tured 
andidates of su
h examples in [Haa94℄. What are the 
or-responding TQFT's? Espe
ially if the series 
onje
tured in [Haa94℄ does exist,it would give a parametrized family of TQFT's. Does a di�erentiation by aparameter (after a 
ertain reparametrization) give a more interesting invariant,possibly of Vassiliev type?9.4 The Turaev-Viro-O
neanu invariantsThe state-sum invariant of 3-manifolds derived from 6j -symbols is 
alled theTuraev-Viro-O
neanu invariant when the set of 6j -symbols arises from a sub-fa
tor. There are in�nitely many subfa
tors other than those derived fromquantum groups or �nite groups. The Turaev-Viro-O
neanu invariants derivedfrom su
h subfa
tors might be new invariants of 3-manifolds.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 143(N. Sato)The Haagerup subfa
tor of Jones index 5+p132 has the smallest index among�nite depth subfa
tors with Jones index bigger than 4 and it is expe
ted to havesome \exoti
" properties from the subfa
tor theoreti
al viewpoint. However, itdoes not seem so sensitive to 
lassify 3-manifolds. The Turaev-Viro-O
neanu in-variant 
onstru
ted from the Haagerup subfa
tor 
annot distinguish lens spa
esL(5; 1) and L(5; 2), as well as L(7; 1) and L(7; 2). On the other hand, general-ized E6 -subfa
tors with the group symmetries Z=3Z and Z=5Z 
an distinguishL(3; 1) and L(3; 2), L(5; 1) and L(5; 2), respe
tively.Problem 9.9 (N. Sato) Find a subfa
tor whi
h 
an distinguish lens spa
esL(7; 1) and L(7; 2). Moreover, �nd a subfa
tor to 
lassify 3-manifolds as wellas possible.In the latti
e �eld theory, Ponzano and Regge [PoRe68℄ 
onstru
ted a state summodel for SU(2) and investigated an asymptoti
 behavior of the model.Some in�nite depth subfa
tors are manageable in the sense of growth rate(amenability). Su
h subfa
tors are 
alled strongly amenable. The strong amenabil-ity 
ondition might be enough to 
ontrol the asymptoti
 behavior of the statesum model 
onstru
ted from a strongly amenable subfa
tor.Problem 9.10 (N. Sato) Constru
t a well-de�ned state sum type invariantfrom a strongly amenable subfa
tor.Note that, unlike the Ponzano-Regge model, we do not have an asymptoti
des
ription of the quantum 6j -symbols in general. (Re
all that 6j -symbols ofSU(2) have an asymptoti
 des
ription.)Let us 
onsider the Turaev-Viro-O
neanu invariant for a 
losed 3-manifold
onstru
ted from a subfa
tor. Then, this invariant 
an be 
onsidered as aReshetikhin-Turaev type invariant 
onstru
ted from a subfa
tor by passing theinitial subfa
tor through the Longo-Rehren 
onstru
tion. If we start with asubfa
tor whi
h has a non-degenerate braiding in parti
ular, then this Turaev-Viro-O
neanu invariant splits into a Reshetikhin-Turaev invariant and its 
om-plex 
onjugate. The following question will open a way to establish a theory ofthe minimal non-degenerate extension of a degenerate braiding.Problem 9.11 (N. Sato) Let us 
onsider the Turaev-Viro-O
neanu invariantfrom a subfa
tor with a degenerate braiding. Then, �nd a des
ription of thisinvariant as a Reshetikhin-Turaev invariant.Geometry & Topology Monographs, Volume X (20XX)



144 Edited by T. OhtsukiRemark See also Problem 9.5 for a similar problem for the state-sum invariantsderived from ribbon 
ategories.
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Problems on Invariants of Knots and 3-Manifolds 14510 Casson invariant and �nite type invariants of 3-manifolds10.1 Casson and Rohlin invariantsIt is known as Rohlin theorem that the signature of a spin smooth 
losed 4-manifold is divisible by 16, whi
h dedu
e the following de�nition of the Rohlininvariant. For a 
losed 3-manifold M and a spin stru
ture � on M , the Rohlininvariant �(M;�) 2 Z=16Z is de�ned to be the signature of any smooth 
ompa
tspin 4-manifold with spin boundary (M;�). In parti
ular, for a Z=2Z homology3-sphere M , the Rohlin invariant �(M) 2 Z=16Z is de�ned to be the signatureof any smooth 
ompa
t spin 4-manifold with boundary M , noting that thereexists a unique spin stru
ture on su
h a M . Casson invariant is a Z-valuedlift of the Rohlin invariant of integral homology 3-spheres. Further, it is known[Wal92℄ that�(M) � 4jH1(M ;Z)j2�CW(M) � 8jH1(M ;Z)j�CWL(M) (mod 16)for any Z=2Z homology 3-sphere, where �CW denotes the Casson-Walker invari-ant32 [Wal92℄ and �CWL denotes the Casson-Walker-Les
op invariant33 [Les96℄.For expositions of Casson and Rohlin invariants, see [KiMe91, Les96, Sav99℄.Problem 10.1 Can Casson invariant of an integral homology 3-sphere M be
hara
terized by the signature of a 
ertain 4-manifold bounded by M ?Remark It is shown in [FMM90℄ that Casson invariant of the Seifert �beredhomology 3-sphere �(�1; � � � ; �n) is equal to 1=8 times the signature of itsMilnor �ber.The Casson-Walker-Les
op invariant of 
losed 3-manifolds with positive Bettinumber 
an be 
omputed from the torsion invariant � of V. Turaev. He [Tur01℄gave a surgery formula for � , whi
h implies a surgery formula for the Casson-Walker-Les
op invariant.Problem 10.2 (V. Turaev) Relate this surgery formula for the Casson-Walker-Les
op invariant with that of Les
op [Les96℄.32The normalization here is that �CW(M) = 2�C(M) for an integral homology 3-sphereM .33The normalization here is that �CWL(M) = �jH1(M ;Z)j=2��CW(M) for a rational ho-mology 3-sphere M .Geometry & Topology Monographs, Volume X (20XX)



146 Edited by T. Ohtsuki(C. Les
op) In 1984, Casson de�ned his invariant of integral homology 3-spheres as an integer that \
ounts" the SU(2)-representations of their funda-mental group in an appropriate way (see [AkM
90, GuMa92℄). Cappell, Lee andMiller [CLM90℄ showed that the Casson way of 
ounting SU(2)-representationsof the �1 works for any 
ompa
t Lie group and provides other invariants of in-tegral homology spheres.Question 10.3 (C. Les
op) Are the Cappell-Lee-Miller Casson-type SU(n)-invariants of �nite type? If so, what are their degrees and their weight systems?Problem 10.4 (M. Polyak) De�ne an invariant � of a pair (M;�) of a 
losed3-manifold M and a spin stru
ture � on M su
h that�CWL(M) =X� �(M;�)for any 
losed 3-manifold M , where the sum runs over all spin stru
tures � onM .Note that the set of spin stru
tures on M is a torsor over H1(M ;Z=2Z) inthe sense that di�eren
es of spin stru
tures 
an be dete
ted by 
ohomology
lasses in H1(M ;Z=2Z), while the set of spin
 stru
tures on M is a torsor overH1(M ;Z) in a similar sense.Remark It is shown [OzSz00℄ that there exists an invariant �̂ of a rationalhomology 3-sphere M asso
iated with a spin
 stru
ture � on M su
h that12 jH1(M;Z)j�CW(M) =X� �̂(M;�)for any rational homology 3-sphere M , where the sum runs over all spin
 stru
-tures � on M . It is 
onje
tured [OzSz00℄ that �̂ is equal to Seiberg-Witteninvariant for all rational homology 3-spheres.Remark (M. Polyak) Casson invariant is a lift of Rohlin invariant. We expe
tthat �(M;�) of Problem 10.4 should be a lift of �(M;�). How is P� �(M;�) 2Z=16Z related to �CWL(M)?It is known that this sum vanishes in Z=16Z when b1(M) > 3, while it is known[Les96℄ that �CWL(M) = 0 when b1(M) > 3.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 147Remark (C. Les
op) Let M be the 3-manifold obtained by surgery along aframed link L, and let W be the 4-manifold asso
iated to the surgery presenta-tion. Then, 24�CWL(M)�3jH1(M ;Z)jsignW 
an be presented by a formula ofAlexander polynomial 
oeÆ
ients and linking numbers of L ([Les96, Formula6.3.1℄), whi
h might be helpful.Note that the list of �(M;�) for a given M is ri
her than their sumP� �(M;�).For example, �(RP 3 ; �) = 1, �1 and �(RP 3#(Poin
are sphere); �) = 7, 9,while their sums are equal in Z=16Z.Remark The invariant of Problem 10.4 should be related to the Goussarov-Habiro theory for spin 3-manifolds [Mass01℄. Re
all that the Rohlin and Cas-son invariants 
an be 
hara
terized as invariants under Y2 -equivalen
e and Y3 -equivalen
e among ZHS 's respe
tively. It was shown [Mass01℄ that Rohlininvariant of spin 
losed 3-manifolds is the invariant under spin Y2 -equivalen
eamong spin 
losed 3-manifolds. What is the invariant under spin Y3 -equivalen
e?Remark Casson-Walker invariant 
an be 
hara
terized as the �rst 
oeÆ
ient ofthe perturbative expansion of the quantum SO(3) invariant �SO(3)(M) ([Mur95℄).We have a spin re�nement �SU(2)r (M;�) of the quantum SU(2) invariant �SU(2)r (M)for r � 0 mod 4 su
h that�SU(2)r (M) =X� �SU(2)r (M;�);where the sum runs over all spin stru
tures � on M ([KiMe91℄). We expe
tthat �(M;�) of Problem 10.4 should be related to the �rst 
oeÆ
ient of theperturbative expansion of �SU(2)r (M;�).When r � 2 mod 4, we have another re�nement �SU(2)r (M; �) for � 2 H1(M ;Z=2Z)su
h that �SU(2)r (M) =X� �SU(2)r (M; �);when the sum runs over all 
ohomology 
lasses in H1(M ;Z=2Z). The �rst 
oef-�
ient of the perturbative expansion of �SU(2)r (M; �) was dis
ussed in [Mur99,Mur00a℄. It might be a problem to �nd a re�nement �(M; �) of �CW(M) forsome 
ohomology 
lass � .Remark Problem 10.4 is related to Problem 11.7, whi
h is a problem to �nda spin re�nement of the LMO invariant, noting that the �rst 
oeÆ
ient of theLMO invariant is given by the Casson-Walker-Les
op invariant.Geometry & Topology Monographs, Volume X (20XX)



148 Edited by T. OhtsukiQuestion 10.5 (M. Polyak) Is there a \Rohlin invariant" of a pair (M;�) ofa 
losed 3-manifold M and a spin
 stru
ture � on M ? (See Question 10.21.)Problem 10.6 (M. Polyak) By presenting 3-manifolds by surgery alongframed links in S3 , we 
an regard an invariant of 3-manifolds as an invari-ant of framed links. Establish a Gauss diagram formula for the link invariantderived from ea
h �nite type invariant of 3-manifolds.Remark (M. Polyak) The �rst step is to �nd a Gauss diagram formula forCasson invariant. The Casson-Walker invariant as an invariant of 2-
omponentlinks is studied in [KiLi97℄.If we would obtain a Gauss diagram formula for the Casson-Walker-Les
opinvariant, then a spin re�nement of it (of Problem 10.4) would be obtained byde
orating the Gauss diagram formula by 
hara
teristi
 sublinks, noting thatthe spin stru
tures on the 3-manifold obtained by surgery along a framed linkL 
an be presented by 
hara
teristi
 sublinks of L (see [KiMe91℄).10.2 Finite type invariantsA link in an integral homology 3-sphere is 
alled algebrai
ally-split if the linkingnumber of any pair of its 
omponents vanishes, and is 
alled boundary if all its
omponents bound disjoint surfa
es. A framed link is 
alled unit-framed if theframings of its 
omponents are �1. Let M be the set of (homeomorphism 
lassesof) oriented integral homology 3-spheres, and let R be a 
ommutative ring with1. For an algebrai
ally-split unit-framed link L in an integral homology 3-sphereM , we put [M;L℄ = XL0�L(�1)#L0ML0 2 RM ;where the sum runs over all sublinks L0 of L, and #L0 denotes the numberof 
omponents of L0 , and ML0 denotes the 3-manifold obtained from M bysurgery along L0 . Let Fasd (RM ) [Oht96a℄ (resp. Fbd (RM ) [Gar96℄) denote thesubmodule of RM spanned by [M;L℄ su
h that M is an integral homology 3-sphere and L is a unit-framed algebrai
ally-split link L with d 
omponents inM (resp. a unit-framed boundary link L in M ). Let FYd (RM ) [GGP01℄ denotethe submodule of RM spanned by [M;G℄ su
h that M is an integral homology3-sphere and G is a 
olle
tion of d disjoint Y-graphs (see Figure 11) in M ,where [M;G℄ is de�ned similarly as [M;L℄ (see [GGP01℄).34 A homomorphism34FYd (RM ) 
an alternatively be de�ned by using blinks [GaLe97℄; see [GGP01℄.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 149v : RM ! R is 
alled a �nite type invariant of Fas? -degree d (resp. Fb? -degree d,or FY? -degree d) if v vanishes on Fasd+1(RM ) (resp. Fbd+1(RM ), or FYd+1(RM )).It is known [GaOh98℄ thatFas3d(QM ) = Fas3d�1(QM ) = Fas3d�2(QM )and that there is an isomorphismA(;;Q)(d) �! Fas3d(QM )=Fas3d+3(QM )between ve
tor spa
es [GaOh98, Le97℄. It is known [GGP01℄ thatFbd (ZM ) � FY2d(ZM ); Fas3d(ZM ) � FY2d(ZM );Fas3d(RM ) = Fbd (RM ) = FY2d(RM );FY2d�1(RM ) = FY2d(RM )if 1=2 2 R.10.2.1 Torsion and �nite type invariantsConje
ture 10.7 Fasd (ZM )=Fasd+1(ZM ) (resp. Fbd (ZM )=Fbd+1(ZM )) is torsionfree for ea
h d.Remark (K. Habiro) The group FYd (ZM )=FYd+1(ZM ) has 2-torsion for ea
hd > 0.Conje
ture 10.8 A(;;Z) is torsion free.10.2.2 Do �nite type invariants distinguish homology 3-spheres?Conje
ture 10.9 Finite type invariants distinguish integral homology 3-spheres.(See Conje
ture 11.2.)10.2.3 Dimensions of spa
es of �nite type invariantsA �nite type invariant v is 
alled primitive if v(M1#M2) = v(M1) + v(M2)for any integral homology 3-spheres M1 and M2 . We denote by A(;;R)
onnthe submodule of A(;;R) spanned by Ja
obi diagrams with 
onne
ted trivalentgraphs. As a graded ve
tor spa
e A(;;Q) is isomorphi
 to the symmetri
 tensoralgebra of A(;;Q)
onn .Geometry & Topology Monographs, Volume X (20XX)



150 Edited by T. Ohtsukid 0 1 2 3 4 5 6 7 8 9 10prime diag. 0 1 0 0 1 0 1 1 1dim A(;)(d)
onn 0 1 1 1 2 2 3 4 5 6 8dim A(;)(d) 1 1 2 3 6 9 16 25 42 65 105d 11 12 13 14prime diag.dim A(;)(d)
onn 9 �11 �13 �15dim A(;)(d) 161 �254 �386 �595Table 7: Some dimensions for Problem 10.10Problem 10.10 Determine the dimension of the spa
e of primitive �nite typeinvariants of integral homology 3-spheres of ea
h degree d. Equivalently, deter-mine the dimension of the spa
e A(;;Q)(d)
onn for ea
h d.Remark A(;;Q)(d)
onn is isomorphi
 to B(d+1;2)
onn mentioned in a remark of Problem2.12, by the isomorphism taking a trivalent graph to a uni-trivalent graph ob-tained from the trivalent graph by 
utting a middle point of an edge. Hen
e, thedimension of A(;;Q)(d)
onn is equal to the dimension �d+1;2 of B(d+1;2)
onn . Therefore,we obtain the row of A(;;Q)(d)
onn in Table 7 from a 
olumn of Table 2.Remark A(;)
onn is an algebra with the produ
t given by 
onne
ted sum ofJa
obi diagrams. Let us look for prime diagrams with respe
t to the 
onne
tedsum; they generate the algebra A(;)
onn . By the AS and IHX relations, we 
anremove a triangle, and we 
an break a polygon with odd edges. Hen
e, primediagrams are given byp1 = ; p4 = ; p6 = ;
p7 = ; p8 = ; � � � :They have the relation p1p7 = p24 , sin
e p1p7 = p1(x3p4) = (x3p1)p4 = p24 ,where x3 is the element of Vogel's algebra � given in (49) below, whi
h a
tsGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 151on A(;)
onn . It is a problem to �nd a 
omplete list of generators and relationsof the algebra A(;)
onn .Remark A(;;Q)
onn is a �-algebra, where � is Vogel's algebra given below,whose generators and relations have been known in degree � 10; see a remarkon Problem 10.11. It is a problem to �nd generators and relations of A(;;Q)
onnas a �-algebra.10.2.4 Vogel's algebraVogel's algebra [Vog96℄ is de�ned as follows. For �xed 3 points, we denoteby A(3 points)
onn the module over Q spanned by vertex-oriented 
onne
teduni-trivalent graphs whose univalent verti
es are the �xed 3 points subje
t tothe AS and IHX relations. The symmetri
 group S3 a
ts on A(3 points)
onnby permutation of 3 points. The module � is de�ned to be the submodule ofA(3 points)
onn 
onsisting of all elements u satisfying that �(u) = sgn(�) � ufor any � 2 S3 . It is well de�ned to insert u 2 � in a vertex-oriented trivalentvertex as 7�! :Moreover, this insertion is independent, modulo the AS and IHX relations, ofa 
hoi
e of a trivalent vertex as follows. By the AS and IHX relations,� = = �
= � ;

Geometry & Topology Monographs, Volume X (20XX)



152 Edited by T. Ohtsukiwhere the middle equality is derived from the anti-symmetry of u. By the �=4and ��=4 rotations of the above formula, we have that� = �= � :Hen
e, the left hand side of the above formula is equal to 0. This implies thatthe insertion of u is independent of a 
hoi
e of a trivalent vertex. The module� is an algebra, 
alled Vogel's algebra, whose produ
t of x; y 2 � is de�ned tobe the element of � obtained by inserting x in a trivalent vertex of y . It is a
ommutative algebra. Some generators of � in low degrees are given by1 = ; t = ; x3 = ; (49)and further, xn = ;having n horizontal lines between the verti
al line and the 
ir
le. It is knownthat the even xn 's 
an be presented by odd xn 's.Problem 10.11 Des
ribe Vogel's algebra �, say, by giving 
omplete sets ofgenerators and relations of �.Remark Vogel [Vog99℄ 
onje
tured that the homomorphism ' : R0 ! � givenin [Vog99℄ was bije
tive, where R0 is the subalgebra of a polynomial algebra in3 variables, generated by elements given in [Vog99℄. As mentioned in [Vog99℄,' has been known to be bije
tive in degree � 10, and inje
tive in degree � 15.Re
ently (in June, 2001), Vogel found a polynomial in R0 whose image in �vanishes; this implies that ' is not inje
tive. Surje
tivity of ' (whi
h impliesthat � is generated by t; x3; x5; x7; � � � ) is still an open problem.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 153Vogel [Vog℄ further found a divisor of zero in �. It is given as follows. Putting
U = ;

we de�ne W 2 A(;) and � 2 � byW =X� sign(�) = ;where the sum of � runs over all permutations � 2 S6 , and � is obtainedfrom W by removing a neighborhood of a trivalent vertex. Vogel showed thatt� = 0 2 � and � 6= 0 2 �.10.2.5 Other problemsProblem 10.12 Find a 
onstru
tive 
ombinatorial presentation of ea
h �nitetype invariant of integral homology 3-spheres, and, in parti
ular, of Cassoninvariant, by lo
alizing 
on�gration spa
e integrals.Remark The perturbative expansion of the path integral of the Chern-Simons�eld theory suggests that ea
h Vassiliev invariant of knots 
an be obtained asa mapping degree of a 
ertain map on a 
on�guration spa
e, whose lo
aliza-tion dedu
es a Gauss diagram formula of this Vassiliev invariant; see 
ommentsbefore Problem 3.11. In the 3-manifold 
ase G. Kuperberg and D. Thurston[KuTh99℄ gave a presentation of ea
h �nite type invariant by using 
on�gura-tion spa
e integrals, whose lo
alization might dedu
e a 
ombinatorial formula,similarly as a Gauss diagram formula. It would be a diÆ
ult point of su
hlo
alization to deal with \hidden strata" (anomaly fa
es).Problem 10.13 (J. Roberts) What is the spa
e of 3-manifolds?Remark (J. Roberts) Vassiliev invariants are usually 
hara
terised in purely
ombinatorial terms, but it is worth remembering that Vassiliev was led toGeometry & Topology Monographs, Volume X (20XX)



154 Edited by T. Ohtsukithis de�nition by 
onsidering the natural strati�
ation of the spa
e of smoothmaps S1 ! R3 . The 
ombinatorial theory of �nite type invariants of homologyspheres is now equally well-developed but there remains no natural justi�
ationfor 
onsidering the relations introdu
ed by Ohtsuki, other than that these turnout to intera
t very well with the perturbative expansion of the Witten invari-ants. One would like to �nd a strati�ed spa
e of integer homology spheres, inwhi
h 
rossing a 
odimension 1 stratum 
orresponds to doing �1 surgery ona knot. Now the spa
e of smooth maps f : Sn+3 ! Sn is a natural 
hoi
e fora \spa
e of framed 3-manifolds", via the Pontrjagin-Thom 
onstru
tion (takethe preimage of a �xed point in Sn ). But this spa
e gives the wrong �ltration,and it's not 
lear how to alter it to implement (for example) 
onstraints on thehomology of the preimages. See Shirokova [Shir00℄.10.3 Goussarov-Habiro theory10.3.1 Goussarov-Habiro theory for 3-manifoldsRelated to �nite type invariants of 3-manifolds, equivalen
e relations among 3-manifolds have been studied by Goussarov [Gou95, Gou99℄ and Habiro [Hab00℄,whi
h is 
alled the Goussarov-Habiro theory for 3-manifolds. These equivalen
erelations are helpful for us to study stru
tures of the set of 3-manifolds.The Yd -equivalen
e35 among oriented 3-manifolds is the equivalen
e relationgenerated by either of the following relations,(1) surgery on a tree 
lasper with d trivalent verti
es [Hab00℄,(2) Goussarov's d-variation (whi
h generates Goussarov's notion of (d � 1)-equivalen
e) [Gou95, Gou99℄,(3) surgery by an element in the dth lower 
entral series subgroup of theTorelli group of a 
ompa
t 
onne
ted surfa
e.It is known [Hab00℄ that these relations generate the same equivalen
e rela-tion among ZHS 's. Two 
losed 3-manifolds M and M 0 are Y1 -equivalent ifand only if there is an isomorphism H1(M ;Z)! H1(M 0;Z) whi
h indu
es anisomorphism between their linking pairings ([Mat87℄).It is known [Hab00℄ that fintegral homology 3-spheres (ZHS 's)g=�Y2�= Z=2Zand that fZHS 'sg=�Y3�= Z, whi
h dedu
e the Rohlin and Casson invariants35The Yd -equivalen
e is also 
alled the (d � 1)-equivalen
e (due to Goussarov) in someliteratures.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 155respe
tively. Further, it is known [Hab00℄ that fM �Y2d�1 S3g=�Y2d= 0 for d > 1and that there exists a natural surje
tive homomorphismA(;;Z)(d)
onn �! fM �Y2d S3g= �Y2d+1 (50)su
h that the tensor produ
t of this map and Q is an isomorphism. In parti
ular,fM �Y2d S3g= �Y2d+1 forms an abelian group with respe
t to the 
onne
ted sum ofZHS 's, and hen
e, so does fZHS 'sg= �Y2d+1 .Conje
ture 10.14 The map (50) is an isomorphism.This 
onje
ture might be redu
ed to Conje
ture 10.8 and the following 
onje
-ture.Conje
ture 10.15 fM �Y2d S3g= �Y2d+1 is torsion free for ea
h d.Remark Conje
ture 10.8 implies this 
onje
ture, sin
e the surje
tive homomor-phism (50) gives a Q -isomorphism.Remark (K. Habiro) It is also a problem to des
ribe the graded set fM �YdM0g= �Yd+1 for an arbitrarily given 3-manifold M0 . For d = 0, the quotientset f3-manifoldsg=�Y1 
an be identi�ed with the set of isomorphism 
lasses ofH1(M ;Z) and their linking pairings (as mentioned above). For d > 0, there isa surje
tive map to this graded set from a 
ertain module of Ja
obi diagrams(subje
t to the AS and IHX relations).Problem 10.16 (T. Ohtsuki) De�ne a produ
t M1 ÆM2 of integral homol-ogy 3-spheres M1 and M2 whi
h is related, by (50), to the produ
t of Ja
obidiagrams given by their 
onne
ted sum.Remark A(;)
onn is an algebra with the produ
t given by 
onne
ted sum ofJa
obi diagrams. The 
onne
ted sum of Ja
obi diagrams on ; is well de�nedby the AS and IHX relations. The sum of A(;)
onn 
orresponds, by (50), tothe 
onne
ted sum of integral homology 3-spheres. The problem is to de�nea produ
t among integral homology 3-spheres 
orresponding to the produ
t ofA(;)
onn by (50).Geometry & Topology Monographs, Volume X (20XX)



156 Edited by T. OhtsukiIt is known [Gou95, Hab00℄ that two integral homology 3-spheres M and M 0are Yd -equivalent if and only if v(M) = v(M 0) for any A-valued �nite typeinvariant36 v of FY? -degree < d for any abelian group A. In fa
t, a naturalquotient map fZHS 'sg ! fZHS 'sg=�Yd is a �nite type invariant of FY? -degree< d, whi
h 
lassi�es Yd -equivalen
e 
lasses of integral homology 3-spheres.For an oriented 
ompa
t surfa
e F , a homology 
ylinder over F is a homologyF � I whose boundary is parameterized by �(F � I).Conje
ture 10.17 (M. Polyak, see [Gou99, \Theorem 4"℄) Let F be anoriented 
ompa
t surfa
e. Two homology 
ylinders C and C 0 over F are Yd -equivalent if and only if v(C) = v(C 0) for any A-valued �nite type invariant vof FY? -degree < d for any abelian group A.Remark (M. Polyak) The 
orresponding assertion for 
losed 3-manifolds doesnot hold; note that f
losed 3-manifoldsg=�Yd does not (naturally) form a group.Re
all that fZHS 'sg=�Yd forms an abelian group, whi
h guarantees the 
orre-sponding assertion for ZHS 's, as mentioned above. The set fhomology 
ylinderson F g=�Yd forms a group with respe
t to the 
omposition of homology 
ylinders,though it is not abelian.10.3.2 Goussarov-Habiro theory for spin and spin
 3-manifoldsAs shown in [Mass01℄, we have a natural spin (resp. spin
 stru
ture) on the3-manifold obtained from a spin (resp. spin
) 3-manifold by surgery along a Ygraph (or a tree 
lasper). We de�ne the Y sd -equivalen
e (spin Yd -equivalen
e)(resp. Y 
d -equivalen
e (spin
 Yd -equivalen
e)) to be the equivalen
e relationamong spin (resp. spin
) 3-manifolds given by the Yd -equivalen
e. It is known[Mass01℄ that the quotient set fspin 
losed 3-manifoldsg=�Y s1 
an be identi�edwith the isomorphism 
lasses of pairs of H1(M ;Z) and 
ertain quadrati
 forms�M;� : TorH1(M ;Z)! Q=Z, or equivalently, the isomorphism 
lasses of triplesof H1(M ;Z) and linking pairings �M : �TorH1(M ;Z)�
2 ! Q=Z and the mod8 redu
tion of the Rohlin invariant �(M;�). Further, it is known [DeMa02℄ the36 For an abelian group A , a homomorphism v : ZM ! A is 
alled a �nite typeinvariant of FY? -degree d if v vanishes on FYd+1(ZM ).The �rst version of Se
tion 10.3.2 was written by T. Ohtsuki, following a report of F.Deloup. Based on it, F. Deloup wrote this se
tion.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 157quotient set fspin
 
losed 3-manifoldsg=�Y 
1 
an be identi�ed with the set of theisomorphism 
lasses of pairs of H1(M ;Z) and 
ertain quadrati
 forms q� . Thisset would be well des
ribed by the 
lassi�
ation of the following problem.Problem 10.18 (F. Deloup) Classify the monoid (for orthogonal sum) ofisomorphism 
lasses of quadrati
 forms q� .Remark The quotient set f
losed 3-manifoldsg=�Y1 
an be identi�ed with the setof the isomorphism 
lasses of pairs of H1(M ;Z) and linking pairings. This set
an be well des
ribed by the 
lassi�
ation of linking pairings given in [KaKo80℄.Problem 10.19 (G. Massuyeau) Des
ribe the quotient setfspin 
losed 3-manifoldsg=�Y sd , in parti
ular, for d = 2; 3.Problem 10.20 (F. Deloup, G. Massuyeau) Des
ribe the quotient setfspin
 
losed 3-manifoldsg=�Y 
d , in parti
ular, for d = 2; 3.Remark There is a unique spin (resp spin
) stru
ture on a ZHS. Hen
e,fspin ZHS 'sg=�Y sd (resp. fspin
 ZHS 'sg=�Y sd ) is equal to fZHS 'sg=�Yd . Thisquotient set 
an be des
ribed by Ja
obi diagrams (see Conje
ture 10.15).Remark The above two problems are related to spin and spin
 re�nements ofthe Casson-Walker-Les
op invariant; see Problem 10.4.Deloup and Massuyeau [DeMa02℄ obtained a 
omplete system of invariants forquadrati
 fun
tions on �nite abelian groups whi
h involves the Gauss-Browninvariant 
(q) =Px2G e2�p�1q(x) of a quadrati
 form q . In the 
ase q� 
omesfrom a usual spin stru
ture, q� is homogeneous37 and the argument of 
(q�) isjust the mod 8 redu
tion of the Rohlin invariant. (Here we take the 
lassi
alRohlin invariant of a spin stru
ture on M to be the signature mod 16 of an ori-ented smooth simply-
onne
ted 4-manifold bounded by M .) Thus, in general,arg 
(q�) 2 Q=Z may be viewed as mod 8 generalization of Rohlin invariant for37A quadrati
 fun
tion q is a a map su
h that q(x+ y) � q(x)� q(y) is bilinear in x andy . It is 
alled homogeneous if q(nx) = n2q(x) for any n 2 Z and x 2 G . In fa
t, there is a
anoni
al map � 7! q� from spin
 stru
tures to quadrati
 fun
tions and q� is homogeneousif and only if � a
tually 
omes from a spin stru
ture. Note that not all spin
 stru
tures 
omefrom spin stru
tures.Geometry & Topology Monographs, Volume X (20XX)



158 Edited by T. Ohtsukispin
 stru
tures. In the 
ontext of spin Goussarov-Habiro theory, Massuyeauproved that the Rohlin invariant is a �nite type invariant of degree 1. Thissuggests the following question.Question 10.21 (F. Deloup) Is there a lift of arg 
(q�) to a mod 16 invariant?This would give a �nite type invariant of degree 1 in the spin
 Goussarov-Habirotheory.

Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 15911 The LMO invariantThe LMO invariant ZLMO(M) 2 A(;) of 
losed oriented 3-manifolds was in-trodu
ed in [LMO98℄. The LMO invariant of rational homology 3-spheres wasreformulated by Aarhus integral [BGRT02℄. The LMO invariant is a universalperturbative invariant of rational homology 3-spheres (see [Oht00, BGRT02,Oht02℄), and a universal �nite type invariant of integral homology 3-spheres[Le97℄.11.1 Cal
ulation of the LMO invariantProblem 11.1 For ea
h rational homology 3-sphere M , 
al
ulate ZLMO(M)for all degrees.Remark Bar-Natan and Lawren
e [BaLa00℄ showed a rational surgery formulafor the LMO invariant. By using it, they obtainedẐLMO�L(p; q)� = h
x;
�1x 
x=pix exp �s(q; p)48 � (51)for the lens spa
e L(p; q) of type (p; q), where s(q; p) denotes the Dedekindsum. For the notation h
x;
�1x 
x=pix see [BaLa00℄.Remark The degree 1 part of ZLMO(M) is given by Casson-Walker invariantof M ([LMO98℄). Further, the degree � d part of ZLMO(M) of integral ho-mology 3-spheres are given by �nite type invariants of degree � d. Hen
e, itis algorithmi
ally possible to 
al
ulate the degree � d part of ZLMO(M) of anintegral homology 3-sphere for ea
h d. It is meaningful to 
al
ulate ZLMO(M)for all degrees.Remark It is meaningful to 
al
ulate ZLMO(M) when M is a rational homology3-sphere. Otherwise, it is known that ZLMO(M) 
an be given by some \
lassi-
al" invariants. When b1(M) = 1, the value of ZLMO(M) 
an be presented byusing the Alexander polynomial of M ([GaHa00, Lie00℄). When b1(M) = 2,the value of ZLMO(M) 
an be presented by using the Casson-Walker-Les
opinvariant of M ([HaBe00℄). When b1(M) = 3, the value of ZLMO(M) 
an bepresented by using the 
ohomology ring of M ([Habe96℄). When b1(M) > 3,we always have that ZLMO(M) = 1 ([Habe96℄).Geometry & Topology Monographs, Volume X (20XX)



160 Edited by T. Ohtsuki11.2 Does the LMO invariant distinguish integral homology 3-spheres?Conje
ture 11.2 The LMO invariant distinguishes integral homology 3-spheres.(See Conje
ture 10.9.)Remark Bar-Natan and Lawren
e [BaLa00℄ showed (as a 
orollary of their
al
ulation (51)) that the LMO invariant does not separate lens spa
es. Theyalso showed in [BaLa00℄ that the LMO invariant separates integral homologySeifert �bered spa
es.Problem 11.3 Does there exist an integral/rational homology 3-sphere Msu
h that ZLMO(M) = ZLMO(S3)?11.3 Chara
terization of the image of the LMO invariantProblem 11.4 Chara
terize those elements of Â(;)
onn of the form logZLMO(M)for integral/rational homology 3-spheres.Remark Sin
e �SO(3)(M) 
an be obtained from ZLMO(M) by applying theweight system Wsl2 , some 
hara
terization of this problem might be obtainedfrom the 
hara
terization of the form �SO(3)(M) (Problem 7.28), say, from theintegrality of the 
oeÆ
ients of �SO(3)(M) for integral/rational homology 3-spheres M . Some other 
hara
terization of this problem might by obtainedfrom the loop expansion of the Kontsevi
h invariant.11.4 Variations of the LMO invariantProblem 11.5 Constru
t the LMO invariant with 
oeÆ
ients in a �nite �eld.Remark If the Kontsevi
h invariant with 
oeÆ
ients in a �nite �eld would be
onstru
ted (see Problem 3.7), then it would be helpful for this problem.Problem 11.6 Constru
t the LMO invariant (or the theory of �nite type in-variants) in arrow diagrams.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 16111.5 Re�nements of the LMO invariant(T. Le) As mentioned in a remark in Problem 11.1, the LMO invariant is aweak invariant when b1(M) > 0; in parti
ular, ZLMO(M) = 1 when b1(M) > 3.The following two problems might give re�nements of ZLMO(M) whi
h wouldbe stronger than ZLMO(M), in parti
ular, when b1(M) > 0.Problem 11.7 (T. Le, V. Turaev) De�ne the LMO invariant ZLMO(M;�)of the pair of a 
losed 3-manifold M and a spin stru
ture � of M su
h thatZLMO(M) = P� ZLMO(M;�), where the sum runs over all spin stru
tures onM . There is also a similar problem for spin
 stru
tures.Remark The quantum SU(2) invariant of (M;�) satis�es that �SU(2)r (M) =P� �SU(2)r (M;�) for r divisible by 4 (see [KiMe91℄). The ZLMO(M;�) shouldbe de�ned su
h that �SU(2)r (M;�) 
an be re
overed from ZLMO(M;�) in anappropriate sense, and su
h that the 
oeÆ
ients of ZLMO(M;�) are \�nite typeinvariants" of (M;�) under an appropriate de�nition of �nite type invariantsof (M;�).The set of spin stru
ture is a torsor over H1(M ;Z=2Z) in the sense that thedi�eren
e of two spin stru
tures is an element in H1(M ;Z=2Z), and everyelement of H1(M ;Z=2Z) is the di�eren
e of some spin stru
ture and a �xedone. Similarly, the set of all spin
 stru
ture is a torsor over H1(M;Z). In thissense the previous problem might be related to the following problem.Problem 11.8 (T. Le, V. Turaev) For every element � 2 H1(M;Z) 
onstru
tan extension of ZLMO(M; �) of the LMO invariant su
h that when � = 0 onere
overs the usual LMO invariant.The idea is that the usual LMO invariant 
orresponds only to the trivial 
oho-mology 
lass, and for manifolds with high Betti number, it is equal to 0. K.Habiro has an extension of the LMO invariant that might be a solution to thisproblem.Remark For a �nite abelian group A and � 2 H1(M;A), let �(M; �) be theinvariant of (M; �), de�ned from a modular A-
ategory, and let �(M) be theinvariant of M derived from a modular 
ategory forgetting A-grading. Then,�(M) = P� �(M; �). (For details, see [LeTu01℄.) The ZLMO(M; �) should bede�ned su
h that a suitable �(M; �) 
an be re
overed from ZLMO(M; �) in anappropriate sense, and su
h that the 
oeÆ
ients of ZLMO(M; �) are \�nite typeinvariants" of (M; �) under an appropriate de�nition of �nite type invariantsof (M; �).Geometry & Topology Monographs, Volume X (20XX)



162 Edited by T. Ohtsuki11.6 Other problemsQuestion 11.9(1) Find a surgery formula for the Kuperberg-Thurston invariant [KuTh99℄in terms of the Chern-Simons series of Question 3.12(2) Compare the Kuperberg-Thurston invariant to the LMO invariant.Problem 11.10 (D. Thurston) Do 
on�guration spa
es of [KuTh99℄ havetorsion in Z-homology? Does su
h torsion dedu
e a torsion invariant of homol-ogy 3-spheres?

Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 16312 Other problems12.1 (Pseudo) Legendrian knot invariantsLet W be a 
ompa
t 
losed oriented 3-manifold. (K; v) is said a pseudo Leg-endrian pair in W if K � W is a knot, v is a non singular ve
tor �eld on Wand K is transverse to v . K is simply said a (pL)-knot. (Kt; vt), t 2 [0; 1℄, isa pseudo Legendrian isotopy if Kt is an ambient isotopy of knots, vt is a homo-topy of �elds and (Kt; vt) is a (pL)-pair for every t 2 [0; 1℄. Every (pL)-knotis naturally a framed knot, and every (pL)-isotopy is in parti
ular a framedknots isotopy. If � is a transversely oriented 
onta
t stru
ture on and K is � -Legendrian in the 
lassi
al sense, then K is a (pL)-knot w.r.t. any �eld v whi
his positively transverse to � . Every Legendrian isotopy between � -Legendrianknots indu
es a (pL)-isotopy. So we have 3 
ategories of knots, related bynatural forgetting maps:fLegendrian knotsg f1! f(pL)-knotsg f2! fframed knotsg:Note that, for ea
h one of these 
ategories, C say, also the C -homotopy immer-sion 
lass of any C -knot is naturally de�ned, this 
ontains the C -isotopy 
lassand is preserved by the forgetting maps.In [BePe01a℄ one has introdu
ed the Reidemeister-Turaev torsions of (pL)-knots; one has realized that torsions in
lude a 
orre
t lifting to the (pL)-
ategory of the 
lassi
al Alexander invariant; moreover, in many 
ases (forinstan
e when W is a Z-homology sphere), they 
an distinguish (pL)-knotswhi
h are isotopi
 as framed knots.Question 12.1 (R. Benedetti) Are torsions a
tually sensitive only to the(pL)-homotopy immersion 
lasses of (pL)-knots?If one �x a C - homotopy immersion 
lass of knots, say � , then one 
an de�nethe set of �nite type invariants F(�) of the C -isotopy 
lasses 
ontained in �. If�0 is a 
lass of Legendrian knots, one 
an take �1 = f1(�0) and �2 = f2(�1);a �nite type invariant for �i lifts to a �nite type invariant for �i�1 . So one hasnatural maps F(�2) f�2! F(�1) f�1! F(�0):It is known [FuTa97℄ that, under 
ertain hypotheses on W (for instan
e whenW is a Z-homology sphere), f�1 Æ f�2 is a bije
tion. On the oder hand, oneSe
tion 12.1 was written by R. Benedetti.Geometry & Topology Monographs, Volume X (20XX)



164 Edited by T. Ohtsuki
an �nd in [T
h03℄ examples where f�1 Æ f�2 is not surje
tive and Legendrian�nite type invariants 
an eventually distinguish some Legendrian knots whi
hare isotopi
 as framed knots. In fa
t one 
an realize that for these examplesf�2 is already not surje
tive and that (pL)-�nite type invariants 
an eventuallydistinguish some (pL)-knots whi
h are isotopi
 as framed knots. The following
onje
ture is not in 
ontradi
tion with all these known results on the subje
t.Conje
ture 12.2 (R. Benedetti) For every W , for every (pL)-
lass �1 asabove, f�1 is an isomorphism. This means, in parti
ular, that �nite type invari-ants of Legendrian knots should be de�nitely not sensitive to geometri
 (rigid)properties of the 
onta
t stru
tures like \tightness".See also [BePe01b℄ for a more detailed dis
ussion and related questions.12.2 Knots and �nite groupsKnot groups are known to be residually �nite, that is, any non-trivial element
an be dete
ted by a homomorphism to some �nite group.Now by Dehn's lemma and the loop theorem a knot is trivial if and only ifits longitude represents the trivial element of the knot group. Consequentlyfor ea
h non-trivial knot there is a homomorphism to some �nite group whi
h
arries the longitude to a non-trivial element.Problem 12.3 (H. R. Morton) From a knot diagram �nd an expli
it su
hhomomorphism to some permutation group or establish that the knot is trivial.Re�nements.1. Give an upper bound in terms of the diagram for the order of the permu-tation groups whi
h need to be 
onsidered.2. See what happens if the meridians (whi
h are all 
onjugate) are restri
tedto map to permutations of some spe
i�ed 
y
le type, for example, single trans-positions.Remark Every �nite group is the subgroup of a permutation group, so norestri
tions are implied here.The language of quandles 
ould be adopted for 2 when referring to the 
hosenmeridian 
onjuga
y 
lass.Se
tion 12.2 was written by H. R. Morton.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 165It is possible to represent some knot groups onto a �nite non-
y
li
 group withthe longitude mapping trivially. This always happens when n-
olouring a knot,as the knot group is mapped onto the dihedral group Dn , and the longitudegoes into its 
ommutator subgroup. The problem here fo
usses on the strongerquestion of representing the longitude non-trivially.12.3 The numbers of 3-, 5-
olorings and some lo
al movesA p-
oloring of a link L is a homomorphism of the link quandle of L to thedihedral quandle Rp of order p (or, alternatively, a homomorphism of �1(S3�L)to the dihedral group of order 2p whi
h takes ea
h meridian to a re
e
tion).38Let Colp(L) denote the number of p-
olorings of L (see the remark of Problem4.16). The following 
onje
ture implies that the 3-move (see Figure 20) wouldtopologi
ally 
hara
terize the partition of the set of links given by Col3(L);note that Col3(L) is un
hanged under the 3-move.Conje
ture 12.4 (3-move 
onje
ture, Y. Nakanishi [Nak94℄) Any link 
an berelated to a trivial link by a sequen
e of 3-moves.Remark Col3(L) is equal to 3n+1 , where n is the rank of H1(M2(L);Z=3Z) andM2(L) denotes the double 
over of S3 bran
hed along L. Further, Col3 of thetrivial link with n 
omponents is equal to 3n . Hen
e, if a link L is related to atrivial link by 3-moves, then su
h a trivial link has log3 Col3(L) 
omponents.Remark ([Kir97, Remark on Conje
ture 1.59 (1)℄) Sin
e Bn=h�3i i is �nitefor n � 5, the proof of this 
onje
ture for 
losures of braids of at most 5strands is redu
ed to verifying �nitely many 
ases. A

ording to Y. Nakanishi,the smallest known obstru
tion of this 
onje
ture is the 2-parallel of a set ofBorromean rings.Remark ([Sto03℄) This 
onje
ture is true for weak genus two knots.Update Dabkowski and Przyty
ki [DaPr02℄ showed that some links 
annot beredu
ed to trivial links by 3-moves, whi
h are 
ounterexamples to this 
onje
-ture.38The original de�nition of a 3-
oloring by Fox (see [CrFo63, Chapter VI, Exer
ise 6℄) is (anequivalent notion of) a non-trivial homomorphism of the link quandle of L to the dihedralquandle R3 . Przyty
ki [Prz98a℄ studied the number of 3-
olorings. His de�nition allows trivialhomomorphisms.Geometry & Topology Monographs, Volume X (20XX)



166 Edited by T. OhtsukiIt is shown in [HaU
93℄ that Col5(L) is invariant under the (2,2)-move (seeFigure 20). The following 
onje
ture implies that the (2,2)-move would topo-logi
ally 
hara
terize the partition of the set of links given by Col5(L).Conje
ture 12.5 (Y. Nakanishi, T. Harikae [Kir97, Conje
ture 1.59 (6)℄)Any link 
an be related to a trivial link by a sequen
e of (2,2)-moves.Remark This 
onje
ture holds for algebrai
 links; see [Kir97, Conje
ture 1.59(6)℄, [Prz98a℄, and referen
es therein.The 3-move :  !The (2,2)-move :  !Figure 20: The 3-move and the (2,2)-move12.4 Knotted trivalent graphsD. Bar-Natan and D. Thurston [BaTh01a, BaTh01b, Thu01℄ developed thetheory of knotted trivalent graphs and their algebra, related to shadow surfa
esof V. Turaev [Tur94℄ and Lie groups/algebras.A knotted trivalent graph (KTG) is a (framed) embedding of a (ribbon) trivalentgraph � into S3 , where framing is an integer of a half integer (hen
e, the ribbonof a trivalent graph is not ne
essarily orientable). There are four operations ofKTG's: 
onne
ted sum, unzip, bubbling and unknot; see Figure 21. Any KTG(in parti
ular, any link) 
an be obtained from 
opies of tetrahedron and M�obiusstrip with �1=2 framing by applying KTG operations. Further, two sequen
esof KTG operations give the same KTG, if and only if they are related by
ertain (�nitely many) relations in
luding the pentagon and hexagon relations(see [BaTh01b℄). Thus, the theory of KTG's is �nitely presented in this sense.The Kontsevi
h invariant of framed links have an extension for KTG's (see[MuOh97℄) and the extended Kontsevi
h invariant is well-behaved under theSe
tion 12.4 was written by T. Ohtsuki, following seminar talks given by D. Thurston.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 167Conne
ted sum : �!Unzip : �!Bubbling : �!Unknot : ; �!Figure 21: Four operations of KTG's [BaTh01b℄. The left hand side of the 
onne
tedsum denotes a disjoint union of two separate graphs.KTG operations su
h that they give another 
onstru
tion of the Kontsevi
hinvariant starting from the invariants of tetrahedron and M�obius strip.Problem 12.6 Find a new proof of the existen
e of a universal Vassiliev in-variant of knots, presenting them by KTG's and their operations.Conje
ture 12.7 (D. Bar-Natan, D. Thurston) For ea
h 
ompa
t Lie groupG, level k , and every KTG K : � ! R3 , there exists a 
olle
tion of measures�K on the spa
e of gauge equivalen
e 
lasses of G-
onne
tions on � satisfyingthe following 
onditions.� It is well-behaved under KTG operations.� It is \lo
alized" near 
onne
tions that extend to S3 �K .� A half-twist framing 
hange a
ts by ep�1H~=2 , where H is the S
hr�odingeroperator on G.� It re
overs quantum invariants byIR(K) = Z hR(A)d�K (A);where hR(A) denotes the holonomy of A in R. Here, R is a set ofrepresentations of G asso
iated to edges of � and appropriate intertwinersasso
iated to verti
es of �.Geometry & Topology Monographs, Volume X (20XX)



168 Edited by T. OhtsukiRemark ([Bar00, BaTh01a℄) The physi
al presentation of the quantum in-variant of a knot K asso
iated with a representation R of G is given by theChern-Simons path integral,Zk(S3;K) = Z hR(A)e2�p�1kCS(A)DA;where CS(A) denotes the Chern-Simons fun
tional of A and the integral is aformal integral over the in�nite dimensional spa
e of all G 
onne
tions on S3 .It is a motivation of Conje
ture 12.7 that a 
olle
tion of �K should play a role ofe2�p�1kCS(A)DA. It is expe
ted [Bar00, BaTh01a℄ that the 
olle
tion of mea-sures �K of Conje
ture 12.7 would prove the asymptoti
 expansion 
onje
ture(Conje
ture 7.6).Problem 12.8 Constru
t an invariant of KTG's from 
on�guration spa
e in-tegrals in a natural way.Turaev [Tur94℄ introdu
ed a presentation of 3-manifolds as S1 -bundles over\shadow surfa
es", as follows (for details see [Tur94, BaTh01b, Thu01℄). Afake surfa
e is a singular surfa
e su
h that a neighborhood of ea
h point ishomeomorphi
 to an open subset of the 
one over a tetrahedron. A S1 -bundleover a fake surfa
e 
an appropriately be de�ned and its isomorphism 
lass isdetermined by the Chern number, whi
h is an integer or half-integer asso
iatedto ea
h fa
e; we 
all the Chern number the gleam. A shadow surfa
e is a fakesurfa
e with gleams asso
iated to the fa
es. Every (
losed) 3-manifold 
an bepresented by a S1 -bundle over a (
losed) shadow surfa
e. The pentagon andhexagon relations (see [Tur94, Figure 1.1 of Chapter VIII℄) are moves amongshadow surfa
es whi
h present a homeomorphi
 3-manifold, though they arenot enough to 
hara
terize a homeomorphism 
lass of 3-manifolds.Exer
ise 12.9 Find a 
omplete set of moves among shadow surfa
es whi
hpresent a homeomorphi
 3-manifold.We obtain a shadow surfa
e as a time evolution of a sequen
e of KTG's givenby KTG operations. Thus, we have relations among links, 3-manifolds, KTG'sand shadow surfa
es as in the 
ommutative diagram in Figure 22; for detailedstatements see [BaTh01b, Thu01℄.Motivated by a 
omplexity of 3-manifolds dis
ussed in [Mat90, MaPe01, MaPe01℄,D. Thurston introdu
ed the shadow number of 3-manifolds. The shadow num-ber is de�ned to be the minimal number of verti
es of a shadow surfa
e. AllGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 169Framed links -exterior Framed link exteriors -surgery Closed 3-manifoldspresentation 6 by makingS1 -bundle6 by makingS1 -bundle6Certain sequen
esof KTG's -timeevolution Collapsibleshadow surfa
es -
ap o� � Closed shadow surfa
esFigure 22: Links, 3-manifolds, KTG's, and shadow surfa
esgraph manifolds have shadow number 0 and all surgeries on the Borromeanrings have shadow number 1. The volume 
onje
ture might be related to thefollowing 
onje
ture.Conje
ture 12.10 (D. Thurston) The shadow number of a 3-manifold isquasi-linear in its Gromov norm. That is, there exist 
onstants 
1 and 
2 su
hthat 
1jjM jj � (shadow number of M ) � 
2jjM jjfor any 3-manifold M , where jjM jj denotes the Gromov norm of M .Remark (D. Thurston) It is easy to bound the Gromov norm in terms of theshadow number (i.e., to prove the left inequality for some 
1 ).Remark (D. Thurston) It is shown by W. Thurston that the hyperboli
 volumeof a hyperboli
 3-manifold is quasi-linear in the minimal number of ideal tetra-hedra in a \spun triangulation" (i.e., the minimal number of ideal tetrahedra insome link 
omplement in the 3-manifold). It is shown by J. Bro
k [Bro
01℄ thatthe volume of a mapping torus is quasi-linear in the pants translation distan
e(for �xed genus).La
kenby [La
00℄ showed that alternating knot diagrams give good informationabout the hyperboli
 volume. Knot diagrams are a spe
ial 
ase of shadowdiagrams, but shadow diagrams 
an be mu
h more eÆ
ient. This suggests thefollowing problem:Problem 12.11 (D. Thurston) Find a 
ondition on shadow diagrams whi
his satis�ed by shadow diagrams from alternating knots; and gives a lower boundon the hyperboli
 volume.Geometry & Topology Monographs, Volume X (20XX)



170 Edited by T. OhtsukiClosed shadow surfa
eswith 0 gleams���	by making I -bundlesand 
ap o� boundary ���Rby making S1 -bundlesClosed 3-manifolds Certain 
losed 3-manifolds-M 7�! M#M#(S2 � S1)'sFigure 23: Two ways to obtain 3-manifolds from shadow surfa
esThe Reshetikhin-Turaev invariant and the Turaev-Viro-O
neanu invariant 
anbe des
ribed in terms of the KTG algebra, via I -bundles and S1 -bundles overshadow surfa
es respe
tively. The relation between the two invariants is derivedfrom the relation between the two 
onstru
tion of 3-manifolds shown in Figure23.Problem 12.12 Constru
t a universal Reshetikhin-Turaev invariant and a uni-versal Turaev-Viro-O
neanu invariant of 
losed 3-manifolds, in terms of theKTG algebra.Remark The LMO invariant and the even degree part of it might be a universalReshetikhin-Turaev invariant and a universal Turaev-Viro-O
neanu invariantof rational homology 3-spheres, respe
tively.12.5 Quantum groupsProblem 12.13 (J. Roberts) What are quantum groups?Remark (J. Roberts) A naive answer is to simply de�ne them by means of gen-erators and relations, but this is appallingly unsatisfying. Better is Drinfel'd'soriginal 
onstru
tion [Dri87℄, whi
h begins with the geometri
 
onstru
tion ofquasi-quantum groups using the monodromy of the KZ equation. He then uses
ompletely algebrai
 results about uniqueness of deformations to obtain fromea
h one a quantum group, whose 
ategory of representations is equivalent tothat of the quasi-quantum group, though the �rst has a trivial asso
iator anda 
ompli
ated R-matrix, the se
ond vi
e versa. (In parti
ular, the braid grouprepresentation asso
iated to a quantum group is lo
al in the sense that theR-matrix implementing the a
tion of a braid generator on a tensor produ
t ofGeometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 171representations of the quantum group involves only the tensor fa
tors asso
iatedto the two strings 
on
erned. This is 
ertainly not true for the KZ equation. Isthere any way to understand this using geometry?)These 
onstru
tions are very subtle and 
ompli
ated. What really is a quan-tum group, in fa
t? I believe that algebraists have some reasonably geometri
des
riptions of pie
es of them in terms of perverse sheaves, et
., but I do notpretend to understand these. Atiyah made the very interesting suggestion thatquantum groups might be in some sense the \quaternioni�
ations" of 
ompa
tLie groups. Literal quaternioni�
ation does not make sense, but substitutesmight be available, in the sense that hyperk�ahler geometry provides a workingsubstitute for the non-existent quaternioni
 version of 
omplex manifold the-ory. Some eviden
e for this point of view is presented in Atiyah and Bielawski[AtBi02℄.12.6 Other problemsProblem 12.14 (N. Askitas) Can a knot of 4-genus gs always be sli
ed (madeinto a sli
e knot) by gs 
rossing swit
hes?Remark (A. Stoimenow) Clearly (at least) gs 
rossing swit
hes are needed,but sometimes more are needed to unknot the knot.Update Livingston [Liv02℄ showed that the knot 74 provides a 
ounterexampleto this problem; gs(74) = 1 but no 
rossing 
hange results in a sli
e knot.Problem 12.15 (M. Boileau [Kir97, Problem 1.69 (C)℄) Are there mutantsof distin
t unknotting numbers?Remark (A. Stoimenow) There are mutants of distin
t genera (Gabai [Gab84℄)and sli
e genera (Livingston [Liv83℄).Let G be the graph su
h that its verti
es are isotopy 
lasses of unorientedknots, and two verti
es are adja
ent if the 
orresponding knots di�er by asingle 
rossing 
hange.Conje
ture 12.16 (X.-S. Lin [Lin.www℄) Any automorphism of G is eitherthe identity or the mirror map, that is, any automorphism of G is indu
ed bya di�eomorphism of the ambient spa
e.Geometry & Topology Monographs, Volume X (20XX)



172 Edited by T. OhtsukiProblem 12.17 (X.-S. Lin [Lin.www℄) What is the homotopy type of thespa
e L(K) of long ropes (as shown in the pi
ture below) with the �xed knottype K ?
Remark ([Lin.www℄) A 
onje
ture would be that, if K is a prime knot, L(K)is homotopy equivalent to the 
ir
le if and only if K is non-trivial, with thefundamental group generated by the obvious loop in L(K) shown in the abovepi
ture. This question is motivated by the paper [Mos02℄. If the 
onje
tureholds, the homotopy type of the spa
e of short ropes studied by Mostovoy wouldbe 
lear. A paper of Hat
her [Hat99℄ seems to be related with this problem.Problem 12.18 (J. Roberts) Extend Kuperberg's work on webs.Remark (J. Roberts) Kuperberg posed in [Kup96a℄ the question of giving apresentation, as a tensor 
ategory, of the representation 
ategory of a 
ompa
tLie group or quantum group. The generators should be (roughly) the funda-mental modules and their bilinear and trilinear invariants; more 
ompli
atedmorphisms in the 
ategory 
an be built out of these a

ording to a graphi
al
al
ulus (essentially Penrose's tensor 
al
ulus) of \webs". The �rst main prob-lem is to des
ribe a set of elementary linear relations (skein relations) amongsu
h pi
tures whi
h generates all the relations among morphisms in the 
at-egory. The se
ond is to des
ribe a 
anoni
al basis of any invariant spa
e interms of 
anoni
al pi
tures in the dis
. Kuperberg solved both these problemsfor groups of ranks one (in whi
h 
ase the pi
tures are just Temperley-Liebdiagrams) and two and, with Khovanov in [KhKu99℄, made tantalising but im-pre
ise 
onje
tures about how in the higher-rank 
ase the pi
tures might berelated to the geometry of the weight latti
e. These ideas are 
losely related tothe work of Vaughan Jones [Jon99℄ on planar algebra, whi
h is a similar kindof 
al
ulus des
ribing the 
ategory of bimodules over a subfa
tor. (Aside: Is itpossible to �nd a bimodule 
ategory whose intertwining rules are des
ribed byquasiperiodi
 Penrose tiles?)Problem 12.19 (J. Roberts) Extend the theory of measured laminations tohigher rank groups.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 173Remark (J. Roberts) Let � be a 
losed oriented surfa
e of genus g , andlet C(�) be its set of multi
urves (isotopy 
lasses of 
olle
tions of disjointsimple 
losed 
urves). Let T (�) be its Tei
hm�uller spa
e; that is, the spa
e ofhyperboli
 stru
tures, 
onsidered up to di�eomorphisms isotopi
 to the identity.Topologi
ally, T (�) is an open ball of dimension 6g � 6.Ea
h of C(�); T (�) has a natural embedding in the spa
e of fun
tions C(�)!R�0 : one sends a multi
urve to its asso
iated minimal geometri
 interse
tionnumber fun
tion, and a metri
 to its asso
iated geodesi
 length fun
tion. It is aremarkable fa
t that the R+ -proje
tive boundaries of these sets 
oin
ide. Theyde�ne the spa
e of measured laminations, whi
h 
ompa
ti�es T (�) into a 
losedball and is of great importan
e in Thurston's theory of surfa
e automorphisms.For further details see for example Penner and Harer [PeHa92℄.Now T (�) may also be des
ribed algebrai
ally as a 
ertain 
omponent of thespa
e of 
at SL(2;R) 
onne
tions on � (that is, homomorphisms �1(�) !SL(2;R)), and in this 
ontext the geodesi
 length fun
tion is repla
ed by atra
e-of-holonomy fun
tion. Is there a generalisation of the above pi
ture to ahigher rank group su
h as SL(n;R)?Hit
hin [Hit92℄ proves that in fa
t the spa
e of 
at SL(n;R) 
onne
tions hasa spe
ial \Tei
hm�uller 
omponent", whi
h is topologi
ally an open ball, so wehave a 
andidate for T (�).(Aside: he asks whether there is an interpretationof the points of the Tei
hm�uller 
omponent in terms of some kind of geometri
stru
tures on �. Choi and Goldman showed that for n = 3 they parametrise
onvex real proje
tive stru
tures, but no general answer is known.)A 
andidate for C(�) might be the set of Kuperberg-style (
losed) webs drawnon the surfa
e, for there is then a natural holonomy-type map T (�)�C(�)! Rwhi
h is a substitute for the geodesi
 length fun
tion. (In the SL(2) 
ase, thisC(�) is just the set of multi
urves, as it should be.) What might repla
e the ge-ometri
 interse
tion number, and lead to some notion of \measured lamination"for higher-rank groups, is un
lear.Problem 12.20 (J. Roberts) What is the generating fun
tion for q -spin netevaluations?Remark (J. Roberts) A q -spin net is a trivalent planar graph whose edges arelabelled by irredu
ible representations of SU(2). By pla
ing idempotents fromthe Temperley-Lieb algebra on its edges and joining up their external stringsin a planar fashion at the verti
es, one forms an evaluation in Z[q�1℄. The goalis to �nd a power series in variables asso
iated to the edges whi
h serves as aGeometry & Topology Monographs, Volume X (20XX)



174 Edited by T. Ohtsukigenerating fun
tion for the evaluations 
orresponding to all possible labellingsof a given graph. Su
h a formula is known for any graph at the 
lassi
al valueq = 1, and Westbury [Wes98℄ found a generating fun
tion for the tetrahedralgraph (the quantum 6j -symbol). A general formula is, however, unknown, andWestbury also shows that the naive guess (simply repla
ing fa
torials in theq = 1 formula by quantum fa
torials) is wrong.Problem 12.21 (Y. Shinohara [Shin71℄) If n = 4k + 1 with k > 0, is therea knot with determinant n and signature 4?Remark (A. Stoimenow) The form 4k+1 follows from Murasugi [Mur65℄, andthe 
ondition k 6= 0 from a signature theorem for even unimodular quadrati
forms over Z. If a 
ounterexample for n > 1 exists, then all prime divisors of nare of the form 24k+1 and not smaller than 2857. If �4+8l;8l+5 is the elementarysymmetri
 polynomial of degree 4 + 8l in 8l + 5 variables, then all values of�4+8l;8l+5 on positive odd arguments are no 
ounterexamples, so the problem
ould \redu
e" to showing that some of the �4+8l;8l+5 realizes almost all n onpositive odd arguments. This appears number theoreti
ally hard, however.The set of 
on
ordan
e 
lasses of 2-strand string links forms a group C2 . Stan-ford showed that C2 is not nilpotent, in parti
ular not abelian.Problem 12.22 (T. Stanford) Is C2 solvable? Does C2 
ontain a free group?Problem 12.23 (A. Stoimenow) Do positive links of given signature � havebounded (below) maximal Euler 
hara
teristi
 �?Remark (A. Stoimenow) So far for general positive links only � > 0 is known[Rud82, CoGo88℄, and for positive knots � � 4 if 2g = 1�� � 4 (it follows from[Tan89℄). For positive braid links the answer is positive, and also for spe
ialalternating links by Murasugi [Mur65℄.Problem 12.24 (A. Stoimenow) If a prime knot K 
an be transformed intoits mirror image by one 
rossing 
hange, is K a
hiral or (algebrai
ally?) sli
e?Remark (A. Stoimenow) Smoothing out this 
rossing gives a link of zeroTristram-Levine-signatures [Tri69, Lev69℄ and zero Alexander polynomial. Manysu
h links are sli
e, and then K would be sli
e also. But unlikely.Geometry & Topology Monographs, Volume X (20XX)



Problems on Invariants of Knots and 3-Manifolds 175Problem 12.25 (A. Stoimenow) Let n be an odd natural number, di�erentfrom 1, 9, and 49, su
h that n is the sum of two squares. Is there a primealternating a
hiral knot of determinant n?Remark (A. Stoimenow) If there is an a
hiral knot of determinant n, then nis the odd sum of two squares [HaKa79℄. The 
onverse is also true, and thea
hiral knot of determinant n 
an be 
hosen to be alternating or prime, butnot always both. For n = 1, 9, and 49, there is no prime alternating a
hiralknot of determinant n. If there is another su
h n, then n > 2000 and n is nota square. See [Sto00℄.Conje
ture 12.26 (V. Turaev) A pair (a �nitely generated abelian groupH of rank 1, an element �(t) 2 Z[H=TorsH℄ = Z[t�1℄) (where t is a generatorof H=TorsH ) 
an be realized as the pair (H1(M), the Alexander polynomial�M of M ) for a 
losed 
onne
ted oriented 3-manifold M if and only if �(t) =tk�(t�1) with even k 2 Z and �(1) = �jTorsHj.Remark (V. Turaev) Both 
onditions are known to be ne
essary. They arepresumably suÆ
ient. This is known for H = Z and for H = Z� (Z=nZ) withn � 2. When M is obtained from S3 by 0-surgery along a knot K , H1(M) = Zand �M (t) = �K(t). It is known that a Laurent polynomial f(t) 2 Z[t�1℄ isrealized as the Alexander polynomial of a knot if and only if f(t) = tkf(t�1)with even k and f(1) = 1. Using surgery on a 2-
omponent link in S3 withlinking number 0 and framing numbers 0; n, respe
tively, one 
an prove (
f.[Lev67℄) the 
onje
ture for H = Z� (Z=nZ).
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