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ABSTRACT. The Lawrence-Krammer representation of the braid groups re-
cently came to prominence when it was shown to be faithful by myself and
Krammer. It is an action of the braid group on a certain homology module

H>(C) over the ring of Laurent polynomials in ¢ and t. In this paper we de-
scribe some surfaces in C' representing elements of homology. We use these to

give a new proof that H>(C') is a free module. We also show that the (n —2,2)
representation of the Temperley-Lieb algebra is the image of a map to relative
homology at t = —¢~!, clarifying work of Lawrence.

1. Introduction

The Lawrence-Krammer representation is the action of the braid group B, on
a certain homology module Hz(é) over the ring A = Z[¢*! ¢*1]. It was introduced
by Lawrence [Law90], except that she worked over C instead of A. Tt recently
came to prominence when it was shown to be faithful for n = 4 [Kra00], and then
for all n [Big01], [Kra02]. Since then, a number of papers have appeared which
closely examine certain aspects of the representation. See [PP01], [Son02], and
[Bud02]. We now continue in this tradition, with the specific goal of understanding
the connection with the Temperley-Lieb algebra.

This paper was partly motivated by an attempt to clarify two points from
[Big01]. First, the pairing between a “noodle” and a “fork” involved an algebraic
intersection number between two non-compact surfaces in C'. Such a thing is not
necessarily well-defined, so I gave an indirect proof of the existence of a certain
closed surface corresponding to a fork. I now have an explicit description of this
surface, which will be given in Section 3.4. In fact it is possible to define the
pairing without reference to this surface by using results from [Kaw96, Appendix
E]. (Thanks to Won Taek Song, whose paper [Son02] drew my attention to this.)

Second, to compute matrices for the representation, I tensored Ha(C') with a

field containing A. The resulting vector space contains Hz(é), but strictly speaking,
the action of B, on this vector space should not be called the Lawrence-Krammer

representation. In Section 5 we give a new proof that H»((') is a free A-module.
This is originally due to Paoluzzi and Paris [PP01], but our proof uses an explicit
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52 STEPHEN BIGELOW

description of surfaces representing elements of a free basis of Hz(é). The correct
matrices for the Lawrence-Krammer representation could be computed from this,
but we do not do so since they are quite complicated.

By addressing these two issues from [Big01] we also shed new light on the work
of Lawrence [Law90]. There, the Lawrence-Krammer representation was used to
give a topological interpretation to a representation of the Hecke algebra. The idea
is to specialise ¢ to the value —¢~1, at which point the Lawrence-Krammer repre-
sentation becomes reducible and the desired representation appears as a quotient.
Somewhat complicated methods are used in [Law90] to define the required quo-
tient. In Section 6 we show that it is simply the image of a map to a certain relative
homology module.

Throughout this paper n is a positive integer, D is the unit disk centred at
the origin in the complex plane, —1 < p1 < -+ < p, < 1 are real numbers, and
D, = D\ {p1,...,pn} is the n-times punctured disk. The braid group B, is the
mapping class group of D,,. We also assume familiarity with the presentation of B,
using Artin generators o;, and the interpretation of B, as the fundamental group
of a configuration space in the plane.

This research was supported by the Australian Research Council. Thanks to
Gordana Matic and the other organisers for such an inspiring and entertaining
conference.

2. The Lawrence-Krammer representation

We briefly review the definition of the Lawrence-Krammer representation as
given in [Big01]. Let C be the space of unordered pairs of distinct points in D,,.
Let ¢o = {d1,d2} be a basepoint in C', where d; and dy are distinct points on the
boundary of the disk.

We define a homomorphism

O 1 (Coen) = {g) B (1)

as follows. Suppose a: I — (' is a closed loop in C representing an element of
71(C, ¢g). By ignoring the puncture points we can consider « as a loop in the space
of unordered pairs of points in the disk, and hence as a braid in By. Let j be the
exponent of this braid in the Artin generator ;. Similarly, the map

s—={p1,...,pn}Uals)

determines a braid in B,1s. Let j° be the the exponent sum of this braid in the
Artin generators of B, 1». Note that j and j7 have the same parity. Let i = %(]l—j)
We define
() = q't.
Let C' be the connected covering space of C' such that 7 (C) = ker(®). Fix a
choice of ¢y in the fibre over ¢y. The homology group HQ(C') admits a A-module
structure, where ¢ and ¢ act by covering transformations.

Suppose f is a homeomorphism from D,, to itself, representing an element of
By,. Let fi be the induced map from 71 (C, ¢q) to itself. T claim that

dof =

To see this, think of m1(C, ¢p) as the subgroup of Byt consisting of braids whose
first n strands are straight. Then fi acts on 7 (C, ¢g) by conjugation with a braid
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on the first n strands. This preserves the image under @, since ® maps to an abelian

group.
It follows that f has a unique lift

Fi(Cre0) — (C, &),
and that the induced map
fot Ha(C) — Ho(C)
i1s a A-module automorphism. We define the Lawrence-Krammer representation to
be this action of B,, on HQ(C').
We now introduce some relative homology modules. For € > 0, let v, be the set
of points {#,y} € C such that either « and y are within distance ¢ of each other, or

at least one of them is within distance € of a puncture point. Let ¢ be the preimage
of v¢ in C. The relative homology modules H2(C', ¥¢) are nested by inclusion. Let

Hy(C, ) = !E%HQ(C, Ve),
and

Hy(C,0C Up) = lim Hy(C,0C U ).
e—
The braid group B,, acts on these, and on Hz(é', 86’), by A-module automorphisms.

3. Some surfaces

In this section we describe some immersed surfaces in C'. These will be used to
represent elements of homology or relative homology. Each immersed surface will
be specified by giving a map from a surface to C' and showing that it can be lifted
to C. We will not specify a choice of lift, and we will not pay much attention to
issues of orientation. Thus the resulting element of homology or relative homology
will only be defined up to multiplication by a unit in A. This will be sufficient for
our purposes.

3.1. Squares and triangles. We describe some properly embedded surfaces
representing elements of the second homology of C relative to C, 7 and dC U .
These will be represented by one or two embedded edges in the disk.

Suppose a1,as: I — D are disjoint embeddings of the interior of [ into D,
and map the endpoints of I to puncture points (not necessarily injectively). Let f
be the map from the interior of / x I to C' given by fle,y) =Ho1(z), az(y) . A lift
of f to C will represent an element of HQ(C 7). Similarly, we can define an element
of HQ(C 30) corresponding to a pair of dlSJOlIlt edges in D,, with endpoints on 9D.
Finally, we can define an element of HQ(C aCU ) corresponding to a pair of edges
which have a mixture of endpoints on §D and on puncture points. For all of these
examples, call the resulting element of relative homology the square corresponding
to the edges a1 and as.

Now suppose a: I — D is an embedding of the interior of [ into D,,, and maps
the endpoints of I to the puncture points. Define a map

Frllr,yelxl0<e<y<l=C
by f(z,y) = {f(x), f(y)}. A lift of f to C will represent an element of Hz(é', v).

Similarly, we can obtain an element of HQ(CN',ﬁcN' U ) if we allow one or both
endpoints of the edge to be on . For all of these examples, call the resulting
element of relative homology the triangle corresponding to «.
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FiGUuRrRE 1. A torus and a square.

F1GURE 2. The disk B and edges oy (]) and as(7).

3.2. A genus one surface. Suppose ai,as: S' — D, are disjoint figure-
eights, each going around two puncture points, as in Figure 1. Define a map f
from the torus S* x S to C by f(z,y) = {a1(z),@2(y)}. Both the meridian and
longitude of the torus are mapped into the kernel of @, so f lifts to a map

f:S'x St C.
We obtain an element [f] of Hy(C).

It will be useful to know the image of [f] in Hz(é', 7). 1 claim this is (1 — ¢)?
times the square as indicated in Figure 1. To see this, homotope each figure-eight
a; so as to map the points £1 € S into respective e-neighbourhoods of the two
puncture points enclosed by ;. Then f maps the four lines {£1} x St and S* x {%1}
into v.. These lines cut the torus into four squares. The restriction of f to each
of these squares represents an element of Hz(é', 7). The claim now follows from a
careful comparison of the lifts and orientations of these squares, which is left to the
reader.

3.3. A genus two surface. Suppose ai,as: S* — D, are figure-eights such
that a; passes around p; and p;, as passes around p; and pi, and oy intersects
as twice, as in Figure 3. Let B C D be a disk centred at p;, containing the two
points of intersection, and meeting each of a7 and a5 in a single edge. For i = 1,2,
let I; C S' be the interval ozi_l(B). For convenience, assume I; = [, and identify
both with I = [0, 1], oriented as shown in Figure 2.

Let T be the closure of

(ST x SYHYN\ (I x I1).

Note that for (z,y) € T we have ay(z) # as(y). We can therefore define f: T — C
by f(2,5) = {1 (2), sl

Let fo be the restriction of f to 9T = 9(I x I). For s € I, let f; be the
composition of fy with an anticlockwise rotation of B by an angle of s7 about the
centre p;. We can assume B has a rotational symmetry so that fi(z,y) = fo(y, 2)
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FIGURE 3. A genus two surface and a square.

for all (#,y) € 9(I x I). Thus fy and f; represent the same loops, but with opposite
orientations.

We now build a closed genus two surface X9 by gluing together 97" x I and two
copies of T as follows. First glue 07 x I to T by ((z,y),0) ~ (z,y). Then glue
OT x I to a second copy T' of T' by ((z,y),1) ~ (y,z). Let X5 be the surface so
obtained. Let g: Y5 — C be given by g|r = gl|r' = f and g|orx{s}) = [s-

The fundamental group of X, is generated by the meridian and longitude of
T and T’. Each of these is mapped by ¢ into the kernel of ®, so g lifts to a map
§: ¥y — C. We obtain an element [§] of Ho(C).

We now compute the image of [¢] in HQ(C', 7). For any € > 0 we can assume that
the disk B has radius less than ¢. Then ¢ maps T x I into ve, so §|r represents
an element of Hz(é, D). This element is (1 — ¢)? times a square, by a similar
argument to the one given for the genus one surface. It remains to figure out how
gl is related to g|r.

Consider the path §: I — ¥, given by

5(s) = ((0,0),5) € T x I.

This goes from (0,0) € T" to (0,0) € T7”. Now god is a loop in C in which the pair
of points switch places by an anticlockwise rotation through an angle of 7 around
p;. Thus ®(g o) = ¢t. It follows that g|lr = ¢t o g|r.

Also note that 7" and 7" inherit the same orientation from X+. This is because
the ends of the annulus 97 x I were attached with opposite orientations. We
conclude that the image of [§] in Hz(é,ﬂ) is (1 — ¢)?(1 + qt) times a square, as
shown in Figure 3.

3.4. A genus three surface. Suppose a1, as: S' — D, are figure-eights,
both passing around p; and p;, and intersecting transversely at four points, as in
Figure 4. We construct a map from a genus three surface X3 into C' by a slight
modification of the procedure used above for 5. This time the surface T" will be
a torus with two disks removed, one for each of p; and p;. Two annuli are then
needed to glue T to another copy 7" of T. We obtain a genus three surface X3 and
amap g: Xz — C.

We now show that g lifts to a map g: X3 — C. The image of the longitude,
meridian, and both boundary components of T" all lie in the kernel of ®. Thus g|r
lifts to g|pr. This lift can be extended to the annuli T x I. Finally, define g|r/ to
be the covering transformation ¢t applied to §|z.

We now compute the image of [§] in Hz(é', 7). This is (1 —¢)*(1 + qt) times a
square, by a similar argument to the one given for the genus two surface. This square
corresponds to a parallel pair of edges from p; to p;. These edges can be homotoped
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@@ = (1—¢)*(14+qt)(1-1)

FI1GURE 4. A genus three surface and a triangle.

so as to lie within € of each other. Then a diagonal of the square in C' will lie in 7,.
This diagonal cuts the square into two triangles, which have opposite orientations
and differ by the covering transformation ¢. Thus [§] represents (1—q)?(1+¢t)(1—t)
times a triangle, as shown in Figure 4.

4. An intersection pairing

It is not immediately obvious that the surfaces described in Section 3 represent
non-trivial elements of homology or relative homology. In Sections 5 and 6 we will
need to prove even stronger results concerning the linear independence of various
sets of such elements. Our main tool will be the following intersection pairing.

For x € Hz(é) and y € Hz(é,ﬁé UD) let (2 -y) € Z denote the standard
intersection number. We define an intersection pairing

(-,): Ho(C) x Hy(C,0CUD) — A
by
<x’ y> f— Z (x . qlt]y)qlt].
i,jeZ
A similar definition gives a pairing
(.Y Ho(C, ) x He(C,8C) — A.
To check that these are well defined requires some elementary homology theory.

See [Kaw96, Appendix E], where the following properties are also proved.
For € Ho(C), y € Ha(C,0C U D), o € By, and A € A, we have

(ox,oy) = (x,y),
and
Az, y) = M, y) = (&, Ay),
where X is the image of A under the automorphism of A taking ¢ to ¢! and ¢ to
t=1. Similar identities hold for (-, ).

Note that the above definition of (-, -} differs from that of [Big01] in that the
order of the entries is reversed. The above is consistent with [Kaw96], and with
the usual definition of sesquilinear.

It will frequently be necessary to compute the intersection pairing in specific
examples, up to multiplication by a unit in A. The rest of this section is devoted
to discussion of how to do this.

Let oy and ay be edges in D with endpoints on puncture points, representing
a square a € Hz(é,ﬂ). Let 51 and 5 be edges in D with endpoints on 9D,
representing a square b € Hz(é,ﬁé). We discuss how to compute (a,b)’ up to
multiplication by a unit in A.

Let A and B be the surfaces in C' corresponding to a and b respectively. The
intersection A N B is the set of pairs of the form {z,y} where either
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ez oy NP and y € as N Fa, or
° anlﬁﬁz andyEazﬁﬁl.
Assume all edges, intersect transversely, so A intersects B transversely. Let A and
B be lifts of A and B to C.
If A and B do not intersect then neither will any of their lifts, so (a, ) = 0. If
A and B intersect at one point {z,y} then choose lifts and orientations so that A
intersects B with positive sign at a point in the fibre of {z,y}. Then {(a,b) = 1.
Now suppose A and B intersect in two points, {«,y} and {#’,y'}. Choose lifts
and orientations so that A intersects B with positive sign at a point in the fibre of
{z,y}. Let i and j be the integers such that A intersects qitjé at a point in the fibre
of {#',y'}, and let ¢ = &1 be the sign of that intersection. Then (a,b)’ = 1 + €q't/.
It remains to compute ¢, j and e.
Let v4 and vg be paths from {«, y} to {#’,y'} that lie in A and B respectively.
Let 44 and 9g be the lifts that start in AN B. Then 44 (1) and 45(1) are the points
in the fibre of {2, '} lying in A and B respectively. Thus
¢'t'yp(1) = 7a(1),
S0
¢'th = ®(v;'78).
In practice this will be easy to compute. It remains to compute e.

Relabel if necessary so that x, 2’ € a1 and y,y’ € as. Orient the edges a1, as,
B1 and fy. The sign of the intersection of A with B at {«,y} is determined by

e the sign of the intersection of ay with 51 U G5 at =,
e the sign of the intersection of as with 5y U g at y, and
e whether € 35 or x € ;.

By assumption, the conventions are such that this intersection is positive. Each of
the following will reverse the sign of the intersection of A with B at {2/, y'}.

e « intersects 31 U B2 with different signs at = and z/,

e « intersects 31 U B2 with different signs at y and ¢/,

e cither x € f; and y € 5, or @ € B3 and y € F1.
If none or two of these hold then € = 1. If one or three of these hold then e = —1.

We will sometimes need to compute intersection pairings between surfaces that
are not squares. First consider the case A is a triangle corresponding to an edge «,
B is a square as before, and A and B intersect transversely at two points. Then
the above discussion applies almost unchanged. In place of the assumption that
z,x' € oy and v,y € as, make the assumption that x occurs before y and z’
occurs before y' with respect to the orientation of ov. We will also compute pairings
between surfaces which are neither squares nor triangles, but the same ideas will
apply.

Finally, suppose A and B intersect at more than two points. Then each point
of intersection contributes a monomial to the pairing. We can assume one of these
monomials is 1, and compute the others by the methods discussed above.

5. A basis

In this section, we analyse the Lawrence-Krammer representation using the
tools developed in Sections 3 and 4. We give a new proof of the following theorem.

THEOREM 5.1. Hz(é) is a free A-module of rank (g)
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This is originally due to Paoluzzi and Paris [PP01]. Our proof gives a more
explicit description of surfaces representing elements of a free basis for Hz(é). The
matrices usually given for the Lawrence-Krammer representation use a basis for
Qg, ) ® Hz(é), not for Hz(é). This subtle distinction will be discussed at the end
of this section. R

We use the following basic result about H5(C).

LEMMA 5.2. The vector space Q(q,1) ®H2(é) has dimension (g) The natural
map from Hz(é) to Qg,1) ® Hz(é) is injective.

The proof uses a finite 2-complex that 1s homotopy equivalent to C. Various
methods for constructing the required complex can be found in [Law90], [Big01],
[PP01], and [Bud02]. Since the complex has dimension two, Ho(C) is the kernel
of a matrix d with entries in A. Now Q(q,) ® Hz(é) is the kernel of the matrix 9,
considered as a matrix over Q(g,¢). Thus Hz(é) is the submodule of Q(q, t)®H2(é)
consisting of those vectors whose entries lie in A. The dimension of Q(g¢,) ® Hz(é)
can be computed from an explicit description of the matrix d, which can be found

in any of the papers mentioned above.

5.1. Proof of the theorem. We now prove Theorem 5.1. For 1 <:¢ < j < n,
we define v} ; € HQ(C', v) as follows. If j—i > 2, let v; ; be the square corresponding
to the edges [pi, pi+1] and [pj—1,p;]. If j —i=2and i > 1, let v{ ; be the square
corresponding to the edge [p;, pi+1] and an edge from p;_1 to p; whose interior lies
in the lower half plane. Let v} 5 be the square corresponding to the edges [p1, ps]
and [p2,ps]. If j —i =1, let v} ; be the triangle corresponding to the edge [p;, p;].

For 1 <i< j<mn,letv;; be an element of Hy(C) whose image in Ho(C', D) is
o (1—q)*(I+gt)(1—t)v]; if j=i+1,

o (1—¢)?(1+ gt)v; ;ifi=1and j =3,

o (1- q)zvgyj otherwise.

Such an element exists by Section 3. We will show that the v; ; form a free basis

for Ho(C).

Forevery 1 <i¢<j<n,letz;; € Hz(é', 36’) be the square corresponding to a
pair of vertical edges, one passing just to the right of p;, the other passing just to
the left of p;, and both having endpoints on 9.

LEMMA 5.3. The following identities hold up to multiplication by a unit in A.

o (v, i) =1forl<i<j<n,
o (V4o Tic1i41) =1 fori=2,...n-2,
o (V4o Tiit1) =1—tfori=2,...n-2

All other pairings (v, 5/, x5 ;) are zero.

Zlyjl 9
ProoF. Use the methods described in Section 4. O
For convenience, choose lifts and orientations so that

<v£,j’xiyj>/ =1

for1 <i1<j<n.
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gt | —¢*t

—q q2t2

1 —qt?

—t qt

F1GURE 5. The function representing x,_1,, breaks into triangles.

From Lemma 5.3 it follows that the U;,j are linearly independent. Hence the v; ;

are linearly independent. By Lemma 5.2, they span Q(q,?) ® H2(C) as a Q(q,1)-
module. Tt remains to show that they span H3(C) as a A-module. In other words,
we must prove the following.

LEMMA b.4. Let ¢; ; € Q(q,t) for 1 <i< j < n be such that

v = E , Ci,jVi,j
1<i<j<n

lies in Ho(C). Thenc; ; € A forall 1 <i< j<n.
We use the following facts about the z; ;.

LEMMA 5.5. The image of @n_1, in Ho(C,0C UD) is (1 — q)(1 + qt)(1 —t)
times a triangle.

ProOOF. Let a: I — D be a straight edge from 9D to p,. Let as be an edge
in an e-neighbourhood of « with endpoints on 9D, passing anticlockwise around
a. Let a1 be an edge in an e-neighbourhood of « with endpoints on 8D, passing
anticlockwise around as. Define f: I x I — C by f(z,y) = {a1(x), @2(y)}. Then
f lifts to a map f which represents z,_1 n.

We can assume that for all s € I the four points a1(s), aa(s), ai(l — s), and
as(1l — s) lie within distance € of each other. Then f maps the lines {(z,z)},
{(x,1—2)}, {(%, y)}, and {(x, %)} into v.. These lines cut I x I into eight pieces.
The restriction of f to each piece represents an element of Hz(é', aC U ve). Each
of these elements is a multiple of the triangle corresponding to «, as shown in
Figure 5. Combining these, we see that z,_1 5, is (1 — ¢)(1 + ¢t)(1 — t) times the
triangle corresponding to a. O

LEMMA 5.6. For all 1 < i < j < n, The image of x;; in Hz(é,ﬁéu V) is
(1 —q)? times a linear combination of squares.

ProoF. Use a similar argument to Lemma 5.5, as suggested by Figure 6. O
ProoF oF LEMMA 5.4. First consider the case n = 3. Then
(v,293) = (1 —q)*(1 + qt)(1 — t)ea 3.
By Lemma 5.6, z» 3 is a multiple of (1 — ¢)?, and hence of (1 — ¢)%. Since (-, is
sesquilinear, it follows that (14¢t)(1—t)c2 3 € A. Similarly, Lemma 5.5 implies that

(1 —¢)ea s € A. Since A is a unique factorisation domain, it follows that ¢; 3 € A.
By a symmetrical argument, ¢, » € A.
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u u =(1-q(1-¢") @—I—q@—l—...

FIGURE 6. 224 is (1 — ¢)? times a linear combination of squares.

Now
v — (1,201, + €2,3V23)

still lies in H»(C'), so we can reduce to the case v = ¢1 3v1 3. The following holds
up to multiplication by a unit in A.

<v’173, ooz ) = (1 —1).

Thus
(v, 00223y = (1 —t)(1 — q)2(1 + gt)esr 3.
By Lemma 5.5, 0525 3 is a multiple of (1 —#)(1 — ¢)(1 + ¢t). Thus (1 —¢)e1 3 € A.
But
(v,213) = (1= q)*(1 + qt)er 5.
By Lemma 5.6, (1 + gt)e1,3 € A. Thus ¢; 53 € A.
Now suppose n > 3. For i = 1,...,n— 2 we have

(v,2i ) = (1 —q)%cin.

By Lemma 5.6, ¢; , € A. Also

<U, xn—l,n> = (1 - Q)2(1 + qt)(l - t)cn—l,rr

By Lemma 5.6, (1 4+ ¢t)(1 —t)¢p_1,n € A. By Lemma 5.5, (1 — ¢)cn—1, € A. Thus
cn—1n € A. We can now subtract the terms ¢; ,v; ,, and so reduce to the case
¢;n=0foralli=1,...,n—1. Then v represents an element of homology of the
preimage in C of the space of unordered pairs of distinct points in an (n — 1)-times
punctured disk. The result now follows by induction on n. O

This completes the proof of Theorem 5.1.

5.2. The Krammer representation. There is some confusion as to the ex-
act definition of the “Lawrence-Krammer representation”. In an attempt to clarify
the situation, we now compare and contrast a slightly different representation which
we will call the “Krammer representation”.

Let the Krammer representation be the following action of B, on a free A-
module V' of rank (g) with basis {F;; : 1 <i<j<n}.

Fj,k Zg{j_la.]ak_lak}a
GFip+ (@ =P+ (10— Fje  i=35—1,
5 F. — J+1l,k : J .a
oi(Fyx) i+ (=) e+ (1—q)qtFiy i=k—1# ],
Fjr1 i=k,

—tquj,k t=j=k—1.
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This representation is given in [Kra00], but with different conventions as explained
below. Tt is also in [Big01], but with a sign error. The name “Krammer representa-
tion” was chosen because Krammer seems to have initially found this independently
of Lawrence and without any use of homology.

The vector spaces Q(q,t) ® V and Q(q,t) ® Hz(é) are isomorphic representa-
tions of By, by [Big01, Theorem 4.1]. The isomorphism is given by

d): Fiyj g (Ui—l .. .0'20'1)(0']'_1 .. .0'30'2)1)172.
Thus ¢ maps F; ; to the genus three surface corresponding to an edge from p; to
p; in the lower half plane.

The basis elements in [Kra00] correspond to similar edges in the upper half
plane. Thus Krammer’s v; ; should be identified with my

(Uj—l . .0201)(Uk_1 . .0'30'2)F172.

Also, Krammer’s ¢ is my —t.

For n > 3, the map ¢: V — Hz(é) defined as above is not an isomorphism.
To see this, note that the composition of ¢ with the natural map from Hz(é) to
HQ(C', v) sends V into (1 — t)Hz(C', 7). However the image of v1 3 in Hz(é', v) does
not lie in (1 — t)Hz(é, 7). Thus vq 3 is not in the image of ¢.

In fact Paoluzzi and Paris [PP01] showed that the modules V and Hy(C) are
not isomorphic representations of B,, for n > 3. The distinction becomes important
when we specialise ¢ and ¢ to values which are not algebraically independent, as we
will in the next section.

It 1s possible to compute the matrices for the Lawrence-Krammer representation
with respect to the basis {v; ;}. We will not do this since they are quite complicated.
They must be conjugate to those of the Krammer representation when considered
as matrices over Q(q,?), but not when considered as matrices over A.

The following conjecture would give a nice topological interpretation of the
Krammer representation.

CONJECTURE 5.7. The Krammer representation is isomorphic to the action of
By, on Ho(C, D).

The isomorphism should be the map ¢: V — Hz(é', ) given by

Y(F; ;) = (cic1...0001)(0j-1 .. .0'30'2)1/172.
This respects the action of B, by the proof of [Bigpl, Theorem 4.1]. It remains
to show that the terms ¢(F; ;) form a basis for Ho(C, 7). The proof should follow
the same method as that of Theorem 5.1. The only difficulty is showing that
Q(q,t) ® Ho(C, ) has dimension (%).

6. A representation of the Temperley-Lieb algebra
The aim of this section is to prove the following.

THEOREM 6.1. Let R be a domain containing invertible elements q and t, and
let
12 R® Ho(C) = R® Ho(C, D)
be induced by the natural map from homology to relative homology. Suppose 1+qt =
0, ¢ has a square root, ¢> # 1, and ¢> # 1. Then the image of v is the representation
of TLy(R) corresponding to the partition (n — 2,2).
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Here, TL,(R) is the Temperley-Lieb algebra. We will define this, and the
desired representation in Section 6.4.

In [Law90, Theorem 5.1], Lawrence constructed the representation of the Hecke
algebra corresponding to the partition (n—k, k) for k = 1,...,|n/2|. These are the
representations that factor through the Temperley-Lieb algebra. This was gener-
alised still further in [Law96] to give the Hecke algebra representation correspond-
ing to any partition of n. Theorem 6.1 only covers the case (n — 2,2), but also
has a number of advantages over the work of Lawrence. Firstly, it gives a more
elementary description of the required quotient of R ® Hz(é). Secondly, it works
over a fairly general ring, whereas Lawrence worked over C and used the matrices
we gave in Section 5.2 for the “Krammer representation”. Finally, our proof gives
an explicit isomorphism between the two representations. It is to be hoped that
these advantages generalise to arbitrary partitions of n.

I suspect that the requirements on R in Theorem 6.1 can be weakened some-
what. The main example to keep in mind is R = Z[qi%] with t = —¢~1.

6.1. A basis. For 1 < i < j < n, let v, v
Section 5. Then

0 ifj =i+ lorj=3,
L(vm')z{

j and z; ; be as defined in

(1 —g¢)*v}; otherwise.

The pairing (-, -)' can be extended to a map
() (R® Ha(C, D)) x Hy(C,0C) = R.
Lemma 5.3 still holds, so the v; ; are linearly independent in R ® Hz(é', 7). Thus
the image of ¢ 1s the free module with basis
{(1= q)%;j cj>max(i+1,3)}.
Let H be the free module with basis
{vi; 7 >max(i+1,3)}.

To ease the notation, we will work with H instead of the image of ¢, since the two
are isomorphic.

Let K be the field of fractions of R. Then K ® H is a vector space of dimension
n(n —3)/2, and contains H as an embedded submodule. Tt is sometimes easier to
prove that a relation holds in H by proving that it holds in K @ H.

6.2. The Hecke algebra. We now prove that H is a representation of the
Hecke algebra.

DEFINITION 6.2. The Hecke algebra H,(R), or simply ,, is the R-algebra
given by generators 1,01, ...,0,_1 and relations
® 0i0; =00 if |Z—j| > 1,
® 0;,0;0; = 0,00 if |Z—j| = 1,
o (o;—1)(o;+¢) =0.
Thus H,, is the group algebra RB,, of the braid group modulo the relations
(o; = 1)(os 4+ q) = 0.

LEMMA 6.3. (o; — 1)(oy + ¢) acts as the zero map on H.
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F1GURE 7. Showing that O'Eill‘iyn =ZTin_1— T

)

PrOOF. Since the o; are all conjugate, we need only check the case : = n — 1.
To do this, we find a basis for K @ H consisting of eigenvectors of ,,_1, each having
eigenvalue 1 or —gq.

The elements vgyj for max(i+1,3) < j < n—2 are linearly independent eigen-
vectors of ¢,_1 with eigenvalue 1. There are (n — 2)(n — 5)/2 of these.

Let o be a circular closed curve based at p,_» and enclosing p,_1 and p,.
Fori=1,...,n—4, let u; be the square corresponding to the edges [p;, pi+1] and
«. Let u,_3 be the square corresponding to the edge [p,—_3,pn—2] and a circular
closed curve based at p,_a4 enclosing p,_s,...,p,. These are eigenvalues of o, _1
with eigenvalue 1. For 4,7/ = 1,...,n — 3, the following identities hold up to
multiplication by a unit in A.

o (uj,xin) =1—gq,

L 4 <ui, $i’,n>/ =0 for i/ 75 i,

o (v, xipn) =0for 1 <i<j<n—2.

Thus the u; are linearly independent and not in the span of {vgyj :j <n-—2}. Now
let u be the square corresponding to « and a circular closed curve based at p,_3
enclosing «. The following identities hold up to multiplication by a unit in A.

o (0 znmset) = (1= )1+ 201 - ),

o (Uj,&p_op_1) =0fori=1...,n—3,

. <v§7j, Tp_2n-1) =0for j <n-2.

These can be computed using the methods of Section 4. The first is quite difficult,
and we will discuss a less direct way to compute it later.

From the above identities, it follows that

Bi={vi; max(i+1,3) <j<n-—-2}U{u,...,up_s}U{u}

is a linearly independent set of eigenvectors of ¢, _1 with eigenvalue 1. Each v € B3
lies in H, as can be seen by constructing a surface in C whose image in Hz(é', )
is (1 —q)%v.

For : = 1,...,n — 3, note that vgyn must be an eigenvector of o,_1, because
the function o,,_1 can be chosen to fix setwise the square in ' whose lift represents
vgyn. To find the eigenvalue, note that

-1 _ -1
On_1%in = Tin-1—q Lin,

as shown in Figure 7, so

<U”—1v;,na xi7”> = <v;,n’ U;ilxi7”> = _Q<v;,na xi7”>'

Thus
B_g={vi,:i=1,...,n—3}
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is a set of eigenvectors of ¢, _1 with eigenvalue —g. They are linearly independent,
and since —q # 1, they are not in the span of B;. By a dimension count, By UB_, is
a basis for K ® H. Each element of this basis is annihilated by (¢,—1 —1)(opn-144),
so we are done. O

In the above proof we used the fact that
<U, xn—Z,n—1>/ = (1 - q2)(1 + qzt)(l - t)’
up to multiplication by a unit in A. We now describe an indirect argument to
obtain this identity. Let A denote (1 — ¢2)(1 + ¢%¢)(1 — ).

Let P be an e-neighbourhood of the horizontal edge [p,—1,pn], where € > 0 is
small. Let Z be the set of points {«,y} € C such that either « and y are within
distance ¢ of each other, or at least one of them lies in P. Let Z be the preimage
of Zin C.

Let x' € Hz(é', aCU Z) be a triangle represented by the horizontal edge [p,, 1].
I claim that the image of #,_5,_1 in Hz(é', oC U Z) is Az’. The proof is almost
identical to that of Lemma 5.5. This time P is to be treated as one large puncture
point. Since P actually contains two puncture points, it is necessary to substitute
q” for ¢ in the proof of Lemma 5.5.

The surface representing u does not meet Z, so 1t 1s possible to define an
intersection pairing (u, #'). The surfaces representing v and #’ intersect transversely
at one point when projected to C. Thus (u,z’) is a unit in A. The pairing is
sesquilinear, so (u, z) = A. But X is equal to A, up to multiplication by a unit in A,
so we are done.

6.3. The Temperley-Lieb algebra. We now prove that H is a representa-
tion of the Temperley-Lieb algebra TL,,.

DEFINITION 6.4. Let R be a domain containing an invertible element ¢ with
a square root q%. The Temperley-Lieb algebra TL,(R), or simply TL,, is the
R-algebra given by generators 1,e1,...,e,_1 and relations

® cie; = €56 if |Z—j| > 1,

o cieje; = ¢ if i — j| =1,

o e? = (—q7 —q 7)e;.

Consider the map from H,, to TL, given by o; — 1 + q%ei. I claim this is
well-defined and has kernel generated by

2i5 = 0;0;0; —0;0; — 0;0; +0; +0; — 1

for |i — j| = 1. This is [Jon87, Equation 11.6], except using slightly different
conventions. It can be verified by adding the relations z; ; = 0 to the presentation
of H,, substituting 1 + q%ei for o;, and simplifying to obtain the presentation for
TL,.

LEMMA 6.5. 2 ; acts as the zero map on H.

Proor. The z; ; are all conjugate to each other, so it suffices to prove that
Zp—2,n—1 acts as the zero map on H. We have

Zpn—2n—-1 = (Un—ZUn—l —Opn_1+ 1)(Un—2 - 1)

(Un—lo-n—2 —Op—2+ 1)(Un—1 - 1)



THE LAWRENCE-KRAMMER REPRESENTATION 65

yd N

",

F1GURE 8. The arcs & and v used to define y; .

Thus it suffices to find a basis for K ® H, each of whose elements is an eigenvector
of either o,_1 or o,_» with eigenvalue 1.

Let By be the linearly independent set of eigenvectors of o,_1 with eigenvalue
1 as defined in the proof of Lemma 6.3.

Let o' be a circular closed curve based at p, and enclosing p,_1 and p,_s.
Fori=1,...,n—4, let w; be the square corresponding to the edges [p;, pi+1] and
o’. Let w,_3 be the square corresponding to a’ and a circular closed curve based
at p,_3 and enclosing o’. The w; all lie in H, and are eigenvectors for o, _» with
eigenvalue 1.

Let v: S* — D, be a figure-eight going around p,_; and p, in a regular
neighbourhood of [py—1,pn]. Fori=1,...,n—3,let &: I — D, be a vertical edge
with endpoints on 9D, passing just to the right of p;. See Figure 8. Define

fZ’Z I x Sl —C

by fl;(x, 31) ={&(x),v(y)}. This lifts to C. Let y; be the corresponding element of
Hy(C,8C). Fori,j =1,...,n—3, the following holds up to multiplication by a
unit in A.

1—¢3 i=j#n—3

(wi,y;)) =< 1=¢*(1—-¢%*) i=j=n-3

0 oy
Further, (v, y;)’ = 0 for all v € B;. Thus

{wl, . .,wn_g} U Bl

is linearly independent. By a dimension count, it forms a basis of K @ H. Each
vector in this basis is annihilated by z,_2 ,_1, so we are done. O

6.4. The (n — 2,2) representation. We have shown that H can be con-
sidered as a representation of TL,. We now define the representation S of TL,
corresponding to the partition (n — 2,2), and show that it is isomorphic to H. A
good introduction to the representation theory of the Temperley-Lieb algebra is
[Wes95].

DEFINITION 6.6. Let M be the left-ideal of TL,, generated by ejes, and let N be
the left-ideal generated by {es, ..., e,_1}. The representation of TL,, corresponding
to the partition (n — 2,2) is the TL,-module S = M/(M N N).

This is called S(n,2) in [Wes95]. It is a free R-module with basis

s;5 = (e;...esez)(ej_1...e5¢e4)(e1€3)
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FIGURE 9. s; ; for j=¢+2and j > i+ 2.

for 1 < ¢ < j < n such that j > max(i + 1,3). There is a diagrammatic in-
terpretation of TL,, in which s; ; corresponds to the diagram shown in Figure 9.

Let ¢: TL, — H be the unique map compatible with the action such that
Y(1) = v} 4. Then

Yles) = ¢ 5 (05— (vl 4) = (—¢7 — ¢ 2] 4.
Similarly ¢(e;) = (—q% — q_%)v’lA. Thus

1

Yleres) = (47 +q77) v 4
Let ¢': M — H be given by
V= (g7 +q7%) 0l
For i =5,...,n — 1 we have that

W(er) = g7 (o0 = 1)(v]4) = 0.

Thus ¢(N) =0, so ¢'(M N N) = 0. We therefore have a map ¢: S — H induced
by '.

Recall that S has a basis

s;5 = (ei...ea)(ej_1...es)(e1€3)

for 1 <4< j < nsuch that j > max(i+ 1,3). We will show that ¢(s; ;) = v; ; up
to multiplication by a unit in A.

LEMMA 6.7. For j =5,...,n we have (oj_1 — 1)vy ;_y = v} ; up to multiplica-
tion by a unit in A.

ProoF. Let ay: I — D be the edge [p1,p2]. Let as: I — D be the edge
[pj—2,pj—1]. Define f: I xI = C by f(z,y) = {a1(z), az(y)}. Then f lifts to a
map f which represents vll,j—l'

We can assume that O'j_lozz(%) is within distance € of p;_;. Then f maps the
line {(x, %)} into ve. The restriction of f to I x [0, %] represents some unit multiple

of vy j—1. The restriction of f to I x [%, 1] represents some unit multiple of vy ;.
Thus

/ _ / /
Tj_1V) jo1 = AUy g+ po
for some units A,y € A.
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It remains to show that A = 1. Recall that (v} ;_;,z1;-1)" = 1. Thus
<0'j_1v’17j_1,x17j_1>’ = A But gj_121 ;-1 = 21 -1, 80

/ / / /
(Fj—1v1joner-1) = (0510 j1, 05-1@1 1)
_ / RV
= <v1,j—1al’1,y—1>
= 1.
—_ R / — /
Thus A =1, s0 (61 — 1)”1,;’-1 = pvy . O
LEMMA 6.8. Fori=2,...,j—1 we have (o; —1)vj_, ; = v; ; up to multiplica-

tion by a unit in A.

ProoOF. In the case ¢ < j — 1, the proof is almost identical to that of the
previous lemma. Suppose ¢ = 5 — 1. Then

Oivi_1,; = AVi_yjF WL
for some A, i € A. To see that A = 1, use the same argument as in the proof of the

previous lemma. To see that 4 is a unit in A, note that it is equal to (o;v;_; ;, % ;)',

and the surfaces representing o;v)_, ; and z; ; intersect transversely at one point
:

when projected to C'. O

By these two lemmas we have ¢(s; ;) = v; ; up to multiplication by a unit in A.

This implies that ¢ is an isomorphism, which completes the proof of Theorem 6.1.
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