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ABSTRACT. The braid group Bn is the mapping class group of an n-times

. punctured disk. The Twahori-Becke algebra Hr is a guotient of the braid
group aigebra of Br by a quadratic relation in the standard generators. We
discuss how to use Hn to define the Jones polynomial of a knot or link. We
also summarize the classification of the irreducible representations of Hn. We
conclude with some directions for future research that would apply mapping
class group techniques to questions related to Ha.

1. Tntroduction

The braid group B, is the mapping class group of an n-times punctured disk.
It can also be defined using certain kinds of arrangements of strings In space, or
certain ¥inds of diagrams in the plane. Our main interest in the braid group B,
will be in relation o the Twahori-Hecke algebra Mo, which is a certain quotient of
the group algebra of B,. The exact definition will be given in Section 3.

The Iwahori-Hecke algebra plays an important role in representation theory. It
frst came to the widespread attention of topologists when Jones used it to define
the knot invariant now called the Jones polynomial [Jon85]. This came as a huge
surprise, since it brought together two subjects that were previously unrelated. It
has given knot theorists a host of new knot invariants, and intriguing connections
+0 otner areas of mathematics to explore. It has also helped to promote the use of
pictures and topological thinking in representation theory.

As far as I know, no major results related to the Iwahori-Hecke algebra have
yet, been proved using the fact that B, is a mapping class gronp. I think the time is
ripe for such a resulf. Unfortunately this paper will use the diagrarmnmatic definition
of the braid group almost exclusively. I hope it will at least help to provide a basic
grounding for someone who wants to pursue the connection to mapping class groups
in the future.

The outline of this paper is as follows. In Sections 2 and 3 we introduce the
braid group and Iwahori-Hecke algebra. In Sections 4 and 5 we give a basis for the
Twahori-Hecke algebra and for its module of trace functions. In Section 6 we explain
how one such race function leads to the definition of the Jones polynomial of a knot
or a link. In Section 7 we briefly summarize the work of Dipper and James [DJ86]
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FIGURE 1. A braid with four strands.

classifying the irreducible representations of the Iwahori-Hecke algebra. In Section
8 we conclude with some speculation on possible directions for future research.
Open problems will be scattered throughout the paper.

2. The braid group

Like most important mathematical objects, the braid group B, has several
equivalent definitions. Of greatest relevance to this volume is its definition as a
mepping class group. Let D be a closed disk, let p1, ..., p, be distinct points in the
interior of D, and let D, = D\ {py, ..., Pn}- The braid group B, is the mapping
class group of D,,. Thus a braid is the equivalence class of a homeomorphism from
Dy, to itself that acts as the identity of the boundary of the digk.

Artin's original definition of B,, was in terms of geometric braids. A geometric
braid is a disjoint union of n edges, called strands, in D x I, where [ is the interval
[0,1). The set of endpoints of the strands is required to be {pi,...,p,} x {0,1},
and each strand is required to intersect each disk cross-section exactly once. Two
geometric braids are said to be equivalent if it is possible to deform one to the
other through a continuous family of geometric braids. The elements of B, are
equivalence classes of geometric braids. .

We will need some terminology to refer to directions in 2 geometric braid. Take
D to be the unit disk centered at 0 in the complex plane. Take p;,...,p, to be
real numbers with -1 < p; < -+ < Pn < 1. The fop and bottom of the braid are
D x {1} and D x {0}, respectively. In a disk eross-section, the left and right are the
directions of decreasing and increasing real part, respectively, while the front and
back are the directions of decreasing and increasing imaginary part, respectively.

Multiplication in B,, is defined as follows. If ¢ and b are geometric braids with n
strands then the product ab is obtained by stacking @ on top of & and then rescaling
vertically to the correct height. This can be shown to give a well-defined product
of equivalence classes, and to satisfy the axioms of a group.

A geometric braid can be drawn in the plane using a projection from 1D x T
to [~1,1] x I. An example is shown in Figure 1. The projection map is given by
(z +iy,t) v (z, t). Note that this sends each strand to an embedded edge. We
also Fequire that the braid be in general position in the sense that the images of the
strands intersect each other transversely, with only two edges meeting at each point
of intersection. The points of intersection are called crossings. At each crossing, we
record which of the two strands passed in front of the other at the corresponding
disk cross-section of the geometric braid. This is usually represented pictorially by
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FiaURE 2. Reidemeister moves of types two and three.

a small break in the segment that passes behind. The image of a geometric braid
under a projection in general position, together with this crossing information, is
called a braid diagram.

Let us fix some terminology related to braid diagrams. The directions left,
right, top, and bottom are the images of these same directions in the geometric
braid, so for example the point (—1,1) is the top left of the braid diagram. We say
a strand makes an evercrossing or an undercrossing when it passes respectively in
front of or behind another strand at a crossing. A crossing is called positive if the
strand making the overcrossing goes from the bottom left o the top right of the
crossing, otherwise it is called negative. The endpoints of strands are called nodes.

Two braid diagrams represent the same braid if and only if they are related
by an isotopy of the plane and a sequence of Reidemeister moves of types two and
three. These are moves in which the diagram remains unchanged except in a small
disk, where it changes as shown in Figure 2. (There s also a Reidemeister move of
type one, which is relevant to knots but not to braids.)

Fori=1,...,n—1, let o; be the braid diagram with one crossing, which 15 a
positive crossing between strands i and 7 + 1. The braid group By, is generated by
T1y.ney Ono1, with defining relations

® 0,05 = ;0% if ]’.',—ji >1,
o o050, = 0,005 if | — j[ = L.

There is an imprecise but vivid physical description of the correspondence be-
tween a geometric braid and a mapping class of the n-times punctured disk D,.
Imagine a braid made of inflexible wires and a disk made of flexible rubber, Press
the disk onto the top of the braid, puncturing the disk at n points in its interior.
Now hold the disk by its boundary and push it down. As the wires of the braid twist
around each other, the punctures of the disk will twist around and the rubber wili
be stretched and distorted to accommodate this. The mapping class corresponding
to the geometric braid is represented by the function taking each point on D, to
its image in D, after the disk has been pushed all the way o the bottom of the
braid. (With our conventions, this descriptiongives the group of mapping classes
acting on the right.)

See [Bir74], or [BB}, for proofs that these and other definitions of By are
all equivalent. This paper will primarily use the definition of a braid group as
a braid diagram. This is in some sense the least elegant choice since it involves
an arbitrary projection and a loss of the true three-dimensional character of the
geometric braid. The main goal is to provide an introduction that may inspire
someone to apply mapping class group techniques to problems that have previously
been studied algebraically and combinatorially.
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FIGURE 3. The skein relation

3. The Iwahori-Hecke algebra

Let n be a positive integer and let g1 and ¢» be units in 2 domain R. The
Twahori-Hecke algebra H.,, {q1,92), or simply H,,, is the associative R-algebra given
by generators T1,..., T _; and relations

e LT =TT if li—j| > 1,
o LTT = TT0, it i 5 =1,
e (1; — G (T — g2) =0.

The usual definition of the Iwahori-Hecke algebra uses only one parameter
q. It corresponds to H, (-1, g}, or in some texts to Hn(l,—g). There is no loss
of generality because there is an isomorphism from H, (g, g2} to Ho(—1,~ga/q1)
given by T; — —q. 5. It will be convenient for us to keep two parameters.

We now explore some of the basic properties of the Iwahori-Hecke algebra.
Since ¢ and g5 are units of E, the generators T} are units of Ha, with

T = (T, —q 92)/ (q142)-
Thus there is a well-defined homomorphism from B, to the group of units in H,
given by
g; — T;
The following is a major open question.

QUESTION 1. If R = Q(¢q, g2}, is the above map from B, to H, (41, qo) injec-
tivef

For n = 3, the answer is yes. For n = 4, the answer is yes if and ocly if
the Burau representation of By is injective, or faithful The Burau representation
is one of the irreducible summands of the Iwahori-Hecke algebra over Q(q, ).
By a result of Long [Lon86], the map from B, to Hn is injective if and only if
at least one of these irreducible summands is faithful. For n = 4, they are all
easily shown to be unfaithful except for the Burau representation, which remains
unknown. For n > 5, the Burau representation is unfaithful [Big89], but there are
other summands whose status remains unknown.

One can also ask Question 1 for other choices of ring i and parameters ¢; and
2. If the map from B, to H,, is injective for any such choice then it i injective when
R =10Q(q1,4). A non-trivial case when the map is not injective is when n = 4 and
R = kg, gy"], where k is a field of characteristic 2 [CL97] or 3 [CL98]. Another
iswhen n=4, R=Q and ¢z/qy = -2 [Big02].

Using the map from B, to Hon, we can represent any element of H,, by a linear
combination of braid diagrams. The quadratic relation is equivalent to the skein
relation shown in Figure 3. Here, an instance of the skein relation is a relation

involving three diagrams that are identical except inside a small disk where they
are as shown in the figure.
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One motivation for studying ihe Twahori-THecke algebra is its connection with
the representation theory of the braid groups. The representations of Hp are pre-
cisely those representations of By, for which the image of the generators satisfy a
quadratic relation. The study of these representations led Jones to the discovery of
his knot invariant, which we define in Section 6 -

Another reason for interest is ihe connection between the Iwahori-Hecke algebra
snd the symmetiric group. There is an isomorphism from Han(l,—1) to the group
algebra RG, taking T, to the trapsposition (4,4 + 1). Thus Hnlg1,q2) can be
shought of as a deformation of RG, . The Twahori-Hecke algebra plays a role in the
representation theory of the general linear group over a fnite Aeld that is analogous
to the role of the symmetric group in the representation theory of the general Hinear
group over the real numbers. See for example [Dip85].

~ This process of realizing & classical algebraic object as the case ¢ = 1 in a
family of algebraic objects parametrized by g is part of a large circle of ideas called
quantum maethematics, o g-mathematics. 'T'he exact nature and significance of any

chanics not clear at present. One example is [Bar03], in

connection to guantum me
um, gravity in a universe

which Barrett uses guantum mathematics to analyze quant
with no matter and three space-time dimensions.

4. A basis

The aim of this section is to show that H,, is a free R-module of rank n!, and

to give an explicit basis.
Let ¢: B, — G be the map such that ¢(o;) is the transposition (4,5 +1).

Thus in any braid b, the strand with lower endpoint at node number ¢ has upper
endpoint at node number H(B) ().

For w € B, let Ty be a braid diagram with the minimal number of crossings
such that every crossing is positive and ¢(T,) = w. Such a braid can be thought of
as “ayered” in the following sense. In the front layer is a strand connecting node
1 at the bottom to node w(l) at the top. Behind that is a strand connecting node
9 at the bottom to node w(2) at the top. This continues until the back layer, in
which & strand connects node . af the bottom t0 node w(n) at the top. From this
description it is clear that our definition of T, specifies a unique braid in B,. By
abuse of notation, let T, denote the image of this braid in Hn. For example, if w
is a transposition (1,44 1) then To is the generator Ti.

THEOREM 4.1. The set of T for w € Gy, forms ¢ basis for Hy.

we first describe an algorithm that will input & linear combina-
utput a linear combination of basis elements T, that
it suffices to describe how to apply

To prove this,
tion of braid diagrams and o
represents the same element of Hy,. By linearity,

the algorithm to a single braid diagram v.
A crossing in v will be called bad if the strand that makes the overcrossing is

the one whose lower endpoint is farther to the right. If v has no bad crossings, stop
here. '
t least one bad crossing. Let the worst crossing be a bad crossing
has lower endpoint farthest to the left. If there is more
let the worst be the one that is closest to the boitiom

Suppose v has &
whose undercrossing strand
than one such bad crossing,
of the diagram.
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Use the skein relation to rewrite v as a linear combination of v and vg,
the result of changing the sign of the worst crossing and vy is the re
removing it. Now recursively apply this procedure to o’ and wvy.

Note that any bad crossings in v and vy are “better” than the worst crossing
of v in the sense that either the lower endpoint of their undercrossing strand is
farther to the right or they have the same undercrossing strand and are closer to
the top of the diagram. Thus the above algorithm

must eventually terminate with
& linear combimation of diagrams that have no bad crossings. Any such diagram
must equal 77, for some w & &,

This algorithm shows that the Tw span H,. It remains to
are linearly independent. Note that if the algorithm is given as input a linear
combination of diagrams of the form T, then its output will be the same finear
combination. Thus it suffices to show that the output of the algorithra does not
depend on the initial choice of linear combination of braid diagrams to represent a
given element of H,,. We prove this in three claims, which show that the output of

the algorithm is invariant under the skein relation and Reidemeister moves of types
two and three,

Wwhere
sult of

v is

show that they

CramM 4.2, Suppose Vi, U~ and vy are three braid diagrams that are identical
except i a small disk where Vi has a positive crossing, v_ has a negative CTO581ng,

and vg has no crossing. Then the algorithm, gives the same oulpui for both sides of
the skein relation vy + grgay_ = (g1 + g2)vo.

Proor. For exactly one of vy and v_,
bad crossing. For convenience agsume it is
argument.

Suppose the worst crossing for vy is the crosging in the small disk, Applying
the next step of the algorithm to v, resuits in a linear combination of v_ and v,
which, by design, will exactly cancel the other two terms in the skein relation.

Now suppose the worst crassing for vy is not inside the small disk. Then it
must be the same as the worst crossing for v_ and for vg. Thus the next step of

the algorithm has the same effect on vy, v— and vg. The claim now follows. by
induction. £l

CLam 4.3, Ify and v are diagrams that differ by a Reidemeister move of type
two then the algorithm gives the same output for u as for v.

the crossing inside the small disk is 1
V4, since it makes no difference to the

PROQF. Asin the proof of the previous ¢l
a worst crossing Hes inside the small disk affe
claim now follows by comp
small disk, Alternatively,
case n = 2 of Theorem 4.1

aim, we can reduce to the case where
cted by the Reidemeister move. The
uting the result of applying the algorithm inside the
observe that this computation amounts to checking the
» which follows easily from the bresentation of H;, I

CLAM 4.4, Suppose u and v are diagrams that differ by o Reidemeister move
of type three. Then the algorithm gives the same output for u as forv.

Proor. Once again, one solution involves a brute force computation of the
Fithm. Here we describe a somewhat more comprekensible approach.

Label the three strands in the small disk in each of u and v the front, back, and

middle strands, where the front strand makes two overcrossings, the back strand

makes two undercrossings, and the middle strand makes one overcrogsing and one
undercrossing.

algo
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Let u and v be the result of changing the sign of the crossings between the front
and middie strands of v and v respectively. Note that eliminating these crossings
resulés in identical braid diagrams. Thus by Claim 4.2, the algorithm gives the
same output for u as for v if and only if it gives the same output for u' as for v'.

Relabel the three strands in u’ and v so that once again the front strand makes
two overcrossings, the back strand malkes two undercrossings, and the middle strand
makes one overcrossing and one undercrossing. Now let u” and v” be the output
of changing the sign of the crossing between the middle and back strands of v/
and v' respectively. Note that eliminating these crossings results in braid diagrams
that differ by Reidemeister moves of type two. Thus by Claims 4.2 and 4.3, the
algorithm gives the same output for u as for ¢’ if and only i it gives the same
output for »” as for v".

We can continue in this way, alternately changing crossings between front and
middle, and middle and back strands. We obtain six different versions of the Rei-
demeister move of type three. Each is obtained from the original by some crossing
changes, and corresponds to one of the six permutations of the roles of front, middle,
and back strands. :

The algorithm gives the same output.for u as for v if and only if it gives the
same output when the relevant disks in u and v are changed to represent any one
of the six versions of the Reidemeister move of type three. Thus we can choose
s version to suit our convenience. In particular we can always choose the front
and back strands to be the ones with lower endpoints farthest to the left and right
respectively. That way there will be no bad crossings inside the small disk, and the
algorithm will proceed identically for the diagrams on either side of the move.

This completes the proof of the claim, and hence of the theorem. O

5. Trace functions

A trace function on My, is a linear function fr: Hn, — R such that tr(ab) =
tr{ba) for all a,b € Hn. Let V be the quotient of H, by the vector subspace
spanned by elements of the form ab—ba for a,b € H,. Then the trace functions of
*H,, correspond to the linear maps from V to It

The aim of this section is to find a basis for V, and hence classify all trace
functions of H,. This has been done by Turaev [Tur88] and independently by
Hoste and Kidwell [HK90]. They actually consider a larger algebra in which the
strands can have arbitrary orientations, but the result is very similar.

We define a closed n-braid to be a disjoint union of circles in D x St that
intersects each disk cross-section at a total of n points. We say two closed braids
are equivalent if one can be deformed to the other through a continuous family of
closed braids. The closure of a geometric braid in D x T is the resuit of identifying
D x {0} to D x {1}. Tt is not difficult to show that two braids have equivalent
closures if and only if they are conjugate in B.,.

Define a diagram of a closed braid to be a projection onto the annulus I x S*
in general position, together with crossing information, similar to the diagram of a
braid. Then V is the vector space of formal linear combination of closed n-braid
diagrams modulo the skein relation and Rejdemeister moves of types two and ihree.

. This is an example of a skein algebra of the annulus.
A partition of n s a sequence A = (A1,. .-, Mg) of integers such that Ay 2 -+ 2
Mg > 0 and Ay +---+ A, =n. Forany m > 0, let by be the braid om_1 ... 0201




Es

292 . STEPHEN BIGELOW

To oy

FIGURE 4. Pulling the basepoint toward {0} x S

I A= (X,..., ) is & partition of n, let by be the braid with diagram consisting
of a disjoint union of diagrams of the braids be.), in order from left to right. Let
vy, be the closure of by.

TuroREM 5.1. The set of vy, for partitions A of n forms a basis for V.

We start by defining an algorjithm similar to that of Theorem 4.1. There are
some added complications because a strand can cirele around and cross itself, and
there is no “botéom” of the closed braid to use as a starting point. Therefore the

first step is to choose a basepoint zg on the diagram that is not a crossing point.-

Pull 7 in front of the other strands so that To becomes the closest point to the
boundary component {0} x 8%, as suggested by Figure 4.

Consider the oriented edge that begins at 2o and proceeds in the positive di-
rection around the annulus. Call a crossing bad if this edge makes an undercrossing
on the first (or only) time it passes through that crossing. I there is a bad crossing,
lse the skein relation to eliminate the first bad crossing the edge encounters. This
process will eventually terminate with a linear combination of diagrams that have
no bad crossings.

If there are no bad crossings then the loop through zg passes in front of every
other loop in the closed braid. Furthermore, we can assume that its distance toward
the front of the diagram steadily decreases as it progresses in the positive direction
from zp until just before it closes up again at To. Since g is the closest point to
{0} x S!, this implies that the loop through o is isotopic to V() for some positive
integer m.

Tsotope this loop, keeping it in front of all other strands, toward the boundary
component {1} x S, until its projection is disjoint from that of all other loops.
Now ignore this loop and repeat the above procedure to the remainder of the closed
braid diagram. This process must eventually terminate with a linear combination
of closed braids of the form va.
~  To show that the v, are linearly independent, it suffices to show that output
is invariant under the skein relation, Reidemeister moves of types two and three,
and the choices of basepoint. By inducsion on n we can assume that the output of
the algorithm does not depend on choices of basepoint made after the first loop has
been made disjoint from the other loops. Thus the algorithm produces a unique
output given a diagram of a closed n-braid together with a single choice of initial

basepoint @g.
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CLaM 5.2. The output of the algorithm s tnvarient under the skein relation,
and under any Reidemeister move for which the basepoint does not lie in the disk

affected by the move.
ProoF. The proofs of Claims 4.2, 4.3 and 4.4 go through unchanged. a

It remains only to prove the following.

CLAIM 5.3. For a given diagram of a closed n-braid, the output of the algorithm
does not depend on the choice of basepoint.

ProoF. First we show that the cutput of the algorithm is not affected by mov-
ing the basepoint over an overcrossing. Recall that the first step of the algorithm is
to pull the basepoint in front of the other strands as in Figure 4. If the basepoint
is moved over an overcrossing, the output of this first step will be altered by a
Reidemeister move of type two. Furthermore, the basepoint does not lie in the disk
affected by this Reidemeister move. Thus the output of the algorithm is unchanged.

Now fix a diagram v of a closed n-braid. By induction, assume that the claim
is true for any diagram with fewer crossings than v. By the skein relation, if v’ is
the result of changing the sign of one of the crossings of v then the claim is true
for v if and only if it is true for »’. Thus we are free to change the signs of the
crossings in v to suit our convenience.

By changing crossings and moving the basepoint past overcrossings we can move
the basepoint to any other point on the same loop in v. Now suppose basepoints
zp and yg lie on two distinct loops in v. We can choose each to be the closest
point on its loop to the boundary component {0} x 51, Assume, without loss of
generality, that zg is at least as close as to {0} x S? as yp is. By changing the
signs of crossings, we can assume that the loop through yo has no bad crossings.
Applying the algorithm using 1o as the basepoint then has the affect of isotoping
the corresponding loop toward {1} x S, keeping it in front of all other sirands.
This can be achieved by a sequence of Reidemeister moves of types two and three.
No point in this loop is closer to {0} x S* than zg, so ¢ does not lie in the disk
affected by any of these Reidemeister moves. Thus the algorithm will give the same
output using the basepoint z¢ as it does using basepoint yg.

This completes the proof of the claim, and hence of the theorem. O

6. The Jones polynomial

The Jones polynomial is an invariant of knots and links, first defined by Jones
[Jon85]. Jones arrived at his definition as an outgrowth of his work on operator
algebras, as opposed to knot theory. To this day the topological meaning of his
polynomial seems somewhat mysterious, and it has a very different flaver to classical
knot invariants such as the Alexander polynomial,

After the discovery of the Jones polynomial, several people independently re-
alized that it could be generalized to a two-variable polynomial now called the
HOMFLY or HOMFLYPT polynomial. The names are acronyms of the authors
of [FYH'85], where the polynomial was defined, and of [PT88], where related
rezults were discovered independently.

The aim of this section is to show how to use the Iwahori-Hecke algebra to define
a polynomial invariant of knots and links called the HOMFLY or HOMFLYPT

polynomial.
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Given a geometric braj
identifying the top and the
standard unknotted fashion.
b. It is a classical theorem of
in this way.

Let B, be the disjoi

d b, we can obtain » closed braid in the solid torus by
bottom of b. Now embed thig solid torus into $% in 5
The resulting knot or link in 3 is called the closure of
Alexander that any knot or link in S can be obtained

L Bn — Bn+1
be the inclusion map that adds a single straight strand to
The Markov moves are ss follows.

the right of any n-braid.

o ab <+ bg,

o b onu(b),

° b o lu(b),
for any a,b € B,.

THEOREM 6.1 (Markov's theorem),

Two braids have the sq
only if they are connected by @ sequen

me closure if gnd
ce of Markou moves.

An R-valued link invariant is thus equivalent to a function from B
is irvariant under the Marko

v moves. We now look for such a function
through the maps B, — H,,

Let o2 H, — Hny1 be the inclusion map T} s
tr: M, — R defines a Jink invariant if and only if it s
° tr(ab) = tr(ba),
e tr(b) = tr(Tou(b)),
o tr(b) = t(T L b)),

s t0 R that
that factors
T3 A family of linear maps
atisfies the following.

nition of Markov trace is sl
easily be rescaled to satisfy the above conditions,

By the skein relation, the third condition on a normalized Markov trace is
equivalent to

(1 (14 0102) () = (g1 + g5} tx(u(v)),

for every n > 1 and & € H,. To obtain an interesting Invariant, we assume from
now on that g; + g, is a 1nit of R.

-

1+ gge )t
2 tr(b) = (=2 ),
o) = ()

where id; is the identity element of Hi.

2 Iinear combination of vy . Let tr(b)

Let vy be the closed brai
bottom of 4(b). is i
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the algorithm to write vg as a linear combination of basis elements v;. The added
loop in vp remains unchanged throughout the algorithm. Thus it has the effect
of adding en extra component to each term of the resulting linear combination of
basis elements. This shows that tr satisfies Equation {1).

Now let vy be the closed braid diagram obtained by identifying the top and
the bottom of ,u(b). then vy is obtained from v by adding an extra “kink” in one
of the strands. Now apply the algorithm to write vy as a linear combination of
basis elements v,. We can assume that we never choose a basepoint that lies on the
added kink. Then the added kink remains unchanged throughout the algorithm.
Tt has no effect on the number of comporents in each term of the resulting linear

- combination of basis elements. This shows that tr is invariant under the second
Markov move.

This completes the proof that tris a normalized Markov trace. Any other nor-
malized Markov trace must be a scalar multiple of tr. The HOMFLYPT polynomial
Pr(qg1, g2} of a link L is defined to be tr(b) for any braid b whose closure is L. There
are many different definitions of Pr, in the literature, each of which can be obtained
from any cther by a change of variables. They are usually specified by giving the
coeficients of the three terms of the skein relation in Figure 3. As far as [ know,
mine is yet another addition to the collection of possible choices that appear in the
literature.

The Jones polynomial V, is given by

Vi(t) = Pr(—t3,t8).

If I is a knot, Vy, turns out to involve only integer powers of t. This polynomial
was originally defined as a trace function of the Temperley-Lieb algebra, which is
a certain quotient of the Iwahori-Hecke algebra.

A somewhat tangential question is worth mentioning here. In ifs most open-
ended form, it is as follows.

QUESTION 2. What are the equivalence classes of braids module the moves

e gb+— ba, and
o berant(b)?

In other words, what happens if the Markov move
b o tub)

is omitted? This question was shown in [OS03] to be equivalent to the impor-
tant problem in contact geometry of classifying transversal links up to transversal
isotopy. '

The Bennequin number of a braid b € Bpis e —n, wkere e is the sum of the
exponents in a word in the generators o; representing b. The Bennequin number is
invariant under the moves in Question 2. Thus it can be used to show that there
are braids that are related by Markov moves, but not by the moves in Question 2.

Birman and Menasco [BM] and Etnyre and Honda [EH] have independently
found pairs of braids that are related by Markov moves and have the same Ben-
nequin invariant, but are not related by the moves in Question 2. Their proofs
are quite complicated, and it would be nice 10 have a new invariant that could

distinguish their pairs of braids.
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7. Representations of H,,

A representation of H,, is simply a Hp-module. If R is a field then an irreducible
representation of M, is a nonzero H,,-module with no nonzero proper submodules.
In [DJ86], Dipper and James gave a complete Iist of the irreducibie representations
of Hy. The aim of this secticn is to summarize their results. Our approach comes

from the theory of cellular algebras, as defined in [GL96]. For convenience we will
take

He = Ha(~1,9)
from now on.

Let A be a partition of n. The Young subgroup &,-of &, is the image of the
obvious embedding

Gy, X ---x 6y, — G,
More precisely, it is the set of permutations of {1,...,n} that fix setwise each set
of the form {k; +1,... ki + X} where by = A+ ..+ © Ai_q. Let

M3 T
‘UJEG,\
Let A be a partition of . Let M* be the left-ideal Hnmy. We say a partition u

of n dominates X if Egzl Hi < Ele for all j > 1. Let I* be the two-sided ideal of
H,, generated by my, for all partitions 1 of n that dominate A. The Spechi module
18 the quotient

S* = M*/(M> N 1.
Let rad S* be the set of v € §* such that myhe =G for all A € H,,. Let
D* = §*/rad S,

THEOREM 7.1. Suppose R is a field. Then every irreducible representation of
Hy, is of the form D* for some partition A of . If A and p are distinct partitions
of n then D* and D* are either distinct or both zero.

The definition of D* can be better motivated by defining & bilinear form on $*.
Let =2 H, — M, be the antiantomorphism given by T = Ty-1 for all w € 6,,.
Note that m3 = m,. The following lemma is due to Murphy [Mur92].

LEMMA 7.2. If h € H, then myhmy = rmy modulo I*, for some r € R.
Thus we can define a bilinear form
{3 82 x 8 R
by .
(hama)*(homa) = (hama, homay)yma.
Then rad 8% is the set of ¥ € $* such that {z,y) =0 for all 2 € H,,.
Dipper and James alsa determined which values of A give a nonzero 2. Let e

be the smallest positive integer such that 1+q +--- 4 g°~1 =0, or infinity if there
is no such integer.

THEOREM 7.3. D* # 0 if and only if A — Aiy1 < e for all i > 1.

Thus the work of Dipper and James completely characterizes the irreducible
representations of H,. However, understanding these irreducible representations
remains an active area of research to this day. An example of a major open-ended
question in the area is the following.
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QUESTION 3. What can be said about the dimensions of D*?

8. The fuiure

My hope for the future is that the definition of B, as & mapping class group will
provide solutions to problems related to the representation theory of the Iwsahori-
Hecke algebra. One reason for optimism is the mechanism described in [Big04]
to obtain representations of the H,, from the induced action of B, on homology
modules of configuration spaces in Dn. There I conjectured that all irreducible
rapresentations D* can be obtained in this way. The inner product we defined on
D> would presumably correspond to the intersection form on homology.

Another direction for future research is to look at other quotient algebras of
RB,,. After the Iwahori-Hecke algebra, the next obvious candidate is the Birman-
Wenzl-Murakami algebra. A somewhat non-standard presentation of this algebra
is as follows.

Let X be the following element of the braid group algebra RB,.

X:q5'1+1—q—01.

The Birman-Wenzl-Murakami algebra is the quotient of RB, by the following re-
lations.

e (o tost - 0109) X =0,
o (goyl+1l-—g— o)X = (go7to,t —o102) X,
e o X =1X.

This algebra has an interesting history. After the discovery of the Jones polyno-
mial, Kauffman [Kau90] discovered a new knot invariant which he defined directly
using the knot or link diagram and a skein relation. The Birman-Wenzl-Murakami
algebra was then constructed in [BW89], and independently in Mur87], so as to
give the Kauffman polynomial via a trace function. Thus the history of the Birman-
Wengzl-Murakami algebra traces the history of the Jones polynomial in reverse.

QUESTION 4. How much of this paper can be generalized to the Birman- Wenzl-
Murakaemi algebra?

In this direction, John Enyang [Eny04] has shown that the Birman-Murakami-
Wenzl algebra is a cellular algebra, and used $his to give a definition of its irreducible
representations similar to the approach in Section 7.

Next we would like to generalize [Big04] to the Birman-Wenzi-Murakami al-
gebra.

(QQUESTION 5. Is there a homological definition of representations of the Birman-
Wenzl-Murakami algebra?

I believe the answer to this is yes. Furthermore, the homological construction
suggests a new algebra Z,, which would further generalize the Iwahori-Hecke and
Birman-Wenzl-Murakamij algebras. I will conclude this paper with a definition of
Z.. and some related open questions. I hope these might be amenable to some
combinatorial computations, even without the homological motivation, which is
currently unclear and unpublished.
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1

We use the notation ¢y, 4, as shorthand for o, ... 0y, and &y, s, for o, .

Define the folowing elements of RB,;:

X2 = qErl + i- g— 01
X3 = (¢*Fy —012) X
Xe = (% — o193) X3
Xn = (qn_la(n—l)...l - Ul..,(nfl))Xn,—l-
Then Z, is the algebra BB, modulo the following relations:
(goa+1—g—02)Xs = (¢Go1 — 012)Xa,
(¢°Faz — 023} Xs = (¢*F3a1 — 0123) X3,
(0°G4an — 0o3e) Xa = (£%Guam — 01234) Xy, .
(Q‘n_la'n...2 - Ul..n)Xn = (qn_lﬁn...1 - Jl...n)Xn-

Note that Hn(1, —¢) is the quotient of Z, by the relation X, = 0. Also the
Birman-Wenzi-Murakami algebra is the quotient of 7, by the relations X3 = 0 and
01Xz = tX3. The following basically asks if Z,, is bigger than the Birman-Wenzl-
Murakami algebra.

QUESTION 6. Does Xy equal 0 in 7,7

Presumably some extra retations should be added to Z,, such as o187 = X3,
or something more general.

QuESTION 7. What ertra relations should be added to Z,, to make it finite-
dimensional?

QUESTION 8. How much of this paper can be generalized to 7, ¢ ”

It might be easier to first study these questions for the quotient of Z, by the
relation X5 = 0.
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