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A DIAGRAMMATIC DEFINITION OF Uq(sl2)

STEPHEN J. BIGELOW

Abstract. We give a diagrammatic definition of Uq(sl2) when q is not a
root of unity, including the Hopf algebra structure and relationship with the
Temperley-Lieb category.

Quantum groups, knot diagrams, skein theory.

1. Introduction

This paper is about Uq(sl2), one of the simplest examples of a quantum group.
For an account of the early history of quantum groups and some of their appli-
cations, see [3]. Our goal is to give a definition of Uq(sl2) and its representation
theory using formal linear combinations of certain diagrams in the plane. This
diagrammatic approach to algebra has origins that go back to the use of Feynman
diagrams in physics. For a survey of this and some of its varied applications, see
[1].

The Temperley-Lieb category TL is a category of certain representations of
Uq(sl2). The morphisms are represented by linear combinations of Temperley-Lieb
diagrams. We will define a categoryTL• that containsTL, but also allows diagrams
with interior endpoints and orientations.

Next we will define a Hopf algebra H , whose diagrams include a vertical pole.
If we work over C and q is not a root of unity then we find Uq(sl2) as a subalgebra
of a quotient of H . The relationship between Uq(sl2) and TL is described by the
process of threading a Temperley-Lieb diagram in place of the pole in a diagram in
H .

Orientations appeared in the earliest applications of Temperley-Lieb diagrams
to ice-type models in statistical mechanics, such as [9]. The orientations in TL•

are very similar, and also satisfy the ice rule, which says that every crossing has
two arrows pointing in and two pointing out.

Orientations again appeared in work of Frenkel and Khovanov [2]. Their idea is
that, whereas a Temperley-Lieb diagram represents a linear map between represen-
tations of Uq(sl2), an oriented Temperley-Lieb diagram represents a single matrix
entry of that linear map. Such diagrams form a category that is basically the same
as our TL•.

Although it does not use the same oriented diagrams, similar ideas are covered
in the “Kyoto path model”, pioneered by Kashiwara [4] and others.

More recently, Lauda [8] used diagrammatic methods to define a categorified
Uq(sl2). It is not clear whether our definitions can also be categorified, or how they
relate to Lauda’s.

The main feature of our work that seems to be new is the pole, which will
let us describe both Uq(sl2) and its representation theory in the same picture.
One advantage of this is that the key “intertwining” relationship becomes visually
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obvious. It is proved in Theorem 4.1 by physically sliding one action through the
other. This is reminiscent of Morton’s diagrammatic proofs that certain elements of
the Temperley-Lieb algebra commute [10]. I hope our approach makes the algebra
more accessible to others like me who are more comfortable with tangle diagrams
and skein relations.

Throughout the paper, we work over a field F containing an element q that is
neither 0 nor ±1. We will also need square roots

√
q and

√−q.

2. The category TL•

In this section, we define a monoidal category TL•.
We start with a quick review of the Temperley-Lieb category TL. The objects

are the non-negative integers. The morphisms from n to m are formal linear com-
binations of Temperley-Lieb diagrams that have n endpoints at the bottom and m
at the top. Composition is by stacking. A closed loop can be deleted in exchange
for the scalar q + q−1. The tensor product of objects is given by n ⊗m = n +m.
The tensor product f ⊗ g of two diagrams f and g is obtained by placing f to the
left of g.

We also allow diagrams with crossings, which are defined as follows:

�
�
��

❅❅

❅❅
=

√
−q +

1√−q
.

Crossings satisfy Reidemeister moves two and three (as proved in [6]).
We extend TL to TL• by introducing diagrams with univalent vertices. A vertex

is the endpoint of a strand, lying in the interior of the diagram. We require that, at
every vertex, the strand must have a horizontal tangent vector, and must be given
an orientation either into or out of the vertex. Unlike ordinary Temperley-Lieb
diagrams, a diagram with vertices is not considered up to planar isotopy. Instead,
we only allow planar isotopies that preserve the horizontal tangent vector at each
vertex. We also impose the following turning, confetti, and cutting relations.

The turning relations let us rotate a vertex at the expense of a power of
√
q.

√
q ✛
✞✝ r

= ✛r =
1
√
q

✛✞✝ r ,
1
√
q

✲
✞✝ r

= ✲r =
√
q ✲✞✝ r .

The confetti relations let us eliminate any straight strand that has univalent
vertices at both ends.

r r✲ ✛ = r r✲✛ = 0, r r✲ = 1.

The cutting relation lets us replace a strand with a sum of “cut” strands with
the two possible orientations.

= ✲ r r✲ + ✛rr✛ .

Note that univalent vertices do not interact particularly well with crossings.
There is no relation to let you pass a strand over or under a vertex, and the
orientation on a strand may change when it goes through a crossing.
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3. The Hopf algebra H

In this section, we define a Hopf algebra H consisting of formal linear combina-
tions of certain diagrams. The diagrams in H are similar to those in TL•, but with
a special straight vertical edge called the pole. No other strands are allowed to have
endpoints on the top or bottom of the diagram. Strands are allowed to cross over
or under the pole. You can think of the pole as a kind of place holder. In the next
section we will replace it with arbitrary numbers of parallel strands.

The turning, confetti, and cutting relations from TL• still hold in H . We also
allow Reidemeister moves involving the pole. That is, we impose the relations

☎✆= ☎✆ =
☎✆, = ,

and their horizontal reflections. (Other versions of Reidemeister three follow from
Reidemeister two and the definition of a crossing.)

The product ∇ : H ⊗ H → H is such that, for diagrams x and y, ∇(x ⊗ y) is
obtained by stacking x on top of y. We write xy for ∇(x⊗ y).

The unit η : F → H is such that η(1) is the diagram that is empty except for the
pole.

The tensor product x ⊗ y of two diagrams x and y in H is obtained by placing
x to the left of y, resulting in a diagram with two poles. In general, any diagram z
with two poles represents an element of H ⊗H . If z contains strands that go from
one pole to the other, then use the cutting relation to write z as a sum of tensor
products of diagrams from H .

The coproduct ∆: H → H ⊗H acts on any diagram by splitting the pole into
two parallel poles. Every crossing where a strand passes over (or under) the pole
becomes a pair of crossings where the strand passes over (or under) both poles.

The counit ǫ acts on any diagram x by deleting the pole. The result is a scalar
multiple of the empty diagram in TL•, and ǫ(x) is defined to be that scalar.

The antipode S : H → H acts on any diagram by a planar isotopy that rotates
the pole clockwise through an angle of 180 degrees. Throughout the isotopy, we
must preserve the horizontal tangent vectors at every vertex. The result is the same
as rigidly rotating the diagram and then multiplying the result by

√
q to the power

of the number of inward oriented vertices minus the number of outward oriented
vertices.

Proposition 3.1. H satisfies the axioms of a Hopf algebra.

Proof. It is easy to check that H satisfies the axioms of a bialgebra. It remains to
check that the antipode satisfies:

∇ ◦ (S ⊗ id) ◦∆ = η ◦ ǫ = ∇ ◦ (id⊗ S) ◦∆.

Here is a schematic representation of the effect of ∇◦ (S⊗ id) ◦∆ on a diagram:

∆7−→ S⊗id7−−−→ ✞✝
✛
✚

∇7−→ ✞✝
✛
✚ .

First ∆ splits the pole into two. Then S ⊗ id rotates the left pole clockwise,
bringing it above the other pole. As usual, the vertices do not rotate throughout
this isotopy. Although the resulting diagram is oddly shaped and has one pole on
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top of the other, it still represents an element of H ⊗H by the same construction
as when the poles are side by side. Finally, ∇ joins the two poles so that the tensor
product becomes multiplication by stacking.

Consider the last of the above sequence of four diagrams. The curved part of
the rectangle represents a collection of parallel strands that can be moved off the
pole, one by one, using Reidemeister two. Thus the entire collection of strands can
be slid off the pole to the right. We can then use an isotopy to straighten out the
rectangle again. The overall effect is to delete the pole from the original diagram
and insert a new pole some distance to the left. But this exactly describes the
action of η ◦ ǫ. Thus

∇ ◦ (S ⊗ id) ◦∆ = η ◦ ǫ.
An upside-down version of this argument works for ∇ ◦ (id⊗ S) ◦∆. �

4. Representations of H

If h is a diagram in H , let ρ(h) be the diagram in TL• given by replacing the
pole in h with an ordinary strand. Extend ρ by linearity to an algebra morphism
from H to the algebra of automorphisms of the object 1 in TL•. Note that ρ
is a two-dimensional representation of H , since its codomain is isomorphic to the
algebra of two-by-two matrices over F.

Using the coproduct on H , if h is a diagram in H then ρ⊗n(h) is the diagram in
TL• given by threading n parallel strands in place of the pole.

The most important relationship between H and TL is that their actions “in-
tertwine” as follows.

Theorem 4.1. Suppose h ∈ H and f is a morphism in TL from n to m. Then

ρ⊗m(h) ◦ f = f ◦ ρ⊗n(h)

in the category TL•.

Proof. We can assume h and f are diagrams. To obtain ρ⊗m(h) ◦ f , replace the
pole in h with m parallel strands and attach f to the bottom. To obtain f ◦ρ⊗n(h),
replace the pole in h with n parallel strands and attach f to the top. The resulting
diagrams represent the same element of TL•, since we can use Reidemeister moves
to slide f through h. �

5. Generators and relations in H

We define the following elements of H .

e = ✛✲r r, e0 = ✲ ✛r r, k = ✲ ✲r r, k′ = ✛ ✛r r,
f = ✲ ✛r r, f0 = ✛✲r r, ℓ = ✛ ✛r r, ℓ′ = ✲ ✲r r.

Lemma 5.1. H is generated by the above eight elements.

Proof. Start with an arbitrary diagram in H . Apply the definition of a crossing
to eliminate any crossings that do not involve the pole. Use the cutting relation
to cut all strands into segments that cross the pole at most once. Use the turning
relations to straighten out all of the strands. Finally, use the confetti relations to
eliminate any strands that do not cross the pole. We are left with only horizontal
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segments that cross the pole exactly once. The eight generators consist of every
pair of orientations for either type of crossing. �

We now give the Hopf algebra structure ofH . To save space, we only list the four
generators in which the strand passes under the pole. These calculations remain
the same if we switch the crossing.

Lemma 5.2. In H, the coproduct satisfies:

∆(e) = e ⊗ k + k′ ⊗ e, ∆(e0) = e0 ⊗ k′ + k ⊗ e0,

∆(k) = k ⊗ k + e0 ⊗ e, ∆(k′) = k′ ⊗ k′ + e⊗ e0,

the counit satisfies:

ǫ(e) = ǫ(e0) = 0, ǫ(k) = ǫ(k′) = 1,

and the antipode satisfies:

S(e) = qe, S(e0) = q−1e0, S(k) = k′, S(k′) = k.

Proof. These follow immediately from the definitions. �

We list some relations satisfied by the generators of H . We do not attempt a
complete presentation of H , since we will soon be taking a quotient anyway.

Lemma 5.3. H satisfies the relations

• k′k + q−1ee0 = 1,
• kk′ + qe0e = 1,
• ek′ + qk′e = 0,
• ef − fe = (q − q−1)(ℓk − k′ℓ′).

Proof. The first three relations follow from Reidemeister two:

rr ✛✲ ☎✆= √
q,

rr✲✛ ☎✆= 1
√
q
,

rr ✛✛ ☎✆= 0.

The fourth relation follows from Reidemeister three:

r✲
✛rr✛

✲ r = r✲
✛rr✛

✲ r.
In each case, we can express the equation of diagrams in terms of the generators
of H , using the method described in the proof of Lemma 5.1. After some algebraic
manipulation, we obtain the desired relations. �

6. A quotient of H

Let H ′ be the quotient of H by the intersection of the kernels of all ρ⊗n. The
aim of this section is to prove the following.

Theorem 6.1. H ′ has generators e, f , k and k−1, which satisfy the relations:

kk−1 = k−1k = 1

and

ek = −q−1ke, fk = −qkf, ef − fe = (q − q−1)(k2 − k−2).

The Hopf algebra structure on H ′ is given by the coproduct:

∆(e) = e⊗ k + k−1 ⊗ e, ∆(f) = f ⊗ k + k−1 ⊗ f, ∆(k±1) = k±1 ⊗ k±1,
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the counit:

ǫ(e) = ǫ(f) = 0, ǫ(k±1) = 1,

and the antipode:

S(e) = qe, S(f) = q−1f, S(k±1) = k∓1.

To save us some work, we use the following symmetry of H .

Definition 6.2. The Cartan involution of H is the linear map θ : H → H that
acts on a diagram by rotating it 180 degrees around the pole, and reversing the
direction of all arrows.

Thus θ permutes the generators of H as follows.

e ↔ f, e0 ↔ f0, k ↔ ℓ′, k′ ↔ ℓ.

Lemma 6.3. The Cartan involution is a bialgebra automorphism of H, preserves

the kernel of ρ⊗n for all n, and satisfies θ ◦ S = S−1 ◦ θ.

Proof. The bialgebra operations on H have diagrammatic descriptions that com-
mute with θ. We can also say ρ⊗n commutes with H , if we interpret θ as acting on
TL• in the obvious way. Finally, θ does not commute with S, but instead reverses
the direction of rotation of the pole in the definition of S. �

Lemma 6.4. For all n ≥ 0, we have:

ρ⊗n(e0) = ρ⊗n(f0) = 0, ρ⊗n(k) = ρ⊗n(ℓ), ρ⊗n(k′) = ρ⊗n(ℓ′).

Proof. The proof is by induction on n. The case n = 0 is easy. The case n = 1 is a
simple computation involving diagrams with a single crossing. For n > 1, use the
formulae for the coproduct taken from Lemma 5.2 and Lemma 6.3. �

To prove Theorem 6.1, let k−1 = k′ and combine Lemmas 5.2, 5.3, 6.3 and 6.4.

7. Connection to Uq(sl2)

In this section we make the connection between Uq(sl2) and H ′.
We use the definition of Uq(sl2) given in [5] and [7]. The most interesting relations

are:

EK = q−2KE, FK = q2KF, EF − FE = (K −K−1)/(q − q−1),

∆(E) = 1⊗ E + E ⊗K, ∆(F ) = K−1 ⊗ F + F ⊗ 1,

S(E) = −EK−1, S(F ) = −KF.

The other relations are the definition of ǫ and some obvious relations involving only
K±1.

Define φ : Uq(sl2) → H ′ by

φ(K±1) = k±2, φ(E) =
1

q − q−1
ek, φ(F ) =

1

q − q−1
k−1f.

Theorem 7.1. The above φ is a well-defined morphism of Hopf algebras. The

image of φ is the algebra of words of even length in the generators e, f and k±1.

The representation ρ ◦ φ of Uq(sl2) is isomorphic to V−1,1. The kernel of φ is the

intersection of the kernels of the representations V ⊗n
−1,1.
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Proof. To check that φ is well defined, simply check all of the defining relations of
Uq(sl2). To see that the image of φ is as claimed, note that it is easy to convert
any word of even length to a power of −q times a word in the image of φ.

We can compute ρ ◦ φ completely, or just enough to identify it by a process of
elimination. We know that ρ ◦ φ is a two-dimensional representation, so it is either
trivial, V1,1, or V−1,1. But

ρ ◦ φ(E) 6= 0,

so it is not trivial. Also,

ρ ◦ φ(KE) = (−q)ρ ◦ φ(E)

so K has an eigenvalue −q, and the representation must be V−1,1.
The statement about the kernel of φ follows immediately from the definition of

H ′. �

Corollary 7.2. If F = C and q is not a root of unity then Uq(sl2) is isomorphic to

the algebra of words of even length in the generators e, f and k±1 of H ′.

Proof. We must show that φ is injective. We use basic properties of representations
of Uq(sl2) when q is not a root of unity.

By [7, Theorem 7.13], the intersection of the kernels of the representations V1,n.

is trivial. But V1,n is a summand of V ⊗n
1,1 , so the intersection of the kernels of tensor

powers of V1,1 is trivial. There is an isomorphism from Uq(sl2) to U−q(sl2) that
switches V−1,1 and V1,1, so the intersection of the kernels of tensor powers of V−1,1

is also trivial. Thus the kernel of φ is trivial. �

Even if q is a root of unity, Theorem 4.1 shows that TL is a category of all tensor
powers of the representation V−1,1 of Uq(sl2), and some of the morphisms between
them. If q is not a root of unity then TL includes all such morphisms, but I do not
know a diagrammatic proof of this fact.
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