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Abstract A tangle is an oriented 1-submanifold of the cylinder whose endpoints lie on the
two disks in the boundary of the cylinder. Using an algebraic tool developed by Lescop, we
extend the Burau representation of braids to a functor from the category of oriented tangles
to the category of Z[t, t−1]-modules. For (1, 1)-tangles (i.e., tangles with one endpoint on
each disk), this invariant coincides with the Alexander polynomial of the link obtained by
taking the closure of the tangle. We use the notion of plat position of a tangle to give a
constructive proof of invariance in this case.
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1 Introduction

The Burau representation was the first non trivial representation of the braid groups. It was
defined by writing an explicit matrix in GLn(Z[t, t−1]) for every generator of Bn, and
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verifying that these matrices satisfy the braid relations. Later, it was reinterpreted with the
point of view of mapping class group and action on Burau modules, which are homology
modules of the punctured disk with twisted coefficients in Z[t, t−1], as a particular case of
the Magnus representation [4]. This representation was also the first endowed with a unitary
structure, and extensively studied for its (non)-faithfulness.

Several extensions of the Burau representation have been considered. The first
was due to Le Dimet [14] for string-links, and studied in more detail by Kirk and
Livingston [11]. An extension for the tangle category was defined by Cimasoni and
Turaev [8, 9]; it takes value in the Lagrangian category, which contains that of Z[t, t−1]
-modules.

An important aspect of braid group representations is their connection with polynomial
invariants of knots. One reconstructs the Alexander polynomial of a closed braid from the
Burau representation as det(id −ρ). The other works on the extension of the representation
to string links or tangles contain some relations with the Alexander polynomial, but no direct
formula.

In this paper, we use an algebraic tool introduced by Lescop for link complements to
construct an isotopy invariant for oriented tangles. This invariant is related to the Alexander
module of the tangle exterior in the cylinder. This approach is functorial: the invariant pro-
vides a functor from the category of oriented tangles to the category of Z[t, t−1]-modules
and homomorphisms up to multiplication by a unit and for (1, 1)-tangles, it coincides with
the Alexander polynomial of the closure of the tangle. Our construction is a particular case
of a more general construction developed in [10].

Section 2 is devoted to the construction of the invariant. In Section 3, we compute the
value of the invariant for the generators of the category. In Section 4, the invariant is com-
puted explicitly when the tangle is written as the plat closure of an oriented braid. This
illustrates the similarities with the approach of Lawrence [12] for the Jones polynomial and
with the model of Bigelow for a link presented as a plat closure. In the last section, we prove
the functoriality of the invariant.

It should be noted that the homology of symmetric spaces of the punctured disk (or
configuration spaces), with some twisted coefficients, coincides with the exterior algebra of
the Burau modules. The modules can also be endowed with a Hermitian structure coming
from the exterior power of the twisted intersection form. In particular, for (1, 1)-tangles,
the calculation could be interpreted as an intersection (with twisted coefficients) of a set of
curves in the 2-disk.

It is worth mentioning that the model of Bigelow for the Jones polynomial inspired
some construction of categorification. Our approach here should similarly give rise to a
categorification of the Alexander polynomial-presumably some form of Heegaard Floer
homology.

2 The Main Construction

2.1 The Alexander Functions of a Module

Let R = Z[t, t−1] be the Laurent polynomial ring. Let H be an R-module of finite type.
Consider a free resolution of H of the form

Rp A−→ Rp+k −→ H −→ 0. (1)
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In other words, (1) determines a k-deficiency presentation of H over R with (p + k) gen-
erators γ1, . . . , γp+k and p relators ρ1, . . . , ρp . Given such a presentation, it is possible to
define an R-linear map ∧kH −→ R as follows (see [13, Section 3.1]).

Let ρ̂ = ρ1 ∧ · · · ∧ ρp and γ̂ = γ1 ∧ · · · ∧ γp+k . The Alexander function of H relative
to k is the R-linear map ϕ = ϕ(H, k) : ∧kH → R defined by

u ∧ ρ̂ = ϕ(u) · γ̂ (2)

for each u ∈ ∧kH . For fixed k, different k-deficient presentations will give rise to Alexander
functions that differ only by multiplication by a unit in R.

Note that if û = u1 ∧ · · · ∧ uk and A ∈ Mp×(p+k)(R) is the matrix associated to the
presentation (1), then ϕ(û) coincides with the determinant of the matrix constructed adding
to A the k columns u1, . . . , uk expressed in terms of the generators γi .

Remark 2.1 From (1), by tensoring with Q(t), we obtain a presentation of deficiency k for
H ⊗ Q(t). So, if k < rankH = dimQ(t) H ⊗ Q(t), then ϕ is the zero map. Moreover, if H

is free of rank k, then ϕ coincides with the volume form

∧kH
∼=−→ R

induced by the choice of γ̂ as a basis of ∧kH , i.e., ϕ(γ1 ∧ · · · ∧ γk) = 1.

2.2 The Alexander Invariant of a Tangle

Let D be the closed unitary disk in C. Consider two copies of the disk D with fixed ordered
finite sequences of points p0, . . . , pk− (respectively p0, . . . , pk+ ) on the real line. Let ε−
and ε+ be sequences of signs ±1 of length k− + 1 and k+ + 1, respectively. An (ε−, ε+)-
tangle is an oriented 1-submanifold τ of D × I whose oriented boundary ∂τ is

k+∑

i = 0

ε+
i (pi, 1) −

k−∑

i = 0

ε−
i (pi, 0). (3)

Note that if such a tangle exists then
∑k+

i=1 ε+
i = ∑k−

i=1 ε−
i .

Let D− and D+ be the punctured disks (D × {0}) \ τ and (D × {1}) \ τ , respectively.
Any sequences of signs ε± determine epimorphisms χ± : π1(D±, ∗) → Z = 〈t〉 sending a
simple loop xi turning once around pi in the counterclockwise direction to tε

±
i . Let H± be

the R-module H
χ±
1 (D±; R), where the coefficients are twisted by χ±. Equivalently, H± is

the first homology of the infinite cyclic covering induced by χ±.

Remark 2.2 The disk D± deformation retracts to the wedge of circles x0 . . . xk± . So the R-
module H± is freely generated by u±

i = x̃i − x̃i+1, for i = 0, . . . , k± − 1, where x̃i is a lift
of xi . More precisely, u±

i will be a loop around both pi and pi+1 if these punctures have
opposite signs, or a figure eight around them if they have the same sign.

Let Bτ be the exterior of τ in D × I . For each connected component τj of τ , let mj be a
meridian around τj oriented so that its linking number with τj is one.

Since H1(Bτ ) = ⊕n
j=1Zmj (see [8, Section 3.3]), the composition of the Hurewicz

homomorphism with the homomorphism H1(Bτ ) → Z〈t〉 sending mi to t , gives an epimor-
phism χ : π1(Bτ ) → Z extending both χ+ and χ−. We set H = H

χ

1 (Bτ ; R) and denote by
i± the maps from H± to H , induced by the inclusion.
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Let δk = k+−k−
2 . Our aim is to construct linear maps ρτ,�, of degree δk, between the

R-modules ∧�H− and ∧�H+.
For any generator w+ of ∧k+H+ � Rw+, and r with 0 ≤ r ≤ k+, consider the

isomorphism

dr : ∧rH+ −→ Hom(∧k+−rH+;R),

defined by the formula x ∧ y = (
dr(x)(y)

)
w+, for any x ∈ ∧rH+ and y ∈ ∧k+−rH+.

Let k = k−+k+
2 . We will show in Section 4 that there exists a free deficiency k resolution

for H (see Lemma 1). For any i with 0 ≤ i ≤ k, the choice of generators ρ̂ for ∧pRp and
γ̂ for ∧k+pRk+p similarly induces isomorphisms

ϕi : ∧iH −→ Hom(∧k−iH ; R),

defined by the formula x ∧ y ∧ ρ̂ = (
ϕi(x)(y)

)
γ̂ in ∧k+pRk+p for any x ∈ ∧iH and

y ∈ ∧k−iH (see Section 2.1).

Definition 1 For all i ∈ {0, . . . , k}, let the homomorphism ρτ,i : ∧iH− → ∧i+δkH+ be
defined by the following composition

∧iH−
∧i i−−→ ∧iH

ϕi−→ Hom(∧k−iH ; R)
(∧k−i i+)∗−→ Hom(∧k−iH+; R)

d−1
i+δk−→ ∧i+δkH+.

The map ρτ = ⊕iρτ,i is an isotopy invariant of τ , defined up to a global multiplication by
a unit of R. We call it the Alexander invariant of τ .

The special case of (1, 1)-tangles, corresponding to k− = k+ = 0, illustrates the relation
with the Alexander polynomial.

Theorem 1 Let τ be a (1, 1)-tangle and let τ̂ be the link obtained by closing up together the
two free strands of τ . Then ρτ is equal to m�(τ̂) where �(τ̂ ) is the Alexander polynomial of
τ̂ and mu : ∧kH− → ∧kH+ denotes the multiplication by u.

Proof Since k− = k+ = 0, it follows that H± = {0} and ∧0{0} = R. Hence ρτ is a homo-
morphism R → R that is the multiplication by the determinant of a square presentation
matrix of H . By definition, this determinant is the Alexander polynomial of τ̂ .

3 The Tangle Category

Let T denote the oriented tangle category, that is, the category whose objects are sequences
ε = (ε0, . . . , εn) of signs ± attached to the punctures of a punctured disk, and whose
morphisms are oriented tangles.

Let M be the category whose objects are R-modules and whose morphisms are classes
of homomorphisms modulo the equivalence relations defined by f ∼ g if there exists
a unit u ∈ R such that f = mu ◦ g where mu denotes the multiplication by u. There
is a functor from T to M taking ε− τ−→ ε+ to the class of modules homomorphisms

H−(Dε−)
ρτ−→ H+(Dε+). We postpone the proof of this statement to the last section, and,

in the following, we compute ρτ on the generators of the tangle category.
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3.1 Braids

Let us start with an oriented identity braid τ with k + 1 strands. Thus H is free of rank k,
and ϕ : ∧kH → R is an isomorphism and coincides with the volume form induced by the
choice of a basis. Moreover, i− and i+ are isomorphisms, and the choice of det+ induces a
canonical choice of ϕ, such that the following diagram commutes

Let u− be in ∧iH−. From the diagram, for all w+ ∈ ∧k−iH+, we get

det+(i−1+ (i−(u−) ∧ i+(w+)) = ϕ(i−(u−) ∧ i+(w+)).

By definition,

ϕ(i−(u−) ∧ i+(w+)) = det+(ρτ (u−) ∧ w+).

Since det+ is non singular, we get

ρτ (u−) = i−1+
(
i−(u−)

)
.

Now consider the general case of an oriented braid σ in Bk+1, i.e., σ is the isotopy
class of a homeomorphism of the (k + 1)-punctured disk (that we still denote by σ ). The
geometric realisation of σ as a braid with (k + 1)-strings in D × I can be viewed as the
mapping cylinder of σ . Let {u±

1 , . . . , u±
k±} be the basis of H± described in Remark 2.2.

Since i− : H− → H is still an isomorphism, we can choose {i−(u−
1 ), . . . , i−(u−

k−)} as a free
basis for H . With respect to these bases, the matrix associated to i+ is b(σ )−1, where b(σ )

is the image of σ by the oriented Burau representation. It follows that, with respect to these
bases the matrix associated to (ρτ )i : ∧iH → ∧iH+ is det(b(σ ))(∧i (b(σ )−1)). Moreover,
the matrices of the oriented Burau representation of the Artin generators σ1, . . . , σk−1 of
Bk+1 in the bases u±

1 , . . . , u±
k± are

Mb(σ1) =
( −tε2 1

0 1

)
⊕ Idk−3, Mb(σk−1) = Idk−3 ⊕

(
1 0
tεk −tεk

)

Mb(σi ) = Idi−2 ⊕
⎛

⎝
1 0 0

tεi+1 −tεi+1 1
0 0 1

⎞

⎠ ⊕ Idk−i−2.

3.2 A Cup

Let cup be the tangle in Fig. 1. We have k− = k+ − 2, k = k+ − 1, δk = 1 and H free.
Note that i− is a monomorphism and we can choose the bases of H− and H , such that the
matrix for i− is Ik− ⊕ 0. On the other hand, i+ is an epimorphism and the kernel of i+
has rank one. Using Mayer-Vietoris arguments on a small disk around the points pk+1 and
pk+2 in D+, we can identify the basis of H with a sub-basis of H+ so that i+ is simply a
projection.

Let α ∈ H+ be a generator of the kernel of i+. Consider the contraction along α, that is

iα : Hom(∧kH+, R) → Hom(∧k+−1H+, R)
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Fig. 1 A cup

such that iα(det+)(v+) = det+(v+ ∧ α) for any v+ ∈ ∧k+−1H+. In other words, the
following diagram commutes

Since α ∈ ker i+, one has the following

Let u− be in ∧iH− for i = 1, . . . , k. By definition, for all w+ ∈ ∧k−iH+,

det+(ρτ (u−) ∧ w+) = ϕ(i−(u−) ∧ i+(w+)).

By the previous diagrams,

ϕ(i−(u−) ∧ i+(w+)) = det+(i−1+ i−(u−) ∧ w+ ∧ α),

where by i−1+ i−(u−) we mean any preimage of i−(u−), since two of them differ by addition
of a multiple of α. From above, since det+ is non-singular, we get

ρτ (u−) = (−1)k−i i−1+ i−(u−) ∧ α.

3.3 A Cap

Let cap be the tangle in Fig. 2. We have k− = k+ + 2, k = k+ + 1, δk = −1 and H

free. Here, i+ is a monomorphism. We write H = i+(H+) ⊕ β. Similarly to the previous
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Fig. 2 A cap

section, we can define iβ the contraction along β and we have the following commutative
diagrams

Let u− be in ∧iH−. For all w+ ∈ ∧k+−i+1H+, one has, using the definition and the
commutativity of the diagrams

ϕ(i−(u−) ∧ i+(w+)) = det+(ρτ (u−) ∧ w+)

= iβ(ϕ)
(
i+(ρτ (u−)) ∧ i+(w+)

)

= ϕ
(
i+(ρτ (u−)) ∧ i+(w+) ∧ β

)
.

So we get

i−(u−) = (−1)k+−i+1i+(ρτ (u−)) ∧ β.

It follows that ρτ (u−) is zero unless u− is of the form u′− ∧ i−1− (β), in which case
ρτ (u−) = (−1)k+−i+1i−1+ i−(u′−). Here, i−1− (β) and i−1+ i−(u′−) denote arbitrary elements
of the preimage.

4 Plat Position

A system of n disjoint arcs A1, . . . , An properly embedded in D × I is called trivial if
they are not linked and are boundary parallel; more precisely, if there exist n disjoint disks
D1, . . . , Dn such that Ai ∩ Di = Ai ⊂ ∂Di , ∂Di \ Ai ⊂ ∂(D × I ), and Aj ∩ Di = ∅, for
each i, j = 1, . . . , n with i �= j . A trivial tangle of type (k, n) is a tangle whose component
are k vertical strands connecting D+ with D− and a system of n trivial arcs such that if there
exists an arc of τ connecting two points in D+, then no arc of τ connects two points in D−.

AHeegaard surface for a tangle τ ⊂ D×I is a disk that intersects the tangle transversally
and cuts τ into two trivial tangles.

To see the existence of a Heegaard surface for a given tangle, start with a real valued
function f on D × I that is of Morse type on the tangle: typically, we can imagine f as the
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height function on D × I . By perturbing the function, we can assume that minima occur
before maxima; so if y = 1/2 is a regular value separating the minima from the maxima,
then f −1(1/2) is the required Heegaard disk.

If we choose a standard model τ(k, n) for a trivial tangle of type (k, n), the existence
of a Heegaard surface for each tangle can be rephrased in the following way: each tangle
(D × I, τ ) can be obtained as

(D × [0, 1/2], τ (k−, n−)) ∪σ (D × [1/2, 1], τ (k+, n+)),

where σ is an automorphism of the k− + 2n− = k+ + 2n+ punctured disk D × {1/2} ∩ τ .
Since everything can be done up to isotopy, we can think of σ as an element of the braid
group Bk−+2n− . We call such a decomposition of a given tangle a Heegaard splitting of the
tangle.

Lemma 1 Let τ be a (ε−, ε+)-tangle where the length of ε± equals k± + 1. Then any
Heegaard splitting of τ induces a presentation of H with deficiency k = k−+k+

2 .

Proof Let

(D × I, τ ) = (D × [0, 1/2], τ (k−, n−)) ∪σ (D × [1/2, 1], τ (k+, n+))

be a Heegaard splitting for τ , with σ ∈ Bk−+2n− . Set

X1 =
(

D ×
[
0,

1

2

])
\ τ(k−, n−),

X2 =
(

D ×
[
1

2
, 1

])
\ τ(k+, n+),

and

S =
(

D ×
{
1

2

})
\ τ(k−, n−) = D \ {p0, . . . , pk−+2n−}.

Thus, Bτ = (D × I ) \ τ = X1 ∪σ X2. By applying the Mayer-Vietoris exact sequence to
this decomposition, we obtain the exact sequence of reduced homology groups

. . . −→ H1(S)
iS−⊕iS+−→ H1(X1) ⊕ H1(X2) −→ H1(Bτ ) −→ 0, (4)

where iS− is induced by the inclusion S ↪→ X1 while iS+ is induced by S
σ−→ σ(S) ↪→ X2.

Let χ : π1(Bτ ) → Z be the epimorphism defining H = H
χ

1 (Bτ ; R). This exact sequence
lifts to the following exact sequence of homology with coefficients in R

. . . −→ H
χ

1 (S)
ιS−⊕ιS+−→ H

χ

1 (X1) ⊕ H
χ

1 (X2) −→ H −→ 0. (5)

This is a presentation of H as an R-module, since H
χ

1 (S), Hχ

1 (X1), and H
χ

1 (X2) are free
R-modules.

Since X1, X2, and S have the homotopy type of a wedge of circles, the homology mod-
ules have, respectively, ranks k− +n−, k+ +n+, and k−+2n−. It follows that the deficiency
of the presentation is k.

By construction, ρτ is well-defined up multiplication by units of R. This implies that
changing the Heegaard splitting of τ will change ρτ up to multiplication by units of R. Nev-
ertheless, we give a brief constructive proof of this fact, since it illustrates the similarities
with the approach of Bigelow for the Jones polynomial [3]. In order to do this, we need to
introduce some new definitions.
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Given an oriented braid σ ∈ Br , and integers k+, k− ≤ r of the same parity as r , the
(k+, k−)-plat closure of σ is the tangle obtained from σ as follows (Fig. 3). Place caps to
connect adjacent pairs of endpoints at the top right, so as to leave only the k+ endpoints at
the top left. Similarly, place cups to connect adjacent pairs of endpoints at the bottom right,
so as to leave only the k− endpoints at the bottom left (see Fig. 4). Let σ̂ (k+, k−) denote the
(k+, k−)-plat closure of σ . Clearly

(D × I, σ̂ (k+, k−)) = (D × [0, 1/2], τ (k−, n−) ∪σ (D × [1/2, 1], τ (k+, n+)).

In order to relate two braids having the same (k+, k−)-plat closure, we define particu-
lar subgroups of the braid groups: let Hilk+2n be the subgroup of Bk+2n generated by the
following braids

• σk+1
• σk+2σ

2
k+1σk+2

• σk+2iσk+2i−1σk+2i+1σk+2i for i = 1, . . . n − 1,

where σ1, . . . σk+2n−1 are the standard generators of Bk+2n. When k = 0 the above
subgroups are well known and are called Hilden braid groups on 2n strings (see [2]).

We have the following theorem that extends to our setting a result of Birman for classical
plat closure of braids (see [5]) .

Theorem 2 Two oriented braids have isotopic (k+, k−)-plat closures if and only if they are
related by a finite sequence the following moves:

• σ → σk, where σ ∈ Bk−+2n and k ∈ Hilk−+2n
• σ → hσ , where σ ∈ Bk++2n and h ∈ Hilk++2n
• σ ↔ σσs , where σ ∈ Bs and σsσ ∈ Bs+2.

Proof The proofs of [5, Theorems 1 and 1′] extend to our case.

Now, we are ready to state our result.

Theorem 3 Let H and H′ be two Heegaard splittings of the same (ε−, ε+) tangle τ .
Specifically, supposeH andH′ are, respectively,

(D × I, τ ) = (D × [0, 1/2], τ (k−, n−)) ∪σ (D × [1/2, 1], τ (k+, n+)),

(D × I, τ ) = (D × [0, 1/2], τ (k−,m−)) ∪ς (D × [1/2, 1], τ (k+,m+)).

Fig. 3 The (k+, k−)-plat closure of σ
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Moreover, let ρτ and ρ′
τ be the module homomorphisms computed as defined in Section 2

using the presentations of H associated to the two Heegaard splittings (see Lemma 1). Then
ρ′

τ = mu ◦ ρτ , where mu denotes the multiplication by a unit of R.

Proof We keep the notations of the proof of Lemma 1.
Let γ −

1 , . . . , γ −
k− , β−

1 , α−
1 , . . . , β−

n− , α−
n− be the basis for H

χ

1 (S) as described in Remark
2.2. Thus, each of these is either a loop or figure eight around two adjacent punctures in S.
The γ −

i involve two punctures connected to strands that connect to the bottom of the tangle.
The α−

i are loops around the two endpoints of a cup, and become zero in the homology of
the tangle complement since they could slide off the cup. The β−

i involve punctures from
adjacent cups, or in the case of β−

1 , a cup and a strand. See Fig. 4, but there we assumed the
punctures alternate in sign so as to avoid having to draw any figure eight.

Now γ −
1 , . . . , γ −

k− , β−
1 , . . . , β−

n− is a basis for the free R-module H
χ

1 (X1), and ιS− is a

projection with kernel generated by the α−
i . Moreover, γ −

1 , . . . , γ −
k− is a basis for the free

R-module H− = H
χ−
1 (D−;R).

Let γ +
1 , . . . , γ +

k+ , β+
1 , . . . , β+

n+ , α+
1 , . . . , α+

n+ be the lifts of the loops of Fig. 5. Then

γ +
1 , . . . , γ +

k+ , β+
1 , . . . , β+

n+ is a basis for the free R-module H
χ

1 (X2). Note that k− +2n− =
k+ + 2n+.

Let (f1, . . . , fk+) be an ordered basis of H+ as a free R-module and let

det+ : ∧k+H+ → R

be the corresponding determinant. For each sequence I :

1 ≤ i1 < · · · < in ≤ k+ − 1

we set f̂I = fi1 ∧· · ·∧fin . Moreover, we denote by I the sequence complementary to I with
respect to 1 < 2 < · · · < k+. If u− ∈ ∧iH−, then ρτ (u−) = ∑

I aI f̂I ∈ ∧i+δkH+, where

aI = det−1+
(
ϕ(H, k)(i−(u−) ∧ i+(f̂I ))

)

and ϕ(H, k) is the Alexander function associated to the presentation of H induced byH as
in the proof of Lemma 1.

Fig. 4 Curves on S, and the bottom half of the tangle
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Fig. 5 Curves on S, and the top half of the tangle

Let b(σ ) denote the Burau matrix of σ , using the above bases. The presentation matrix
of H with respect to the basis (γ −

i , β−
j , α−

j ) of H
χ

1 (S) and (γ −
i , β−

j , γ +
h , β+

l ) of H
χ

1 (X1)⊕
H

χ

1 (X2) is

⎛

⎜⎜⎝

Ik− 0 0
0 In− 0

b(σ )(γ −)|γ + b(σ )(β−)|γ + b(σ )(α−)|γ +
b(σ )(γ −)|β+ b(σ )(β−)|β+ b(σ )(α−)|β+

⎞

⎟⎟⎠ ,

where the terms of the matrix are blocks.
As a basis of H− (respectively H+), we can choose the lifts of the loops (γ −

1 , . . . , γ −
k+)

(respectively (γ +
1 , . . . , γ +

k+)) depicted in Figs. 4 and 5, so we just have to check how the

matrix used to compute ϕ(H, k)(i−(γ̂ −
I )∧ i+(γ̂ +

J )) changes under the moves of Theorem 2.
Following the definition of Alexander function and the computation of Lemma 1, we have
that ϕ(H, k)(i−(γ̂ −

I ) ∧ i+(γ̂ +
J )) is the determinant of the following matrix

M =

⎛

⎜⎜⎝

Ik− 0 0 E−
I 0

0 In− 0 0 0
b(σ )(γ −)|γ + b(σ )(β−)|γ + b(σ )(α−)|γ + 0 E+

J

b(σ )(γ −)|β+ b(σ )(β−)|β+ b(σ )(α−)|β+ 0 0

⎞

⎟⎟⎠ ,

where

(E−
I )hk =

{
1 if k = ih
0 otherwise

and (E+
J )hk =

{
1 if k = jh

0 otherwise.

So we want to check how the determinant of the matrix M changes under the moves of
Theorem 2.

The last move changes the braid index by two. Let N = k− + 2n− and suppose
that σ ∈ BN . Then ς = σσN ∈ BN+2. Moreover, by the functoriality of the Burau
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representation, b(σσN) = b(σ )b(σN). An explicit computation gives the presentation
matrix of H , relatively to the Heegaard decompositionH′:

P ′ =

⎛

⎜⎜⎜⎜⎜⎜⎝

Ik− 0 0 0 0
0 In− 0 0 0
0 0 1 0 0

b(σ )(γ −)|γ + b(σ )(β−)|γ + 0 b(σ )(α−)|γ +
b(σ )(γ −)|β+ b(σ )(β−)|β+ 0 b(σ )(α−)|β+ 0

0 0 −tε+1 0 . . . 0 tε+1 1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

with respect to the bases

(γ −
i , β−

j , β−
n−+1, α

−
j , αn−+1),

(γ −
i , β−

j , β−
n−+1, γ

+
h , β+

l , β+
n++1).

It is straightforward to check that the Alexander function associated to this presentation
matrix is ± detM .

The first two moves of Theorem 2 do not change the braid index of σ and so the size of
M . So it is enough to check how the matrixM changes by composing σ (on the left or on the
right) with a generator of Hilk+2n. We leave the detail of the computations to the reader.

5 Functoriality

In this section, we prove that the Alexander invariant defined in Section 2 and computed on
cups, caps and braids in Section 3, is a functorial invariant of the tangle category.

Lemma 2 Let τ be a tangle in plat position. The Alexander invariant of τ from Section 4 is
the same as the Alexander invariant computed as a product of cups, a braid and caps from
Section 3.

Proof Fix a tangle τ , which consists of a collection of cups at the bottom, a collection of
caps at the top, and a braid σ in the middle.

Let γ −
i be the generators of the homology of the bottom disk of τ , as shown in Fig. 4.

Fix γ −
I , a wedge product of a sequence of these basis vectors.

Let γ +
j be the generators of the homology of the top disk of τ , as shown in Fig. 5. Fix

γ −
J
, a wedge product of a sequence of these basis vectors, where J is the complement of J .

We will compute the coefficient of γ −
J

in ρ(τ)(γ −
I ).

Let α−
i be the loops around the cups, as shown in Fig. 4. Let α− be the wedge product of

all of these elements in order. If we apply just the cups from τ to γ −
I , we obtain γ −

I ∧ α−.
Now apply the braid σ , to obtain b(σ )((γ −

I ) ∧ (α−)).
Let β+

i be the loops that go between adjacent caps of τ , as shown in Fig. 5. Let β+ be
the wedge product of all of these elements in order. The coefficient of γ −

J
in ρ(τ)(γ −

I ) is

the coefficient of γ −
J

∧ β+ in b(σ )(γ −
I ) ∧ b(σ )(α−).

Now, we recompute this same coefficient. Using notation from Section 4, the coefficient
of γ −

J
in ρ(τ)(γ −

I ) is the determinant of

(
E+

J
E+

J

)
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times the determinant of
⎛

⎜⎜⎝

Ik− 0 0 E−
I 0

0 In− 0 0 0
b(σ )(γ −)|γ + b(σ )(β−)|γ + b(σ )(α−)|γ + 0 E+

J

b(σ )(γ −)|β+ b(σ )(β−)|β+ b(σ )(α−)|β+ 0 0

⎞

⎟⎟⎠ .

The first of these determinants is ±1, which we will deal with later. The second matrix
will be simplified using column operations that do not change the determinant. Specifically,
use the left column of blocks to cancel out the E−

I in the fourth column of blocks. This gives
the following

⎛

⎜⎜⎝

Ik− 0 0 0 0
0 In− 0 0 0

b(σ )(γ −)|γ + b(σ )(β−)|γ + b(σ )(α−)|γ + −b(σ )(γ −
I )|γ + E+

J

b(σ )(γ −)|β+ b(σ )(β−)|β+ b(σ )(α−)|β+ −b(σ )(γ −
I )|β+ 0

⎞

⎟⎟⎠ .

This has the same determinant as the smaller matrix from its bottom right
(

b(σ )(α−)|γ + −b(σ )(γ −
I )|γ + E+

J

b(σ )(α−)|β+ −b(σ )(γ −
I )|β+ 0

)
.

Up to sign, this is the same as the determinant of
(

b(σ )(γ −
I )|γ + E+

J b(σ )(α−)|γ +
b(σ )(γ −

I )|β+ 0 b(σ )(α−)|β+

)
.

Here, we switched two block columns and changed the sign of one. This may change the
sign of the determinant, depending on the parity of the number of basis vectors in γ −

I . We
can ignore this, since we are free to consistently change the sign of every entry of the matrix
ρ(τ).

Finally, observe that the left and right columns of the above matrix represent the terms of
b(σ )(γ −

I )∧b(σ )(α−) that are wedge products of vectors from γ + and β+. The determinant
picks out the terms that involve precisely the vectors γ +

J
and β+. Such terms are, up to sign,

γ +
J

∧ β+. The sign correction is the determinant of

(
E+

J
E+

J 0
0 0 I

)
.

We conclude that this direct calculation using the methods of Section 4 gave the same
answer as composing the operations of cup, braid, and cap.

Theorem 4 The Alexander invariant as computed in Section 3 on cups, braid, and caps
determines a functorial invariant of the tangle category.

Proof A presentation of the tangle category by generators and relations can be found in
[15]. Other presentations appear in the literature, sometimes with minor differences. Cer-
tainly, cups, caps, and generators of the braid groups are enough to generate the tangle
category. By the previous lemma, we have every relation that equates different plat presen-
tations for the same tangle. These, together with some simple commutativity relations, are
enough to give defining relations for the tangle category.



352 S. Bigelow et al.

References

1. Alexander, J.W.: Topological invariants of knots and links. Trans. Am. Math. Soc. 30(2), 275–306 (1928)
2. Bellingeri, P., Cattabriga, A.: Hilden braid groups preprint. arXiv:0909.4845 (2009)
3. Bigelow, S.: A homological definition of the Jones polynomial. Geom. Topol, Monogr. 4 Geom. Topol.

Publ., Coventry (2002)
4. Birman, J.S.: Braids, links, and mapping class groups. Princeton University Press, Princeton, N.J. (1974).

Annals of Mathematics Studies, No. 82
5. Birman, J.S.: On the stable equivalence of plat representations of knots and links. Can. J. Math. 28(2),

264–290 (1976)
6. Burau, W.: Uber Zopfgruppen und gleischsinning verdrillte Verkettungen. Abh. Math. Sem. Ham. II,

171–178 (1936)
7. Birman, J.S.: On the stable equivalence of plat representations of knots and links. Canad. J. Math. 28,

264–290 (1976)
8. Cimasoni, D., Turaev, V.: A Lagrangian representation of tangles. Topology 44(4), 747–767 (2005)
9. Cimasoni, D., Turaev, V.: A Lagrangian representation of tangles. II. Fund. Math. 190, 11–27 (2006)

10. Florens, V., Massuyeau, G.: A functorial extension of the abelian Reidemeister torsion of three-
manifolds. To appear in l’Enseignement mathématiques.
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