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ABSTRACT

The Jones–Wenzl idempotents are elements of the Temperley–Lieb (TL) planar alge-
bra that are important, but complicated to write down. We will present a new planar
algebra, the pop-switch planar algebra (PSPA), which contains the TL planar algebra. It
is motivated by Jones’ idea of the graph planar algebra (GPA) of type An. In the tensor
category of idempotents of the PSPA, the nth Jones–Wenzl idempotent is isomorphic to
a direct sum of n + 1 diagrams consisting of only vertical strands.
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1. Introduction

The Temperley–Lieb (TL) algebras were first introduced by Temperley and Lieb
[7] in their work on transfer matrices in statistical mechanics. Vaughn F. R. Jones
independently rediscovered TL algebras in his work on von Neumann algebras [4].
He assembled these algebras together to form the TL planar algebra, the simplest
example of a subfactor planar algebra.

The Jones–Wenzl idempotents, first introduced in [11], are elements of the TL
algebras. One way they arise naturally is in representation theory. The TL algebras
encode the category of representations of Uq(sl2), and the Jones–Wenzl idempotents
represent the irreducible representations. Chapters in books have been devoted to
them [6]. They have been categorified by [1] and [3], and generalized [10].

While important, the Jones–Wenzl idempotents are difficult to write down
explicitly. The nth Jones–Wenzl idempotent is a linear combination of every
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diagram with n non-intersecting strands. The number of these diagrams is the nth
Catalan number. To find the coefficient of a given diagram requires a complicated
algorithm originally given by Frankel and Khovanov [2] and later written down by
Morrison [8].

In this paper, we define the PSPA, a new planar algebra that contains the
TL planar algebra. Our original motivation was a diagrammatic treatment of the
graph planar algebra (GPA) introduced by Jones [5]. The PSPA captures with
simple diagrams the complicated calculations involved in working with objects in
the GPA.

The main theorem of this paper shows that each Jones–Wenzl idempotent is
isomorphic to a direct sum of diagrams with only vertical strands. It is to be hoped
that this makes them easier to work with, and gives a new approach to some open
problems.

2. Background

For convenience, we work over the field C and let q be a nonzero complex number
that is not a root of unity. Many of the results hold over other fields, but if q is a
root of unity the proofs fail due to division by zero.

Definition 2.1. The nth quantum number is defined as

[n] = [n]q =
qn − q−n

q − q−1

and the quantum binomial is defined as[
n

k

]
=

[n][n − 1] · · · [n − k + 1]
[k][k − 1] · · · [1]

,

where 0 ≤ k ≤ n are natural numbers.

We have the following identities.

Lemma 2.2. [k + l] = [k][l + 1] − [k − 1][l].

Proof. This follows from the definition and a simple computation.

Corollary 2.3.
[
k+l

l

]
= [l + 1]

[
k+l−1

l

]
− [k − 1]

[
k+l−1

l−1

]
.

Proof. After taking a common denominator and cancelling common terms, this
reduces to the previous lemma.

2.1. Planar algebras

We won’t define planar algebras in great detail. See Jones’ original paper [4] for a
formal definition. See [9] for a helpful introduction.
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We will use what are sometimes called vanilla planar algebras. These lack any
of the optional extra features or properties that are often included in the definition.

A planar tangle T consists of:

• a disk D called the output disk,
• a finite set of disjoint disks Di called the input disks in the interior of D,
• a point called a basepoint of ∂D and of each ∂Di, and
• a collection of disjoint curves called strands in D.

The strands can be closed curves, or can have endpoints on ∂D or ∂Di or both.
Apart from the endpoints, the strands lie in the interior of D and do not intersect
Di. The basepoints do not coincide with endpoints of strands. Planar tangles are
considered up to isotopy in the plane.

It is sometimes possible to insert a planar tangle T1 into one of the input disks of
another planar tangle T2 to obtain a new planar tangle. Specifically, this is possible
if the number of endpoints on the output disk of T1 is the same as the number
of endpoints on the chosen input disk of T2. Then we can use an isotopy to make
the endpoints match up. This still leaves an ambiguity of how to rotate T1. The
basepoints remove this ambiguity: we require the basepoint of the output disk of
T1 to coincide with the basepoint of the chosen input disk of T2.

The planar tangles, together with this operation of inserting one planar tangle
into an input disk of another, form a rather general type of algebraic gadget called
an operad. Briefly, a planar algebra is a representation of the operad of planar
tangles.

More concretely, a planar algebra P is a sequence of vector spaces Pi for i ≥ 0.
Suppose T is a planar tangle with input disks D1, . . . , Dn. Let di be the number of
endpoints on ∂Di and let d be the number of endpoints on ∂D. Suppose vi ∈ Pdi

for all i. Then there is an action of T

T (v1, . . . , vn) ∈ Pd.

The action of planar tangles must be multilinear, and it must be compatible with
the operad structure in a natural sense.

The definition of a planar algebra may seem complicated. However it formalizes
a fairly simple idea, familiar to knot theorists, of tangle-like diagrams that can be
glued together in arbitrary planar ways. Perhaps the main novelty is that we allow
formal linear combinations of diagrams, which glue together in a multilinear way.

An example might help.

2.2. The Temperley–Lieb planar algebra

The simplest planar algebra is the Temperley–Leib planar algebra TL. The vector
space TLi is spanned by tangle diagrams that have no input disks and i endpoints
on the output disk.
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There is one relation. A closed loop in a diagram may be deleted at the expense
of multiplying by the scalar q + q−1. We call this the bubble-bursting relation.

If i is odd then Ti is zero. A basis for T2n is given by tangle diagrams that have
n strands and no closed loops.

In practice, most planar algebras can be thought of as formal linear combinations
of diagrams that are similar to TL diagrams, but with optional extra features, like
crossings, orientations, colors, or vertices.

2.3. The category corresponding to a planar algebra

Suppose P is a planar algebra. We now describe how P can be thought of as a
category. In this context, the input and output disks in the definition of P should
be thought of as rectangles instead of round disks.

The category C corresponding to P is as follows:

• The objects are the non-negative integers.
• The morphisms from i to j are the elements of Pi+j , thought of as having i

endpoints on the bottom of the rectangle and j on the top.
• The composition f ◦ g is given by stacking f on top of g.

Let Pj
i denote Pi+j with the elements treated as morphisms from i to j.

An idempotent is an element p of Pn
n such that p2 = p.

We can expand the objects in the category by a construction known as the
Karoubi envelope. This new category C′ is defined as follows:

• The objects of C′ are the idempotents of C.
• The morphisms from p to q are morphisms in C of the form qxp.

Next, note that C and C′ are also tensor categories, where x⊗ y is obtained by
placing x to the left of y.

Finally, we can define a matrix category of C′. The objects are formal direct
sums of objects of C′ and the morphisms are formal matrices. Instead of this
abstract definition, all we need is the following lemma.

Lemma 2.4. Suppose p and q1, . . . , qn are idempotents such that

p = q1 + · · · + qn,

and qiqj = 0 whenever i �= j. Then

p � q1 ⊕ · · · ⊕ qn.

2.4. Jones–Wenzl idempotents

The Jones–Wenzl idempotent pn is the unique element of TLn
n such that

• pn �= 0
• p2

n = pn
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• apn = 0 if a is any diagram that includes a strand with both endpoints at the
bottom of the rectangle.

• pnb = 0 if b is any diagram that includes a strand with both endpoints at the top
of the rectangle.

Because of these last two properties, the Jones–Wenzl idempotents are some-
times referred to as “uncappable.” If q is a root of unity, the Jones–Wenzl idempo-
tents do not exist for all n.

A smaller Jones–Wenzl idempotent may be subsumed into a larger one as fol-
lows:

(pn ⊗ idk)pn+k = pn+k

where idn is n nonoriented parallel strands, the multiplicative identity in LT n
n.

3. The Pop-Switch Planar Algebra

3.1. The pop-switch planar algebra

Definition 3.1. Let the pop-switch planar algebra PSPA be the planar algebra
generated by oriented strands modulo the following relations.

• The pop-switch relations

= , .=

• The bubble-bursting relation

+ = (q + q−1)ε,

where ε denotes the empty diagram.

This contains the TL planar algebra; a non-oriented strand is the sum of each
orientation.

We need some tools to move the diagrams around.
Denote n parallel strands oriented in the same direction by a single oriented

strand labelled n.

n = ...

n

.

If n is a negative integer, ↑n = ↓−n
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Let ιn denote n vertical strands oriented up. Let βn denote n parallel strands
that form a bubble oriented counterclockwise. Let αn denote a β−n inside a βn.

ιn = n βn = n αn =
n

n .

Lemma 3.2. Suppose x ∈ PSPA0 and y is a sequence of 2n vertical strands such
that n are oriented up and n are oriented down. Then x ⊗ y = y ⊗ x.

Proof. Use the pop-switch relation repeatedly to create a gap and pass x through.
Then use the pop-switch relation repeatedly to restore the original 2n vertical
strands.

Lemma 3.3 (The multi-pop-switch relations). The pop-switch relations hold
for multiple strands.

n .
n

n

=
n

n

, n

n

n
=

n

n

Proof. Without loss of generality, consider the first equality. Induct on n. The case
n = 1 is the pop-switch relations. For the case n = k + 1, move the innermost β−k

across two strands using the previous lemma. Then use the case n = k, and finally
the case n = 1.

Corollary 3.4. ιk ⊗ αn = ιk and ι−k ⊗ α−n = ι−k for k ≥ n ≥ 0.

Proof. Consider ιk ⊗αn. Use the multi-pop-switch relation by popping the inner-
most βn of the αn. Then straighten out the ιn. The other case is similar.

Corollary 3.5.
n

and= αn ⊗ βn−1
n

= α−n ⊗ β−n+1.

Proof. Start with the left side of the first equality. Use a multi-pop-switch relation
on the n − 1 strands, as shown below:

.=

n − 1
n − 1 =

n − 1
n − 1n−1

By Lemma 3.2 we can move the β−n+1 into the α1 to achieve the result.

=
n

.n n − 1 = αn ⊗ βn−1
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The second identity is proved similarly.

Lemma 3.6. ιn = β−n ⊗ ιn ⊗ βn.

Proof. This follows from the multi-pop switch relations.

ιn = n =
n

= n
nn = β−n ⊗ ιn ⊗ βn .

Now we give some relations involving the Jones–Wenzl idempotents pn. First,
we need some notation for them. We will use a rectangle to represent pn. It should
always be assumed that pn ∈ Pn

n even if the strands are not drawn.

Notation 3.7.

p .n =
. . .

. . .

pn =
n

n

=
n

=
n

We can make use of the fact that they are uncappable.

Lemma 3.8.
n

= (−1)n+1

n
n

.

This relation remains true if all arrows are reversed.

Proof. For the case n = 0, use the fact that an unoriented cap gives zero. For the
case n = 1, use the case n = 0 and the pop-switch relation.

For the general case, use induction on n. Start by using the case n = k as
follows:

k+1
=

k

= (−1)k+1

k

k .

Next use the case n = 1, followed by Lemma 3.2, to achieve the result.

= (−1)k+2

k

k = (−1)k+2

k

k

= (−1)k+2

k+1

k .+1

4. Proof of the Main Theorem

The aim of this section is to prove the following.

Theorem 4.1. The nth Jones–Wenzl idempotent is isomorphic to a direct sum of
n + 1 diagrams:
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pn �
n⊕

i=0

ι−i ⊗ ιn ⊗ ι−i

=
n

.⊕ n ⊕ · · · ⊕
n

n

n

Proof. Since pn is an idempotent, pn = p2
n = pnidnpn, where idn is n nonoriented

parallel strands. Now write idn as a sum of 2n different ways of orienting n vertical
strands. Break this sum into n+1 sums depending on how many strands are oriented
up.

Definition 4.2. Let pk
n−k denote the sum of

(
n
k

)
diagrams obtained from pnidnpn

by orienting k strands up and n − k strands down in the idn.

Then pn = p0
n + p1

n−1 + · · · + pn
0 . If k1 �= k2, then pk1

n−k1
pk2

n−k2
= 0. Thus, by

Lemma 2.4,

pn � p0
n ⊕ p1

n−1 ⊕ · · · ⊕ pn
0 .

It remains only to show

pk
l � ι−l ⊗ ιk+l ⊗ ι−l.

This is done in Lemma 4.9.

To prove Lemma 4.9, we first define Xk
l , which we will show is equal a scalar

times pk
l in Lemma 4.8.

Definition 4.3.

Xk .
l =

l

k

k

l

k+l

l

l

Lemmas 4.4 and 4.5 are similar and begin the inductive step of the proof of
Lemma 4.8.

Lemma 4.4. pk+l(Xk−1
l ⊗ ι1)pk+l = (−1)lXk

l ⊗ β−l.

Proof.

pk+l(Xk−1
l ⊗ ι1)pk .+l =

l

k−1

k−1

l

k+l−1

l

l
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By a pop-switch relation we have the following:

=

l−1

k−1

k

.
−1

l

k+l−1

l

l

Then by Lemma 3.8 we can move the arc across the l − 1 strands creating a βl−1

on the right. Next we use Lemma 3.6 to replace the arc with β−1 ⊗ ι1 ⊗ β1.

= (−1)l
l−1

k−1

k

.

−1

l

k+l−1

l

l

l−1

Move the innermost β1 from the βl to the far right across l − 1 strands in both
directions by Lemma 3.2.

= (−1)l
l−1

k−1

k

.

−1

l

k+l−1

l−1

l

l−1

Then remove the two bubbles on the bottom right of the diagram by Lemma 3.6.

= (−1)l

l−1

k

k

.

−1

l

k+l−1

l−1

l

l−1

Lastly, by Lemma 3.2 move the βl−1 into the β1 and the β−1 into the β−(l−1).

= (−1)l

l

k

k

l

k+l

l

l

l

= (−1)lXk
l ⊗ β−l.

Lemma 4.5. pk+l(Xk
l−1 ⊗ ι−1)pk+l = (−1)kXk

l ⊗ βk.

Proof.

p .k+l(Xk
l−1 ⊗ ι−1)pk+l =

l−1

k

k

l−1

k+l−1

l−1

l−1
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By a pop-switch relation we have the following:

=

l−1

k−1

k

.
l−1

k+l−1

l−1

l−1

Then by Lemma 3.8 we can move the arc across the k−1 strands creating a β−(k−1)

on the right. Next we use Lemma 3.2 to move the β1 across the l − 1 strands in
both directions into the βl−1.

= ( .−1)k

l

k−1

k

l−1

k+l−1

l−1

l

k−1

Replace the arc with β−1 ⊗ ι1 ⊗ β1.

= ( .−1)k

l

k−1

k

l−1

k+l−1

l−1

l

k−1

Lastly, by Lemma 3.2 move the β1 across the k − 1 strands in both directions into
the βk−1. By the same lemma, move the β−(l−1) into the β−1.

= (−1)k

l

k

k

l

k+l

l

l

k

= (−1)kXk
l ⊗ βk.

Lemma 4.6 is the key to proving Lemma 4.7, which is required to complete the
proof of Lemma 4.8. It is worth noting that in Lemma 4.7 the Xk

l merely acts as a
catalyst to provide enough strands to use 4.6. All that is necessary is the presence of
ι−l+1 and ιk−1 on the left as specified in Lemma 4.6 for the purpose of implementing
Corollary 3.4.

Lemma 4.6. For k ≥ n − 1,

ιk ⊗ βn = [n]ιk ⊗ β1 − [n − 1]ιk

and

ι−k ⊗ β−n = [n]ι−k ⊗ β−1 − [n − 1]ι−k.

1550032-10
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Proof. We prove the first identity, since the second is similar. Consider the case
n = 2 with k ≥ 1. Use the bubble-bursting relation on the innermost loop of β2.
Corollary 3.4 then gives the result.

ιk ⊗ β2 = [2]ιk ⊗ β1 − ιk ⊗ α1 = [2]ιk ⊗ β1 − ιk.

Now assume k ≥ n− 1. Use the bubble-bursting relation on the innermost loop
of βn. Corollaries 3.5, 3.4, and induction give

ιk ⊗ βn = [2]ιk ⊗ βn−1 − ιk ⊗ βn−2

= [2]([n − 1]ιk ⊗ β1 − [n − 2]ιk) − ([n − 2]ιk ⊗ β1 − [n − 3]ιk)

= ([2][n − 1] − [n − 2])ιk ⊗ β1 − ([2][n−] − [n − 3])ιk

= [n]ιk ⊗ β1 − [n − 1]ιk.

Lemma 4.7. If k + l = n then[
n − 1

l

]
Xk

l ⊗ β−l +
[
n − 1

k

]
Xk

l ⊗ βk =
[
n

k

]
Xk

l .

Proof. Note that every term in the equation contains Xk
l . However, the result will

hold so long as there are both a ι−l+1 and ιk−1 on the left of each diagram in order
to use Lemma 4.6. Thus it suffices to prove[

n − 1
l

]
([l]β−1 − [l − 1]) +

[
n − 1

k

]
([k]β1 − [k − 1]) =

[
n

k

]
.

Use the identity [
n − 1

l

]
[l] =

[
n − 1

k

]
[k],

and the bubble bursting relation β−1 + β1 = [2] to eliminate β−1 and β1 from the
left side. Then simplify further using the identity [2][l]− [l− 1] = [l + 1]. We obtain[

n − 1
l

]
[l + 1] −

[
n − 1

k

]
[k − 1].

By Corollary 2.3, this is equal to
[
n
k

]
, as desired.

Lemma 4.8. pk
l = (−1)kl

[
k+l
k

]
Xk

l .

Proof. Induct on n = k + l. Notice p1
0 = ι1 = X1

0 and p0
1 = ι−1 = X0

1 . Assume
k > 0 and l > 0. Then

pk
l = pk+l(pk−1

l ⊗ ι1)pk+l + pk+l(pk
l−1 ⊗ ι−1)pk+l

By Lemmas 4.4 and 4.5,

= (−1)kl

[
k + l − 1

l

]
Xk

l ⊗ β−l + (−1)kl

[
k + l − 1

k

]
Xk

l ⊗ βk.
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By Lemma 4.7,

= (−1)kl

[
k + l

k

]
Xk

l .

Lemma 4.9. pk
l � ι−l ⊗ ιk+l ⊗ ι−l.

Proof. The explicit isomorphisms are:

.

Then f ◦ g = (−1)kl
[
k+l
k

]
Xk

l = pk
l by Lemma 4.8. Thus f ◦ g is the identity

morphism from pk
l to pk

l .
On the other hand, g ◦ f = ι−l ⊗ ιk+l ⊗ ι−l, the identity morphism from ι−l ⊗

ιk+l ⊗ ι−l to ι−l ⊗ ιk+l ⊗ ι−l.

g ◦ f = (−1)kl

[
k + l

k

] kl l l

lk l
l

= (−1)kl

[
k + l

k

]
k

l

l
k

l

l

= ι−l ⊗ ιk+l ⊗ ι−l.

The second equality holds by performing two multi-pop-switch relations: one on
the β−l at the top with the l strands to the left and the l strands on the bottom
left, and the other on the βl and the l strands on the right and top right. Now
expand the Jones–Wenzl idempotent. The only non-zero term come from one of the
following TL diagrams:

l

l

k−l

, k

k

l−k

.

Thus the result of g ◦ f must be a scalar times ι−l ⊗ ιk+l ⊗ ι−l. Since f ◦ g is the
identity and g ◦ f is a scalar times the identity, that scalar must be 1.

5. Graph Planar Algebra and the Temperley–Lieb
Planar Algebra

This section is motivation for the definition of the PSPA. We start with a summary
of the definition of the graph planar algebra, first defined in [5].

1550032-12
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Throughout this section, fix a simple graph Γ. For Jones, all planar algebras are
shaded, and Γ is required to be bipartite. We will ignore this issue.

Let µ be a function from the vertices of Γ to R>0. We will define the graph
planar algebra P corresponding to (Γ, µ).

For each k > 0, let P2k be the vector space of complex valued functions on the
set of loops of length 2k on Γ.

Suppose T is a tangle. For each input disk of T , let vb be a corresponding input
vector. We must define a corresponding output vector v. Thus we must define v(γ)
for every loop γ in Γ that has length equal to the number of endpoints on the outer
boundary of T .

A state σ of T is a function from the set of regions of T to the set of vertices of
Γ such that adjacent regions are sent to adjacent vertices.

Suppose r is a region of T . This is a planar surface with boundary that may
include some right-angled corners. The Euler measure e(r) is defined in a similar
way to the Euler characteristic, using the usual formula V −E+F for a triangulation
of r. The difference is, every corner must be a vertex and only counts as 1

4 , any
other vertex on a boundary only counts as 1

2 , and every edge on a boundary only
counts as 1

2 .
We are finally ready to define the image vector v of the vectors vb under the

action of the tangle T .

v(γ) =
∑

σ

(∏
r

µ(σ(r))e(r)

)(∏
b

vb(σ|∂b)

)
.

The sum is over all states σ that are compatible with γ. The first product is over
all regions r of T . The second product is over all input disks b of T .

The TL planar algebra is a subfactor planar algebra of type A∞. It can be
found inside the graph planar algebra associated to Γ = A∞, which is the ray with
vertices indexed by positive integers. The function µ assigns the quantum integer
[n] to the nth vertex. (Note we are still assuming q is not a root of unity. If q is a
primitive (n + 1)th root of unity then we should use the graph An.)

Suppose T is an oriented tangle. Define a state of T to be a function from the
set of regions of T to the set of vertices of A∞ such that, for any strand of T , if
the region to its right is sent to vertex n then the region to its left is sent to vertex
n + 1. Thus, a state is determined by the vertex associated to a single region. In
a sense, the orientation on the strands removes the ambiguity in the state of a TL
diagram.

Now suppose T and T ′ differ by a pop-switch relation. There is an obvious
correspondence between states of T and states off T ′. Furthermore, the total Euler
measure of the region associated to any given vertex is the same. We therefore have
a well-defined embedding of the PSPA in the graph planar algebra of the graph A∞.

One can think of the PSPA as a diagrammatic way to keep track of computations
inside the graph planar algebra of A∞.
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