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ABSTRACT

In a remark in his seminal 1987 paper, Jones describes a way to define the Burau
matrix of a positive braid using a metaphor of bowling a ball down a bowling alley with
braided lanes. We extend this definition to allow multiple bowling balls to be bowled
simultaneously. We obtain representations of the Iwahori–Hecke algebra and a cabled
version of the Temperley–Lieb representation.
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1. Introduction

The positive braid monoid B+
n is the monoid generated by σ1, . . . , σn−1 modulo,

the following relations:

• Far commutativity: σiσj = σjσi if |i − j| > 1.
• The braid relation: σiσjσi = σjσiσj if |i − j| = 1.

Alternatively, B+
n is the set of n-strand geometric braids that involve only positive

crossings.
In a remark in [3], Jones describes a definition of the (non-reduced) Burau

representation of the positive braid monoid using a “bowling ball” metaphor. Here
is the relevant passage (except we change “t” to “1−q” and (i, j) to (j, i), to match
our conventions).

For positive braids, there is also a mechanical interpretation of the Burau
matrix: Lay the braid out flat and make it into a bowling alley with n

lanes, the lanes going over each other according to the braid. If a ball
traveling along a lane has probability 1 − q of falling off the top lane (and
continuing in the lane below) at every crossing then the (j, i) entry of the
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(non-reduced) Burau matrix is the probability that a ball bowled in the
ith lane will end up in the jth.

This idea was generalized to string links in [7]. Subsequent papers, for example
[1, 6, 8], have pursued the related idea of random walks on braids and knot diagrams.
Our goal is to generalize the bowling ball definition to allow several balls to be
bowled simultaneously. We obtain representations of the Iwahori–Hecke algebra
and a cabled version of the Temperley–Lieb representation. I will not propose any
specific applications, but I hope this definition gives a useful new way to think
about these important representations.

Throughout the paper, we work over an arbitrary field containing an element q.
The probability metaphor only makes literal sense when q is a real number in the
range [0,1]. However, the results are true for any value of q, and even over a ring. If
q is invertible then the representations extend from the braid monoid to the braid
group.

2. Definition of the Representation

In this section, we give a rule for the behavior of bowling balls, and prove that it
gives a representation of the braid monoid. We will describe another rule in Sec. 4.

Fix N ≥ 1. Let β be an n-strand positive braid, thought of as a bowling alley
with n lanes. Simultaneously bowl balls into the lanes so that each lane receives at
most N balls.

At each crossing, some balls may fall, according to the following rule. Suppose a

balls arrive on the top lane of a crossing, and b arrive on the bottom. If a ≤ b, then
no balls will fall. If a > b then, with probability 1 − q, exactly a − b balls will fall
from the top lane to join the b balls on the lane below. The result is that the same
numbers of balls are in the exiting lanes as in the entering lanes, except possibly
for a permutation.

Use this to define a matrix ρ(β) whose rows and columns are indexed by n-tuples
u = (u1, . . . , un) of integers such that 0 ≤ ui ≤ N . The (v,u) entry of ρ(β) is the
probability that, if ui balls are bowled into the ith lane for all i, then vj balls end
up in the jth lane for all j.

Theorem 2.1. ρ is a well-defined (N + 1)n-dimensional representation of B+
n .

Proof. The definition of ρ clearly respects multiplication, and the far commutativ-
ity relation. It remains to check the braid relation. This only involves three lanes,
so it suffices to treat the case n = 3. Let

β = σ1σ2σ1 = σ2σ1σ2.

Call the three lanes the top, middle, and bottom. The top lane crosses over both
other lanes, and the bottom lane crosses under both other lanes.
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We will compute the entries of the matrix ρ(β) in a way that does not depend
on the specific word used to represent β. This will show that ρ(β) is well-defined.

Case 0: No balls.
If no balls are bowled in to β then no balls will emerge.

Case 1: One ball.
Suppose one ball is bowled into β. If it is bowled into one of the lower two lanes

then the top lane plays no role, so we can simply use the probabilities for a single
crossing between the lower two lanes.

Now, suppose the ball is bowled into the top lane. The probability that it will end
up in the top lane is q2, since it must pass over two empty lanes. The probability that
it will end up among the top two lanes is q, since it must pass over the bottom lane
exactly once, regardless of whether or not it falls to the middle lane. By subtraction,
the probability that it will end up in the middle lane is q − q2, and the probability
that it will end up in the bottom lane is 1 − q.

Case 2: Two balls.
Suppose two balls are bowled into β. If they are bowled into the same lane then

they behave as a single ball, which was covered in the Case 1. If one of them is
bowled into the bottom lane then the bottom lane plays no role, so we can simply
use the probabilities for a single crossing between the upper two lanes.

Now, suppose the two balls are bowled into the top and the middle lanes. The
probability that the bottom lane ends up empty is q2, since the two balls must
pass over the bottom lane. The probability that one of the lower two lanes ends up
empty (that is, that the ball remains in the top lane) is q, since the top ball must
pass over the empty lane. By subtraction, the probability that the middle lane will
end up empty is q − q2, and the probability that the top lane will end up empty is
1 − q.

Case 3: Three balls.
Suppose three balls are bowled into β. If they are bowled into the same lane

then they behave as a single ball, which was covered in Case 1. If they are bowled
one into each lane then no balls will fall.

Now, suppose one ball is bowled into one lane and two balls are bowled into
another. We use a triple (x, y, z) to denote the outcome where x balls emerge from
the left (lowest) lane, y from the middle, and z from the right (highest). We will
compute the probabilities of all six possible outcomes in the following order:

(0, 1, 2), (0, 2, 1), (1, 2, 0), (2, 1, 0), (2, 0, 1), (1, 0, 2).

First, we compute the probability of the outcome (0, 1, 2). If two balls were bowled
into the top lane and one into the middle, then the probability of (0, 1, 2) is q3,
because there are three crossings at which a larger number of balls must pass over
a smaller number without falling. For any other input, the probability of (0, 1, 2) is
0, since balls cannot fall up.
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Next, we compute the probability that the outcome is either (0, 1, 2) or (0, 2, 1).
To do this, ignore the distinction between having one or two balls in a lane, and
proceed as if one ball had been bowled in to each of two lanes. In other words, for a
given input of a total of three balls into two lanes, the probability that the outcome
will have the form (0, y, z) is the same as the probability of an outcome (0, 1, 1) from
a modified input of a total of two balls into the same two lanes. This probability
was computed in Case 2. Take the probability of (0, y, z) minus the probability of
(0, 1, 2) to obtain the probability of (0, 2, 1).

Next, we compute the probability that the outcome is either (0, 2, 1) or (1, 2, 0).
To do this, ignore the distinction between having zero or one ball in a lane and
proceed as if only one ball had been bowled in. In other words, for a given input
of two balls into a lane and one into another, the probability of an outcome of the
form (x, 2, z) is the same as the probability of an outcome (0, 1, 0) from a modified
input of one ball where originally there was two, and no ball where originally there
was one. This probability was computed in Case 1. Take the probability of (x, 2, z)
minus the probability of (0, 2, 1) to obtain the probability of (1, 2, 0).

Continue in a similar fashion. Compute the probability that the outcome has
the form (x, y, 0) similarly to (0, y, z) above, and then subtract the outcome (1, 2, 0)
to get (2, 1, 0). Compute the probability that the outcome has the form (2, y, z)
similarly to (x, 2, z) above, and subtract the outcome (2, 1, 0) to get (2, 0, 1). Finally,
compute the probability of (x, 0, z) and subtract (2, 0, 1) to get (1, 0, 2).

In the end, for any given input, we have computed the probabilities of all six
outputs, independently of which of the two bowling lane configurations was used
for β.

Case 4: The general case.
Suppose a, b and c balls are bowled into the lanes. The only thing that matters

about the numbers a, b and c is which equalities and inequalities hold between
them. Thus, we can reduce to one of the cases we have already covered.

In every case, for any given input, we can compute the probability of any given
output. The computation is the same for σ1σ2σ1 and σ2σ1σ2, so these have the
same matrix.

3. The Iwahori–Hecke Algebra

Let ρ be the representation of B+
n defined in the previous section. The Iwahori–

Hecke algebra Hn(q) is the monoid algebra of formal linear combinations of positive
braids modulo the two-sided ideal generated by the quadratics

(q + σi)(1 − σi).

Theorem 3.1. ρ factors through Hn(q).

Proof. Only two lanes are involved, so it suffices to treat the case n = 2. Let v be
the vector corresponding a balls in the left lane and b in the right. We must show

1850035-4



April 17, 2018 12:14 WSPC/S0218-2165 134-JKTR 1850035

Bowling ball representations of braid groups

that v is in the kernel of

(q + ρ(σ1))(1 − ρ(σ1)).

If a = b then v is fixed by ρ(σ1), and we are done.
If a �= b then the only thing that matters is which of a and b is larger. Thus, we

can reduce to the case they are equal to 0 and 1. The action of ρ(σ1) is then the
same as the Burau representation. It is well known, and easily checked, that this
satisfies the required quadratic relation.

Note that if q is invertible then the σi are invertible in Hn(q), with

σ−1
i = q−1(σi + q − 1).

In this case, ρ is a representation of the braid group Bn and not just B+
n .

There is another important element of the kernel of ρ in the case n = N + 2.
Suppose w is a permutation of {1, . . . , N + 2}. Let (−1)w = ±1 denote the sign of
the permutation. Let βw denote the unique positive braid with a minimal number of
crossings such that the lane at position i goes to position w(i) for all i = 1, . . . , N+2.
Let x be the following element of Hn(q).

x =
∑
w

(−1)wβw.

A generalization of x appears in the definition of the Specht modules in [2].
For every i = 1, . . . , N + 1, we have

x =


 ∑

w(i)<w(i+1)

(−1)wβw


 (1 − σi), (3.1)

and thus

xσi = −qx. (3.2)

Theorem 3.2. For n = N + 2, ρ(x) = 0.

Proof. Consider a basis vector v corresponding to bowling vi balls into the ith
lane, where

0 ≤ v1 ≤ · · · ≤ vN+2 ≤ N.

Then vi = vi+1 for some i. The action of σi then fixes v, so by Eq. (3.1), ρ(x)v = 0.
Now, consider an arbitrary basis vector v′ corresponding to bowling v′i balls

into the ith lane. Let v1, . . . , vN+2 be the numbers v′i arranged into increasing
order. Then v′i = vw(i) for some permutation w. If we bowl vi balls into the ith lane
of βw for all i then no balls will fall, since a smaller number passes over a larger
number at every crossing. Thus,

v′ = ρ(βw)v.
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By repeatedly applying Eq. (3.2), xβw is a scalar multiple of x. Thus,

ρ(x)v′ = ρ(xβw)v = 0,

so every basis vector is in the kernel of the action of x.

For n ≥ N + 2 and 1 ≤ k ≤ n − N − 1, let xk ∈ Hn(q) be the result of placing
k − 1 straight lanes on the left-hand side of x and n − k − N − 1 straight lanes on
the right-hand side. Obviously, xk is also in the kernel of ρ.

If N = 1, and our field is C, and q �= 0, then the quotient of Hn(q) by the
two-sided ideal generated by the elements xk is isomorphic to the Temperley–Lieb
algebra. See [4, Theorem 5.29], although the conventions there are slightly different.
Thus, in this case, the representation ρ factors through the Temperley–Lieb algebra.

Remark 3.3. I have not been able to find any reference in the literature to the
quotient of Hn(q) by the two-sided ideal generated by the elements xk when N > 1.
I suspect it is related to the action of Hn(q) on the nth tensor power of the standard
representation of Uq(slN+1), as analyzed in [5].

4. A Cabling of the Temperley–Lieb Algebra

Fix K ≥ 1. Let β be a positive braid, thought of as a bowling alley with n lanes.
Create a cabling of β by replacing every lane with K parallel lanes. Suppose a =
(a1, . . . , an) is an n-tuple of integers such that 0 ≤ ai ≤ K. Bowl balls into the
lanes so that each lane gets at most one ball and, for all i, ai balls go into the ith
collection of K parallel lanes. Whenever a ball passes over an empty lane, it falls
with probability 1 − q.

Use this to define a matrix ρK(β) whose rows and columns are indexed by n-
tuples (a1, . . . , an) of integers such that 0 ≤ ai ≤ K. The (b, a) entry of ρK(β) is
the probability that, if ai balls are bowled into the ith set of K parallel lanes for
all i, then bi balls end up in the ith set of K parallel lanes for all i.

Theorem 4.1. ρK is a well-defined representation of B+
n .

Proof. Our definition only keeps track of the number of balls in each collection of
K parallel lanes. We must check that it is not necessary to know precisely which
lanes they are in.

Consider the cabling of a single positive crossing. Suppose we bowl a balls into
the upper K lanes of a cabled crossing, and b into the lower K lanes. The empty
lanes in the upper lanes will remain empty, and the balls in the lower lanes will
remain in their lane. The probability that exactly c balls will fall depends only on
the number a of occupied upper lanes and the number K − b of empty lower lanes.

The representation ρK clearly respects multiplication. It therefore assigns a well-
defined matrix to any positive braid β that is written as a product of crossings. By
Theorem 2.1, the probability of any specific outcome is invariant under applying
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braid relations to the cabling of β. Therefore, our matrix ρK(β) is also invariant
under braid relations.

A trace function of ρK can be used to compute the colored Jones polynomial of
a knot. Other apparently similar approaches to the colored Jones polynomial have
appeared in [8, 1]. It would be interesting to know something about the limiting
behavior of ρK if we set q = e2iπ/K and let K go to infinity. This may have some
connection to the Kashaev conjecture.

For all 0 ≤ c ≤ a ≤ N and 0 ≤ b ≤ N , let fa
b (c) denote the probability, when a

balls enter the top lane of a crossing and b balls enter the bottom, that c balls fall
from the upper lane to the lower lane. We will compute a formula for fa

b (c). First,
we define some notation.

If k is a non-negative integer, we define the quantum integer

[k] =
1 − qk

1 − q
.

Note that we are using the definition that involves only positive exponents of q, not
the definition that is symmetric under mapping q to q−1.

The q-factorial is [k]! = [k][k − 1] · · · [1]. If 0 ≤ r ≤ k, the Gaussian binomial is(
k

r

)
q

=
[k]!

[r]![k − r]!
.

These have a combinatorial interpretation as follows.
An inversion of a permutation w of {1, . . . , k} is a pair i < j such that w(i) >

w(j). The quantum factorial [k]! is the sum over w of q to the power of the number
of inversions of w.

An inversion of a sequence (ε1, . . . , εk) of ones and zeros is a pair i < j such
that εi = 1 and εj = 0. The Gaussian binomial

(
k
r

)
q

is the sum, taken over all such
sequences that have r ones, of q to the power of the number of inversions.

We now give a formula for fa
b (c).

Theorem 4.2. If a, b, c are integers and 0 ≤ c ≤ a then

fa
b (c) = q(a−c)(K−b−c)

(
a

c

)
q

(
K − b

c

)
q

(1 − q)c[c]!

Proof. Consider a crossing where K parallel lanes pass over K parallel lanes. Now,
bowl a balls into the upper collection of lanes and b into the lower. We must compute
the probability that exactly c balls will fall.

Fix a choice of c of the upper a balls, a choice of c of the lower K − b initially
empty lanes, and a bijection w from these balls to these empty lanes. We compute
the probability that our chosen balls fall into our chosen lanes according to w, and
then sum over w and these choices to obtain fa

b (c).
Some terminology will help us to stay organized. The K upper lanes consist of

our chosen c briefly-full lanes, a−c always-full lanes, and K−a irrelevant lanes. The
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K lower lanes consist of our chosen c briefly-empty lanes, K − b − c always-empty
lanes, and b irrelevant lanes. The irrelevant lanes are either upper lanes that start
and remain empty, or lower lanes that start and remain full. These have no effect
on the probability.

Consider the crossings where an always-full lane passes over an always-empty
lane. At each such crossing, a ball will pass over an empty lane, contributing a
factor of q. Taken together, these crossings contribute the term

q(a−c)(K−b−c).

Consider the crossings where an always-full lane passes over a briefly-empty lane.
Such a crossing will contribute a factor of q if and only if the briefly-empty lane is
still empty, having not yet met its corresponding briefly-full lane. The number of
times this happens is the number of pairs of upper lanes consisting of a briefly-full
lane to the left of an always-full lane. This is independent of w and of the choice
of c briefly-empty lower lanes. Ranging over the choice of c briefly-full upper lanes
contributes the powers of q in the combinatorial definition of(

a

c

)
q

.

Consider the crossings where a briefly-full lane passes over an always-empty
lane. Such a crossing will contribute a factor of q if and only if the briefly-full lane
is still full, having not yet met its corresponding briefly-empty lane. The number
of times this happens is the number of pairs of lower lanes consisting of an always-
empty lane to the left of a briefly-empty lane. This is independent of w and of the
choice of c briefly-full upper lanes. Ranging over the choice of c briefly-empty lower
lanes contributes the powers of q in the combinatorial definition of(

K − b

c

)
q

.

Consider the crossings where a ball falls from a briefly-full lane to a briefly-
empty lane. Each such crossing contributes a factor of (1 − q). Taken together,
these contribute the term

(1 − q)c.

Finally, consider the crossings where a briefly-full lane passes over a briefly-
empty lane but no ball falls there. This will contribute a factor of q if and only if
the briefly-full lane is still full and the briefly-empty lane is still empty. The number
of times this happens is the number of pairs of briefly-full upper lanes i and j such
that i is to the left of j and w(i) is to the left of w(j). This is independent of the
choices of c briefly-empty lower lanes and of c briefly-full upper lanes. Ranging over
the choice of w contributes the powers of q in the combinatorial definition of

[c]!

Multiply the above contributions to get the desired formula for fa
b (c).
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