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Abstract

Fibonacci anyons are attractive for use in topological quantum computation because any unitary
transformation of their state space can be approximated arbitrarily accurately by braiding. However,
there is no known braid that entangles two qubits without leaving the space spanned by the two qubits. In
other words, there is no known ‘leakage-free’ entangling gate made by braiding. In this paper, we provide
a remedy to this problem by supplementing braiding with measurement operations in order to produce an
exact controlled rotation gate on two qubits.
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1. Introduction
The topological approach to quantum computation was first proposed by Alexei
Kitaev [6]. A quantum computer would store qubits in the state space of a collection
of non-Abelian quasiparticles. Fibonacci anyons are one of the simplest such
quasiparticles. They are complete for quantum computation in the sense that any
unitary operation on the state of a collection of Fibonacci anyons can be approximated
arbitrarily well by braiding [4].

A qubit will be encoded in the state of four anyons that have zero collective charge.
Thus, a collection of n qubits is encoded in a certain subspace of the state space of
4n anyons. If we braid these anyons, their state will typically leave the subspace that
encodes qubits. This problem is called leakage.

Carnahan, Zeuch and Bonesteel [2] construct a braid that approximates an
entangling gate and has arbitrarily small leakage. However, there is no known braid
that performs an entangling gate with zero leakage. In this paper, we show that leakage
can be completely eliminated using measurement and fusion operations, in addition to
the usual braiding.

Theorem 1.1. Any unitary operation on a collection of qubits can be approximated
arbitrarily accurately and without leakage using Fibonacci anyons and the operations
of braiding, measurement of collective charge and fusion of pairs of anyons.
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Specifically, we will make a certain controlled rotation gate on two qubits.

Theorem 1.2. There is a protocol that exactly performs the controlled rotation gate
CR(2π/5) on a pair of qubits made of Fibonacci anyons. It uses braiding, measurement
of collective charge and fusion of pairs of anyons.

The controlled rotation gate CR(2π/5) is capable of entangling two qubits. Any
entangling gate on two qubits, together with the ability to approximate single qubit
gates by braiding, is sufficient to approximate any quantum computation on any
number of qubits [3]. Thus Theorem 1.2 implies Theorem 1.1.

2. Background
We assume that the reader is familiar with the basic terminology of anyonic

systems [5]. We work with Fibonacci anyons. There is only one kind of nontrivial
quasiparticle, namely, a Fibonacci anyon, which has quantum dimension

φ =
1 +
√

5
2

.

We will denote this quasiparticle by 1 and the trivial particle by 0. The only nontrivial
fusion rule is

1 × 1 = 0 + 1,

meaning that two anyons can fuse to either a single anyon or to the vacuum. The only
nontrivial R and F matrices are

R =

(
e−i4π/5 0

0 ei3π/5

)
, F =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
.

We use diagrams to represent the dynamics of Fibonacci anyons. Time progresses
upwards. A local maximum represents a pair of anyons fusing to the vacuum. A local
minimum represents a pair of anyons with trivial total charge being created out of
the vacuum. A trivalent vertex can represent two anyons fusing to a single anyon or
one anyon unfusing into two anyons. A measurement projects the state of a group of
anyons to a state with a total charge of either 0 or 1. We represent measurements that
project to a trivial charge by a horizontal ellipse around the anyons being measured.
Diagrams are subject to the following relations.

= φ,

= e3πi/5 + e−3πi/5 ,

= φ1/2 − φ−1/2 ,

= 1, = 0.
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We store a qubit in the state of four anyons with trivial collective charge. We denote
the two usual basis elements using ‘ket’ notation as follows.

|0〉 = , |1〉 = .

We represent the state of a qubit by a pair of complex numbers

(a, b) = a |0〉 + b |1〉

and a gate on a single qubit by a two-by-two matrix.
The tensor product operation places qubits side by side. We abbreviate a tensor

product of qubits as a single ket containing a sequence of symbols. For example,

|0〉 ⊗ |0〉 = |00〉 .

We represent the state of a pair of qubits by a four-tuple of complex numbers

(a, b, c, d) = a |00〉 + b |01〉 + c |10〉 + d |11〉 .

We represent a gate on a pair of qubits by a four-by-four matrix. All four-by-four
matrices in this paper will be diagonal. Important gates for us will be the controlled
rotation gates CR(θ), including the controlled Z gate CZ = CR(π),

CR(θ) = Diag(1, 1, 1, eiθ), CZ = Diag(1, 1, 1,−1).

The state of a system is only defined up to multiplication by a nonzero scalar, and a
gate is really a projective transformation.

3. Preparing the ancilla

An ancilla is a collection of anyons that have been put into a known state. This state
is designed to be useful when the anyons participate in an operation on input qubits.
Ancillas can be prepared ahead of time.

In this section, we describe a procedure to prepare a collection of three qubits in a
certain state. We use braiding, measurement of collective charge and fusions of pairs
of anyons. In general, when we perform a measurement or fusion during a quantum
computation, we need a ‘recovery procedure’ in case the outcome is not the desired
one. When we prepare an ancilla, we can simply start the preparation again whenever
an outcome is a failure. Thus, we do not worry about recoveries.

First, we describe some qubits and gates that can be made by braiding alone. Let
σk denote the elementary braid that exchanges anyons k and k + 1 by a positive half
twist.

Lemma 3.1. The following gates can be made by braiding.

R =

(
e−i4π/5 0

0 ei3π/5

)
, Z =

(
1 0
0 −1

)
.

Proof. They are R = σ1 and Z = σ5
1. �
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Figure 1. Diagrams D1 and D2.

Lemma 3.2. The following qubits can be made by braiding alone.

|α〉 = (1, φ1/2),
|β〉 = (1,−φ1/2).

Proof. They are |α〉 = σ1σ2 |0〉 and |β〉 = σ−4
1 σ2 |0〉. �

Note that |α〉 is two cups, one nested inside the other. It can be thought of as a sort
of sideways identity diagram. Similarly, |β〉 is like a sideways identity diagram but
with the addition of five half twists.

Lemma 3.3. There is a protocol that has a nonzero probability of creating the Bell state
|Ψ+〉 = (0, 1, 1, 0).

Proof. Let D1 and D2 be the diagrams shown in Figure 1. By a diagrammatic
calculation, these diagrams perform the following operations.

D1 = Diag(0, 1, 1, φ−1/2), D2 = Diag(−φ, 1, 1, 0).

The Bell state is then |Ψ+〉 = D1D2 |αα〉. �

Lemma 3.4. There is a protocol that has a nonzero probability of performing a Pauli-X
gate X =

( 0 1
1 0

)
.

Proof. Place |Ψ+〉 to the right of the input qubit. Take the adjacent pair of anyons from
the input qubit and |Ψ+〉 and fuse them to the vacuum. Do this a total of four times
until the input qubit has completely fused with the left qubit of |Ψ+〉. The remaining
right qubit of |Ψ+〉 is then the result of applying X to the original input qubit. �

Lemma 3.5. There is a protocol that has a nonzero probability of performing the CZ
gate Diag(1, 1, 1,−1).

Proof. Consider the two diagrams shown in Figure 2. They perform the following two
operations on a pair of qubits.

D3 = Diag(1, 1, 1,−φ−1), D4 = Diag(1, 1, 1,−φ−2).

We can use the X gate to permute the entries of D4.

(X ⊗ X)D4(X ⊗ X) = Diag(−φ−2, 1, 1, 1),
(X ⊗ I)D4(X ⊗ I) = Diag(1,−φ−2, 1, 1),
(I ⊗ X)D4(I ⊗ X) = Diag(1, 1,−φ−2, 1).
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Figure 2. Diagrams D3 and D4.

Compose the above three operations and also D2
3 to obtain the CZ gate, up to an overall

scalar. �

Definition 3.6. We define the three-qubit ancilla

|Γ〉 = φ1/2 cos
2π
5
|α0α〉 − i sin

2π
5
|β1β〉 .

Lemma 3.7. There is a protocol that has a nonzero probability of producing the
ancilla |Γ〉.

Proof. Create the qubit

σ2
1σ
−2
2 |0〉 =

(
φ1/2 cos

2π
5
,−i sin

2π
5

)
.

Place that qubit in between two copies of the qubit |α〉. Now perform a CZ gate on the
left two qubits and then another CZ gate on the right two qubits. �

4. Performing the controlled rotation gate

In this section, we describe how to perform the gate CR(2π/5) on a pair of qubits.
We require an unlimited supply of ancillas |Γ〉 from the previous section. The left and
right qubits of |Γ〉 will interact with the inputs, while the middle qubit is something
like a backup copy of the information in |Γ〉. If the protocol fails, we will measure
the middle qubit in a way that projects |Γ〉 to a nonentangled state, which will allow
for recovery. If the protocol succeeds, we will measure the middle qubit in a different
way, which will result in an entangling gate.

A basic operation is to ‘fuse’ two qubits into one, by annihilating two pairs of
adjacent anyons, leaving two anyons from each of the original qubits. The first stage
of our protocol is to fuse the left and right qubits of |Γ〉 with the left and right input
qubits of the gate.

Lemma 4.1. Suppose we are given two input qubits and an ancilla in the state |Γ〉.
There is a protocol that, with nonzero probability, fuses the left and right input qubits
with the left and right qubits of |Γ〉, respectively. If it fails, there is a recovery
procedure to restore the input qubits to their original state.
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Proof. Position the ancilla |Γ〉 between the left and right input qubits. In a successful
application of the protocol, we perform four fusions of pairs of anyons, fusing to the
vacuum in each case.

The first fusion is of the adjacent anyons from the left input and the ancilla. We
can make these fuse to the vacuum with probability one by the ‘forced measurement’
procedure described in [1]. The idea is to alternate between measuring the collective
charge of the two anyons we want to fuse and of the four anyons that form the input
qubit. With probability one, we will eventually measure the two anyons to have trivial
collective charge. They are then guaranteed to fuse to the vacuum.

The second fusion is of the adjacent anyons from what remains of the left input
qubit and the left qubit of the ancilla. We want these to fuse to the vacuum. Suppose
they instead fuse to a single unwanted anyon. Projection of the middle ancillary
qubit, possibly followed by some application of the Z gate, allows for a fusion with a
guaranteed outcome aimed at retrieving an intact left input qubit. Explicitly, measure
the middle ancillary qubit by fusing its left pair of anyons, and thus project it to either
|0〉 or |1〉. If it projects to |1〉, then apply five half twists to the fourth and fifth anyons
from the left (either five clockwise or five counterclockwise half twists will work,
since these have the same effect). Complete the recovery by fusing the third and fourth
anyons, necessarily, to 1. We retrieve an intact left input qubit. Two of the qubits from
|Γ〉 have been destroyed in the process. What remains of |Γ〉 is not entangled with the
input qubits and can therefore be discarded.

Suppose the left input qubit is fused with the left qubit of |Γ〉. The third fusion is of
the adjacent anyons of the right input qubit and the ancilla. This is achieved by forced
measurement, as before.

The fourth and final fusion is of the adjacent anyons from what remains of the right
input qubit and the right qubit of the ancilla. If they fuse to a single unwanted anyon,
the recovery is similar to before. Project the untouched ancillary qubit to |0〉 or |1〉. If
it projects to |1〉, then perform five half twists on the fourth and fifth anyons from the
right and also on the third and fourth anyons from the left. Complete the recovery by
fusing the third and fourth anyons from the right, necessarily, to a single anyon. �

Once we have successfully fused |Γ〉 into the two input qubits, the left and right
qubits of |Γ〉 now carry the information that was contained in the input qubits, and
there is a remaining ancillary qubit in the middle. If we were to project that ancilla
onto the standard basis, then we would randomly perform either the identity or Z ⊗ Z
on the input qubits. We will, instead, project the ancilla onto a different basis, which
will randomly perform one of the following entangling gates.

Definition 4.2. Let G1 and G2 be the gates

G1 = Diag(z1, z1, z1, z1), G2 = Diag(z2, z2, z2, z2),

where

z1 = cos
2π
5
− i sin

2π
5
, z2 = φ cos

2π
5

+ i sin
2π
5
.
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Lemma 4.3. Given two input qubits, there is a protocol that randomly performs either
G1 or G2.

Proof. Use the configuration from the previous lemma, in which the left and right
input qubits have been fused with the left and right qubits of |Γ〉. Fuse the middle
two anyons of the remaining ancillary qubit. They can either fuse to the vacuum or
to a single anyon. In either case, we can diagrammatically calculate the effect on the
input qubits. If they fused to the vacuum, then we have performed the gate G1. If they
fused to a single anyon, then we have performed the gate G2. Finally, dispose of the
remaining two or three anyons from the middle ancilla. �

Lemma 4.4. Given two input qubits, there is a protocol that randomly performs either
G−1

1 or G−1
2 .

Proof. The inverses of G1 and G2 are their complex conjugates, up to an overall scalar.
Follow the same protocol as in the previous lemma, but use the complex conjugate of
|Γ〉. In order to create the complex conjugate of |Γ〉, simply apply a Z gate to the middle
qubit of |Γ〉. �

At this stage, we can randomly perform one of two entangling gates and we can
randomly perform one of their inverses. We use a random walk to perform a specific
entangling gate, determined ahead of time.

Lemma 4.5. Given two input qubits, there is a protocol that performs the gate G1 with
probability one.

Proof. Apply the protocol from Lemma 4.3. If it performed G1, then the proof is
complete. Suppose, instead, that it performed the gate G2.

Now apply the protocol from Lemma 4.4. If it applied G−1
2 , then the input qubits

have been restored to their original state. If it applied G−1
1 , then we have, in total,

applied G−1
1 G2 to the original qubits.

Continue a process of applying Lemmas 4.3 and 4.4. Note that diagonal matrices
commute, so at any given stage we will have performed an operation of the form Gk

1Gl
2.

Since G1 has order five, we can assume that 0 ≤ k < 5. Also, let us choose our protocols
to ensure that l is always either 0 or 1. Specifically, if l = 0, then apply Lemma 4.3,
and if l = 1, then apply Lemma 4.4.

The above protocol performs a random walk on a set of ten states. With probability
one, it will eventually have performed the gate G1. �

The gate G1 is not exactly the controlled rotation gate we promised, but this is easily
fixed.

Proof of Theorem 1.2. The gate CR(2π/5) is the braid R−2 ⊗ R−2 composed with the
gate G1. �
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