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Chapter 81

The Temperdey-Lieb Algebra and Planar Algebras

Stephen Bigelow, University of California, Santa Barbara

81.1 Two Definitions of the Temperley-Lieb Algebra

The Temperley-Lieb algebra was introduced by Temperley and Lieb in 1971 [7] in connection
to a problem in statistical mechanics. It has since found applications in diverse fields such as
knot theory, representation theory, and von Neumann algebras. It is arguably the first and simplest
example of a diagrammatic algebra.

When we speak of “the” Temperley-Lieb algebra, we really refer to a family of algebras TL,(9),
indexed by a non-negative integer n and a complex number . The easiest way to define TL,(9) is
by generators and relations.

Definition 1. TL,(0) is the unital associative C-algebra generated by
€ly-..5€n-1

subject to the relations:
° el.2 = Je;.
o ceje;=e;ifli—jl=1
o ciej=eje; ifli—jl > 1
(We could use an arbitrary ring of scalars, but we will stick with C.)
What makes TL,,(6) a diagrammatic algebra is an alternative definition in terms of Temperley-Lieb
diagrams. Fix a rectangle with n marked points on the bottom edge and » marked points on the top

edge. An n-strand Temperley-Lieb diagram is a collection of n disjoint arcs in the rectangle, each
connecting a pair of marked points. The arcs are called strands.

Two n-strand Temperley-Lieb diagrams are considered to be the same if there is an isotopy that
goes from one diagram to the other, while remaining a Temperley-Lieb diagram at all times. Thus,
all that matters is which pairs of marked points are connected.

The set of n-strand Temperley-Lieb diagrams is a basis for TL,(0), as a vector space. There is no
diagrammatic interpretation of addition or scalar multiplication: a typical element of TL,(¢) is a
purely formal linear combination of diagrams.

The product of Temperley-Lieb diagrams is defined by the following procedure of “stacking and
bursting bubbles.” Given two n-strand Temperley-Lieb diagrams a and b, place a on top of b, and
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802 Encyclopedia of Knot Theory

connect the marked points on the top of a to the corresponding marked points on the bottom of
b. The resulting diagram might contain closed loops made up of arcs from a and b. Let £ be the
number of closed loops, and let ¢ be the Temperley-Lieb diagram obtained by removing these
closed loops. The product of a and b is then defined to be ab = §’c.

Extend the above multiplication of diagrams to a bilinear operation on TL,(¢6). Thus, to multiply
two linear combinations of diagrams, use the distributive law, and then the above rule for multipli-
cation of diagrams. In summary, the diagrammatic definition of TL,(¢) is as follows.

Definition 2. TL,(0) is the algebra of formal linear combinations of n-strand Temperley-Lieb
diagrams. Multiplication is the unique bilinear operation that extends the above “stacking and
bursting bubbles” operation on diagrams.

It is not immediately obvious, but Definitions 1 and 2 do in fact give the same algebra. This was
proved by Kauffman [5].

The identity element 1 of TL,(0) is the diagram in which every strand is vertical. The generator
e; is the diagram in which every strand is vertical except for a strand connecting marked points
number i and i + 1 on the bottom, and a strand connecting marked points number i and i + 1 on the
top. See Figure 81.1.

See Figure 81.2 for an example of a Temperley-Lieb diagram rewritten as a product of diagrams
e¢;. Kauffman proved that this is always possible [5]. See also his survey article [6], which fills in
some of the details of the proof that were previously left to the reader. Ernst, Hastings and Salmon
[1] used a similar procedure to go from a diagram to a word of shortest possible length.

The diagrams e; satisfy the relations in Definition 1, as can be verified by simply drawing the
diagrams representing each side of each relation. The fact that no additional relations are needed

Y Y Y
A A A

FIGURE 81.1: Generators ey, ¢, e3 of TL4(0).
U N
A -

FIGURE 81.2: The element e1e,e3 of TL4(6).
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can be proved by a dimension count. In the diagrammatic definition, the dimension of TL,(9) is
the number of Temperley-Lieb diagrams, which is known to equal the Catalan number

I (2n
dimTL,(0) = C, = — .
im L, (0) " n+1 ( n )
Jones [2] showed that the relations given in the algebraic definition of TL,(d) can be used to put
any word in the generators into a certain normal form, and the number of words in normal form is
also C,,.

81.2 The Temperley-Lieb Planar Algebra

The Temperley-Lieb planar algebra takes the idea of multiplying by stacking diagrams, and extends
it to allow for infinitely many other ways of connecting diagrams. This uses the two-dimensional
nature of the diagrams to give extra structure, whereas a traditional algebra only uses the one-
dimensional operation of concatenating strings of letters. We use planar tangles to specify opera-
tions; see, for example, Figure 81.3.

A planar tangle consists of the following data:
e an output disk D,
e input disks Dy, ..., Dy in the interior of D,

e an even number of marked points on the boundary of each input and output disk,

finitely many strands, and

a marked interval touching the boundary of each input or output disk.

FIGURE 81.3: A planar tangle with three input disks.
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The marked points are connected in pairs by strands that are disjoint from each other and from
the interior of the input disks. We also allow strands that are closed loops. Each input and output
disk has one marked interval between adjacent marked points, usually indicated by a star near the
boundary. If a disk has no marked points on the boundary then the marked interval is the entire
boundary. Two planar tangles are considered to be the same if there is an isotopy that goes from
one to the other, while remaining a planar tangle at all times.

For each planar tangle T, there is a corresponding partition function Zy. Suppose T has k input
disks with 2ny, ..., 2n; marked points, and 2n marked points on the boundary of the output disk.
Then Z; will be a linear map

Zr: TLy, ®---® TL,, — TL,.
To define Z7, it suffices to define its action on
VI®:--®Vyg,

where v; is an n;-strand Temperley-Lieb diagram.

The idea is to insert the diagrams v; into the input disks of T'. It helps to think of them as diagrams
in a disk, by “rounding off the corners” of the rectangles, but keeping a marked interval at what
was the left edge of the rectangle. Insert each diagram v; into the input disk D;, rotated so that their
marked intervals align, and then join each marked point on the boundary of v; to the corresponding
marked point on the boundary of D;.

After inserting a diagram into each input disk, we obtain a diagram in D. Let £ be the number of
closed loops in this diagram, and let v be the Temperley-Lieb diagram obtained by deleting these
closed loops. Then

Zr(vi®---Q®w) = 5.

Extend this to a linear function on all of TL,, ® - - - ® TL,, .
Definition 3. The Temperley-Lieb planar algebra is the collection of vector spaces
TLy, TL, TL,, ...
together with the above rule that assigns a partition function to each planar tangle.
A general planar algebra is defined similarly.
Definition 4. A planar algebra is a collection of vector spaces
Vo, V1, Va, . ..

together with a rule that assigns a multilinear operation Zr to each planar tangle T, and satisfies
a certain naturality condition.

The naturality condition is cumbersome to state precisely, but comes for free in most examples
where the vector spaces V, are spanned by some kind of diagrams. Here, the diagrams include
Temperley-Lieb diagrams, but may also allow extra features like crossings, orientations, or vertices.
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The function Zr is defined by inserting diagrams into input disks of 7, and perhaps performing
local operations that simplify the resulting diagram. The naturality condition then says that if you
insert diagrams into planar tangles, and insert those planar tangles into other planar tangles, then
the order of those two operations should not matter.

Planar algebras were originally defined by Jones [3] as a way to axiomatize the standard invariant of
a subfactor. This original definition, now called a subfactor planar algebra, has additional features
and axioms that we have left out. (The relevant adjectives are: shaded, evaluable, unital, involutive,
spherical, and positive.) Conversely, a less restrictive definition than ours might allow odd number
of marked points on boundaries of a disk, or might not require Zr to be invariant under isotopy of
T. A survey of variations on the notion of planar algebra can be found in Jones’s lecture notes from
2011 [4].
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