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13.6 The Temperley-Lieb algebra and planar algebras

13.6.1 Two definitions of the Temperley-Lieb algebra

The Temperley-Lieb algebra was introduced by Temperley and Lieb in
1971 [7] in connection to a problem in statistical mechanics. It has since found
applications in diverse fields such as knot theory, representation theory, and
von Neumann algebras. It is arguably the first and simplest example of a
diagrammatic algebra.

When we speak of “the” Temperley-Lieb algebra, we really refer to a family
of algebras TLn(δ), indexed by a non-negative integer n and a complex number
δ. The easiest way to define TLn(δ) is by generators and relations.

Definition 1 TLn(δ) is the unital associative C-algebra generated by

e1, . . . , en−1

subject to the relations:

• e2i = δei.

• eiejei = ei if |i− j| = 1.

• eiej = ejei if |i− j| > 1.

(We could use an arbitrary ring of scalars, but we will stick with C.)

What makes TLn(δ) a diagrammatic algebra is an alternative definition in
terms of Temperley-Lieb diagrams. Fix a rectangle with n marked points on
the bottom edge and nmarked points on the top edge. An n-strand Temperley-
Lieb diagram is a collection of n disjoint arcs in the rectangle, each connecting
a pair of marked points. The arcs are called strands.
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Two n-strand Temperley-Lieb diagrams are considered to be the same if
there is an isotopy that goes from one diagram to the other, while remaining
a Temperley-Lieb diagram at all times. Thus, all that matters is which pairs
of marked points are connected.

The set of n-strand Temperley-Lieb diagrams is a basis for TLn(δ), as a
vector space. There is no diagrammatic interpretation of addition or scalar
multiplication: a typical element of TLn(δ) is a purely formal linear combina-
tion of diagrams.

The product of Temperley-Lieb diagrams is defined by the following proce-
dure of “stacking and bursting bubbles”. Given two n-strand Temperley-Lieb
diagrams a and b, place a on top of b, and connect the marked points on the
top of a to the corresponding marked points on the bottom of b. The resulting
diagram might contain closed loops made up of arcs from a and b. Let ` be
the number of closed loops, and let c be the Temperley-Lieb diagram obtained
by removing these closed loops. The product of a and b is then defined to be
ab = δ`c.

Extend the above multiplication of diagrams to a bilinear operation on
TLn(δ). Thus, to multiply two linear combinations of diagrams, use the dis-
tributive law, and then the above rule for multiplication of diagrams. In sum-
mary, the diagrammatic definition of TLn(δ) is as follows.

Definition 2 TLn(δ) is the algebra of formal linear combinations of n-strand
Temperley-Lieb diagrams. Multiplication is the unique bilinear operation that
extends the above “stacking and bursting bubbles” operation on diagrams.

It is not immediately obvious, but Definitions 1 and 2 do in fact give the
same algebra. This was proved by Kauffman [5].

The identity element 1 of TLn(δ) is the diagram in which every strand
is vertical. The generator ei is the diagram in which every strand is vertical
except for a strand connecting marked points number i and i + 1 on the
bottom, and a strand connecting marked points number i and i + 1 on the
top. See Figure 13.1.

See Figure 13.2 for an example of a Temperley-Lieb diagram rewritten as
a product of diagrams ei. Kauffman proved that this is always possible [5].
See also his survey article [6], which fills in some of the details of the proof

, , .

FIGURE 13.1: Generators e1, e2, e3 of TL4(δ).
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that were previously left to the reader. Ernst, Hastings and Salmon [1] used a
similar procedure to go from a diagram to a word of shortest possible length.

The diagrams ei satisfy the relations in Definition 1, as can be verified
by simply drawing the diagrams representing each side of each relation. The
fact that no additional relations are needed can be proved by a dimension
count. In the diagrammatic definition, the dimension of TLn(δ) is the number
of Temperley-Lieb diagrams, which is known to equal the Catalan number

dim TLn(δ) = Cn =
1

n + 1

(
2n
n

)
.

Jones [2] showed that the relations given in the algebraic definition of TLn(δ)
can be used to put any word in the generators into a certain normal form,
and the number of words in normal form is also Cn.

13.6.2 The Temperley-Lieb planar algebra

The Temperley-Lieb planar algebra takes the idea of multiplying by stack-
ing diagrams, and extends it to allow for infinitely many other ways of con-
necting diagrams. In a sense, this uses the two-dimensional nature of the
diagrams to give extra structure, whereas a traditional algebra only uses the
one-dimensional operation of concatenating strings of letters. We use planar
tangles to specify operations; see, for example, Figure 13.3.

A planar tangle consists of the following data:

• an output disk D,

• input disks D1, . . . , Dk in the interior of D,

• an even number of marked points on the boundary of each input and
output disk,

• finitely many strands, and

• a marked interval touching the boundary of each input or output disk.

The marked points are connected in pairs by strands that are disjoint from
each other and from the interior of the input disks. We also allow strands that

=

.

FIGURE 13.2: The element e1e2e3 of TL4(δ).
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are closed loops. Each input and output disk has one marked interval between
adjacent marked points, usually indicated by a star near the boundary. If a
disk has no marked points on the boundary then the marked interval is the
entire boundary. Two planar tangles are considered to be the same if there is
an isotopy that goes from one to the other, while remaining a planar tangle
at all times.

For each planar tangle T , there is a corresponding partition function ZT .
Suppose T has k input disks with 2n1, . . . , 2nk marked points, and 2n marked
points on the boundary of the output disk. Then ZT will be a linear map

ZT : TLn1 ⊗ · · · ⊗ TLnk → TLn.

To define ZT , it suffices to define its action on

v1 ⊗ · · · ⊗ vk,

where vi is an ni-strand Temperley-Lieb diagram.
The idea is to insert the diagrams vi into the input disks of T . It helps

to think of them as diagrams in a disk, by “rounding off the corners” of the
rectangles, but keeping a marked interval at what was the left edge of the
rectangle. Insert each diagram vi into the input disk Di, rotated so that their
marked intervals align, and then join each marked point on the boundary of
vi to the corresponding marked point on the boundary of Di.

After inserting a diagram into each input disk, we obtain a diagram in
D. Let ` be the number of closed loops in this diagram, and let v be the
Temperley-Lieb diagram obtained by deleting these closed loops. Then

ZT (v1 ⊗ · · · ⊗ vk) = δ`v.

∗

D1

∗

D2

∗ D3

∗

FIGURE 13.3: A planar tangle with three input disks.
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Extend this to a linear function on all of TLn1 ⊗ · · · ⊗ TLnk .

Definition 3 The Temperley-Lieb planar algebra is the collection of vector
spaces

TL0,TL1,TL2, . . .

together with the above rule that assigns a partition function to each planar
tangle.

A general planar algebra is defined similarly.

Definition 4 A planar algebra is a collection of vector spaces

V0, V1, V2, . . .

together with a rule that assigns a multilinear operation ZT to each planar
tangle T , and satisfies a certain naturality condition.

The naturality condition is cumbersome to state precisely, but comes for
free in most examples where the vector spaces Vn are spanned by some kind of
diagrams. Here, the diagrams include Temperley-Lieb diagrams, but may also
allow extra features like crossings, orientations, or vertices. The function ZT

is defined by inserting diagrams into input disks of T , and perhaps performing
local operations that simplify the resulting diagram. The naturality condition
then says that if you insert diagrams into planar tangles, and insert those
planar tangles into other planar tangles, then the order of those two operations
should not matter.

Planar algebras were originally defined by Jones [3] as a way to axiomatize
the standard invariant of a subfactor. This original definition, now called a
subfactor planar algebra, has additional features and axioms that we have left
out. (The relevant adjectives are: shaded, evaluable, unital, involutive, spher-
ical, and positive.) Conversely, a less restrictive definition than ours might
allow odd number of marked points on boundaries of a disk, or might not
require ZT to be invariant under isotopy of T . A survey of variations on the
notion of planar algebra can be found in Jones’s lecture notes from 2011 [4].
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