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Abstract

Planar algebras provide a diagrammatic approach to the standard in-
variant of a subfactor. In “The annular structure of subfactors”, Jones
analyzes the annular Temperley-Lieb algebroid, which is the simplest part
of the algebraic structure of planar algebras. He uses this diagrammatic
approach to to give a new proof of the existence and uniqueness of the E6

and E8 subfactors. The same methods continue to be used to construct
and study new subfactors.

1 Context

Jones defined planar algebras in the 1990s [10]. In “The annular structure of
subfactors”, he explains that the definition of planar algebras grew out of an
attempt to solve the massive systems of linear equations that define the standard
invariant of certain subfactors. Since then, they have provided a radically new
diagrammatic approach to subfactors.

Jones’s breakthrough paper “Index of subfactors” [8] can be seen in ret-
rospect as an application of diagrammatic algebra to subfactors. However the
diagrammatic approach to the Temperley-Lieb algebra was only introduced later
by Kauffman [14]. The first use of truly diagrammatic methods to subfactors
was [4], which gave certain conditions under which a subfactor has an interme-
diate subfactor.

The paper “The annular structure of subfactors” is mostly about ATL(δ),
the annular Temperley-Lieb algebroid, which captures the simplest part of the
algebraic structure of a planar algebra. Jones uses this approach to give a new
proof of the existence and uniqueness of the E6 and E8 subfactors, which are
the most interesting subfactors of index less than 4. The same basic method
was later used to prove the existence of the extended Haagerup subfactor, and
continues to be used to construct and new subfactors.
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2 Planar algebras and annular tangles

Factors are the building blocks of von Neumann algebras. Any non-zero mor-
phism between factors must be an embedding, so the study of factors naturally
leads to the study of subfactors. Most of the focus has been on subfactors of
type II1 factors, which seem to be the most interesting type in the classification
given by Murray and von Neumann.

A subfactor of a type II1 factor has three important invariants: the index
is a number δ2 > 0, the principal graph is a bipartite multi-graph, and the
standard invariant is a pair of nested sequences of algebras. Popa [16] gave a
list of axioms that characterize the standard invariant. Jones gave an alternative
axiomatization in terms of planar algebras.

It takes some time and care to define planar algebras rigorously, but the basic
idea is not so difficult. A planar algebra consists of a sequence of vector spaces
Pn, together with a multilinear action of planar tangles. A planar tangle is a
diagram consisting of disjoint curves, or “strands”, drawn in a disk with holes.
Usually, the vectors in the planar algebra are formal linear combinations of
some kind of diagrams drawn in a disk, and a planar tangle acts on diagrams by
gluing the diagrams into the holes. Every boundary circle comes with a special
distinguished region, which determines the correct orientation for gluing.

We briefly mention two of the technical details in the definition of a planar
algebra. First, each vector space Pn comes with a conjugate-linear “star” op-
eration, which commutes with the reflection operation on planar tangles. This
gives rise to an inner product, which must be positive definite. Second, a pla-
nar tangle comes with a checkerboard shading of the regions between strands,
alternating between shaded and unshaded regions. Due to the shading, there
are actually two vector spaces P+ and P− in place of P0.

An annular tangle is a planar tangle with only one input. In other words, it
is a Temperley-Lieb diagram drawn in an annulus. An annular (m, k)-tangle is
an annular tangle that has 2k marked points on the inner circle and 2m on the
outer.

The annular Temperley-Lieb algebroid ATL(δ) consists of formal linear com-
binations of annular (m, k)-tangles. If an annular tangle has a closed loop that
does not go around the central hole, then that loop can be deleted in exchange
for multiplying by the parameter δ > 0. Multiplication in ATL(δ) comes from
the operation of placing one annular tangle inside the hole of another.

Every subfactor planar algebra is a module over ATL(δ), where δ is the index
of the subfactor. Most of “The annular structure of subfactors” is concerned
with analyzing modules over ATL(δ), and drawing conclusions about subfactors.

Jones completely classifies the Hilbert TL(δ)-modules in the case δ > 2. Just
knowing the possible dimensions of Hilbert TL(δ)-modules is enough to prove
that some graphs cannot be the principal graph of a subfactor. Jones gives some
examples of this, including results previously proved in [10] and [6].

The case δ < 2 requires special treatment. Jones gives some results in specific
cases that will be needed for the E6 and E8 subfactors. A more extensive study
is postponed to a later paper with Reznikoff [12].
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The study of ATL(δ) is an example of the diagrammatic approach providing
not just a new way to prove theorems, but a new idea of what questions to ask.
The action of annular planar tangles is a natural choice of the “simplest” part of
the algebraic structure of a planar algebra, leading to a direction of investigation
might not seem so natural otherwise.

3 Construction of E6 and E8 subfactors

The subfactors with principal graphs E6 and E8 are the most interesting of the
ADE classification of subfactors of index less than 4. They were first constructed
in [3] and [7]. Jones gives an alternative, diagrammatic construction. Since they
are finite depth, it is easy to construct the subfactor from its corresponding
planar algebra.

Most of the focus is on the more complicated E8 planar algebra, which we
will call P . Jones ultimately obtains a presentation for P with one generator
ψ ∈ P5, and five relations listed in Appendix B. This presentation is at first
an educated guess. Start by assuming that P is the subfactor planar algebra of
type E8. Then the dimension of Pn is the number of paths of length 2n in the
E8 graph that start and end at the vertex farthest from the trivalent vertex.
We can deduce the existence of ψ ∈ P5 that is perpendicular to the Temperley-
Lieb algebra TL5. We can then find relations that ψ must satisfy using further
dimension arguments and positive definiteness.

Once we have defined P , the main task is to prove that the relations are
powerful enough to make P finite-dimensional, but not so powerful as to make
it trivial. This is a common problem. As Jones says: “Probably any set of
skein relations causing collapse to finite dimensions (but not to zero) should be
considered interesting.”

To prove that the dimension of P is not trivial, Jones finds a copy of P inside
the graph planar algebra PE8 , as defined in [13]. We could compare this situation
to the problem of proving the non-triviality of a group given by generators and
relations. One way to do this is to find a non-trivial homomorphism to a general
linear group. The graph planar algebra plays the role of the general linear group.
This method is widely applicable, since every subfactor embeds in the graph
planar algebra of its principal graph [11].

Instead of proving that every Pn is finite-dimensional, it suffices to prove
to prove that P± has dimension one. The fact that P is the subfactor planar
algebra with principal graph E8 then follows from a process of elimination. This
is due to what Jones calls “the paucity of graphs with norms less than 2”.

A diagram in P± is called a closed diagram. Jones describes an evaluation
algorithm, which uses the relations to reduce an arbitrary closed diagram to a
scalar multiple of the empty diagram. In keeping with the theme of the paper,
the two most important relations are relations between annular tangles applied
to ψ.

The first relation is that any annular (4, 5)-tangle applied to ψ gives zero.
Nowadays we would say ψ is uncappable, meaning that a diagram is zero if any
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Figure 1: A braiding relation in the E8 planar algebra

strand forms a “cap” connecting two points on the same copy of ψ.
The second relation comes from Lemma 8.1, and says that a certain linear

combination v of of annular (6, 5)-tangles applied to ψ is 0. We call this a
braiding relation, since it says a strand can slide over (but not under) a generator,
where we allow diagrams that contain crossings, which can be resolved by the
usual Kauffman skein relation. The braiding relation is shown in Figure 1, where
ψ is a circle, and we have omitted the distinguished regions, the shading, and
the coefficients in the linear combination.

Jones uses the braiding relation by applying it inside a larger diagram that
has two copies of ψ. Repeatedly doing this, he is able to show that two copies of
ψ that are connected by two or more parallel strands can be written as a linear
combination of diagrams that have only fewer copies of ψ.

By an Euler characteristic argument, any non-empty closed diagram has
either a strand that forms a closed loop, a cap attached to a copy of ψ, or two
parallel strands connecting two copies of ψ. The closed loop can be deleted,
the cap makes the diagram zero, and the third case can be written as a linear
combination of diagrams that have fewer copies of ψ. We can repeat this process
until we simplify down to a scalar multiple of the empty diagram.

4 The jellyfish algorithm

With his construction of the E6 and E8 planar algebras, Jones laid out the
template for what is sometimes called the skein theoretic approach to defining
a subfactor. The same approach was used in [17] to construct, and thoroughly
analyze, the D2n planar algebra. The first new subfactor constructed in this
way was the extended Haagerup subfactor [1].

As in the E8 case, the D2n planar algebra is defined by a single uncappable
generator and a list of relations, including a braiding relation of the same form as
Figure 1. The relations are quite simple and powerful, so [17] give a direct proof
that the planar algebra is not trivial, without use the graph planar algebra.

A key observation in [17] is that you can use the braiding relation to bring
any pair of generators to be adjacent. Then there is another relation that lets
you simplify the adjacent pair of generators. In this way, they avoid the need
for an Euler characteristic argument.

In retrospect, a similar approach would have been possible in the E8 case.
It is more difficult in that two adjacent generators need to be connected by two
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Figure 2: A braiding substitute relation for extended Haagerup

strands in order to be simplified. However, if all of the generators are moved
to the top of the diagram, then it is not hard to show there must be either a
generator connected to itself by a “cup”, or a pair of generators connected by
more than two strands. This would eliminate the need for the Euler character-
istic argument, which is not necessarily an improvement over Jones’s algorithm,
but does provide motivation for the extended Haagerup planar algebra.

As usual, [1] defines a planar algebra with one generator and a list of rela-
tions, and prove it is non-trivial by embedding it in the graph planar algebra of
the extended Haagerup graph. This graph planar algebra is too large to analyze
as carefully as Jones does in the E6 and E8 cases. Instead, a computer search
is used to find an element that satisfies the defining relations.

Analogous to the braiding relation, the extended Haagerup planar algebra
has two braiding substitute relations. The simpler of the two is of the form
shown in Figure 2. Again, the generator is a circle, and we have omitted the
distinguished regions, the shading, and the coefficients in the linear combination.
We have also cheated with the ellipsis, which hides some terms that are diagrams
with no copies of the generator.

Note that one of the terms on the right of the braiding substitute relation
has two copies of the generator. However all generators on the right are all closer
to the top than the generator on the left. Thus, if we are willing to increase the
number of generators in a diagram, we can move them all to the top.

Once we have all of the generators at the top of a closed diagram, we can
then start to decrease the number of generators. If a generator is connected to
itself by a “cup”, then the diagram is zero. If not, it is not hard to show there
must be a pair of generators that are joined by at least half of their strands.
Such a pair can be simplified by the quadratic relation. We can repeat this
process until there are no generators.

The above evaluation algorithm is called the jellyfish algorithm, since the first
stage is reminiscent of jellyfish floating to the top of a tank. The same algorithm
has been used to construct other subfactors, for example in [15]. Conversely, it
has been used to place restrictions on the type of graphs that can be principal
graphs of subfactors [2].
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