MATH 3B - MIDTERM 2.2 - 25 FEB 2009

Name:	TA	RDIS code:		
Signature: Put [Blue book should sh Unexplained correc	final answer in answe ow your name, TARDI t answers may be ignor	r boxes on S code and red. Simpli	this page. I WORK for all pro ify where clearly po	oblems. ossible.
(1) Consider the regi	ion S that lies between the	ne three cur	ves	
	$y = \arccos x, x = 0$	and y	$=\frac{\pi}{3}$	
A crude sketch a Calculate the are Area =	ppears on the right \Rightarrow <u>a of S. (Hint: Try to avo</u>	id integrati	ng arccos <i>x</i> .)	

(2) Using the cylindrical shell method, find the resulting volume if the region between the three curves $y = \cos x$, y = 0 and $x = \frac{\pi}{3}$ is rotated around the *y*-axis.

First write down the appropriate integral:

\int	
Volume =	

Then solve the integral:

(3) A reluctant burro is pulled along a path by a man who must exert a force of

 $10/(1+x)^2$

pounds when the burro is a distance x feet from the beginning of the path. How much work does he need to do to move the burro 4 feet down the path? First write

down the appropriate integral:

Then solve the integral:

(4) On the planet PsK! the standard unit of length is the gronka, abbreviated gr. Acceleration due to gravity is always 20 gronkas/sec². A ball is dropped from the top of a very tall tower.

• What will the velocity of the ball be after <i>t</i> seconds?	gr/sec
• How far will the ball have dropped after <i>t</i> seconds?	gr
• What will the velocity be when the ball has dropped <i>r</i> gronkas?	gr/sec
• What is the average velocity of the ball over the first 5 gronkas?	gr/sec

- (5) The huge City University of Elbonia admits anyone with a Math SAT of 400 or over. Here is a graph of the number of students admitted for each SAT score between 400 and 800 (a perfect score). For example, according to the graph, about 57 students had a Math SAT of 635. Using n = 4 on the interval [400, 800] estimate the total number of students admitted
 - Using the Trapezoidal rule:
 - Using Simpson's rule: