
A Path Model for Quantum Skew-Symmetric Matrices

Karel Casteels, Jessica Liu, Aesha Siddiqui

Summer 2017

Abstract

In 2014, Casteels developed a combinatorial model for the algebra of quantum matrices,Oq(Mm×n(K)),
and successfully used the model to develop new results in the theory of torus-invariant prime ideals
in Oq(Mm×n(K)). We extend Casteels’ work to Oq(Skn(K)), the quantized coordinate ring of n × n
skew-symmetric matrices over an infinite field K. It has been shown that these algebras have connec-
tions with the theory of totally nonnegative matrices and further applications, including quantum group
theory, braided tensor categories, and knot theory.

AlthoughOq(Mm×n(K)) andOq(Skn(K)) have different commutation relations, Casteels’ method can
be adapted to find an analogous model for the algebra of quantum skew-symmetric matrices. This model
associates each generator of Oq(Skn(K)) to a sum of path weights in a directed grid graph, where weights
are elements of the quantum skew-symmetric torus. We want to show that this model embeds the gener-
ating set of Oq(Skn(K)) in the algebra’s corresponding torus by studying how the model might preserve
the commutation relations of each space. These methods may lead to new insights on applying these paths
models to other quantum algebras.

1 Introduction

The purpose of this paper is to extend Karel Casteels’ combinatorial model for the algebra of quantum
matrices. [1]. This work embeds the algebra of quantum matrices into the algebra’s corresponding torus.
Casteels’ path model associates each generator of the algebra of quantum matrices as a sum of monomials
constructed from generators of the quantum torus. This allows us to study quantum matrices via a simpler
algebra with fewer commutation relations, and aided Casteels in proving that all prime ideals of quantum
matrices are generated by quantum minors (i.e. minors of the matrix of generators).

Casteels’ path model for quantum matrices first assigns each generator of the quantum affine space to
a vertex in a m × n directed grid graph. The generators of a subalgebra of the torus are then associated to
the sum over specific path weights, where weights are specific monomials composed of generators of the
quantum torus. Casteels showed that this subalgebra is isomorphic to the algebra of quantum matrices by
observing the commutation relations of the subalgebra. The two algebras have identical structures, hence
the isomorphism.

Using these methods, we extend this work to the algebra of quantum skew-symmetric matrices. Like
all quantum algebras, this algebra is non-commutative, but with some additional structure. Unlike their
classical analogues, quantum skew-symmetric matrices are not a subset of quantum matrices. The quanti-
zation of each algebra is unique, such that the commutation relations on each generating set differs. Thus,
extending this model involves taking into account these new commutation relations.

The path model for quantum skew-symmetric matrices is altered in few ways. Each generator of the
algebra’s corresponding affine space is associated to a vertex above the diagonal of a n×n grid graph. These
vertices are reflected and negated across the diagonal, as in a skew-symmetric matrix. Similar to the original
model, we associate each generator of a subalgebra of the quantum skew-symmetric torus to the sum of
path weights. We conjecture that this algebra is isomorphic to the algebra of quantum skew-symmetric

1



matrices. Similar to Casteels’ approach, our strategy is to show that the subalgebra of the quantum torus
generated by the path model has the same commutation relations as quantum skew-symmetric matrices.

In Section 2, we formally define the quantum algebras of interest, and provide further background
on these spaces and their applications. In Section 3, we define terminology necessary to introduce our
path model. In Section 4, we define an equivalence relation on paths. This relation allows us to write a
program that computes generating sets for subalgebras of the quantum skew-symmetric torus. We provide
instructions for using this program in Section 5. Continuation of this work and further open questions are
discussed in Section 6.

2 Background

The algebra of quantum skew-symmetric matrices, more formally defined below, is a non-commutative
algebra with additional structure. This structure is imposed by a complicated set of commutation relations
that make the algebra difficult to study.

Definition 1. Quantum skew-symmetric matrices are the quantized coordinate ring of n× n skew-symmetric
matrices, Oq(Skn(K)), is the K-algebra generated by the elements

{x(i,j)|i < j}

subject to the following relations,

x(i,j)x(i,l) = qx(i,j)x(i,l),

x(i,j)x(j,l) = qx(j,l)x(i,l),

x(i,j)x(k,j) = qx(k,j)x(i,l),

x(i,j)x(k,l) = qx(k,l)x(i,l),

x(i,j)x(k,l) = qx(k,l)x(i,j) + (q − q−1)x(i,l)x(k,j),

x(i,j)x(k,l) = qx(k,l)x(i,j) + (q − q−1)x(i,k)x(j,l) − q(q − q−1)x(i,l)x(j,k),

for j < l;

for j < l;

for i < k;

for j < l;

for i < k < l < j;

for i < j < k < l.

We are interested in studying a related, but simpler, algebra, the quantum affine space. This space has a
similar, yet smaller, set of commutation relations, making it more amenable to study.

Definition 2. The quantum skew-symmetric affine space, denoted as Tn, is the algebra generated by the ele-
ments of

{t(i,j)|i < j}
subject to the following relations,

t(i,j)t(i,l) = qt(i,l)t(i,j),

t(i,j)t(j,l) = qt(j,l)t(i,j),

t(i,j)t(k,j) = qt(k,j)t(i,j),

t(i,j)t(k,l) = qt(k,l)t(i,j),

t(i,j)t(k,l) = qt(k,l)t(i,j),

t(i,j)t(k,l) = qt(k,l)t(i,j),

for j < l;

for j < l;

for i < k;

for i < k < l < j;

for i < k < j < l;

for i < j < k < l.

We then define the quantum skew-symmetric torus to be an algebra whose generating set is comprised
of the generating set of the affine space, along with the inverses of those generators.

Definition 3. The quantum skew-symmetric torus, denoted T×n , is the algebra generated by {X̂(i,j)}, the mul-
tiplicative set generated by the standard generators t(i,j) of the quantum skew-symmetric affine space.

Note that the torus and the affine space have the same set of commutation relations.

2



3 The Path Model

We now define the path model for studying quantum skew-symmetric matrices. We first define a type of
directed graph, then define uesful objects on this graph.

Definition 4. The m × n skew symmetric grid is the graph Gm×n = {V,E} with the following vertex and
directed edge sets:

V = {(a, b)|a ∈ [m+ 1] and b ∈ [n+ 1]} − {(m+ 1, n+ 1)}
ED = {((a, b), (a+ 1, b))|a, a+ 1 ≤ m and b ≤ n+ 1}
EL = {((a, b), (a, b− 1)|a ≤ m+ 1 and b, b− 1 ≤ n}

E = ED

⋃
EL

t12 t13 t14 t15
1

−t12 t23 t24 t25
2

−t13 −t23 t34 t35
3

−t14 −t24 −t34 t45
4

−t15 −t25 −t35 −t45
5

1 2 3 4 5

Figure 1: G5, a 5× 5 directed skew-symmetric grid graph

Definition 5. Let Gn be a directed skew-symmetric grid. A path p is a sequence of vertices {v0, . . . , vk} such
that for all i ∈ [k] there exists a directed edge (vi−1, vi). We say that p : v0 → vk is a path p that begins at v0
and ends at vk. We let P : v0 → vk refer to the set of paths that begin at v0 and end at vk.

Definition 6. Let p = (v0 . . . vk) be a path.

• We say that there exists a Γ-turn at vertex vi if (vi−1, vi) is horizontal and (vi, vi+1) is vertical.

• We say that there exists a

Γ

-turn at vi if (vi−1, vi) is vertical and (vi, vi+1) is horizontal.

The weight of a vertex v of a path p, where v = ti,j , is defined by the function

w(t(i,j)) = t(i,j), if ∃ Γ-turn at v;

w(t(i,j)) = t(i,j)
−1, if ∃

Γ

-turn at v;

w(t(i,j)) = 1, otherwise.

Definition 7. The weight of a path, denoted w(p), where p = {v0 . . . vk}, is qnw(v0) . . . w(vk), where

n = 0 if there does not exist a horizontal edge across the diagonal,
n = 1 if there exists a horizontal edge across the diagonal.

3



Definition 8. The lexicographic order on [m]× [n] is the total order < obtained by setting

(i, j) < (k, l) ⇐⇒ i < k, or i = k and j < l.

Visually, (i, j) < (k, l) if (i, j) is northwest to (k, l).

Example 1.
x̂(1,1) =

∑
P :1→1

w(P ) = −qt(1,3)t−1(2,3)t(1,2) + t(1,2)t
−1
(2,3)t(1,3).

t12 t13
1

−t12 t23
2

−t13−t13 −t23
3

1 2 3

Figure 2: The set P : 1→ 1 on G3

Definition 9. The transpose of a path p, denoted pT , is its reflection across the diagonal.

Definition 10. A path p is transpose-disjoint if p ∩ pT = ∅.

t12 t13 t14 t15 t16 t17 t18
1

−t12 t23 t24 t25 t26 t27 t28
2

−t13 −t23 t34 t35 t36 t37 t38
3

−t14 −t24 −t34 t45 t46 t47 t48
4

−t15 −t25 −t35 −t45 t56 t57 t58
5

−t16 −t26 −t36 −t46 −t56 t67 t68
6

−t17 −t27 −t37 −t47 −t57 −t67 t78
7

−t18 −t28 −t38 −t48 −t58 −t68 −t78
8

1 2 3 4 5 6 7 8

Figure 3: A red path p : 1→ 2, and the blue path is its corresponding transpose, pT : 2→ 1

4



3.1 Embedding Quantum Skew-Symmetric Matrices

The following conjecture formally states the embedding of the algebra of quantum skew-symmetric matri-
ces into a subalgebra of the quantum skew-symmetric torus.

Conjecture 1. Define φ : Oq(Skn(K))→ T×n as

φ(x(i,j)) = x̂(i,j) =
∑
p:i→j

w(p)

φ is an isomorphism from Oq(Skn(K)) to the subalgebra of T×n generated by {X̂(i,j)}.

We study this map by studying the commutation relations of each algebra. If an isomorphism exists,
the two algebras should have the same non-commutative structure. In particular, the commutation relation
we focus on throughout this paper is q-commuting. In other words, if generators in a quantum skew-
symmetric matrix q-commute, their corresponding generators of the subalgebra should also q-commute.
We state this notion more formally below.

Conjecture 2. Let x(i,j), x(l,k) ∈ Oq(Skn(K)). Let P : i→ j be the set of paths from i to j and Q : l→ k be the set
of paths from l to k. If x(i,j)x(l,k) = q∗x(l,k)x(i,j), where q∗ is the quantum parameter, then∑

p∈P :i→j

∑
q∈Q:l→k

w(p)w(q) = q∗
∑

q∈Q:l→k

∑
p∈P :i→j

w(q)w(p). (1)

Studying these summations has lead to the following observation.

Conjecture 3. Let p1, p2 ∈ P : i→ j and q1, q2 ∈ Q : l→ k, such that (1) holds. Then, the following is true.

p1q1 = q∗q2p2 ⇐⇒ p2q2 = q∗q1p1

4 Classifying Paths

4.1 Equivalence Classes on Paths and Path Weights

Theorem 1. Let p1, p2 be two paths from i to j. Thenw(p1) = qkw(p2) for some k ∈ Z if and only ifE(p1)
⋃
E(pT1 ) =

E(p2)
⋃
E(pT2 ).

Definition 11. We define an equivalence relation on paths, such that p1 ≡p p2 if and only if

E(p1)
⋃
E(pT1 ) = E(p2)

⋃
E(pT2 ).

We also define an equivalence relation on path weights, such that w(p1) ≡w w(p2) if and only if

w(p1) = qkw(p2)

for some k ∈ Z

We will prove this theorem at the end of the subsection.

Lemma 1. Let p be any path on Gn. Then w(p) = −qkw(pT ) for some k ∈ Z.

Proof. We know that pT is the reflection of p across the diagonal. Thus every turn of p is reflected across
the diagonal. Note that reflecting a turn across the diagonal does not change the turn type. Thus for every
vertex v in p the weight function of v is the same as the weight function of the reflection of v,−v in pT . Thus
wp(v) = wpT (−v) for all v ∈ p. Thus w(p) = (−1)nqkw(pT ) for some k, n ∈ Z.

5



Note that the last turn of any path must be a Γ turn, and the turn types of a path alternate. If the first turn
of a path below the diagonal is a Γ turn, the first turn of its transpose below the diagonal is a

Γ

turn, and
vice versa. Thus the number of turns of p always has different parity from the number of turns of pT , so we
can say that n is always 1 in the equation above.

Lemma 2. Let p : i→ j be a path. If there are vertices v1, v2 ∈ p such that w(v1) = (−1)nw(v2)−1, then v1 and v2
both have degree 4 in E(p)

⋃
E(pT ) and v1 = −v2.

Proof. Suppose w(v1) = (−1)nw(v2)−1. Each generator of the quantum torus is only associated with two
vertices of the grid and those two vertices are always symmetric across the diagonal, so we immediately
get that v1 = −v2. If there is a Γ turn at v1 in p, then there must be a Γ turn at v2 in pT and if there is a Γ
turn at v2 in p, then there must be a Γ turn at v1 in pT . Since v1 and v2 have different turn types in p, at least
one of them is a Γ turn in p. Thus there is a Γ turn at both v1 and v2 in E(p)

⋃
E(pT ). The same argument

shows that there is a

Γ

turn at both v1 and v2 in E(p)
⋃
E(pT ). Therefore both v1 and v2 have both a Γ turn

and a

Γ

turn in E(p)
⋃
E(pT ), so they both have degree 4 in E()

⋃
E(pT ).

t12 t13 t14 t15 t16 t17 t18
1

−t12 t23 t24 t25 t26 t27 t28
2

−t13 −t23 t34 t35 t36 t37 t38
3

−t14 −t24 −t34 t45 t46 t47 t48
4

−t15 −t25 −t35 −t45 t56 t57 t58
5

−t16 −t26 −t36 −t46 −t56 t67 t68
6

−t17 −t27 −t37 −t47 −t57 −t67 t78
7

−t18 −t28 −t38 −t48 −t58 −t68 −t78
8

1 2 3 4 5 6 7 8

Figure 4: We’ve highlighted 8 edges from E(p)
⋃
E(pT ) in Figure 3. When putting the weight of p into

lexicographic order, t−127 and t27 will cancel out.

Definition 12. Let p be a path from p : i→ j such that i < j. The canonical path associated with p is defined
as the path pc : i→ j such that pc ≡ p and pc has no turns at any vertex that has degree 4 in E(p)

⋃
E(pT ).

Lemma 3. Let p be a path, and let t(i,j), −t(i,j) be two vertices such that both have degree 4 in E(p)
⋃
E(pT ). Then

for any pi ∈ {pk|pk ≡ p}, pi either turns at both t(i,j) and −t(i,j) with distinct turn types or pk doesn’t turn at t(i,j)
or −t(i,j).

Proof. Let pk be a path in {pk|pk ≡ p}. Then t(i,j), −t(i,j) have degree 4 in E(pk)
⋃
E(pTk ). Suppose pk turns

at t(i,j). In order for t(i,j) to have degree 4 in E(pk)
⋃
E(pTk ), it must be the case that pTk also turns at t(i,j)

with a different turn type. Then pk turns at −t(i,j).

6



t12 t13 t14 t15 t16 t17 t18
1

−t12 t23 t24 t25 t26 t27 t28
2

−t13 −t23 t34 t35 t36 t37 t38
3

−t14 −t24 −t34 t45 t46 t47 t48
4

−t15 −t25 −t35 −t45 t56 t57 t58
5

−t16 −t26 −t36 −t46 −t56 t67 t68
6

−t17 −t27 −t37 −t47 −t57 −t67 t78
7

−t18 −t28 −t38 −t48 −t58 −t68 −t78
8

1 2 3 4 5 6 7 8

Figure 5: The red path of this figure is pc, and the blue path is pTc
.

Lemma 4. Let p be a path, and let pT be the transpose. Let v1 and vn be the first and last vertices. Let vk be the first
vertex of p with degree 4 where p turns. We write

p = p1 ◦ p2 ◦ p3

where p1 : v1 → vk, p2 : vk → −vk, p3 : −vk → vn. Then let

p′ = pT3 ◦ p2 ◦ pT1 .

Then w(p) ≡ w(p′).

Proof. Note that
w(p) = w(p1)w(vk)w(p2)w(−vk)w(p3).

Obviously w(p2) = w(p2). By Lemma 1 w(p1) ≡ w(pT1 ) and w(p3) ≡ w(pT3 ). Note that p′ ≡ p, so vk and −vk
also have degree 4 in E(p′)

⋃
E(p′T ). Note that since p turned at vk, p′ must not turn at vk. Then by Lemma

3, p′ does not turn at vk or −vk, in which case w(vk) = w(−vk) = 1.

Corollary 1. For any path p, w(p) ≡ w(pc), where pc is the canonical path of p.

Theorem 2. Let p1, p2 be paths. Then, p1 ≡p p2 if and only if w(p1) ≡w w(p2).

Proof. Let p1, p2 be paths such that p1 ≡ p2. Then w(p1) ≡ w(pc) ≡ w(p2) by Corollary 1.
Let p1, p2 be paths such that p1 6≡ p2. Then let p1c and p2c be their associated canonical paths. Then p1c 6≡ p2c .
By Lemma 2, any elements of the quantum torus that cancel out in the weight of a path p are the image of
a vertex with degree 4 in E(p)

⋃
E(pT ), and by definition, a canonical path has no turns at vertices with

degree 4 in E(p)
⋃
E(pT ). Thus can be no cancellations in the weight of the canonical path. Therefore if

p1c 6≡ p2c , then w(p1c) 6≡ w(p2c), so
w(p1) ≡ p1c 6≡ p2c ≡ p2.

Corollary 2. Let p1, p2, q1, q2 be some paths, such that w(p1)w(q1) ≡w w(p2)w(q2). This implies,
E(p1) ∪ E(q1) ∪ E(pT1 ) ∪ E(qT1 ) = E(p2) ∪ E(q2) ∪ E(pT2 ) ∪ E(qT2 ).

7



4.2 Transpose Disjoint Paths

Definition 13. Let p be a path, such that p ∪ pT 6= ∅. Let v1 be the first vertex of p and vn be the last. Let
vk be the last intersection of p and pT above the diagonal and vTk the first intersection of p and pT after the
diagonal. We write p = p1 ◦ p2 ◦ p3, where p1 : v1 → vk, p2 : vk → vTk , p3 : vTk → vn. Then, set

τ(p) = p1 ◦ pT2 ◦ p3.

Proposition 1 (K. Casteels, 2016). If p : i→ j is transpose non-disjoint, then

w(p) + w(τ(p)) = 0.

Thus, we only consider transpose disjoint paths.

5 Guide to the Code

Below we describe the Mathematica code written to aid our research. Helper functions not intended to be
used by a human are omitted.

5.1 General Functions

To aid our research, we wrote extensive code in Mathematica to generate examples. General functions for
working with quantum matrices and quantum skew-symmetric matrices include the following:

Function 1. xyPath[{x,y,m,n}]

xyPath generates the set of paths P : i → j for a given (i, j) on an m × n grid. Paths are represented
as a list of coordinates, where each coordinate is a two element list. Note that even when we work with
skew-symmetric quantum matrices, the coordinates will be labeled by their location on the grid. (In the
code we treat paths for both models as the same. Differences between the models will be addressed when
we work with the path weights).

Example 2. xyPath[{1,1,2,2}] would return the two paths drawn in Figure 1 in the following nested list:

{{{1, 2}, {2, 2}, {2, 1}}, {{1, 2}, {1, 1}, {2, 1}}}

Function 2. translateTurn[{vertex, turnType}]
translateTurn returns the weight of a turn in a path for the quantum matrices path model. The input
”vertex” is a coordinate of the form {i, j}. If there is a down turn at {i, j}, then t(i,j) is formatted as

Subscript[Superscript[t, 1], {i, j}]

t−1(i,j) is formatted as

Subscript[Superscript[t, -1], {i, j}]

Mathematica treats the outputted string t1{i,j} as a nested list, such that the structure is equivalent to

{{t, 1}, {i, j}}

To retrieve either the exponent or the subscript, you would use the normal list access methods.

Function 3. translateSkewTurn[{vertex, turnType}]
translateSkewTurn returns the weight of a turn in a path for the quantum skew-symmetric matrices path
model. Unlike translateTurn, the output is a list instead of a string. The input ”vertex” should be the
coordinate of the turn, and ”turnType” is specified as in translateTurn.
If i < j then the output is

8



{translateTurn[{{i, j}, turnType}]}

if i > j then the output is

{”-” , translateTurn[{{j, i}, turnType}]}

Function 4. pathToMonomial[path],skewPathToMonomial[path]
pathToMonomial outputs the path weight of a path according to the quantum matrices path model. skew-
PathToMonomial outputs the path weight of a path according to the quantum skew-symmetric matrices
path model.

Function 5. sortMonomial[monomial]
sortMonomial takes a path weight outputted by pathtoMonomial or skewPathtoMonomial and does the
following:

• Cancels out negatives

• Puts the monomial in lexicographic order

• Cancels out terms

The output is a list of terms formatted with Row[]. To retrieve the list use [[1]]. For example, if the output is

q1t1{1,3}t
−1
{2,3}t

1
{2,5}

then
q1t1{1,3}t

−1
{2,3}t

1
{2,5}[[1]] gives {q1, t1{1,3}, t

−1
{2,3}, t

1
{2,5}}

The first entry of the list will always be qk for some k ∈ Z. If the weight has no q-coefficient in lexico-
graphic order then the first entry will just be q0. The q-coefficient is formatted as

Superscript[q,k]

To access the value k, you would type qk[[2]].

Function 6. matrixTerm[{i,j,m,n}]
Outputs a sum of path weights associated with an entry x(i,j) of the matrix of generators of quantum
matrices. All of the summands will be in lexicographic order as outputted by sortMonomial.

Function 7. skewMatrixTerm[{i,j,m,n}]
Outputs a sum of path weights associated with an entry x(i,j) of the matrix of generators of quantum skew-
symmetric matrices. All of the summands will be in lexicographic order as outputted by sortMonomial.

Function 8. matrix[{m,n}]
Outputs the matrix of generators for quantum matrices according to the corresponding path model.

Function 9. skewMatrix[{m,n}]
Outputs the matrix of generators for quantum skew-symmetric matrices according to the corresponding
path model.

5.2 Elements of the Double Sum

To work on our specific problem, we wrote functions to work on the product of path weights in the dou-
ble sum. We exclude paths that are non transpose disjoint and paths that cross the diagonal horizontally
and their corresponding path weights from the outputs of our functions, since those path weights end up
cancelling out in the double sum.

9



Function 10. distributeWeightSums[{i,j,k,l,m,n}]
Distribute weight sums returns a Mathematica association. For each p : i → j and q : k → l, w(p)w(q) put
into lexicographic order is a key in the association, such that the value associated with the key is

{{w(p1), w(q1)}, {w(p2), w(q2)}, . . . }

such that
w(pi)w(qi) = w(p)w(q)

for all i. The weights in the value are in their original order, so that one may use origTermsToPath to retrieve
the paths that they correspond to.

Function 11. origTermsToPath[listOfVertexWeights]
Takes a list of a vertex weights and outputs the corresponding path. Note that the vertex weights must be in
the original order. Also, the input does not match the output of pathToMonomial. When entering a mono-
mial that is formatted as a string, such as the output of pathToMonomial, accessing the first element of the
monomial as if it were a list gives you the list of terms, which you can use as input for origTermsToPath.

Function 12. findMatchingPaths[{i,j,k,l,m,n}]
Find matching paths returns a Mathematica association. Like distribute weight sums, the keys arew(p1)w(q1)
in lexicographic order for each p1 : i → j and q1 : k → l. The value associated with the key is q−1w(p)w(q)
put into lexicographic order. This function is designed to be used in conjunction with distributeWeightSums
to retrieve pairs of paths that ”map” to one another.

Function 13. pathPairVariations[{path1, path2}]
Given a path pair, outputs the set of path pairs obtained from switching segments of the pair between their
intersections.

Function 14. switchWithTranspose[{path1,path2}]
Given a path pair, outputs the set of path pairs obtained from switching segments of path1 with the trans-
pose of path2 and switching segments of path2 with the transpose of path1.

5.3 Plotting Paths

We also include the following functions to plot relevant paths:

Function 15. generateGrid[n]
Generates the Graphics directives for a skew-symmetric grid.

Function 16. plotPathFactors[{product, assoc,size}]
Given the association outputted by distributeWeightSums and a key (product of weights) from that associ-
ation, plots the corresponding two path weights.

Function 17. plotPair[{{product1, assoc1},{product2, assoc2}, size}]
Given two associations outputted by distributeWeightSums and keys from that association, plots each pair
of path weights side by side.

Function 18. makePicture[{path1, size}], makePicture[{path1,path2, size}]
makePicture plots one or two paths on the same grid, and adds the transpose(s) to the picture.

6 Future Work

Given a commutation relation between any two generators of the algebra of quantum skew-symmetric ma-
trices, we conjecture that the corresponding generators of the subalgebra of the quantum skew-symmetric
torus generated by our path model share this same commutation relation. Future work involves identifying
this map, as well as identifying path models for other quantized algebras.

10



Acknowledgments

This research was supported by funds from the National Science Foundation. The authors thank their
mentor, Karel Casteels.

References
[1] K. Casteels, Quantum Matrices by Paths, Algebra Number Theory 8 (2014), 1857-1912. ↑1

[2] Mitsuhiro Takeuchi and Bernd Strüber, A Short Course on Quantum Matrices (2002). ↑
[3] K. A. Brown and K. R. Goodearl, Lectures on Algebraic Quantum Groups, 2002. ↑

11


	Introduction
	Background
	The Path Model
	Embedding Quantum Skew-Symmetric Matrices

	Classifying Paths
	Equivalence Classes on Paths and Path Weights
	Transpose Disjoint Paths

	Guide to the Code
	General Functions
	Elements of the Double Sum
	Plotting Paths

	Future Work

