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Abstract. In this paper the author examines Casteels’ path model for H-prime ideals in

quantum matrix algebras, introduces a graph theoretic analogue of polynormality and gives a

new proofof the Goodearl-Lenagan polynormality conjecture for the algebras Oq(M2,N (K)).

1. Introduction

In recent decades it has been of much interest in the fields of mathematical

physics and non-commutative geometry to study what are known as defor-

mations of familiar algebraic objects. Perhaps the simplest example of this

phenomenon is the idea of quasi-commuting variables. Two elements x, y of

some algebra are said to q-commute if xy = qyx where q is some scalar. For

instance one can define an algebra over Q with generators x, y subject only

to the relation that xy = −yx. This can be viewed as a deformation of the

usual ring of rational two variable polynomials.

One would like to understand the structural changes that are made to

algebras upon undergoing a deformation. The standard way to do this is to

study a topological space associated with the new algebra called the spectrum

given the so called Zariski topology. Within the field of classical commutative

algebraic geometry, the spectrum of the coordinate ring of an algebraic variety

in some sense models the same structure as the variety itself. This duality is

the motivation behind non-commutative geometry where one in part studies

the spectra of algebras as non-commutative versions of familiar objects like

algebraic varieties.
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Recently, there have arisen new methods of study in this front based around

the links between combinatorics and algebra. Some of those methods like the

one which will be elaborated upon below, make use of graph theoretic con-

cepts to explain both commutative and non-commutative phenomena. One

highly successful example of this idea is Casteels’ model for Quantum Matri-

ces. This model helped to prove many results about the structure of special

prime ideals in quantum matrix algebras called H-primes but did not imme-

diately yield a combinatorial proof of the Goodearl-Lenagan polynormality

conjecture which was proven using Lie-algebraic methods by Milen Yakimov

in 2011. Here we give a combinatorial proof of the polynormality conjecture

in the subcase for 2×N quantum matrix algebras and introduce a dual notion

of polynormality for digraphs.

2. Generalities on Quantum Matrix Algebras

Let K be a field. For the remainder of this paper fix a scalar q which

is transcendental over K. The following is a list of relevant definitions for a

problem which can only be stated after a sufficient coverage of certain details.

For n,m ∈ N define the coordinate ring of n-by-m quantum matrices, notated

as Oq(Mn,m(K)), to be the K-algebra with matrix of generators

M =


X11 X12 X13 . . . X1m

X21 X22 X23 . . . X2m
...

...
... . . . ...

Xn1 Xn2 Xn3 . . . Xnm


subject to the relation that if [

a b

c d

]
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is any 2 by 2 submatrix of M then

(1) ab = qba

(2) ac = qca

(3) bd = qdb

(4) cd = qdc

(5) bc = cb

(6) ad− da = q̂bc

where the notation q̂ = q − q−1 is typically used for convenience.

One can see that variables in this algebra quasi commute along rows and

columns up to q. This algebra is a deformation of the usually commutative

coordinate ring of n by m matrices with coefficients in K. One can recover

the commutative version through a sufficient localization and quotient but we

will be interested in the more general non-commutative case. The quantum

matrix algebra is meant to be modeled after the way normal matrices work

but in a dual sense. The space of n-by-m matrices over a field has both

left and right actions on column vectors and row vectors respectively and

Oq(Mn,m(k)) has left and right coactions on similar spaces known as quantum

affine spaces. It is not immediately relevant here but for the interested reader,

for n = m, Oq(Mn,m(k)) admits a natural bialgebra structure with counit

which annihilates all but the diagonal of M (which is mapped to 1) and

coproduct given by

∆(Xij) =
n∑
k=1

Xik ⊗Xkj.

We will need the following class of special elements of Oq(Mn,m(K)). Given

two sets I ⊂ {1, ..., n} and J ⊂ {1, ...,m} with |I| = |J | = r define a quantum
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minor [I|J ] by

[I|J ] =
∑
σ∈Sr

(−q)L(σ)Xi1,jσ(1) · · ·Xir,jσ(r).

A prime ideal P inOq(Mn,m(K)) is an H-prime ideal iff for all γ = (α1, ..., αn, β1, ..., βm)

the map defined by hγ(Xij) = αiβjXij fixes P i.e. hγ(P ) = P .

3. Path Model

What follows now is a brief outline of Casteels’ model for H-prime ideals

For our purposes an n by m grid graph, Gn,m is the directed graph with

vertices {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {v1, ..., vn} ∪ {w1, ..., wm} with

directed edges

• (i, j)→ (i, j − 1) for j 6= 1

• (i, j)→ (i− 1, j) for i 6= 1

• vi → (i,m)

• (n, j)→ wj

Here is a picture of the graph G4,4

v4

v3

v2

v1

w1 w4w3w2
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A Cauchon diagram on an n by m rectangular array is a subset of squares

S such that for all (i, j) ∈ S at least one of the following holds:

• i = 1

• j = 1

• (i− 1, j) ∈ S
• (i, j − 1) ∈ S.

As an example consider the simple 4× 4 Cauchon diagram

D = {(1, 2), (2, 1), (2, 2), (3, 2), (4, 2), (2, 3), (2, 4)}.

The importance of Cauchon diagrams in this context comes from a theorem

of Casteels (4.20, [1]) that shows any H-prime ideal of Oq(Mn,m(K)) will be

generated from a Cauchon diagram in the following sense:

• Pick any n by m Cauchon diagram

• Alter the n by m grid graph Gn,m by removing all vertices whose cor-

responding square is in the Cauchon diagram and extend edges across

the removed vertices to reconnect the graph.

• For a set of sources I and a set of sinks J both with the same size,

consider the set of vertex disjoint path systems from I to J in this new

graph. Explicitly this means that if one enumerates both I and J in

increasing order say I = {i1, ..., ir}, J = {j1, ..., jr}, consider only the

collections of dipaths in this altered grid graph p1 : vi1 → wj1, ... ,

pr : vir → wjr such that no two paths meet at any vertex.

• If there does not exist such a path system then add the minor [I|J ] to

a list
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• Continue this process for all possible I and J.

• The ideal generated by all quantum minors of the form [I|J ] found in

the list made previously will be an H-prime

Now we move closer to the problem at hand. An element x ∈ A is normal

if xA = Ax. Given an ideal I of A, x is normal modI if x + I is normal in

A/I. For instance, in Oq(Mn,m(k)), the elements Xn1 and X1m are always

normal.

A useful fact about normality which is essential to later arguments is the

following:

Prop.

Suppose A is an algebra over a field with a finite generating set X =

{x1, ..., xn} and y ∈ A. If there exist nonzero scalars r1, ..., rn such that

yxi = rixiy for all i then y is normal in A.

proof: First let w = xi1 . . . xim be a string of generators. Then

yw = yxi1 . . . xim = ri1xi1yxi2 . . . xim = ... = ri1 . . . rimwy.

Denote by r(w) the scalar ri1 . . . rim. Since X is a generating set for A, an

arbitrary element of A is given by b =
∑

i αiwi where α′s are scalars, the w′s

are strings in the generators from X and the sum is over a finite list of terms.

Then

yb =
∑
i

αiywi =
∑
i

αir(wi)wiy = (
∑
i

αir(wi)wi)y.
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Hence, yA ⊂ Ay. To see this in fact yA = Ay take an arbitrary element of

Ay say cy =
∑

i βiviy and consider b :=
∑

i
βi
r(vi)

vi. The above calculation

shows that yb = cy. �

For the heart of matter we need the next definition which extends the idea

of normal elements. A sequence of elements x1, ..., xn in A is polynormal if

x1 is normal in A and for all i > 1, xi+1 is normal mod < x1, ..., xn >.

For an example take the sequence (ad − qbc, a) in Oq(M2,2(K)). It is

a classical result that the quantum determinant ad − qbc is in the center

of Oq(M2,2(k)) and not hard to show by hand. Thus it is a normal ele-

ment. Now by the proposition above it suffices to show that there are scalars

rb, rc, rd such that ab = rbba+ < ad − qbc >, ac = rcca+ < ad − qbc > and

ad = rdda+ < ad− qbc >. By the construction of this algebra we know that

ab = qba and ac = qca so setting ra = rc = q works. For d notice that since

ad = da+ q̂bc = da+(q−q−1)bc, ad−qbc = da−q−1bc so that qda = −bc+ <

ad − qbc >. But this means that ad − qbc = ad + q2da+ < ad − qbc > so

rd = −q2 works. Thus a is normal mod < ad − qbc > and the sequence is

polynormal.

We can now state the problem of interest.

Main Problem: Given any H-prime ideal P, prove that there is a polynor-

mal sequence of quantum minors that generates P.
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It is crucial to note here as in the introduction that the above problem was

solved in 2011 by Milen Yakimov [2]. Here a different approach to that of

Yakimov is taken to approach this problem.

4. Polynormality in Digraphs

To aid in the discussion of polynormality we introduce a helpful combina-

torial version of this algebraic idea. Let S be a set and A1, ..., An nonempty

subsets of S. Let G be a digraph on a vertex set which is a subset of A1×...×An

with natural projection maps π1, ..., πn.

Pick any i.

• Given B ⊆ Ai and m ∈ Ai we say that m is normal mod B in G if

either m ∈ B or for all v′ → v in G with πi(v) = m we have that

{π1(v′), π2(v′), ..., πn(v′)} ∩B 6= ∅.

• If m ∈ Ai is normal mod ∅ (i.e. every preimage vertex of m in G is a

source) then we call m normal in G.

• We say that a sequence m1, ...,mr in Ai is polynormal if m1 is normal

mod ∅ and for all j we have mj+1 is normal mod {m1, ...,mj}.
• If there is an ordering of Ai that produces a polynormal sequence then

say that G is polynormal with respect to Ai at the coordinate i (to avoid

any confusion arising from the sets not necessarily being disjoint).

• If G is polynormal with respect to Ai for each i say that G itself is

polynormal.

Note that in the case of just one set ( n = 1 ) asking if G is polynormal

with respect to A1 we get an interesting problem asking whether or not G can

be sequentially generated from a sequence of vertices where each consecutive
8



vertex has all of its in-going neighbors in the previous set. For our purposes

here we will only use two sets i.e. n = 2.

Now let A be an algebra over a field K and suppose A is finitely generated

so that A has some finite generating set X = {x1, ..., xn}. Let S0 ⊂ S be

finite nonempty subsets of nonzero elements of A. Suppose that for every

xi ∈ X and m ∈ S0 there exists some scalar αm,i 6= 0 and w
(i)
b,m,xi

∈ A for

b ∈ S \ {m} such that

xim− αm,imxi =
∑

b∈S\{m}

(w
(1)
b,m,xi

b+ bw
(2)
b,m,xi

)

i.e. xim − αm,imxi is in the ideal generated by S \ {m}. These choices of

scalars and elements of A may not be unique but choose some collection of

w′s that make the above true and let W be the set of all such w corresponding

to this choice. Define G to be a digraph with vertex set (W ∪X)×S with di-

rected edges given by (w
(j)
b,m,xi

, b)→ (xi,m) whenever w
(j)
b,m,xi

is nonzero. The

following is an immediate consequence of this construction:

Prop.

If G is polynormal with respect to S0, then S0 has a polynormal ordering in A.

proof:

Assume that G is polynormal with respect to S0. Suppose m1, ...,mn is a

polynormal ordering of S0 in the graph theoretic sense. Then there are no

arrows of the form (w
(j)
b,m1,xk

, b) → (xk,m1) for any k and j. Hence, each

w
(j)
b,m1,xk

is in fact 0 and thus for all k xkm1 = αm1,km1xk. This implies that

m1 is normal in A. Now proceed inductively and assume that the subsequence
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m1, ...,mr−1 is polynormal in A. We know that for every t

xtmr − αmr,tmrxt =
∑

b∈S\{mr}

(w
(1)
b,mr,xt

b+ bw
(2)
b,mr,xt

)

but by the definition of polynormality for digraphs it follows that for all

nonzero w
(j)
b,mr,xt

appearing above (w
(j)
b,mr,xt

, b)→ (xt,mr) in G. By assumption,

mr is normal mod {m1, ...,mr−1} in G for every nonzero w
(j)
b,mr,xt

mentioned

before, either b ∈ {m1, ...,mr−1} or w
(j)
b,mr,xt

∈ {m1, ...,mr−1}. But then the

full sum ∑
b∈S\{mr}

(w
(1)
b,mr,xt

b+ bw
(2)
b,mr,xt

)

is in ideal generated by {m1, ...,mr−1} so

xtmr = αmr,tmrxt+ < m1, ...,mr−1 > .

Hence, mr is normal modulo < m1, ...,mr−1 > in A. By induction, m1, ...,mn

is a polynormal ordering of S0. �

5. 2×N Quantum Matrices

We will now use this concept in action to give a combinatorial proof of the

polynormality of H-prime ideals in 2×N quantum matrix algebras. To start

here is an explicit form of the commutation relations for the relevant 2×N
subcase.

Lemma

Suppose the following submatrix occurs in a quantum matrix algebra:[
a x b

c y d

]
Then the following hold:
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• x(ad− qbc) = q−1(ad− qbc)x+ q̂b(ay − qxc)
• y(ad− qbc) = q(ad− qbc)y − q̂c(xd− qby)

• a(xd− qby) = q(xd− qby)a

• c(xd− qby) = q(xd− qby)c

• b(ay − qxc) = q−1(ay − qxc)b
• d(ay − qxc) = q−1(ay − qxc)d

proof: These are a direct consequence of the commutation relations for

quantum minors due to Goodearl [3]. However, one sample calculation is

written below to give the reader a feel for working with quantum matrices:

x(ad− qbc) = xad− qxbc = q−1axd− q2bxc

= q−1a(dx+ q̂by)− q2bcx

= q−1adx+ q−1q̂aby − q2bcx

= q−1adx+ q̂bay − q2bcx

= q−1adx− bcx+ qbay − q−1bay + bxc− q2bxc

= q−1adx− bcx+ (q − q−1)bay − q(q − q−1)bxc

= q−1(ad− qbc)x+ q̂b(ay − qxc).

For a 2 by N Cauchon Diagram defineMD to be the set of quantum minors

contained in the H-prime generated from D. From these relations it is clear

that S0 = MD and S = {all quantum minors in Oq(M2,N(K)) } fit in the

scheme of the last section.
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Theorem

Fix a 2×N Cauchon diagram D. ThenMD will have a polynormal ordering

in G2,N .

Remark: As an immediate consequence this implies the polynormality con-

jecture for Oq(M2,N(K)).

Proof of the theorem:

We will be adding on a new column at each step of the induction process

and verifying that if the original Cauchon diagram yields a polynormal se-

quence of quantum minors then the new sequence will as well no matter the

choice of coloring of the new column.

Base Case: This is simply a 2x1 quantum affine plane so that this case is

trivial as G2,1 contains no edges.

Induction step: Fix a 2 × N Cauchon diagram D and suppose that the

corresponding set of minorsMD is normal in G2,N . Now form a 2× (N + 1)

Cauchon diagram by adding a column on the right of the previous diagram

and coloring the 2 new squares arbitrarily so that the new coloring on the

2 × (N + 1) grid is also a Cauchon diagram. Note that this will cover all

possible cases of 2× (N + 1) Cauchon diagrams as removing a column from

a Cauchon diagram always produces a new one with smaller size. Call this

new diagram D′ and write MD′ = (MD \M−) ∪M+ where M− is the set

of minors lost by adding a column and M+ is the set of new minors gained
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by adding a column. We must now deal first with M− to show that these

minors can be removed without much of a problem.

By the path model, we know that the only case where the new column

yields a nonempty M− is where the new column has no colored in squares.

Assume then that the new column has empty coloring. Then we know that

M− consists entirely of 1× 1 minors of the form X1j where 1 ≤ j ≤ N , the

square (2, j) is not in the original Cauchon diagram, and either j = N or

(1, i) is in the original Cauchon diagram D for all i>j. Now for all X1j ∈M−

we can safely remove X1j from the polynormal sequence (given to us by in-

duction) given that for every relevant outward neighbor of a preimage of X1j

in G2,N under either the πX or πM projection maps, (x,m) with m ∈ MD

say, for every minor m0 with (X1j,m0) → (x,m) or (m0, X1j) → (x,m), m0

is already in the list. This will end up being true! From the definition of

the graph G2,N we know that the only edges of interest i.e. outward edges

of preimages of some lost X1j are of the form (X1j, X2r) → (X1r, X2j) or

(X1j, [12|ks]) → (X1s, [12|kj]) with j>s>k and j>r. We can immediately

deal with the edges of the form (Xj, X2r) → (X1r, X2j) since if X1j is a lost

minor then there will be a path from 2 to j in the path model and hence X2j

will never have been in the sequence to begin with. We must deal with the

vertices of the form (X1j, [12|kj])→ (X1s, [12|ks]) with j>s>k recursively.

First let j0 be minimal such that X1j0 is lost. Then either (2, j0) is in D or

it is not in D. If it is in D then by the Cauchon property the whole bottom

row before j is in D. We will trivially be done in this case. If (2, j0) is not in

D then for any [12|kj0] appearing in the sequence we have that since (2, j0)

is not in D, there must necessarily not exist a path from 1 to k. Thus [12|ks]
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must be in the sequence somewhere. By the definition of the graph G2,N we

know that there will not be a sequence of vertices that starts at a preimage

of X1j to a preimage of [12|ks] under the πM map. Thus we can remove X1j0

from the list and simply rearrange to obtain a new polynormal sequence.

Now order the j such that X1j ∈ M− by j. Suppose by induction that for

all some n ≥ 0 that the sequence of old minors in MD can be rearranged in

a way such that after removing X1j0, ..., X1jn from the list, the result is still

polynormal. First the vertices of the form (X1jn+1
, X2r) → (X1r, X2jn+1

) are

dealt with in the same way as before for j0. As for the vertices of the form

(X1jn+1
, [12|ks])→ (X1s, [12|kjn+1]) there are two possibilities. Either k ≥ j0

or j0>k>jn+1. If k ≥ j0 then we can use the same argument as for j0. Now

suppose j0>k>jn+1. Then [12|ks] will already be in the sequence because the

top row in D is from N to j0. Thus we can reorder the original sequence and

remove the lost minors so that the result is still polynormal. Now we deal

with M+.

Suppose first that the new column has both squares not colored in. Then

the only minors gained are of the form [12|i, (N + 1)] for i such that there is

no path from 1 to i in the original diagram. These minors will be added to

the previously constructed sequence in the order of decreasing i so that the

first added is [12|N,N + 1] which is normal. At every step i the only new

minor we have to worry about already appearing in the sequence is [12|i, i+1]

which is normal and must appear in the sequence as there is no path from 1

to i in the original diagram.

Now suppose one of the squares of the new column is colored in so that

there are no lost minors. We just showed how to deal with all new minors
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of the form [12|i, N + 1] for i such that there is no path from 1 to i in the

original diagram. The only new minors are either X1,N+1 or X2,N+1. We can

always add X1,N+1 whenever we want because it is normal. For X2,N+1, we

work recursively using the Cauchon property. In the case when the minor

X2,N+1 is gained, the square (2, N + 1) must be colored in so that either the

full bottom row is colored in or (1, N + 1) is. In the first case we will trivially

be able to deal with X2,N+1 since minors of the form X2,j with j<N + 1 will

already occur in the sequence somewhere and by the definition of G2,N+1 that

is all we need. Otherwise, we can simply add the minor X1,N+1 which will

automatically cover all possible inward neighbors of preimages of X2,N+1 in

G2,N+1 so we are finished. �
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