
De Bruijn Sequences of Higher Dimension

Professor Karel Casteels, Ted Tinker

Abstract

De Bruijn sequences are objects from discrete math relating to combinatorics,
especially graph theory. This paper briefly reviews an algorithm for generating De
Bruijn sequences before discussing De Bruijn torii, which extend the properties
of De Bruijn sequences to two dimensions. De Bruijn sequences and torii
have applications in fields as diverse as “robotic vision, location detection, and
projective touch-screen displays”[3], “pseudo-random arrays, and the design of
mask configurations for spectrometers”[4], magic tricks, ATM cracking, DNA
sequencing, and digital paper[6].

This paper explores the complexity of De Bruijn torii through an example. We
then outline a construction method for producing objects exhibiting the De
Bruijn property in three dimensions. Then we extend the construction inductively
to prove that analogues to De Bruijn sequences exist for every finite number of
dimensions.

Finally we speculate at some implications of this finding on applications of De
Bruijn sequences and torii.

1

Contents

1 Introduction 3

2 Background 4
2.1 De Bruijn Sequences . 4
2.2 The Toroidal Array . 6
2.3 De Bruijn Arrays . 6

2.3.1 Sub-Matrix Mapping . 7
2.3.2 Hexadecimal Tiling . 8

3 Uniqueness of the Clockwise Array 9

4 Transitioning to Three Dimensions 18
4.1 Notation for 3D Arrays . 18
4.2 The Hyper-Toroidal Array . 19
4.3 Defining De Bruijn Arrays in Three Dimensions 19

5 Constructing 3D De Bruijn Arrays 20
5.1 A Layer-By-Layer Construction 20
5.2 Proving [F] is a 16× 4× 4 De Bruijn Array of b-cubes 21
5.3 Tools for Possible Alternative Constructions 29

6 Higher Dimensions 31
6.1 Constructing an (n+ 1)D De Bruijn Array 32
6.2 Proving that [M] satisfies Definition 13 33

7 Applications of De Bruijn Sequences and Torii 35
7.1 Mapping of Space and 3D Position Tracking 35
7.2 DNA Sequencing and Efficient Packing 35
7.3 Error Detection and Correction 36

8 Further Questions 38

9 Appendix 39
9.1 Encoding and Decoding messages in De Bruijn Arrays (Section

7.4.1) . 39

References 41

2

1 Introduction

De Bruijn sequences are objects from discrete math relating to combinatorics,
especially graph theory. An example of a De Bruijn sequence is the cycle
(000111212220101200202102211) which exhibits the property of containing every
3-length combination of the elements {0, 1, 2} precisely once, and nothing else:

Figure 1: A visual example of a De Bruijn sequence

De Bruijn torii extend the properties of De Bruijn sequences to two dimensions.
De Bruijn sequences and torii have applications in fields as diverse as “robotic
vision, location detection, and projective touch-screen displays”[3], “pseudo-
random arrays, and the design of mask configurations for spectrometers”[4],
magic tricks, ATM cracking, DNA sequencing, and digital paper[6].

We first propose to explore the complexity of De Bruijn torii through example.
Just as De Bruijn sequences are cyclic, De Bruijn torii will ‘loop’ horizontally
(first column to last) and vertically (first row to last); we will formalize the
notion of a matrix shaped like a torus to facilitate discussion of these objects.

Then we will outline a construction method for producing objects exhibiting
the De Bruijn property in three dimensions. The construction method will
suggest a lower bound for the quantity of these objects. Then we will extend the
construction inductively to prove that analogues to De Bruijn sequences exist
for every finite number of dimensions.

Finally we speculate at some implications of this finding on applications of De
Bruijn sequences and torii.

3

2 Background

2.1 De Bruijn Sequences

There are several conceptually equivalent notations for De Bruijn sequences, so
we here declare our own preferring clarity over compactness for consistency in
higher dimensions.

Definition 1. Given positive integers j and n, a De Bruijn sequence of j-length
n-sequences is a cycle containing precisely one copy of each j-length sequence of
the elements {0, 1, 2, . . . , n− 1} as a subsequence.

(000111212220101200202102211) is a De Bruijn sequence of 3-length 3-sequences.
Informally this means that when written in a circle and viewed three consecutive
digits at a time, every 3-length sequence of the elements in {0, 1, 2} will be
displayed precisely once in each rotation.

Figure 2: A visual example of a De Bruijn sequence (copied from figure 1)

On the next page, we demonstrate the method used to construct this De Bruijn
sequence of 3-length 3-sequences. Though we will not prove this here, the
methodology can be extended inductively to produce De Bruijn sequences for
any positive integers j and n[1].

4

Create a graph with nine nodes representing all length-2 sequences of elements
in {0, 1, 2}. For a, b ∈ {0, 1, 2}, connect node (ab) to nodes (b0), (b1), and (b2)
with arrows, or directed edges.

Figure 3: A graph describing possible relations between 2-length 3-sequences

The graph in figure 3 is balanced, meaning every node has exactly as many
arrows entering as exiting. Balanced graphs have at least one Eulerian path,
a circuit which follows each arrow precisely once. The graph’s Eulerian paths
represent De Bruijn sequences of 3-length 3-sequences. The red circuit in figure
4 below represents the De Bruijn sequence introduced in figure 1 and figure 2.

Figure 4: The Eulerian path representing (000111212220101200202102211)

Figure 3 is an example of a De Bruijn graph, and the theory behind such graphs
can be inductively extended to produce De Bruijn sequences for any positive
integers j and n[1].

The intuitive generalization of the cyclic De Bruijn sequence to two dimensions
requires the notion of a matrix shaped like a torus. We will call such an object
a toroidal array, using the word array to refer to multidimensional collections of
elements with the intention to later define hyper-toroidal arrays.

5

2.2 The Toroidal Array

For consistency with later sections and for intuitive use of the modulus function,
index rows and columns of matrices beginning from 0 rather than 1.

Definition 2. An m×n Toroidal Array is an equivalence class of m×n matrices
under the relation A ≈ B if A and B are both m× n matrices and there exist
integers x and y with 0 ≤ x < m and 0 ≤ y < n such that for all entries of A
and B, Ai,j = Bk,l with k = i+ x mod m and l = j + y mod n.

For example, suppose

A =

1 1 1
1 0 0
1 0 0

 , B =

1 0 0
1 0 0
1 1 1

 , C =

0 1 0
1 1 1
0 1 0

 .
A,B, and C are 3 × 3 matrices. Ai,j = Bk,l with k = i + 2 mod 3 and l = j,
while Ai,j = Ck,l with k = i+1 mod 3 and l = j+1 mod 3. Therefore A, B, and
C are equivalent as representations of the same 3× 3 toroidal array. Referring
to this toroidal array as [A], we may write A,B,C ∈ [A].

Definition 3. An m × n toroidal array [A] contains a k × l matrix B (with
k ≤ m, l ≤ n) if there exists a matrix A ∈ [A] so Ai,j

0≤i<k,
0≤j<l

= Bi,j . If A is the only

matrix satisfying this property in [A], then [A] contains B precisely once.

2.3 De Bruijn Arrays

Now that the necessary definitions are in place, we may focus on a specific,
well-known case of the 2D De Bruijn object to demonstrate their complexity.

Definition 4. A 4 × 4 De Bruijn array of 2 × 2 0-1 sub-matrices is a 4 × 4
toroidal array which contains every 2× 2 0-1 matrix precisely once.

Theorem 2 will prove the toroidal arrays represented in figure 5 are the only
4× 4 De Bruijn arrays of 2× 2 0-1 sub-matrices. For ease of reference in text
denote them the “Clockwise” and “Counterclockwise” arrays, respectively.


0 1 0 0
0 1 1 1
1 1 1 0
0 0 1 0




0 0 1 0
1 1 1 0
0 1 1 1
0 1 0 0


Figure 5: The Clockwise and Counterclockwise arrays

The challenge of proving the uniqueness of these arrays calls for new notation.

6

2.3.1 Sub-Matrix Mapping

Given m×n toroidal array [A] and any m×n matrix A ∈ [A], generate 2m× 2n
matrix B such that Bi,j

0≤i<2m,
0≤j<2n

= Ak,l, with

k =

⌈
i

2

⌉
mod m and l =

⌈
j

2

⌉
mod n.

Draw a line between every other column and every other row of B to group
its elements into 2× 2 boxes. The box of B’s elements in the xth row and yth

column of B’s boxes, with 0 ≤ x < m and 0 ≤ y < n, has the following form.

[
Ax,y Ax+1 mod m,y

Ax,y+1 mod n Ax+1 mod m,y+1 mod n

]
B therefore displays which 2×2 matrices [A] contains, even those not immediately
apparent in A. Denote this process A −−−→

map
B.

Theorem 1. The Clockwise and Counterclockwise arrays are 4× 4 De Bruijn
arrays of 2× 2 0-1 sub-matrices.

Proof. Find the sub-matrix map for any representative of the Clockwise array.


0 1 0 0
0 1 1 1
1 1 1 0
0 0 1 0

 −−−→
map

0 1 1 0 0 0 0 0
0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0
1 1 1 1 1 0 0 1

1 1 1 1 1 0 0 1
0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0
0 1 1 0 0 0 0 0

Figure 6: A map of the sub-matrices in A

Each of the sixteen boxes of elements holds a different 2× 2 combination of 0s
and 1s. Therefore, the Clockwise array contains each of the sixteen possible
2× 2 0-1 sub-matrices precisely once, satisfying Definition 4. The proof for the
Counterclockwise array is identical.

Even armed with sub-matrix mapping, it may be difficult to visually ensure
each of the sixteen possible 2× 2 0-1 sub-matrices is contained precisely once.
Hexadecimal tiling will assist in visual understanding.

7

2.3.2 Hexadecimal Tiling

In hexadecimal tiling, each 2× 2 0-1 matrix is assigned a symbol. These symbols
use black space to represent 0s and white space to represent 1s.

Matrix Symbol Matrix Symbol Matrix Symbol Matrix Symbol

0 0
0 0

1 1
1 1

1 0
0 1

0 1
1 0

1 1
0 0

1 0
1 0

0 0
1 1

0 1
0 1

1 0
0 0

0 1
0 0

0 0
1 0

0 0
0 1

0 1
1 1

1 0
1 1

1 1
0 1

1 1
1 0

Figure 7: The Hexadecimal Tiles

Given an m × n toroidal array [A] containing only 0s and 1s, generate its
hexadecimal tiling C by generating the sub-matrix map B for any A ∈ [A], then
replacing each box in B with the hexadecimal tile corresponding to the 2× 2
matrix it contains. Denote this process A −−−→

map
B −−→

hex
C.

Hex tiling the Clockwise array shows it contains precisely the 2× 2 0-1 matrices.


0 1 0 0
0 1 1 1
1 1 1 0
0 0 1 0

 −−−→
map

0 1 1 0 0 0 0 0
0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0
1 1 1 1 1 0 0 1

1 1 1 1 1 0 0 1
0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0
0 1 1 0 0 0 0 0

−−→
hex




Figure 8: Tiling the Clockwise Array

Neighboring tiles must match in color along shared edges and corners to corrobo-
rate the 0s and 1s their shared edges represent in [A]. This intuitive domino-like
structure is vital to next section’s proof that the Clockwise and Counterclockwise
arrays are the only 4× 4 De Bruijn arrays of 2× 2 0-1 sub-matrices.

This has been proven before[2], and it is not difficult for a computer to prove by
exhaustively checking each of the 216 possible 4× 4 binary matrices for the De
Bruijn property. Still, the laborious proof of Theorem 2 will demonstrate the
complexity which limits the construction of De Bruijn arrays.

8

3 Uniqueness of the Clockwise Array

Theorem 2. The Clockwise array and its transposition the Counterclockwise
array are the only 4× 4 De Bruijn arrays of 2× 2 0-1 sub-matrices.

Proof. For contradiction, suppose a 4×4 De Bruijn array of 2×2 0-1 sub-matrices
exists which is not the Clockwise or Counterclockwise array. This new toroidal

array contains

[
1 1
1 1

]
by Definition 4, so represent the array with

[
1 1
1 1

]
in its

center without any loss of generality. Convert to hexadecimal tiling, using ‘−’
for unknown entries.

− − − −
− 1 1 −
− 1 1 −
− − − −

 −−−→
map
−−→
hex


− − − −
− − −
− − − −
− − − −


Figure 9: A new De Bruijn array for contradiction

The hexadecimal tile cannot be directly beside in figure 9, nor diagonally
adjacent to it, because it does not have a white edge or corner. This leaves seven
spaces available for , marked with x in figure 10 below.

− − − x

− − x
− − − x
x x x x


Figure 10: Possible positions for the 2× 2 zero sub-matrix

Remark 1. Considering symmetry, there are only three unique cases for ’s
placement: Cases A, B, and C.

− − − −
− −
− − − −
− − − −

 ,

− − − −
− − −
− − −
− − − −

 ,

− − − −
− − −
− − − −
− − −


Figure 11: Case A, Case B, and Case C, respectively

Given a proof that Case A or Case B cannot lead to a new De Bruijn array, we
may reflect the steps of the proof over horizontal or diagonal axes as depicted
in figure 12 on the next page. Therefore all possibilities for ’s placement are
accounted for in only three cases.

9

Figure 12: All seven x marks in figure 10 are accounted for in only three cases

Let us begin straightaway with Case A. Placing in this position necessitates
placing and , the only tiles with white on one side and black on the other.


− − − −
0 1 1 0
0 1 1 0
− − − −

 −−−→
map

- - - - - - - -
0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0
- - - - - - - -

- - - - - - - -
- - - - - - - -

−−→
hex


− − − −

− − − −
− − − −



Figure 13: Case A

Only , , or could be directly above . Only , , or could be directly
below . With three possibilities above and below, there should be nine more
sub-cases to test. Luckily , , , , , and are reflections of one another, so
we may reduce this to four sub-cases: and ; and ; and ; or and .

We may not use above and below , because their combination would
produce another and this De Bruijn array must contain only one of each tile.
In figure 14 below, the contradiction is highlighted in red.


− 0 0 −
0 1 1 0

0 1 1 0

− 0 0 −

 −−−→
map

- 0 0 0 0 - - -
0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0
- 0 0 0 0 - - -

- 0 0 0 0 - - -

- 0 0 0 0 - - -

−−→
hex


− − −

− − −

− − −



Figure 14: Case A, Sub-case 1 of 4

10

Similarly, we may not use above and below , as this produces an extra .
The contradiction is highlighted in figure 15 below.


− 1 0 −
0 1 1 0

0 1 1 0

− 1 0 −

 −−−→
map

- 1 1 0 0 - - -
0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0
- 1 1 0 0 - - -

- 1 1 0 0 - - -

- 1 1 0 0 - - -

−−→
hex


− − −

− − −

− − −



Figure 15: Case A, Sub-case 2 of 4

above and below produces a more complicated contradiction.


− 1 0 −
0 1 1 0

0 1 1 0

− 0 1 ?

 −−−→
map

- 1 1 0 0 - - -

0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0

- 0 0 1 1 ? ? -

- 0 0 1 1 ? ? -
- 1 1 0 0 - - -

−−→
hex


− − −

− ? −
− − −



Figure 16: Case A, Sub-case 3 of 4

If the blue question mark in the leftmost matrix of figure 16 is 0, then the red
question mark in the hexadecimal tiling will be a copy of . If the blue question
mark is 1, then the red question mark will be a copy of . Either of these two
possibilities would be a contradiction, as both those tiles are already present
and highlighted red.

11

The final sub-case is above and below , pictured in figure 17 below.


− 0 0 −
0 1 1 0

0 1 1 0

? 1 0 ?

 −−−→
map

- 0 0 0 0 - - -
0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0

? 1 1 0 0 ? ? ?

? 1 1 0 0 ? ? ?

- 0 0 0 0 - - -

−−→
hex


− − −

− − −

− − −



Figure 17: Case A, Sub-case 4 of 4, Step 1

Because is already present in figure 17 (highlighted blue), the blue question
mark in the leftmost matrix must be 1 instead of 0. Because is already present
in figure 17 (highlighted red), the red question mark in the leftmost matrix
must be 1 instead of 0. These pigeonholed values create a duplicate copy of
highlighted red in figure 18 below.


− 0 0 −
0 1 1 0

0 1 1 0

1 1 0 1

 −−−→
map

- 0 0 0 0 - - -

0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0

1 1 1 0 0 1 1 1

1 1 1 0 0 1 1 1
- 0 0 0 0 - - -

−−→
hex


− − −

− − −



Figure 18: Case A, Sub-case 4 of 4, Step 2

Because the pigeonholed values create a second copy of , this cannot lead to a
De Bruijn array. Therefore, after carefully culling sub-cases by symmetry, Case
A has been eliminated and we move to Case B on the following page.

12


− − − −
− 1 1 −
0 1 1 0
0 − − 0

 −−−→
map

- - - - - - - -
- 1 1 1 1 - - -

- 1 1 1 1 - - -
0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0
0 - - - - 0 0 0

0 - - - - 0 0 0
- - - - - - - -

−−→
hex


− − − −
− − −
− − −
− − − −



Figure 19: Case B

Only three 2×2 sub-matrices could fit underneath : or , which are reflections
of one another, or . The contradiction in the case is immediate.


− − − −
− 1 1 −
0 1 1 0
0 0 0 0

 −−−→
map

- - - - - - - -
- 1 1 1 1 - - -

- 1 1 1 1 - - -
0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
- - - - - - - -

−−→
hex


− − − −
− − −

? ? ? ?



Figure 20: Case B, Sub-case 1 of 2

The bottom row of the leftmost matrix in figure 20 is entirely 0. Therefore
the red question mark tiles in the hexadecimal tiling must be an ordering of ,

, , and or else one of those tiles would be repeated, and the array would
fail Definition 4. Because has already been placed in figure 20, this forced
repetition of is a contradiction.

Now we test the sub-case (which symmetrically accounts for , as well).


− − − −
? 1 1 ?
0 1 1 0
0 1 0 0

 −−−→
map

- - - - - - - -

? 1 1 1 1 ? ? ?

? 1 1 1 1 ? ? ?
0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0

0 1 1 0 0 0 0 0

0 1 1 0 0 0 0 0
- - - - - - - -

−−→
hex


− − − −
− − −

− − − −



Figure 21: Case B, Sub-case 2 of 2, Step 1

13

Because is already present in figure 21 (highlighted red), the red question
mark in the leftmost matrix must be 1 instead of 0. Because is already present
in figure 21 (highlighted blue), the blue question mark in the leftmost matrix
must be 0 instead of 1.


− − − −
1 1 1 0
0 1 1 0
0 1 0 0

 −−−→
map

- - - - - - - -
1 1 1 1 1 0 0 1

1 1 1 1 1 0 0 1
0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0
0 1 1 0 0 0 0 0

0 1 1 0 0 0 0 0
- - - - - - - -

−−→
hex


− − − −

− − − −



Figure 22: Case B, Sub-case 2 of 2, Step 2

Each unfinished box in the sub-matrix map of figure 22 has a 1 in the bottom
row or a 0 in the top row. Therefore the tile , which is absent in figure 22,
cannot be correctly placed anywhere, so this cannot lead to a De Bruijn array.
Thus, Case B has been eliminated and we begin Case C.


0 − − 0
− 1 1 −
− 1 1 −
0 − − 0

 −−−→
map

0 - - - - 0 0 0
- 1 1 1 1 - - -

- 1 1 1 1 - - -
- 1 1 1 1 - - -

- 1 1 1 1 - - -
0 - - - - 0 0 0

0 - - - - 0 0 0
0 - - - - 0 0 0

−−→
hex


− − − −
− − −
− − − −
− − −



Figure 23: Case C

Just as in case A (see figure 13), there are four possibilities for the sub-matrices
above and below , accounting for symmetry: and , and , and , or
and . Using and results in immediate contradiction as we see in figure 24
on the following page.

14


0 0 0 0
− 1 1 −
− 1 1 −
0 0 0 0

 −−−→map

0 0 0 0 0 0 0 0
- 1 1 1 1 - - -

- 1 1 1 1 - - -
- 1 1 1 1 - - -

- 1 1 1 1 - - -
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−−→
hex


− − −
− − −
− − −



Figure 24: Case C, Sub-case 1 of 4

Figure 24 contains multiple copies of . A similar fault occurs with and .


0 1 0 0
− 1 1 −
− 1 1 −
0 1 0 0

 −−−→
map

0 1 1 0 0 0 0 0
- 1 1 1 1 - - -

- 1 1 1 1 - - -
- 1 1 1 1 - - -

- 1 1 1 1 - - -
0 1 1 0 0 0 0 0

0 1 1 0 0 0 0 0

0 1 1 0 0 0 0 0

−−→
hex


− − −
− − −
− − −



Figure 25: Case C, Sub-case 2 of 4

A similar contradiction occurs again with and .


0 0 0 0
− 1 1 −
− 1 1 −
0 1 0 0

 −−−→
map

0 0 0 0 0 0 0 0
- 1 1 1 1 - - -

- 1 1 1 1 - - -
- 1 1 1 1 - - -

- 1 1 1 1 - - -
0 1 1 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0

−−→
hex


− − −
− − −
− − −



Figure 26: Case C, Sub-case 3 of 4

The only remaining case, and , will require a Lemma. We begin on the
following page.

15


0 1 0 0
- 1 1 -
- 1 1 -
0 0 1 0

 −−−→
map

0 1 1 0 0 0 0 0
- 1 1 1 1 - - -

- 1 1 1 1 - - -
- 1 1 1 1 - - -

- 1 1 1 1 - - -
0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0
0 1 1 0 0 0 0 0

−−→
hex


− − −
− − ?

− − −



Figure 27: Case C, Sub-case 4 of 4, Step 1

The red question mark in the hexadecimal tiling of figure 27 may not repeat ,
, , , , , or . It may not be , because that forms the Clockwise array as

seen below in figure 28 below, contradicting our initial assumption.


0 1 0 0
0 1 1 1
1 1 1 0
0 0 1 0

 −−−→
map

0 1 1 0 0 0 0 0
0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0
1 1 1 1 1 0 0 1

1 1 1 1 1 0 0 1
0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0
0 1 1 0 0 0 0 0

−−→
hex




Figure 28: Case C, Sub-case 4, Step 2

A Lemma further removes , , , and from consideration.

Lemma 1. 4× 4 De Bruijn arrays of 2× 2 0-1 sub-matrices contain eight 0s.

Proof. Such a De Bruijn array [A] contains each hexadecimal tile precisely once.
represents no 0s in [A]’s sub-matrix map. , , , and represent one 0 each.

, , , , , and represent two 0s each. , , , and represent three 0s
each. represents four 0s in [A]’s sub-matrix map.

(1× 0) + (4× 1) + (6× 2) + (4× 3) + (1× 4) = 32 zeroes. [A]’s sub-matrix map
features four times as many 0s as [A] by construction, so [A] contains 32

4 = eight
0s. The remaining eight spaces are 1s.

The leftmost matrix in figure 27 includes six 0s and 1s. Lemma 1 implies the
red question mark in its hexadecimal tiling must therefore represent two 0s and
two 1s; it must be one of , , , or .

16

Replacing the red question mark with creates several contradictions, one of
which is highlighted in figure 29. (Using produces the same array, rotated.)


0 1 0 0
1 1 1 1

0 1 1 0

0 0 1 0

 −−−→
map
−−→
hex




Figure 29: Case C, Sub-case 4, Step 3

Replacing the red question mark with creates another contradiction. (Using
produces the same array, rotated.)


0 1 0 0
0 1 1 1
0 1 1 1
0 0 1 0

 −−−→
map
−−→
hex




Figure 30: Case C, Sub-case 4, Step 4

Thus, Case C only yields a De Bruijn array if it’s the Clockwise or Counter-
clockwise array, and the proof by contradiction is complete. Theorem 2 is
proven.

In the first half of this capstone project, we have proven 4 × 4 De Bruijn
arrays of 2× 2 0-1 sub-matrices exist, and the uniqueness of the Clockwise and
Counterclockwise arrays. This and more is already known[4].

In the second half, we will define and construct a 16× 4× 4 De Bruijn array of
2× 2× 2 0-1 sub-arrays. We will provide a lower bound for the quantity of these
objects, and inductively extend the construction to produce analogues to the
De Bruijn sequence in higher dimensions. We will also speculate at potential
applications for high-dimension De Bruijn arrays.

17

4 Transitioning to Three Dimensions

4.1 Notation for 3D Arrays

In this paper 3D arrays are presented as cross-sectional 2D matrices listed from
‘front’ to ‘back’ separated by crosses. For example, the 2× 2× 2 array with front
layer and back layer will be written as(

×
)
, or, equivalently,

([
0 1
1 1

]
×
[
1 1
1 1

])
.

If built out of black and white blocks (black for 0 and white for 1), (×)
would appear as in figure 31 below.

Figure 31: A 3D array expressed as layers

In discussing the position of 2× 2× 2 sub-arrays in 3D arrays, it will be helpful
to have less burdensome terminology.

Definition 5. A b-cube is a 2× 2× 2 array of binary elements, 0s and 1s.

Definition 6. The front, top, left element of a b-cube is its Handle. The position
of a b-cube in a 3D array is stated as the position of its handle in the format
(Layers back, Rows down, Columns right). As stated in Section 1.2, array indexes
begin at zero.

For example, the handle of the b-cube (×) is its 0, the black corner.

Discussion of De Bruijn arrays in three dimensions requires the notion of a 3D
array shaped like a hyper-torus embedded in 4D space. The following definitions
are direct extensions of those presented in sections 2.2 and 2.3 on page 6.

18

4.2 The Hyper-Toroidal Array

Definition 7. An m × n × p Hyper-toroidal Array is an equivalence class of
m × n × p arrays under the relation A ≈ B if A and B are both m × n × p
arrays and there exist non-negative integers x, y, and z with x < m, y < n,
z < p such that for all entries of A and B, Ai,j,k = Bd,e,f with d = i+ x mod n,
d = j + y mod m, and f = k + z mod p.

Definition 8. An m × n × p hyper-toroidal array [A] contains a d × e × f
array B (with d ≤ m, e ≤ n, and f ≤ p) if there exists an array A ∈ [A] so
Ai,j,k
0≤i<d,
0≤j<e,
0≤k<f

= Bi,j,k.

If A is the only array with this trait in [A], then [A] contains B precisely once.

With these definitions, we may explore De Bruijn arrays in three dimensions.

4.3 Defining De Bruijn Arrays in Three Dimensions

Definition 9. A 16×4×4 De Bruijn array of b-cubes is a 16×4×4 hyper-toroidal
array which contains each b-cube precisely once.

The position of a b-cube’s handle in a De Bruijn array [A] should be given with
respect to a stationary reference point so coordinates refer to the same location
for any representative A ∈ [A]. The following definition provides such a reference
point.

Definition 10. The Origin of a 16 × 4 × 4 De Bruijn array of b-cubes is the
Handle of (×), which Definition 12 guarantees is contained precisely once.
The origin defines the 0th layer, row, and column of the hyper-toroidal array.

Then, when a b-cube is said to be in position (x, y, z) of a 16× 4× 4 De Bruijn
array of b-cubes, we understand that the b-cube’s handle is x layers behind, y
rows beneath, and z columns right of the handle of (×). x, y, and z should
always be non-negative integers with x < 16 and y, z < 4.

These are the tools necessary to understand section 5.

19

5 Constructing 3D De Bruijn Arrays

This section outlines a construction method, proves objects created with that
method satisfy Definition 9, presents such an object, and enumerates its b-cubes
to prove the existence of 16× 4× 4 De Bruijn arrays of b-cubes.

5.1 A Layer-By-Layer Construction

Suppose [F] is a 16×4×4 hyper-toroidal array whose elements are yet unassigned.
Let F ∈ [F]. For 0 ≤ i ≤ 15 let the ith layer of F be denoted Fi.

Over the same range let xi and yi be integers in the set {0, 1, 2, 3} such that if
i 6= j, then at least one of xi 6= xj or yi 6= yj . Realize the set of (xi, yi) pairs
is an ordering of (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), . . . , (3, 3). Without
loss of generality because of [F]’s hyper-toroidal shape, reorder and relabel so
(x0, y0) = (0, 0).

Let F0 be the representative of the Clockwise array (or Counterclockwise array,
symmetrically) with in its top, left corner. Let F(1,j,k) = F(0,m,n) with
m = j − x0 mod 4 and n = k − y0 mod 4. (x0, y0) = (0, 0), so F1 = F0.


0 0 0 1
0 0 1 0
1 0 1 1
0 1 1 1

 ×


0 0 0 1
0 0 1 0
1 0 1 1
0 1 1 1




Figure 32: (F0 × F1)

b-cube Handle in [F] b-cube Handle b-cube Handle b-cube Handle(
×

)
(0, 0, 0)

(
×

)
(0, 0, 1)

(
×

)
(0, 0, 2)

(
×

)
(0, 0, 3)(

×
)

(0, 1, 0)
(
×

)
(0, 1, 1)

(
×

)
(0, 1, 2)

(
×

)
(0, 1, 3)(

×
)

(0, 2, 0)
(
×

)
(0, 2, 1)

(
×

)
(0, 2, 2)

(
×

)
(0, 2, 3)(

×
)

(0, 3, 0)
(
×

)
(0, 3, 1)

(
×

)
(0, 3, 2)

(
×

)
(0, 3, 3)

Figure 33: b-cubes contained in (F0 × F1) as layers of F ∈ [F]

For subsequent layers of F , let F(i+1,j,k) = F(i,m,n) with m = j − xi mod 4 and
n = k − yi mod 4. This ensures every layer of F is congruent to the Clockwise
array, but each pair of adjacent layers relates to a different pair (xi, yi). The
construction of F is complete. The next section proves [F] satisfies definition 9.

(x15, y15) is not used to generate a layer of F . Rather, Lemma 2 on the following
page shows F(0,j,k) = F(15,m,n) with m = j − x15 mod 4 and n = k − y15 mod 4.

20

5.2 Proving [F] is a 16× 4× 4 De Bruijn Array of b-cubes

Lemma 2 demonstrates the relationship between layer 0 and layer 15 of F ∈ [F].

Lemma 2. F(0,j,k) = F(15,m,n) with m = j − x15 mod 4 and n = k− y15 mod 4.

Proof. Since

F(1,j,k) = F(0,m,n) with m = j − x0 mod 4 and n = k − y0 mod 4, and

F(2,j,k) = F(1,m,n) with m = j − x1 mod 4 and n = k − y1 mod 4,

it follows that

F(2,j,k) = F(0,m,n) with m = j − (x0 + x1) mod 4, n = k − (y0 + y1) mod 4.

Extending this relation yields

(∗) F(15,j,k) = F(0,m,n) with m = j −
14∑
i=0

xi mod 4 and n = k −
14∑
i=0

yi mod 4.

Recall the set of all (xi, yi) pairs is an ordering of (0, 0), (0, 1), (0, 2), . . . , (3, 3),

so the sum
∑15

i=0 xi equals 4(0) + 4(1) + 4(2) + 4(3) = 24, which is congruent to

0 mod 4. Thus
∑14

i=0 xi = −x15 mod 4, and similarly for y15. So, (∗) implies
F(0,j,k) = F(15,m,n) with m = j − x15 mod 4 and n = k − y15 mod 4.

Now that the relationship between any two adjacent layers of [F] is guaranteed
to be unique, the following Lemmas assess the uniqueness of the b-cubes they
contain.

Lemma 3. The sixteen b-cubes contained in (Fi × Fi+1 mod 16) are distinct for
all 0 ≤ i ≤ 15.

Proof. Certainly sixteen b-cubes are contained, because each of the sixteen
elements of the layer Fi is the handle of one b-cube (including those b-cubes
‘split’ by an edge or corner as F is a representation of hyper-toroidal array [F]).

For contradiction assume that for some 0 ≤ i ≤ 15, (Fi × Fi+1 mod 16) contains
two copies of the b-cube (α × β), α and β being hexadecimal tiles. Then Fi

contains two copies of α, the front half of (α× β)—but Fi is congruent to the
Clockwise array, a 4× 4 De Bruijn array of 2× 2 0-1 sub-matrices. Containing
two copies of α would be a contradiction. The same goes for Fi+1 mod 16 and β.
Hence, (Fi × Fi+1 mod 16) cannot contain two copies of the same b-cube.

21

Lemma 4. For integers i and j with 0 ≤ i 6= j ≤ 15, (Fi × Fi+1 mod 16) and
(Fj × Fj+1 mod 16) share none of the b-cubes they contain.

Proof. Suppose (Fi × Fi+1 mod 16) contains the b-cube (α × β). Since Fj and
Fj+1 mod 16 are congruent to the Clockwise array, Fj contains α precisely once
and Fj+1 mod 16 contains β precisely once.

However, since i 6= j, Lemma 2 and the construction of F imply

F(i+1 mod 16,h,k) = F(i,m,n) with m = h− xi mod 4 and n = k − yi mod 4,

while

F(j+1 mod 16,h,k) = Fj,m,n with m = h− xj mod 4 and n = k − yj mod 4.

As i 6= j implies as least one of xi 6= xj or yi 6= yj , the alignment of α and β
in (Fi × Fi+1 mod 16) prohibits their alignment in (Fj × Fj+1 mod 16). The two
distinct pairs of layers can share no b-cubes.

For example, let (x1, y1) = (0, 1). This one-space offset from F1 to F2 ensures the
16 b-cubes in (F1 × F2) are different than the 16 b-cubes in (F0 × F1). Compare
figures 34 and 35 with figures 32 and 33.


0 0 0 1
0 0 1 0
1 0 1 1
0 1 1 1

 ×


0 0 0 1
0 0 1 0
1 0 1 1
0 1 1 1

 ×


1 0 0 0
0 0 0 1
1 1 0 1
1 0 1 1




Figure 34: (F0 × F1 × F2)

b-cube Handle in F b-cube Handle b-cube Handle b-cube Handle(
×

)
(1, 0, 0)

(
×

)
(1, 0, 1)

(
×

)
(1, 0, 2)

(
×

)
(1, 0, 3)(

×
)

(1, 1, 0)
(
×

)
(1, 1, 1)

(
×

)
(1, 1, 2)

(
×

)
(1, 1, 3)(

×
)

(1, 2, 0)
(
×

)
(1, 2, 1)

(
×

)
(1, 2, 2)

(
×

)
(1, 2, 3)(

×
)

(1, 3, 0)
(
×

)
(1, 3, 1)

(
×

)
(1, 3, 2)

(
×

)
(1, 3, 3)

Figure 35: b-cubes contained in (F1 × F2) as layers of F ∈ [F]

22

Theorem 3. [F] satisfies definition 9.

Proof. [F] is a 16× 4× 4 hyper-toroidal array, so it has the required dimensions
and shape.

Lemmas 3 and 4 guarantee 16 distinct b-cubes in each of 16 pairs of layers, so
there are 256 distinct b-cubes contained in [F]. There are exactly 28 = 256
possible b-cubes, so [F] must contain each b-cube precisely once. Thus, [F]
satisfies Definition 9.

This construction began with the choice of assigning F0 to be Clockwise or
Counterclockwise. Then we permuted the set of sixteen possible pairs of elements
from {0, 1, 2, 3} with (0, 0) first without loss of generality due to [F]’s hyper-
toroidal shape. Hence, there are at least

2× 15! ≈ 2.614× 1012

16×4×4 De Bruijn arrays of b-cubes. Perhaps more examples could be generated
using different construction techniques which did not rely on the Clockwise or
Counterclockwise shape (see section 5.3).

An example of an array built with this construction is written with = 0 and
= 1 on the next page in figure 36.

23

Layer 0 Layer 8

Offset

(1,3)

Layer 1 Layer 9

Offset Offset

(0,0) (2,0)

Layer 2 Layer 10

Offset Offset

(0,1) (2,1)

Layer 3 Layer 11

Offset Offset

(0,2) (2,2)

Layer 4 Layer 12

Offset Offset

(0,3) (2,3)

Layer 5 Layer 13

Offset Offset

(1,0) (3,0)

Layer 6 Layer 14

Offset Offset

(1,1) (3,1)

Layer 7 Layer 15

Offset Offset

(1,2) (3,2)

Figure 36: A 16× 4× 4 De Bruijn array of b-cubes
Note Layer 0 is Layer 15 offset by 3 rows and 3 columns, as stated in Lemma 2

24

Figure 37: The same array in Lego Brick

25

To show every b-cube is contained precisely once in the array represented in
figures 36 and 37, below find an exhaustive list of all 256 b-cubes by their handle.

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(0, 0, 0)

(
×

)
(3, 0, 3)

(
×

)
(12, 0, 2)

(
×

)
(13, 3, 2)(

×
)

(4, 0, 2)
(
×

)
(15, 1, 1)

(
×

)
(2, 0, 1)

(
×

)
(11, 2, 3)(

×
)

(1, 0, 0)
(
×

)
(8, 0, 0)

(
×

)
(5, 1, 2)

(
×

)
(14, 2, 3)(

×
)

(7, 3, 1)
(
×

)
(6, 2, 3)

(
×

)
(9, 2, 0)

(
×

)
(10, 0, 1)

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(1, 0, 1)

(
×

)
(0, 0, 1)

(
×

)
(13, 3, 3)

(
×

)
(14, 2, 0)(

×
)

(5, 1, 3)
(
×

)
(12, 0, 3)

(
×

)
(3, 0, 0)

(
×

)
(8, 0, 1)(

×
)

(2, 0, 2)
(
×

)
(9, 2, 1)

(
×

)
(6, 2, 0)

(
×

)
(15, 1, 2(

×
)

(4, 0, 3)
(
×

)
(7, 3, 2)

(
×

)
(10, 0, 2)

(
×

)
(11, 2, 0)

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(4, 1, 2)

(
×

)
(7, 0, 1)

(
×

)
(0, 1, 0)

(
×

)
(1, 1, 0)(

×
)

(8, 1, 10
(
×

)
(3, 1, 3)

(
×

)
(6, 3, 3)

(
×

)
(15, 2, 1)(

×
)

(5, 2, 2)
(
×

)
(12, 1, 2)

(
×

)
(9, 3, 0)

(
×

)
(2, 1, 1)(

×
)

(11, 3, 3)
(
×

)
(10, 1, 1)

(
×

)
(13, 0, 2)

(
×

)
(14, 3, 3)

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(7, 0, 0)

(
×

)
(6, 3, 2)

(
×

)
(3, 1, 2)

(
×

)
(0, 1, 3)(

×
)

(11, 3, 2)
(
×

)
(2, 1, 0)

(
×

)
(5, 2, 1)

(
×

)
(14, 3, 2)(

×
)

(4, 1, 1)
(
×

)
(15, 2, 0)

(
×

)
(8, 1, 3)

(
×

)
(1, 1, 3)(

×
)

(10, 1, 0)
(
×

)
(9, 3, 3)

(
×

)
(12, 1, 1)

(
×

)
(13, 0, 1)

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(12, 3, 2)

(
×

)
(15, 0, 1)

(
×

)
(8, 3, 0)

(
×

)
(9, 1, 0)(

×
)

(0, 3, 0)
(
×

)
(11, 1, 3)

(
×

)
(14, 1, 3)

(
×

)
(7, 2, 1)(

×
)

(13, 2, 2)
(
×

)
(4, 3, 2)

(
×

)
(1, 3, 0)

(
×

)
(10, 3, 1)(

×
)

(3, 3, 3)
(
×

)
(2, 3, 1)

(
×

)
(5, 0, 2)

(
×

)
(6, 1, 3)

26

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(5, 2, 3)

(
×

)
(4, 1, 3)

(
×

)
(1, 1, 1)

(
×

)
(2, 1, 2)(

×
)

(9, 3, 1)
(
×

)
(0, 1, 1)

(
×

)
(7, 0, 2)

(
×

)
(12, 1, 3)(

×
)

(6, 3, 0)
(
×

)
(13, 0, 3)

(
×

)
(10, 1, 2)

(
×

)
(3, 1, 0)(

×
)

(8, 1, 1)
(
×

)
(11, 3, 0)

(
×

)
(14, 3, 0)

(
×

)
(15, 2, 2)

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(2, 0, 3)

(
×

)
(1, 0, 2)

(
×

)
(14, 2, 1)

(
×

)
(15, 1, 3)(

×
)

(6, 2, 1)
(
×

)
(13, 3, 0)

(
×

)
(0, 0, 2)

(
×

)
(9, 2, 2)(

×
)

(3, 0, 1)
(
×

)
(10, 0, 3)

(
×

)
(7, 3, 3)

(
×

)
(12, 0, 0)(

×
)

(5, 1, 0)
(
×

)
(4, 0, 0)

(
×

)
(11, 2, 1)

(
×

)
(8, 0, 2)

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(9, 0, 1)

(
×

)
(8, 2, 1)

(
×

)
(5, 3, 3)

(
×

)
(6, 0, 0)(

×
)

(13, 1, 3)
(
×

)
(4, 2, 3)

(
×

)
(11, 0, 0)

(
×

)
(0, 2, 1)(

×
)

(10, 2, 2)
(
×

)
(1, 2, 1)

(
×

)
(14, 0, 0)

(
×

)
(7, 1, 2)(

×
)

(12, 2, 3)
(
×

)
(15, 3, 2)

(
×

)
(2, 2, 2)

(
×

)
(3, 2, 0)

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(3, 0, 2)

(
×

)
(2, 0, 0)

(
×

)
(15, 1, 0)

(
×

)
(12, 0, 1)(

×
)

(7, 3, 0)
(
×

)
(14, 2, 2)

(
×

)
(1, 0, 3)

(
×

)
(10, 0, 0)(

×
)

(0, 0, 3)
(
×

)
(11, 2, 2)

(
×

)
(4, 0, 1)

(
×

)
(13, 3, 1)(

×
)

(6, 2, 2)
(
×

)
(5, 1, 1)

(
×

)
(8, 0, 3)

(
×

)
(9, 2, 3)

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(8, 2, 0)

(
×

)
(11, 0, 3)

(
×

)
(4, 2, 2)

(
×

)
(5, 3, 2)(

×
)

(12, 2, 2)
(
×

)
(7, 1, 1)

(
×

)
(10, 2, 1)

(
×

)
(3, 2, 3)(

×
)

(9, 0, 0)
(
×

)
(0, 2, 0)

(
×

)
(13, 1, 2)

(
×

)
(6, 0, 3)(

×
)

(15, 3, 1)
(
×

)
(14, 0, 3)

(
×

)
(1, 2, 0)

(
×

)
(2, 2, 1)

27

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(15, 0, 0)

(
×

)
(14, 1, 2)

(
×

)
(11, 1, 2)

(
×

)
(8, 3, 3)(

×
)

(3, 3, 2)
(
×

)
(10, 3, 0)

(
×

)
(13, 2, 1)

(
×

)
(6, 1, 2)(

×
)

(12, 3, 1)
(
×

)
(7, 2, 0)

(
×

)
(0, 3, 3)

(
×

)
(9, 1, 3)(

×
)

(2, 3, 0)
(
×

)
(1, 3, 3)

(
×

)
(4, 3, 1)

(
×

)
(5, 0, 1)

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(6, 3, 1)

(
×

)
(5, 2, 0)

(
×

)
(2, 1, 3)

(
×

)
(3, 1, 1)(

×
)

(10, 1, 3)
(
×

)
(1, 1, 2)

(
×

)
(4, 1, 0)

(
×

)
(13, 0, 0)(

×
)

(7, 0, 3)
(
×

)
(14, 3, 1)

(
×

)
(11, 3, 1)

(
×

)
(0, 1, 2)(

×
)

(9, 3, 2)
(
×

)
(8, 1, 2)

(
×

)
(15, 2, 3)

(
×

)
(12, 1, 0)

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(13, 2, 3)

(
×

)
(12, 3, 3)

(
×

)
(9, 1, 1)

(
×

)
(10, 3, 2)(

×
)

(1, 3, 1)
(
×

)
(8, 3, 1)

(
×

)
(15, 0, 2)

(
×

)
(4, 3, 3)(

×
)

(14, 1, 0)
(
×

)
(5, 0, 3)

(
×

)
(2, 3, 2)

(
×

)
(11, 1, 0)(

×
)

(0, 3, 1)
(
×

)
(3, 3, 0)

(
×

)
(6, 1, 0)

(
×

)
(7, 2, 2)

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(14, 1, 1)

(
×

)
(13, 2, 0)

(
×

)
(10, 3, 3)

(
×

)
(11, 1, 1)(

×
)

(2, 3, 3)
(
×

)
(9, 1, 2)

(
×

)
(12, 3, 0)

(
×

)
(5, 0, 0)(

×
)

(15, 0, 3)
(
×

)
(6, 1, 1)

(
×

)
(3, 3, 1)

(
×

)
(8, 3, 2)(

×
)

(1, 3, 2)
(
×

)
(0, 3, 2)

(
×

)
(7, 2, 3)

(
×

)
(4, 3, 0)

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(11, 0, 2)

(
×

)
(10, 2, 0)

(
×

)
(7, 1, 0)

(
×

)
(4, 2, 1)(

×
)

(15, 3, 0)
(
×

)
(6, 0, 2)

(
×

)
(9, 0, 3)

(
×

)
(2, 2, 0)(

×
)

(8, 2, 3)
(
×

)
(3, 2, 2)

(
×

)
(12, 2, 1)

(
×

)
(5, 3, 1)(

×
)

(14, 0, 2)
(
×

)
(13, 1, 1)

(
×

)
(0, 2, 3)

(
×

)
(1, 2, 3)

b-cube Handle b-cube Handle b-cube Handle b-cube Handle(
×

)
(10, 2, 3)

(
×

)
(9, 0, 2)

(
×

)
(6, 0, 1)

(
×

)
(7, 1, 3)(

×
)

(14, 0, 1)
(
×

)
(5, 3, 0)

(
×

)
(8, 2, 2)

(
×

)
(1, 2, 2)(

×
)

(11, 0, 1)
(
×

)
(2, 2, 3)

(
×

)
(15, 3, 3)

(
×

)
(4, 2, 0)(

×
)

(13, 1, 0)
(
×

)
(12, 2, 0)

(
×

)
(3, 2, 1)

(
×

)
(0, 2, 2)

28

5.3 Tools for Possible Alternative Constructions

Could 16× 4× 4 De Bruijn arrays of b-cubes exist which are not generated by
the construction method outlined in section 5.1? The following representations
of 4× 4 toroidal arrays seem like prime candidates for study.

A =


0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

 −−−→
map

0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0
1 1 1 1 1 0 0 1

1 1 1 1 1 0 0 1
0 0 0 0 0 1 1 0

−−→
hex




Figure 38: Containing hex-tiles with an even number of zeroes

B =


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1

 −−−→
map
−−→
hex




Figure 39: The binary inverse of array A

C =


1 1 1 0
1 0 1 1
1 1 1 0
0 1 0 0

 −−−→
map

1 1 1 1 1 0 0 1
1 0 0 1 1 1 1 1

1 0 0 1 1 1 1 1
1 1 1 1 1 0 0 1

1 1 1 1 1 0 0 1
0 1 1 0 0 0 0 0

0 1 1 0 0 0 0 0
1 1 1 1 1 0 0 1

−−→
hex




Figure 40: Containing the hex-tiles with an odd number of zeroes

D =


0 0 0 1
0 1 0 0
0 0 0 1
1 0 1 1

 −−−→
map
−−→
hex




Figure 41: The binary inverse of array C

29

Four copies each of A, B, C, and D would contain the distribution of tiles needed
to make a 16 × 4 × 4 De Bruijn array of b-cubes. The apparent structure in
their design inspires hope that this may be possible, though we have found no
example.

An attempt to generate a 16 × 4 × 4 De Bruijn array of b-cubes using A, B,
C, and D might begin with the generation of a De Bruijn sequence of two-
length four-sequences whose alphabet is {A,B,C,D} rather than {0, 1, 2, 3}.
(AABBCCDDCBADBDAC) is an example. Perhaps four copies each of A, B,
C, and D could be compiled in that order with offsets in a manner similar to
the construction outlined in section 5.1.

30

6 Higher Dimensions

With an example of a 3D De Bruijn array, we could extend the technique outlined
in section 5.1 to generate a 4D De Bruijn array. We could then use that 4D
De Bruijn array to generate a 5D De Bruijn array, and so on. Let us extend
definitions from prior sections to n dimensions to facilitate a proof by induction.

Definition 11. In n dimensions, a Hyper-Toroidal Array is an equivalence class
of m1 ×m2 × · · · ×mn arrays under the relation A ≈ B if A and B are both
m1 × m2 × · · · × mn arrays and there exist integers x1, x2, . . . , xn ≥ 0 with
x1 < m1, x2 < m2, . . . , and xn < mn such that for all entries of A and B,
Aa1,a2,...,an

= Bb1,b2,...,bn with bi = ai + xi mod mi for all i from 1 to n.

Definition 12. An m1 ×m2 × · · · ×mn hyper-toroidal array [A] contains a
d1 × d2 × · · · × dn array B (with di ≤ mi for all i from 1 to n) if there exists an
A ∈ [A] so that Aij

∀ 1≤j≤n,
0≤i<dj

= Bij
∀ 1≤j≤n,
0≤i<dj

. In other words, B is in A’s former, front,

top, left, etcetera corner.

If A uniquely satisfies this property in [A], then [A] contains B precisely once.

Definition 13. A
(∏n−1

i=1 22
i
)
×4 De Bruijn array of binary 2n-cube sub-arrays

is a 22
n−1 × 22

n−2 × · · · × 22
2 × 22

1 × 4 hyper-toroidal array containing precisely
one of each 2× 2× · · · × 2︸ ︷︷ ︸

n

array of 0s and 1s.

Definition 14. The former, front, top, left, etcetera corner of a 2× 2× · · · × 2︸ ︷︷ ︸
n

array is its Handle.

Definition 15. The Origin of a
(∏n−1

i=1 22
i
)
× 4 De Bruijn array of binary

2n-cube sub-arrays is the handle of the binary 2× 2× · · · × 2︸ ︷︷ ︸
n

array of only zeroes,

which is contained precisely once by definition 13.

31

For n = 1 through 3, we know
(∏n−1

i=1 22
i
)
×4 De Bruijn arrays of binary 2n-cube

sub-arrays exist.

If n = 1,
(∏n−1

i=1 22
i
)
× 4 = 4. The four-length De Bruijn sequence (0011), which

contains as subsequences 00, 01, 10, and 11, is such a De Bruijn array.

If n = 2,
(∏n−1

i=1 22
i
)
× 4 = 4× 4. The Clockwise and Counterclockwise arrays,

which contain the 16 binary 2× 2 arrays, are such De Bruijn arrays.

If n = 3,
(∏n−1

i=1 22
i
)
× 4 = 16× 4× 4. The array in figure 36, which contains

the 256 b-cubes, is such a De Bruijn array. Having produced these initial cases,
move to the inductive step.

6.1 Constructing an (n+ 1)D De Bruijn Array

Presume [N] is a
(∏n−1

i=1 22
i
)
× 4 De Bruijn array of binary 2n-cube sub-arrays.

Let [M] be a 22
n × 22

n−1 ×· · ·× 22
2 × 22

1 × 4, n+ 1th dimensional hyper-toroidal
array whose elements are yet unassigned, and let M ∈ [M]. For all integers i
with 0 ≤ i ≤ 22

n − 1, denote by Mi the ith “Instance” in M .

Over the same index i define n-tuples (xi,1, xi,2, . . . , xi,n) so that 0 ≤ xi,n ≤ 3,

and for j from 1 to n− 1, xi,j is an integer with 0 ≤ xi,j ≤ 22
(n−j) − 1. Ensure

also that for each integer k with 0 ≤ i 6= k ≤ 22
n − 1, at least one of xi,1 6= xk,1,

xi,2 6= xk,2, . . . , or xi,n 6= xk,n. The cardinality of the set of all possible
(xi,1, xi,2, . . . , xi,n) is therefore equal to the product of N ’s dimensions.

22
n−1

× 22
n−2

× · · · × 22
2

× 22
1

× 4 = 22
n

.

So, the set of all n-tuples (xi,1, xi,2, . . . , xi,n) is an ordering of precisely one copy

each of (0, 0, . . . , 0), . . . , (22
n−1−1, 22

n−2−1, . . . , 22
1−1, 3). Reorder and relabel

so that (x0,1, x0,2, . . . , x0,n) = (0, 0, . . . , 0) without loss of generality due to [M]’s
hyper-toroidal shape.

Let M0 be congruent to the N ∈ [N] which has the origin in its former, front,
top, left, etcetera corner. For each subsequent instance of M , assign

Mi+1,a1,a2,...,an = Mi,b1,b2,...,bn

with bj = aj − xi,j mod 22
n−j

for j from 1 to n− 1, while bn = an − xi,n mod 4.

32

6.2 Proving that [M] satisfies Definition 13

Extending Lemma 2 from page 21 relates M0, M22n−1, and
(x22n−1,1, x22n−1,2, . . . , x22n−1,n).

Lemma 5. M0,a1,a2,...,an
= M22n−1,b1,b2,...,bn with bj = aj −x22n−1,j mod 22

n−j

for j from 1 to n− 1, and bn = an − x22n−1,n mod 4.

Proof. As in Lemma 2.

Now that the relationship between any two adjacent instances of [M] is guar-
anteed to be unique, the following Lemmas assess the uniqueness of the
2× 2× · · · × 2︸ ︷︷ ︸

n

arrays of 0s and 1s they contain.

Lemma 6. All 22
n

of the 2× 2× · · · × 2︸ ︷︷ ︸
n

arrays contained in (Mi×Mi+1 mod 22n)

are distinct for all 0 ≤ i ≤ 22
n − 1.

Proof. As in Lemma 3.

Lemma 7. For integers i, j with 0 ≤ i 6= j ≤ 22
n − 1, (Mi ×Mi+1 mod 22n) and

(Mj ,Mj+1 mod 22n) share none of the 2× 2× · · · × 2︸ ︷︷ ︸
n

arrays they contain.

Proof. As in Lemma 4.

Theorem 4. [M] satisfies definition 13 as a
(∏n

i=1 22
i
)
× 4 De Bruijn array

of binary 2n+1-cube sub-arrays.

Proof. [M] is a 22
n×22

n−1×· · ·×22
2×22

1×4, n+1th dimensional hyper-toroidal
array, so it has the size and shape dictated by Definition 13 using n+ 1 in place
of n.

Lemmas 6 and 7 guarantee 22
n

distinct 2× 2× · · · × 2︸ ︷︷ ︸
n

arrays of 0s and 1s in each

of its 22
n

pairs of instances, so there are 22
n×22

n

= 22
n+1

distinct 2× 2× · · · × 2︸ ︷︷ ︸
n+1

33

sub-arrays contained in [M]. Each space in the sub-array may be filled with

either 0 or 1, so there are exactly 22
n+1

possible 2× 2× · · · × 2︸ ︷︷ ︸
n+1

sub-arrays. [M]

must contain each one precisely once.

Having shown several base cases in lower dimensions, and using this as the
inductive step, we verify that 22

n−1 × 22
n−2 ×· · ·× 22

2 × 22
1 × 4 De Bruijn arrays

of binary 2n-cube sub-arrays exist for all n ∈ N. This specific case of the De
Bruijn sequence is generalizable to any finite number of dimensions.

In addition, the inductive nature of the construction implies a lower bound for

the quantity of
(∏n−1

i=1 22
i
)
×4 De Bruijn arrays of 2n-cube sub-arrays. Consider

that we found 2× 15! distinct 16× 4× 4 De Bruijn arrays of b-cubes in section
4.1. Using any of these examples as [N] in the inductive proof above with n = 3,

we may permute the set of all 3-tuples (xi,1, xi,2, xi,3) in (223 − 1)! ways with
(x0,1, x0,2, x0,3) = (0, 0, 0) without loss of generality. So there are at least

2× 15!× 255! ≈ 8.7636× 10516

distinct ways to construct [M], which has dimension n+ 1 = 4. Applying the
inductive step, for any n ≥ 3 we are guaranteed at least

2×

(
n∏

i=2

(22
i

− 1)!

)
(∏n−1

i=1 22
i
)
× 4 De Bruijn arrays of binary 2n-cube sub-arrays.

34

7 Applications of De Bruijn Sequences and Torii

7.1 Mapping of Space and 3D Position Tracking

Locating Patterns in the De Bruijn Torus notes the use of De Bruijn torii as a
means of locating position in 2D space[3]. For an abstract example, in a room
with a De Bruijn array printed on the floor, a robot could determine its position
by comparing the pattern on the floor beneath it to an internal map of the
room. This general concept is used to detect positions in space for projective
touchscreen displays and digital paper.

3D De Bruijn arrays expand the theoretical utility of the practice. Instead of a
robot confined to the floor, imagine a flying drone capable of movement in three
dimensions in a warehouse. We might suspend black and white markers in the
warehouse in the shape of F ∈ [F], any 16× 4× 4 De Bruijn array of b-cubes.
Then the drone could auto-self-locate by finding the pattern of the eight markers
surrounding it in an internal map of F .

Using the same reasoning one might imagine a 3D “touchscreen,” a holographic
3D De Bruijn array with which a person interacts using a stylus. The stylus
senses its location by detecting the combination of lights at its tip and finding
that combination uniquely in the De Bruijn array.

7.2 DNA Sequencing and Efficient Packing

In shotgun DNA sequencing and genome assembly, lengths of one-dimensional
genetic material are cut into pieces and the original DNA strand must be
reconstituted. One algorithmic solution to this problem supposes that out
of all the DNA strings obtainable by combining the pieces, the strings with
the least repetition are probably the most accurate recreations of the original
DNA. Applying this solution utilizes concepts from graph theory similar to the
construction of a De Bruin sequence outlined in section 1. The process of making
a De Bruijn sequence requires merging sequences of elements on their areas of
overlap, a useful tactic in DNA sequencing[8].

With analogues to De Bruijn sequences existent in any finite number of dimen-
sions, one might imagine an algorithm to combine multidimensional noise in a
compact way. The process of finding overlapping or shared regions in data to
merge the data in a maximally efficient space could be useful in any number of
dimensions.

35

7.3 Error Detection and Correction

If any single binary element of [F], a 16× 4× 4 De Bruijn array of b-cubes, were
to be inverted from a 0 to a 1 or vice versa, the properties of the De Bruijn array
could be used to detect the change and reverse it. Compare this to Hamming
Codes and error-detecting/correcting codes which ensure text messages are
correctly transmitted even with messy cell signals[5]. Before we list rules which
turn ‘wounded’ De Bruijn arrays into sudoku-like puzzles, we present an example
method for encoding short messages in 16× 4× 4 De Bruijn arrays of b-cubes.

As 241 = 2199023255552 < 2 × 15!, it should be possible to injectively map
41-bit strings onto 16 × 4 × 4 De Bruijn arrays of b-cubes (so that the arrays
could be translated back into the strings they represent). Using 256 bits to
represent 41 bits is inefficient, but if the De Bruijn array allows for powerful
enough data-restoration algorithms, it may be worth the extra storage costs.

For efficiency’s sake, the process of translating binary strings to arrays and
back should not take much computational time. The Appendix contains several
Python functions which perform the task of encoding and decoding messages
quickly using a binary tree ‘search’ algorithm, but only for binary strings of
length 35 instead of 41 because of its methodology. The following algorithm
describes the Python’s methodology:

Let B be a binary string with length 35. If the first digit of B is 0, we will
make [F] a 16 × 4 × 4 De Bruijn arrays of b-cubes in the manner specified in
section 5.1 using the Clockwise array. If the first digit of B is 1, we will use the
Counterclockwise array to construct [F]. Having made this decision, remove the
first element from B.

We assume the offset pair (0, 0) is first without loss of generality due to
[F]’s hyper-toroidal shape. Then make an ordered list of the unused pairs
(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), . . . , (3, 3) and call the list unusedPairs. Until
unusedPairs is empty, repeat the following task:

Divide unusedPairs into two halves in the middle, order-wise, including the
central element in the second half if there are an odd number of elements. If the
first digit of B is 0, focus on the first half of unusedPairs. If the first digit of B
is 1, focus on the second half. Split the specified half in half again and focus on
one half using the second digit of B, then split that half in half again, repeating
until the list in question has only one element in it. Remove that element and
use it to construct the next layer of [F]. Also remove the digits of B used to
select that element.

When B is empty, [F] will be a 16 × 4 × 4 De Bruijn array of b-cubes which
implicitly conveys B’s message to anyone who knows the order of the original
unusedPairs list.

36

For example, the phrase “Help!” in 7-bit ASCII is 1001000 1100101 1101100
1110000 0100001. Using Python functions from the appendix, makePermuta-
tion([1,0,0,1,0,0,0,1,1,0,0,1,0,1,1,1,0,1,1,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,1]) produces
[‘Counterclockwise’, (0, 0), (0, 3), (0, 1), (3, 1), (1, 2), (3, 3), (2, 0), (1, 0), (3,
0), (0, 2), (1, 1), (2, 3), (1, 3), (2, 1), (3, 2), (2, 2)], which describes a 16× 4× 4
De Bruijn array of b-cubes. Feeding that list into decodePermutation() produces
1001000 1100101 1101100 1110000 0100001, or “Help!” In this manner, short
messages can be stored in an error resistant format and later recovered.

If [F] is a De Bruijn array with form as described in Section 5.1, but some
elements are flipped, the following rules can help detect and correct the errors.

Rule 1. Every layer of [F] is the Clockwise or Counterclockwise array.

If we may determine whether [F] uses the Clockwise or Counterclockwise array,
this rule allows us to reform any wounded layer which still has a 2× 2 square
of 0s and 1s which is known to be correct (or, indeed, any shape and quantity
of correct elements that uniquely determines the placement of the Clockwise or
Counterclockwise array forming that layer).

As each layer is congruent to the Clockwise or Counterclockwise array, each
row and column of each layer of [F] must contain three 0s and a 1, or three
1s and a 0. This can help detect errors and potentially correct those errors by,
for example, inverting the element at the intersection of a row and a column in
violation of this rule.

Rule 2. [F] contains each b-cube precisely once.

This rule (from the definition 9) can fix wounded values using information
elsewhere in [F]. If, for s, t, u, v, w, x, y, z ∈ {0, 1}, [F] contains the b-cubes([

s t
u v

]
×
[
w x
y z

])
,

([
s t
u v

]
×
[
w x
y z

])
,

([
s t

1− u v

]
×
[
w x
y z

])
,

([
s t
u 1− v

]
×
[
w x
y z

])
,

([
s t
u v

]
×
[
1− w x
y z

])
,

([
s t
u v

]
×
[
w 1− x
y z

])
,

([
s t
u v

]
×
[
w x

1− y z

])
, and

([
s t
u v

]
×
[
w x
y 1− z

])
,

we might check if either of the duplicated copies of

([
s t
u v

]
×
[
w x
y z

])
should

actually be

([
s 1− t
u v

]
×
[
w x
y z

])
. Then, having confirmed a 2× 2 square of

elements on the layer containing errors, rule 1 corrects all errors on the layer.

37

Using these rules we turn wounded 16× 4× 4 De Bruijn arrays of b-cubes into
puzzles to be solved. In fact, if all elements are totally removed except for a
2 × 2 square of elements on each layer (so 75% of the data is lost) then if we
know whether [F] used Clockwise or Counterclockwise layers, the whole array
may be repaired using rule 1 alone.

8 Further Questions

• Are there 16× 4× 4 De Bruijn arrays of b-cubes which do not have the
form prescribed in section 5.1? We conjecture that there are in section 5.3.

• Can De Bruijn arrays of b-cubes have shape other than 16× 4× 4?

• Can stacking De Bruijn tori be used to generate 3D De Bruijn hyper-tori
for sub-arrays of different sizes, shapes, or number of elements? Does the
stacking-with-offsets algorithm generalize to more complicated cases?

• A common question is the minimum time required to locate specific se-
quences in a De Bruijn sequence. What is the minimum time required to
locate an arbitrary cube in a 16× 4× 4 De Bruijn array of b-cubes? Could
the structure in three dimensions allow for efficient search algorithms?

38

9 Appendix

9.1 Encoding and Decoding messages in De Bruijn Arrays
(Section 7.4.1)

import math

###################

Recursive step for the makePermutation function

def nextStep(bitString, pairList,i):

if(len(pairList)==1): # If passed a list of length 1, returns its element as the answer

return([pairList[0],i])

elif(bitString[0]==0): # Otherwise, cuts the list of remaining permutations in half

nextString = bitString[1:len(bitString)]

return(nextStep(nextString,pairList[:math.floor(len(pairList)/2)],i+1))

else: # Which half is used in the recursive step is based on the sequence of 0s and 1s

nextString = bitString[1:len(bitString)]

return(nextStep(nextString,pairList[math.ceil(len(pairList)/2):],i+1))

###################

Accepts 35-digit string, returns a list unique to that string beginning with

‘‘Clockwise’’ or ’’Counterclockwise, then (0,0), then ordering remaining offset pairs,

specifying a specific 16*4*4 De Bruijn array of cubes

def makePermutation(bitString):

ourPermutation = []

unusedPairs = [(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),

(3,1),(3,2),(3,3)] # List of the 15 elements to be organized

if(bitString.pop(0)==0):

ourPermutation.append("Clockwise")

else:

ourPermutation.append("Counterclockwise") # First digit chooses direction of the swirl

ourPermutation.append((0,0)) # WLOG, use this offset first

while(unusedPairs != []):

nextElement = nextStep(bitString,unusedPairs,0) # Recursive step

ourPermutation.append(nextElement[0])

unusedPairs.remove(nextElement[0])

bitString = bitString[nextElement[1]:]

print(ourPermutation)

return(ourPermutation)

39

###################

Recursive step for the decodePermutation function

def stepReverser(element,pairList,toAppend):

if(len(pairList)==1): # If the list is finished, return the constructed string

return(toAppend)

If element is in first half, append 0

elif(pairList.index(element) < math.floor(len(pairList)/2)):

toAppend.append(0)

return(stepReverser(element,pairList[:math.floor(len(pairList)/2)],toAppend))

else: # If element is in second half, append 1

toAppend.append(1)

return(stepReverser(element,pairList[math.ceil(len(pairList)/2):],toAppend))

###################

Accepts a list just like makePermutation outputs

and returns the (first 35 digits of) the binary string which produced it

def decodePermutation(permutation):

theBitString = []

if(permutation[0] == "Clockwise"):

theBitString.append(0)

else:

theBitString.append(1)

permutation = permutation[2:] # Already processed first element, ignore (0,0)

asItWas = [(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),

(3,1),(3,2),(3,3)]

while(asItWas != []):

nextDigits = stepReverser(permutation[0],asItWas,[])

for i in nextDigits:

theBitString.append(i)

asItWas.remove(permutation[0])

permutation = permutation[1:]

print(theBitString)

40

References

[1] Alexander Bogomolny, Existence of the de Bruijn Cycles via Graphs from
Interactive Mathematics Miscellany and Puzzles. http://www.cut-the-
knot.org/arithmetic/combinatorics/deBruijnCycles.shtml. Accessed 21 De-
cember 2016. (This is the web-author’s stated preference for citation notation.)

[2] Eggen, Bernd R. (1990). “The Binatorix B2”. Private communication.

[3] Horan, Victoria, and Brett Stevens. “Locating Patterns in the De Bruijn
Torus.” Discrete Mathematics 339.4 (2015): 1274-282. Web. 11 Feb. 2017.
<https://arxiv.org/pdf/1505.04065.pdf>.

[4] Hurlbert, Glenn, and Garth Isaak. “On the De Bruijn
Torus Problem.” Journal of Combinatorial Theory A
64.1 (1993): 50-62. Science Direct. Web. 21 Dec. 2016.
<http://www.sciencedirect.com/science/article/pii/009731659390087O>.

[5] Parker, Matt. Things to Make and Do in the Fourth Dimension. London:
Penguin, 2015. Print.

[6] Perry, Nick. “De Bruijn Sequences.” Data Genetics. 2 Oct. 2013. Web. 11
Jan. 2017. <http://www.datagenetics.com/blog/october22013/index.html>.

[7] Perry, Nick. “Wounded QR Codes.” Data Genetics. 1 Nov. 2013. Web. 11
Feb. 2017. <http://datagenetics.com/blog/november12013/index.html>.

[8] Zerbino, Daniel Robert. “Genome Assembly and Comparison
Using De Bruijn Graphs.” Genome Assembly and Compari-
son Using De Bruijn Graphs, University of Cambridge, 2009.
<www.ebi.ac.uk/sites/ebi.ac.uk/files/shared/documents/phdtheses/daniel zerbino.pdf>.

41

