MAT 175 HOMEWORK #6

DUE NOVEMBER 16 (WEDNESDAY)

Note: Please indicate you are in Section C01. Numbering of problems is as in the textbook.

(12.3.4) Find the indicated limit or state that the limit does not exist.

$$\lim_{(x,y)\to (1,2)}\frac{x^3-3x^2y+3xy^2-y^3}{y-2x^2}$$

(12.3.10) Find the indicated limit or state that the limit does not exist.

$$\lim_{(x,y)\to(0,0)} \frac{x^4 - y^4}{x^2 + y^2}$$

(12.3.12) Find the indicated limit or state that the limit does not exist.

$$\lim_{(x,y)\to(0,0)} \frac{xy}{(x^2+y^2)^2}$$

(12.3.24) Describe the largest set S on which it is correct to say that the function

$$f(x,y) = (4 - x^2 - y^2)^{-1/2}$$

is continuous.

(12.4.12) Find the gradient vector of the function

$$f(x,y) = x^3y + 3xy^2$$

at the point $\mathbf{p} = (2, -2)$. Then find the equation of the tangent plane at \mathbf{p} .

(12.4.14) Find the gradient vector of the function

$$f(x,y) = \frac{x^2}{y}$$

at the point $\mathbf{p} = (2, -1)$. Then find the equation of the tangent plane at \mathbf{p} .

(12.5.2) Find the direction derivative of $f(x,y) = y^2 \ln(x)$ at the point $\mathbf{p} = (1,4)$ in the direction of $\mathbf{a} = \mathbf{i} - \mathbf{j}$.

(12.5.14) In what direction **u** does $f(x,y) = \sin(3x - y)$ decrease most rapidly at $\mathbf{p} = (\pi/6, \pi/4)$?

(12.5.16) Sketch the level curve of $f(x, y) = x^2 + 4y^2$ that goes through $\mathbf{p} = (2, 1)$. Calculate the gradient $\nabla f(\mathbf{p})$ and draw this vector, placing the initial point at \mathbf{p} . What should be true about $\nabla f(\mathbf{p})$?

(12.5.18) Find the directional derivative of $f(x,y) = e^{-x} \cos y$ at $(0,\pi/3)$ in the direction towards the origin.