THE DIAGONAL CYCLE EULER SYSTEM FOR GL2 x GLg
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ABSTRACT. We construct an anticyclotomic Euler system for the Rankin—Selberg convolu-
tions of two modular forms, using p-adic families of generalized Gross—Kudla—Schoen diagonal
cycles. As applications of this construction, we prove new results on the Bloch-Kato conjec-
ture in analytic ranks zero and one, and a divisibility towards an Iwasawa main conjecture.
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1. INTRODUCTION

In this paper we study the anticyclotomic Iwasawa theory of Rankin—Selberg convolutions
of two modular forms using a new Euler system arising from p-adic families of diagonal cycles.
By an application of Kolyvagin’s methods, our construction yields results towards the Bloch—
Kato conjecture and the Iwasawa main conjecture in this setting.

1.1. Statement of the main results. Let g € S;(Ny, x4) and h € S,,(Np, x1) be newforms
of weights I > m > 2 of the same parity and nebentypus x4 and xp. Let K/Q be an imaginary
quadratic field of discriminant —D < 0. Let k£ > 0 be an even integer, and let ¢ be a Hecke
character of K of infinity type (1 — k,0), conductor f, and central character

Eyp = XgXh-

Fix an odd prime p f NgNj, such that (f,p) = 1 and an embedding ¢, : Q < Q,, and let
E = Ly be a finite extension of Q, containing the image under ¢, of the values of 1) and the
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Fourier coefficients of ¢ and h. We consider the E-valued Gi-representation
Vo = Ve @ Vi) (1 — 0),

where ¢ = (k+1+m—2)/2, V, and V}, are the (dual of Deligne’s) p-adic Galois representations
associated to g and h, respectively, and s is a p-adic Galois character attached to .

The cyclotomic Iwasawa theory of V, ® V}, has been extensively studied in a series of works
of Lei-Loeffler—Zerbes [LLZ14, LLZ15] and Kings-Loeffler—Zerbes [KLZ17, KLZ20], among
others ([BLLV19], [BL21], etc.). The key tool exploited in these works is the Euler system of
Beilinson—Flach classes, a system of cohomology classes arising from certain special elements
(introduced by Beilinson [Bei84], and further studied by Flach [F1a92] and Bertolini-Darmon-—
Rotger [BDR15a, BDR15b]) in the K of products of two modular curves.

In contrast, the anticyclotomic Iwasawa theory of V; ® Vj, (or rather of its conjugate self-

dual twists, such as V;/)h) appears to not have been studied before. The principal contribution

of this paper is the construction of an anticyclotomic Euler system for V;fh. As stated in
Theorem A below (which corresponds to Theorem 6.5 in the body of the paper), for general
weights (k,[,m) our construction requires the additional assumptions that p splits in K and
pt hi (the class number of K), and that both g and h are ordinary at p, but note that for
(k,l,m) = (2,1,1) Theorem 4.6 contains a version of our main result without these additional
hypotheses.

Theorem A. Suppose that p splits in K and p t hi, and that both g and h are ordinary at
p. Let S be the set of all squarefree products of primes split q in K and coprime to DNyNyf,
and denote by K[n] the mazimal p-extension of K inside the ring class field of conductor n.
Then there exists a family of cohomology classes

Fpghapr € H (K[np'], Tglfh)

for alln € S and r > 0, where T;ph s a fired Gy -stable lattice inside V;]wh, such that for all
ng € § with q prime, we have

Pq (Frq_l) Kap,g,h,np” if q 7& b;

COT K fngpr] / K [np] (Fup,g.hngpr) = .
[ngp™]/ K [np"]\",g,h,nqp Kap g b if ¢ =np,

where q is any of the primes of K above q, and Pq(Frgl) = det(1 — Fr;lX](V;ph)V(l)).

The construction of this Euler system, which is taken up in the first part of the paper, is
based on the diagonal classes studied by Darmon—Rotger [DR14, DR17, DR22] and Bertolini—
Seveso—Venerucci [BSV22], extending earlier constructions due to Gross-Kudla [GK92] and
Gross—Schoen [GS95]. Roughly speaking, our classes Ky g npr are suitable modifications of
diagonal classes for the triples ((%mpr, g, h), where (%,mpr is a certain deformation of the theta
series associated to v, and the main difficulty in the proof of Theorem A is in establishing
the Euler system norm relations.

The main results in the second part of the paper are the proof of new cases of the Bloch-Kato
conjecture for th in analytic rank zero and a divisibility towards the Iwasawa main conjecture
for Vgﬁﬁh. These are obtained by applying Kolyvagin’s methods (in the form recently developed
by Jetchev—Nekovai—Skinner [JNS] in the anticyclotomic setting) to our Euler system. In the

results that follow, we use “big image” to refer to Hypothesis (HS) in §8.1, for which sufficient
conditions are given in §8.2.

Theorem B. Suppose that:

(a) g and h are ordinary at p, non-FEisenstein and p-distinguished,
(b) p splits in K,
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(¢) p does not divide the class number of K,
(d) Vg’fh has big image.
Let
Rap,g,h *= Kep,g,h,1-
Ifl —m < k <1+ m, then the following implication holds:

Kpgn #0 = dimpSel(K, V') =1,

where Sel(K, V;{)h) C H' (Gk, V;{Jh) is the Bloch—Kato Selmer group.

Remark. (1) For k =1 = m = 2, together with the Gross—Zagier formula for diagonal
cycles by Yuan—Zhang-Zhang [YZZ], Theorem B supports the Bloch-Kato conjecture
for th in analytic rank one, reducing it to the expected injectivity of the p-adic étale
Abel-Jacobi map.

(2) Still in the case k = [ = m = 2, combined with the p-adic Gross-Zagier formula for
diagonal cycles in forthcoming work of Hsieh—Yamana [HY], Theorem B establishes
some cases of Perrin-Riou’s p-adic Beilinson conjecture in analytic rank one.

(3) In general, by the main result of [DR14], the nonvanishing of £ 4 also follows from
the nonvanishing of a special value of the triple product p-adic L-function .Z,(f, g, h)
introduced below.

In analytic rank zero, we get unconditional applications to the Bloch—Kato conjecture. Let
f =0y € Si(Ny,ey) be the theta series associated to 9, let 6((‘/;;wh) be the epsilon factor of

the Weil-Deligne representation associated to the restriction of Vy @ V; ® V3 (1 — ¢) to Gg,,
and put N = lem(Ny, Ng, Np).

Theorem C. Let the hypotheses be as in Theorem B, and assume in addition that
o 54(‘/9%) = +1 for all primes ¢ | N,
o gcd(Ny, Ny, Np,) is squarefree.

If k> 1+ m, then

LV, 00 #£0 = Sel(K, V) =0,

and hence the Bloch—Kato conjecture for V;ph holds in analytic rank zero.

Remark. Here L(Vg%h,s) is the triple product L-function introduced by Garrett, Piatetski—
Shapiro and Rallis, which satisfies a functional equation relating its values at s and —s.
When k£ > [ 4+ m, the local root number condition in Theorem C implies that the sign in this
functional equation is 4+1, and so the central L-values L(Vg%, 0) are expected to be generically
nonzero.

A third application is to the anticyclotomic Iwasawa main conjectures for Rankin—Selberg
convolutions. Let (f, g, h) be a triple of p-adic Hida families. In [Hsi21], Hsieh has constructed
a square-root triple product p-adic L-function .Z,(f, g, h) whose square interpolates the central
values of the triple product L-function attached to the classical specializations of (f, g, h) to
weights (ki1, ko, k3) with k1 > ko + k3. Letting g and h be the Hida families passing through
the ordinary p-stabilizations of g and h, respectively, we obtain an element

"S/ﬂp(faga h) € Af

interpolating a square-root of the above central L-values for the specializations of f to weights
k > 14 m, where At is the finite flat extension of A = Z,[[1 + pZ,]] generated by the coeffi-
cients of f. Greenberg’s generalization of the Iwasawa main conjectures [Gre94] predicts that

%,(£,g,h)? generates the Ag-characteristic ideal of a certain torsion Selmer group X ]-‘(AI» gh).
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We also show that our classes ky 4., are universal norms in the p-direction, therefore giving
rise in particular to an Iwasawa cohomology class

g0 € Hig (Koo, Tﬁh)

for the anticyclotomic Z,-extension Ko /K.

The class Ky g h 0o is associated with the triple (f, g, h), where f = £, is a CM Hida family
attached to v for which Af = A,c, the anticyclotomic Iwasawa algebra. Assuming the non-
triviality of Ky g 5,00, Wwe can prove the following result towards the Iwasawa main conjecture

for Z,(f,g,h)%.

Theorem D. Let f =f, and suppose that:

(a) g and h are ordinary at p, non-FEisenstein and p-distinguished,
(b) p splits in K,

(c) p does not dzmde the class number of K,

(d) Vw has big image,

(e) € (V;ph) +1 for all primes £ | N,

(f) ged(Ny, Ng, Np,) is squarefree.

If Ky g hoo 18 MOt Nac-torsion, then the module X;(A;gh) 18 Nc-torsion, and
ChaI'A, (X]:(Afgh)) ) ("%p(fa 9, h)2)

mn Aac ®Zp Qp.

Remark. The classes ky g hn may be viewed as a counterpart in the study of the arithmetic of

ngh to systems of Heegner points and Heegner cycles for individual modular forms. It would
be interesting to see whether the methods of Cornut—Vatsal can be extended to establish the
non-triviality of Ky, g.nc0-

Remark. The “big image” hypothesis on V;ph excludes some cases of arithmetic interest; no-
tably, the case in which h = ¢g* is the dual of g (assuming ¢ has trivial central character) is
excluded from our applications in this paper. We study this case in [ACR22], where building
on (a suitable projection of) the classes ky g g+ n constructed in this paper, we obtain a new
anticyclotomic Euler systems for twists of the three-dimensional G g-representation adO(Vg),
with applications to the Bloch—-Kato conjecture in rank zero and the Iwasawa main conjecture
in this setting.

Remark. As already noted, the anticyclotomic Euler system classes constructed in this paper
arise from diagonal classes attached to triples (f, g, h) of modular forms in which f varies
over certain CM form by K. A modification of this construction with g and h varying among
certain CM forms for the same imaginary quadratic field K gives rise to a new anticyclotomic
Euler system for twists of Vy|g, . This construction, and its arithmetic applications, is studied
in [Do22, CD23].
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agreement No 682152). During the preparation of this paper, F.C. was partially supported by
the NSF grants DMS-1946136 and DMS-2101458; O.R. was supported by a Royal Society New-
ton International Fellowship and by “la Caixa” Foundation (grant LCF/BQ/ES17/11600010).
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Part 1. The diagonal cycle Euler system
2. PRELIMINARIES

In this section be begin by discussing our conventions regarding modular curves and Hecke
operators, for which we shall largely follow [Kat04, §2] and [BSV22, §2].

2.1. Modular curves. Given integers M > 1, N > 1, m>1andn > 1 with M+ N > 5, we
denote by Y/ (M (m), N(n)) the affine modular curve over Z[1/M Nmn| representing the functor
taking a Z[1/M Nmn]-scheme S to the set of isomorphism classes of 5-tuples (E, P,Q,C, D),
where:

FE is an elliptic curve over .S,

P is an S-point of E of order M,

Q is an S-point of E of order N,

C is a cyclic order-Mm subgroup of E defined over .S and containing P,
D is a cyclic order-Nn subgroup of E defined over S and containing @,

and such that C and D have trivial intersection. If either m = 1 or n = 1 we omit it from the
notation, and we will often write Y7 (V) for Y(1, N).
We will denote by

E(M(m), N(n)) = Y (M(m), N(n))

the universal elliptic curve over Y (M (m), N(n)).
Define the modular group

I'(M(m),N(n)) = {(Z Z) €8SLy(Z) :a=1(M),b=0(Mm),c=0(Nn),d = 1(N)}.

Then, letting H be the Poincaré upper half-plane, we have the complex uniformization
(2.1) Y(M(m),N(n))(C) = (Z/MZ)* x I(M(m), N(n))\H,

with a pair (a,7) on the right-hand side corresponding to the isomorphism class of the 5-tuple
(C/Z + Zr,at/M,1/N,{t/Mm),(1/Nn)).
If » > 1 is an integer, there is an isomorphism of Z[1/M Nmnr|-schemes

pr 2 Y(M(m), N(nr)) = Y (M(mr), N(n))
defined in terms of moduli by
(E7 P? Q? C7 D) ’_> (E/7 P,’ Ql7 C,? Dl)?

where E' = E/NnD, P’ is the image of P in E’, ' is the image of r~}(Q)N D in E’, C' is the
image of 7~1(C) in E', and D’ is the image of D in E’. Under the complex uniformizations
(2.1), the isomorphism ¢, sends (a,7) — (a,r - 7). If

pr(E(M(mr), N(n))) =Y (M(m), N(nr))

denotes the base change of E(M (mr), N(n)) — Y (M (mr), N(n)) under ¢,, there is a natural
degree-r isogeny
Ar i E(M(m), N(nr)) = ¢ (E(M(mr), N(n))).

2.2. Degeneracy maps. With the same notations as above, we have natural degeneracy
maps

Y/(M(m), Nr(n)) =5 Y (M(m), N(nr)) < Y (M(m), N (n)),
Y (Mr(m), N(n)) £ Y (M(mr), N(n)) 2 Y (M (m), N(n)),
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forgetting the extra level structure, e.g.
w(E,P,Q,C,D)=(E,P,r-Q,C,D),
I/T(E,P,Q,C,D) = (E,P,Q,C,T‘D).

We also define degeneracy maps
(2.2)

acting on the moduli space by

m(E,P,Q,C,D) = (E,P,rs-Q,C,rtD),
7T2(E7 P’ Q’ C7 D) — (E,’ Pl? Q,7 C/’ D/)7

where E' = E/NnsD, P’ is the image of P in E', Q' is the image of t }(s- Q)N D in E', '
is the image of C in E’ and D’ is the image of D in E’. Under the complex uniformizations
(2.1), the maps 7; and my correspond to the identity and to multiplication by 7t, respectively,
on H. It is straightforward to check that the maps 71 and 7y are given by the compositions

Y (M(m), Nrs(nt)) £ Y (M (m), N(nrst)) < Y(M(m), N(ns)),
Y (M(m), Nrs(nt)) L2 V(M (m), N(nrst)) 2% Y (M (mrt), N(ns)) 25 Y (M (m), N(ns)),

respectively.

2.3. Relative Tate modules. Fix a prime p. Let S be a Z[1/M Nmnp]-scheme and let
v:E(M(m),N(n))s — Y(M(m),N(n))s

be the structural morphism. For every Z[1/M Nmnp]-scheme X, denote by A = Ax either
the locally constant constructible sheaf Z/p'(j) or the locally constant p-adic sheaf Z,(j) on
Xet, for fixed t > 1 and j € Z. Set

Trtim) Ny (A) = R10.Zy(1) @z, A and Ty ymy(A) = Hom( Ty m) nn) (A), A).

In particular, in the case A = Z,, this gives the relative Tate module of the universal elliptic
curve and its dual, respectively; in this case, we will often drop A from the notation.

From the proper base change theorem, both Z/(mm) n(n)(A) and ﬂﬁ(m)w(n) (A) are locally
constant p-adic sheaves on Y (M (m), N(n))g of formation compatible with base changes along
morphisms of Z[1/M Nmnpl-schemes S’ — S.

For every integer r > 0, define

Lnr(m) Ny (A) = Tsymy Tarmy) Ny (A),  Far(m) Ny (A) = Symmiy T n (A),

where, for any finite free module M over a profinite Z,-algebra R, one denotes by Tsymp M
the R-submodule of symmetric tensors in M®" and by Symm}, M the maximal symmetric
quotient of M®".

When the level of the modular curve Y (M (m), N(n))s is clear, we may use the simplified
notations

gr(A) = gM(m),N(n),r(A)a % = gr(Zp)7 yT(A) = <sﬁM(m),N(n),r(A)a S = r5ﬂ1ﬂ(Zp)
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2.4. Hecke operators. Let ff&(m

and let g be a rational prime. Then there are natural isomorphisms of sheaves

)N (n) denote either gM(m),N(n),r(A) or yM(m),N(n),r(A)

(2.3) Vo (Z ) Nm) = Ty Ning 20D 75 (Fhrim) N ) = F M (mg) N ()

and therefore pullback morphisms

Hey (Y (M (m), N(n))s, Zhymy ) —> Ha(Y (M (1), N(100)) 5, Z () N(ng)):

Hy (Y (M(m), N(1))s: Fhpimy Nmy) — He (Y (M (mq), N(12) 8, F 1t (mg) N(m)):
and traces
Hy (Y (M(m), N(19))ss F 31 (m) Nng) —

(2.4) . y ‘
Hey (Y (M(mq), N(0))s, Frrmeyn(n) — Hee (Y (M(m), N(n)) 55 F 1) N (m))-

Also, the isogeny A, induces morphisms of sheaves

g Fi(m)Ning) = oMo Nm) A0 Ag 2 O Pt g N(m) = Fham) N (na)-
These morphisms allow us to define
B+ Hey (Y (M (m), N(19)) 55 F 3 (m) N(ng)) = Het (Y (M (mq), N (1)) 5, it (1mg) N m))>
©; 2 Hey(Y (M(mq), N(n))$, Z 3 mg)n(my) — Hee Y (M (m), N(19))3, Z 3 (3m), N (ng)):
as the compositions
Dy = pgr 0 Agx  and (1);'1‘ = )\Z o 4702.

We define the Hecke operators T; and the adjoint Hecke operators Té acting on the étale
cohomology groups

Hey (Y (M (m), N(ng))s, f&(m),]\/(nq))
as the compositions

— 17 * ! * ~ %
Tq—yq*oq)q*ouq and Tq—uq*oq)qouq.

If we define pullbacks
Hey (Y (M(m), N(n)s: Zpmy nny) — Ha(Y (M (m), N(14))8: F 1), Nng)):

Hi (Y (M (m), N(0) s, Zh(my n(my) —> Heo(V (M (M), N(1)5, i) N ()5
and pushforwards

Hy (Y (M (m), N(na))s, Zipmy Nng) —+ Hee (Y (M (m), N(10))s: F gy N ()

Hey (Y (M (mq), N(1))s, Zhmg) Nny) —r He (Y (M(m), N(1))ss iy ()
as

T =V,

* * ~ X ~
g0 Ta =% 00, T =vg and T = Ugi 0 Py,

q
then we can write
Ty =mom and Té = T4 O TM5.
Now we introduce diamond operators. For d € (Z/M NZ)*, these are defined on the curves
Y (M(m), N(n)) as the automorphisms (d) acting on the moduli space by

(E,P,Q,C,D)w (E,d"'-P,d-Q,C,D).

We can also define the diamond operator (d) on the corresponding universal elliptic curve as
the unique automorphism making the diagram
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E(M(m), N(n))s — 2 E(M(m), N(n))s

.

Y(M(m), N(n))s ——— Y(M(m),N(n))s

cartesian. This in turn induces automorphisms (d) = (d)* and (d)’ = (d), on the group
Hi (Y(M(m),N(n))s, ﬂ]’\z(m)jN(n)) which are inverses of each other.

In general, we will be interested in modular curves of the form Y (1(m), N(n)). In this case,
the natural pairing %, ®z, . — Z, together with cup-product yields a pairing

He (Y (1(m), N (n))s, £, (1)) @z, Hey (Y (1(m), N(n))s, %) = Zy

et,c
which becomes perfect after inverting p. The operators Ty, Tq’7 (d), (d)" induce endomorphisms
on compactly supported cohomology and

(Ty, Tg), (T, Ty),  ((d),(d)') and  ({d)",(d))

g
are adjoint pairs under this pairing.

2.5. Galois representations. Let f € Si(N¢, xr) be a newform of weight k = r +2 > 2,
level Ny and character x¢. Let p be a prime and let E be a finite extension of Q, with ring of
integers O containing the Fourier coefficients of f. By work of Eichler-Shimura and Deligne,
there is a two-dimensional representation

pr - GQ — GLQ(E)
unramified outside p/Ny and characterized by the property that

trace p(Fry) = aq(f)

for all primes q { pNy, where Fr, denotes an arithmetic Frobenius element at ¢. (In fact, this
is the dual of the p-adic representation constructed by Deligne.)

It will be convenient for our purposes to work with the following geometric realization of
Pf- Let

Hy(V1(Np)g: £(1)) ®z, E — Vj

be the maximal quotient on which T, and (d)’ act as multiplication by a,(f) and x(d) for all
primes ¢ f Ny and all d € (Z/N;Z)*. Then V; is a two-dimensional E-vector space affording
the p-adic representation py, and we let Ty C V; be the lattice defined by the image of

He(Y1(Ny)g: 4 (1) @z, O

under the above quotient map.

3. HECKE ALGEBRAS AND RING CLASS FIELDS

In this section we extend the results of [LLZ15, §5.2], including ring class field extensions
of an imaginary quadratic field K. The resulting Corollary 3.6 will allow us to obtain classes
over ring class field extensions of K from diagonal cycles over Q on triple products of modular
curves of varying levels.

Thus let K be an imaginary quadratic field of discriminant —D < 0, and let €x be the
corresponding quadratic character. Let 1) be a Grossencharacter of K of infinity type (—1,0)
and conductor f, taking values in a finite extension L/K, and let x be the unique Dirichlet
character modulo Nk /q(f) such that ¢((n)) = nx(n) for integers n coprime to Ng/q(f). Put
Ny = Ngo(f)D, and let 0y € S2(Ny, xex) be the newform attached to v, i.e.,

Op =Y (a)g"Eel®,
(@=1
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Fix a prime p > 5 unramified in K, a prime p of K above p and a prime P of L above
p. Let £ = Ly and let O C E be the ring of integers. Let ¢ be the continuous E-valued
character of K*\Ap ; defined by

() = 2 (@),
where x;, is the projection of the idele z to the component at p. We will also denote by 1y the
corresponding character of G obtained via the geometric Artin map. Then Ind% E(wil) is
the p-adic representation attached to 6.

Definition 3.1. For an integral ideal n of K, we denote by H, the maximal p-quotient of the
corresponding ray class group, and by K (n) the maximal p-extension in the corresponding ray
class field. We similarly define R,, and K [n], for each integer n > 0, as the maximal p-quotient

in the corresponding ring class group and the maximal p-extension in the corresponding ring
class field.

Let n be an integral ideal of K divisible by f, and let N = Ny g(n)D, which is of course a
multiple of Ny. Let T}(N) be the algebra generated by all the Hecke operators Ty, (d)" acting
on HY(Y1(N)(C), 7).

Proposition 3.2. With the previous definitions and notations, there exists a homomorphism
¢n : T)(N) — O[H,] defined on generators by

Ga(Ty) = 1b(a)[d]
q

for every rational prime q, where the sum runs over ideals coprime to n of norm q; and
Pn((d)) = x(d)ek (D)[(d)].
Proof. This follows immediately from [LLZ15, Prop. 3.2.1]. O

Now let n’ = nq for some prime ideal q above a rational prime q. Assume that n’ is coprime
to p, and let N’ = N g(n')D. Following [LLZ15, §3.3], we define norm maps

Ny OlHw | @1y (882, 6) Het Vi (V) Zp(1)) — O[Hn] @1y (3912, 60) Het(V1(N) g Zp(1))
by the formulae:

o ifq|n,
NY = 1@
e if gtn and q is ramified or split,
N 1o m. w(qq)[q} & Toon;
e if gfn and q is inert,
NY =1@ 7, — @Z)(gg[q} ® T4

More generally, for n’ = nt with v a product of (not necessarily distinct) prime ideals, we
define the map /\/;{‘l by composing in the natural way the previously defined norm maps.

From now on, we assume that in the case where (p) = pp splits in K the following holds:
If p | f then p 1§ and v| 0%, is not congruent to the Teichmiiller character modulo .

Theorem 3.3. Let A be the set of prime ideals of K coprime top (resp. p) if p splits (resp.
is inert) in K and divisible by f. Then there is a family of Gg-equivariant isomorphisms of
O[H,]-modules

vn @ O[Hy] Q(T! (N)®Zp,pn) Helt(Yl(N)@ Zp(1)) — Ind%(n) O(lbq_gl)7
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for alln € A, such that for n|n' the diagram

O[Hy] @(1(N)22y.6,) Het Y1(N')g; Zp(1)) % IIldK(n, O(¥g')
N
O[Hn] @ (1, (V)@ 2Zy,0w) Hot(Y1(N) g Zp(1)) % Ind{, (%3 )

commutes, where the right vertical arrow is the natural norm map.
Proof. This is [LLZ15, Cor. 5.2.6]. O

Definition 3.4. For any positive integer n with (n, pf) = 1, we let K(f)[n] be the compositum
of K(f) and K[n], and put R;, = Gal(K(f)[n]/K).

Let T'(1, Ny(n?)) C Endz(H'(Y (1, Ny(n?))(C),Z)) be the subalgebra generated by all
Hecke operators T, and (d)’.

Lemma 3.5. There exists a homomorphism
On : (1, Ny(n®)) — O[R;]
defined on generators by the same formula as in Proposition 3.2.

Proof. Take the modulus n = f(n). By Proposition 5.1.2 and Remark 5.1.3 in [LLZ15], the
kernel Z of the composition

T, (Nyn®) 2% O[H,] — O — O/,

where ¢y is as in Proposition 3.2, is a non-Eisenstein maximal ideal of T (anz) in the sense
of [op.cit., Def. 4.1.2]. Therefore, denoting Z-adic completions with the subscript Z, we have
an isomorphism of T’ (Nyn?)z-modules

H'(Y1(Nyn?)(C), Z)z = H}(Y1(Nyn?)(C), Z)s.

On the other hand, as in the proof of [LLZ15, Lem. 4.2.4], the natural pullback map yields
an isomorphism
H. (Y (1, Ny (n*))(C), Z) = Hi (Y1 (Nyn®)(C), Z)*,
where A is the set of diamond operators (d)’ with d =1 (mod Ny). Since A maps to 1 under
the composition

T (Nyn2) 22 O[H,] — O[Ry.],
the result follows. O

Corollary 3.6. Let B be the set of positive integers n coprime to pf. Then there is a family
of Gg-equivariant isomorphisms of O[R; |-modules

Vi + O[Ryn] @ 11,8, (n2))92p.0) Het(Y (1, Ny(n?)) g, Zp(1)) — Indig ) O(dig")
for all n € B, such that for n | n’ the diagram
O[Rj ] @ (11,8, (n2))02Zp 0, ) Het (Y (1, Ny (")) g, Zp(1)) % Ind@ 1O(Ugh)
Wi
O[Rj.n] @1 (1,8, (n2))82p.6n) He(Y (L, Nyp(n?))g, Zp(1)) % IndK(f O (1)

commutes, where /\fff:: 1$ induced by /\/;(:,) and the right vertical arrow is the natural norm
map.
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Proof. Let n = f(n), Z and A be as in the proof of Lemma 3.5. Since Z is non-Eisenstein, the
natural trace map
Hey(Yi(Nyn®) g, Zp(1))a — Hey (Y (1, Ny (n?)) g, Zp(1))

becomes an isomorphism after taking Z-adic completions. Since the map ¢,, of Lemma 3.5 is
induced by ¢, (as shown in the proof of that result), it follows that the O[R;,]-module

O[Rf,n] (T'(1N¢(n2))®2p,¢n)H (Y(1, Nw( )) Zp(l))

is naturally isomorphic to

O[R;,] ®o(m,) (O[Hn] (T, (Nyn?)eZpsa) Het (V1(Nyn?)g, Zp(l))) :

The result now follows from Theorem 3.3. O

4. PROOF OF THE TAME NORM RELATIONS

We keep the notations introduced in §3. Fix two newforms (g, h) of weights (I,m) of the
same parity, levels (Ng, Np,), and characters (xg4, xn) such that xexxgxn = 1. Enlarging L if
necessary, assume that it contains the Fourier coefficients of g and h.

Let N =lem(Ny, Ng, Np), and (since N will be fixed throughout) put Y (m) = Y'(1, N(m))
for every positive integer m.

Definition 4.1. Let r = (r1,792,73) be a triple of non-negative integers such that
r+ 1o+ 1r3=2r
with r € Z>g, and r; +r; > 7, for every permutation (i, 7, k) of (1,2,3). Put
L) = 41,8 (m)r1 (Lp) B2, L1,N (m),rs (Lp) B2, L1 N () 5 (Lip)
and define
R € H' (Q BE(Y ()%, L) @2, Q2 - 1))

to be the class k() = S« 0HS 0 d*(Detf\,(m)) constructed as in [BSV22, §3] for the modular
curve Y (m).

Lemma 4.2. Let m be a positive integer and let g be a prime number. Assume that both m
and q are coprime to p and N. Then

(72, 71, 1 )skomgr = (Tyy 1y D)kSes (1, o, ) s = @7 (Thy 1, 1) R

1 1 1 _ 1
(7r1,7r2,7r1)*/ﬁ,(nz],r = (1,Ty, 1)/<;$n)r, (7T2,7T1,7l’2)*/43£n;7r =q " "(1,T), 1)/15712,

qQ’
(1, 71, m0)ekompe = (1, 1, Ty Roaks (o, o, m1)akbmge = @73 (1,1, TH )

RKmr.
If q is coprime to m we also have
1 1 1
(71, 71, T )wkmge = (@ + DaSes (M2, T, m2)wkibane = (@ + 1)@ Kok

Proof. The same argument proving equations (174) and (176) in [BSV22] yields these identi-
ties, adding the prime ¢ to the level rather than the prime p. O

We next consider the following ‘asymmetric’ diagonal classes.

Definition 4.3. For each squarefree positive integer n coprime to p and N, let
2 1
Ao =0 (L1, () ) (L1, ma)okls, € Y (QHE(Y (n)g x Y (D, i) @2, Qpl2 1)) |

where 71,7 : Y(n?) — Y (1) are the degeneracy maps in (2.2).
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Lemma 4.4. Let n be as above and let q be a rational prime coprime to p, N and n. Then
i, 1 Dkl = {@2 (L, 1L, T,T0) — (g + D> (1,1,1)} w2,

(
(7'['21, 17 1)*/‘3£Lq,r - {q 1 T(;7T(;) - 7’2+T3 (T/ < >/7 I }H$L23‘7
(

w2 1 ) eriige = {0 (LT (0)) = (g + D)™ 0))} ik,
where ;j 1 Y (n2¢?) — Y (n?) denotes the composite map
Y (n*q%) "5 Y (nq) —5 Y (n?).

Proof. To better distinguish between the degeneracy maps m; for different levels, in this proof
we use w; to denote the map m; descending the level by ¢, so that w; o w; is the degeneracy
map 7;; in the statement of the lemma. Thus we find

1
(1,1 1)*:%7(1(1)1- =n"q¢"?(1,1,(ng)") (1, 71, m2)s (w1, wl,wQ)m;Q)q2’r
1
= n"2q" (1,1, (ng)') (1L, 71, m2)u(1, 1, T,)K(3, .

using Lemma 4.2 for the second equality; and similarly,

e

n2q2,r

(@2, 1, 1)uke = nq"2(1,1, (ng)") (1, 1, 72) (w2, @1, @)

= 724" (1,1, (ng)") (1,71, m2) (1, Ty 1) ;;qr
Descending the level again by ¢ this gives
(m11, 1, Darilige = 72" (1,1, (ng) ) (1, 71, m2) (w1, 01, @2) (1,1, Ty) s, |
=n"2q"%(1,1, (nq R
:n”q?"% L, (ng))(1, 71, 7). {(1,1,T2) = (g + 1)g"™ (1,1, (g))} Y,
= ¢ {(LLT,T) — (q+ Dg™ (1,1, 1)} 0" (1,1, (n) ) (1, w1, m)urlss

N1, 71, 70) (@1, D1y Tyae — ¢ {Q)10) Ly

)
)
= {qr2 (1,1, Tch;) —(g+ 1)qT2+r3(17 L, 1)} ’ig%"

and similarly

(71-217171)*&1(1(;()1‘ —n q (1,1,<nq>/)(1,7T177T2)*(W17W1,WQ) (1 T/ ]') (1)

1L L Rp2g
=n"2¢"(1,1,(ng)") (1, w1, m2) «(@1x, Tyww1x — (q) w2x, WQ*)NSQ)W
=nmq"(l,l,<nq>’><1,m,m>*{<1,Tq,T> ¢ Ty (a) D)} R,
= ¢ {(1LT,T)) — ¢ (T2, < @)y n"2 (1,1, (n)) (1, 71, ) erly
={q" (1,1}, T;) — """ (T, }mm,
and
(ng,l,l)*/ﬁ%)r =n"2¢"(1,1, (ng)")(1, 71, 72)« (w2, w1, w2)«(1, T, 1)k 512)(”

(1)

n2q r

)
=n"2q¢" (1,1, (ng)
> 1771771—2)* {qr_TQ(laTc;Z?l) (q—i_l }KJ

(
(1,71, )« (@, Tywors — (@) wox, wae )k
n"q" (1,1, (ng)')(
- qr {qr—rg 17T,27 <q / ( )qr(lv <Q>,7 <q>,>} nTQ(lv 17 <n> )(1771—1’ 7T2)*,‘£7(112),r

))
= {g" (L T2 (@) — (g + )¢ (1, {a)', (@))} Kich,
hence the result. O
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Projection of the classes 57(123 to the (1,1, 1)-component in the Kiinneth decomposition yields

(3)

classes Ky r in

' (QHL(Y (0)g 20, (1)) © HL(Y (Vg 2, (1) © HA(Y (g 22, (1) @2, Q1 —7).
Now set (r1,72,7r3) = (0,1 —2,m — 2). Fix test vectors
f €SN xex)l0s], 9 € SN, xg)lal, h € Sm(N,xa)[h]-

These test vectors determine maps
Hey(Y (n*)g, Zp(1)) — Hep (Y (1, Ny(n ))@,Z (1))
He(Y (1) £,(1) = Hoy(Yi(Ng)g: £, (1))
He(Y (1) ,(1) = Hop(Yi(Na)g, (1))

(3

) ®3)

to classes k nbgh in

HY(Q, O[Rj 1] ©(1 (1,8, (n2))Z0 ) Heo (Y (1, Ny (0?)) g, Zp(1)) ©0 Ty ®0 Thy @z, Qp(—1 = 7).
Let

which we use to project the classes xy,

TV, =Ty @0 Th(tg)(—1—1), V) =T, @z, Qp,
Using the isomorphisms

Up : O[Rf,n] ®(T’(1,Nw(n2))®2p,¢n) Helt(Y(la Nw(ﬂz))@, Zp(l)) % Ind K()[n] (wm )

of Corollary 3.6, and taking the projection of both sides via the quotient map O[R; ] — O[R,],
we obtain new isomorphisms

P+ OLRu] ©(1 (1,3, (12260 HA (Y (1, Np(n2)) g Zp(1) —— Tnd %, O(ugg"),
so that applying the corresponding projection map to the classes /ﬁf’zp gh and using Shapiro’s
lemma we obtain classes

Fopghn € H(K[n], V).

Proposition 4.5. Let n be as above, and let q be a rational prime coprime to p, N and n.
(i) If q splits in K as (q) = qq, then

2 h
COT g}/ K[n) (R g hina) = 4" 4{Xg(q)Xh(Q>q <w;q)qu_ 1) - Z?Sﬁqf)/z) <w;q) Frq_1>

Xo(@)tag(9)?  xn(a)lag(h)? ¢ +1
qz—1 + qm—2 - q

= — 2
- q((ll(J‘rgrlqll()}/LZ) (w(qq)Frq 1> + Xg(@)xn(9)q <w;q)Frq 1) }Fw,g,h,n-

(i) If q is inert in K, then

+

Xo(@)tag(9)® | xn(@)lag(h)*  (¢+1)? }
Kyp,g,h,n-

! 4
COL K [ng)/K[n] (Fy.ghing) = 4™ { s AT .

Proof. We have the commutative diagram

o7

H (K[ngl, V) — H'(Q Ind%, 00gY) @0 T, @0 Ty @z, Qy(—1 1))

COTK[nq)/ K

z

HY(K[n), V) — H' Q. Ind%,, O(y") ®0 Ty ®0 T, ©z, Qp(—1 1)),
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where the horizontal isomorphisms are given by Shapiro’s lemma and the right vertical arrow
comes from the natural norm map between induced representations. Using the isomorphisms
Uy, above, the vertical arrows in the previous diagram correspond to the map

HY(Q, O[Ryg] O prog He(Y (1, Nw(n2q2))@a Zp(1)) ®@o Ty ®0 Th @z, Qp(—=1 = 1))
N1 eldeld

HY(Q, O[Ry] @, Hy (Y (1, Ny(n?))g, Zp(1)) ®0 Ty @0 Th @z, Qp(—1 —1)).

If ¢ splits in K, the map J\/}f”gq is given by
Mgt = o - (M0 YO a0

21% T —— 224,
q q

using the notations introduced in Lemma 4.4 for the degeneracy maps, and from the relations
in that lemma we find

NI G g hng) = [1 © (¢ (L LT, — (g + D@>(1,1,1))

. <¢(ci])[q] + ¢(Ci])[q}> ® {q 1,qu,Té) _ T2+r3(Té’ <q>/’ <g>/)}

+ XEJQ) ® {q“+’”3(1, 7%, (q)") — (q+ 1)g* (1, {a)', <Q>’)}] Ry.g.hn

= [Xh(Q)_laq(h)2 4 (g4 1)g

B <¢<qq> al ) {ag(9)aq(M)q" = Xo(@)xn(@)a™ ™ (p(@)la] + (@) [a) }

I X;q) {Xh(q)aq(g)zthrrs — Xo(@)xn(9) (g + )¢’ ] Rgp,g,hn-

This implies the result in this case. When ¢ is inert in K, we have
./v:ff;?q = T11x — X(q) 122,
’ q
and the result in this case follows by a very similar computation that we leave to the reader. [

In particular, restricting to positive integers n as above that are divisible only by primes ¢
which split in K, Proposition 4.5 yields the following result. (Note that since in this section
we assume ¢ has infinity type (—1,0), the balanced condition forces [ = m.)

Theorem 4.6. Suppose the weights of g, h are l = m. Let S be the set of squarefree products
of primes q which split in K and are coprime to p and N. Assume that HI(K[n],Tfh) is
torsion-free for every n € S. There exists a collection of classes

{“w,gﬁ,n € Hl(K[n],Tﬁh) i nE 8}
such that whenever n,nqg € S with q a prime, we have
COr kgl K {n) (K hng) = Pa(Frg ™) Ky, g.hns

where q is any of the primes of K above q, and Py(X) = det(1 — Fr;1X|(V;f’h)V(1)).
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Proof. We begin by noting that the only possible denominators of the classes Ky g5, are
divisors of (I —2)!(m —2)! (as follows from [BSV22, Rmk. 3.3]), so after multiplying them by
a suitable power of p they all have coefficients in T,

Now given a prime ¢ € S, we note that for any prlme v of K above ¢ we have

aq(g)aqg(h) Y (v
Q, 2 Qa, 2 v 2
(Xg(gzn_ql(h) + Xh((]ql (i(g) —QXQ(Q)Xh(Q)) d](qg) X2
v v 4
Xg(q}i;glu(?m 2§/2) (h) w(q:i) x° XQ(Q)QXh(Q)2¢EI4> X4,

Writing (¢) = qq and using that ¥(q)y(q) = x(¢)¢ and x4(¢)xr(q)x(¢) = 1, we therefore find
the congruences

Py(Fry Y)xg(@)xn (@) (@)?Fry? = P(Fry ) xg(9)xn(g W(Q)QFTU,_Q (mod ¢ — 1)
= Xg(@)xn(@)(0)°Fry? — ag(g)aq ()i (q)Fry !
+ Xg(a)™ aq( )? +Xh( ) 1aq(h)2_2
— ag(9)ag(MY(@Fry ' + xg(0)xn(9)9(@)*Fry?  (mod g — 1)

as endomorphisms of H'(K[n],T ;{’h). Since these expressions agree modulo ¢ — 1 with the

factor appearing in the norm relation of Proposition 4.5(i), together with [Rub00, Lem. 9.6.1
and Lem. 9.6.3] the result follows. O

Remark 4.7. The condition that H'(K [n],Tgl%h) is torsion-free for every n € S holds, for
example, under the assumptions in Lemma 8.9 below. Indeed, since SLy(Zy) x SLa(Z,) has
no proper normal subgroups of finite p-power index, it follows from this lemma that the
residual G g, -representation attached to T;{’h is absolutely irreducible for every n € S, so

that HY(K[n], ng’h / T:’h) is trivial for every n € S and the condition follows.
Remark 4.8. In the inert case, writing q = (¢) we have
Py(X) = det(1 - Fry ' X|(T}),)" (1))
aq(9)* an(q)* ¥(a)
=1- < 4 —2Xg(Q)> (qm 1 —2xn(q) TX

ql—l
aq(g)? 2 2
+(Xh<q>2( 9 i)+l ) —2xg<q>2xh<q>2> ey

aq(9)® (h)2 ¥(9)® ¥(g)!
@@ (40 - 20000 ) (245 - 200) PHX 4 0 a0 X,
and similarly as in the proof of Theorem 4.6 we find the congruence

Py(Fryt) = xg(@) aq(9)* + xn() 2aq(h)* + 2x4(0) " xn(q) " aq(g9)?aq(h)’q

_Xo@tag(9)*(@+ 1) xn(@) " ag(h)* (g + 1)
qlfl qul

+8(¢g+1) (mod ¢*>—1)
as endomorphisms of H!(K|[n|, T, ;’h). Similarly as above, this expression agrees modulo ¢% — 1
with the square of the Euler factor appearing in the norm relation of Proposition 4.5(ii).

Now assume that (p) = pp splits in K, with p the prime of K above p induced by our fixed
embedding ¢, : Q < Q,, and let f = 0, be the theta series associated to . Assume also that
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both g and h are ordinary at p. Then, for ¢ € {f,g,h}, the Gg,-representation Vy admits a
filtration

0— V) — Vs —V, —0
where Vf is one-dimensional and Vq; is unramified with Fr, acting as multiplication by ay,
the unit root of the Hecke polynomial of ¢ at p. Letting Vigp = Vy @V, ® Vi (=1 —1), we can
therefore consider the Gg,-subrepresentation
FVigh = (Vi@ Vo Vi +VIioV,e i+ ViV o V) (-1-1)

and define the balanced local condition Hy, (Qp, Vign) C HY(Qp, Vign) to be the image of the
natural map H'(Qp, Z2Vign) = H (Qp, Vign)-
Setting

(A1) Fr(v) = (Vi eV Vo Vi) g ) (—1-r),  FH(V5) = (V,FeVh) (g (-1-r),

one readily checks that under the isomorphism H*(Q, Vign) = H UK, V;ph) of Shapiro’s lemma,
the balanced local condition H;,,(Qp, Vyss) corresponds to the natural image of

P ' (K, FFVE)) — D H (KW V).
vlp vlp

This motivates the following definition. Let L/K be a finite extension, and for every finite
prime v of L put

Hy(Lo, Vy,

- {im(Hl(Lv,fj(V;fh))—>H1(Lv,vg1f’h)) if v | p,
CREME/N )

ker (H(Ly, V%)) = HY(LE, V) if v p,

where L)' is the maximal unramified extension of L,. We then let Hﬁal(Lv,T;ph) be the
inverse image of Hy (L, ngh) under the natural map H' (LU,T;bh) — HY(L,, ngh), and let

Selpal (L, T;bh) C HY(L, T;ph) be the Greenberg Selmer group cut out by these local conditions.
(Note that this is a special case of the more general construction discussed in §8.1.)

Proposition 4.9. For every n € S, the class Ky g pn lies in the group Selbal(K[n],T;jh).

Proof. Fixn € S and v a finite prime of K[n]. If v { p, then it follows from the Weil conjectures
that ngh is pure of weight —1, and hence

(4.2) Hy, (K[nly, V.5,) = ker (H'(K[nl,, V,\,) = H' (K[n]3, V.%,)) = 0.

By [Rub00, Cor. 1.3.3(i)] and local Tate duality (using the fact that the G g-representation
V;ph is conjugate self-dual), it follows that

H*(Knl,, V) = H(K[n]y, V) = 0.

Repeating the argument with the roles of v and v reversed, from (4.2) and [Rub00, Cor. 1.3.3(ii)]
we conclude that
HY (K)o, VYy) = HL (Kl V) = 0.
and so the inclusion resy (k. g.nn) € Hiy (K], T;/jh) is automatic.
Now suppose v | p. As noted in [BSV22, Prop. 3.2], it follows from the results of [NN16] that
the classes /%(721« are geometric at p, and therefore the class res,(ky g pnn) € H (K [n]v,T;p’h)
lands in the inverse image of

Hlo(K ], V) = ker (HY(K[n],, V%) — HY(K[n],, VY, ©g, Baw))
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under the natural map HI(K[n]U,T;{’h) — HI(K[n]U,th). Since H} (K[n]U,V;bh) agrees

geo

with the Bloch-Kato finite subspace Hi (K[n, ngf)h) (see [Nek93, Prop. 1.24(2)]), and the
latter agrees with H (K [n]y, V;fh) (see Lemma 9.1 below), the result follows. O

5. HIDA FAMILIES AND (GALOIS REPRESENTATIONS

In the next section we will prove that the classes ky, 4.5, of Theorem 4.6 extend along the
anticyclotomic Zp-extension of K, i.e., they are anticyclotomic universal norms, and explain
the construction of ky 4 pn for more general weights. In this section we collect the background
results we shall need, closely following the treatment in [BSV22].

5.1. Hida families. Let A = Zy[[1 + pZ,]] and let
W = Spf(A)

be the weight space. Then, for any extension E of Q,, we have W(E) = Homeont (14 pZyp, E).
Points of the form v, .(n) = e(n)n”, where r is a non-negative integer and € is a finite order
character, will be called arithmetic. We refer to k = r 4 2 as the weight of v, .. Arithmetic
points of the form v, = 1,1 will be called classical.

More generally, let R be a normal domain finite flat over A and let W = Spf(R). Then, a
point x € WR(@p) will be called arithmetic if it lies above an arithmetic point v, of W(@p)
and classical if it lies above a classical point v, of W(@p). Again, we refer to k = r + 2 as the
weight of .

Let M be a positive integer coprime to p. A Hida family of tame level M and character
X : (Z/MpZ)* — @; is a formal g-expansion

£ = an()g” € Arllall,
n>1

where Af is a normal domain finite flat over A, such that, for any arithmetic point x €
W, (@p) lying over some v, ., the corresponding specialization is a p-ordinary eigenform
fo € Sp(Mp®, xew™™). As above, we have denoted by k the weight of x and we can take
s = max{1, ord,(cond(e))}. We say that a Hida family f is primitive if the specializations f,
at arithmetic points = are p-stabilized newforms. We say that it is normalized if a;(f) = 1.

Let f be a normalized primitive Hida family of tame level M. For each arithmetic point x €
W, (@p), let £, denote the specialization of f at x and let f, be the corresponding newform.
There exists a locally-free rank-two Ag-module V¢ equipped with a continuous action of Gg
such that, for any arithmetic point © € Wh, (@p)7 the corresponding specialization Ve @p, » @p
recovers the Gg-representation Vy, attached to f,. In particular, the representation V¢ is
unramified at any prime ¢ { Mp and Tr(Fry) = aq(f). We refer to V¢ as the big Galois
representation attached to f. If for some (equivalently all) arithmetic point zg € W, (@p) the
Gq-representation Ty, attached to fzo 1s residually irreducible, then V¢ is a free Ag-module.

5.2. Continuous functions and distributions. Define the semigroups

Y/ Z, 7
z =2 7 and X{(p) = < v r > .
0(p) (pr Zp> 0(p) pr Z;
The sets T = Z x Z, and T' = pZ, x Z; bear a right action of Xy (p) and ¥ (p), respectively.
Let v be a character of Z, taking values in a finite extension £ of Q). Let O be the ring

of integers of E and denote by m its maximal ideal. Let Cont(Z,, O) denote the module of
continuous functions on Z, with values in O. Define O-modules

A, ={f:T—= 0] f(1,2) € Cont(Z,,0) and f(a-t) =wv(a)- f(t) foralla e Z,t €T},
A, ={f:T = O] f(pz,1) € Cont(Zy,0) and f(a-t) =v(a)- f(t) foralla € Z;, t € T'}
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equipped with the m-adic topology, and O-modules
DV = Homcont,o (»Ay, O)? D[’/ - Homcont,o (.A:,, O)

equipped with the weak-* topology. The right ¥(p)-action on T yields naturally a left
Yy (p)-action on A, and a right ¥;(p)-action on D;,.

5.3. Group cohomology and étale cohomology. Let N and m be coprime positive inte-
gers which are also coprime to p, let Y = Y (1, N(pm)) and let T" be the corresponding modular
group. Let & — Y be the universal elliptic curve over Y, and denote by C), the canonical
cyclic p-subgroup. Let .7 be the relative p-adic Tate module of £ over Y. Fix a geometric
point 71 : Spec(Q) — Y, and choose an isomorphism Iy = Ly ® Zy, such that the Weil pairing
on .7, corresponds to the natural determinant map on the right and the reduction modulo p
of the element (0,1) generates Cj, .

Let G = Wft(Y, n). The action of G on .7 yields an action of G on Z, ® Z,, and hence a
continuous representation p : G — GLa(Z)). More precisely, for any g € G,

g- (CL, b) = (CL, b)p(g)_l'

In fact, since the action of G preserves the canonical subgroup, we have a continuous repre-
sentation p : G = I'g(pZy), where

To(pZy) = {(i Z) € GL2(Zp) : p | C} -

The anti-involution of GL2(Z,) given by v — ~* = det(y)y~! restricts to T'g(pZ,) and
allows us to think of this group as acting on the right or left as convenient.

Taking the stalk at 7 gives an equivalence of categories between the category S;(Ye;) of
locally constant constructible sheaves with finite stalk of p-power order at n and the category
M((G) of finite G-sets of p-power order. For any topological group G, define M(G) as we
did for G. Let Me¢ont(G) be the category of G-modules which are filtered unions U;er M; with
M; € M(G) and let M(G) C Mcont(G)Y be the category of inverse systems of objects in
Mcont (G). Define S(Yqt) similarly. Then, there is an equivalence of categories between M(G)
and S(Ye). Moreover, the representation p defined above yields a functor M(I'y(pZy)) —
M(G). Regarding this functor, we adopt the following criterion: if an object F € M(I'g(pZy))
is given as a left I'g(pZ,)-module, we define the left G-action via the map p : G — Io(pZ,); if
it is given as a right I'o(pZ,)-module, we define the left G-action via the map g — p(g)~!.

Given an inverse system of sheaves F = (F;);en € S(Yet), we use the notation HZ, (Y, F) for
continuous étale cohomology as defined by Jannsen, and write B (Y, F) = @11 HL(Y,F;).

There is a natural surjective morphism Hgt(Y, F) — Hgt(Y, F). The compactly supported
cohomology groups HZ, (Y, F) and B, (Y, F) are defined similarly.

et,c et,c
There is an isomorphism ﬁt(Y@, n) = T'. Thus, if F € M(G) is a discrete G-module and
F is the corresponding object in Sf(Yy;), there are natural isomorphisms

(5.1) H(Yg, F) = H'(I,F) = H'(T, F).

Let 7 € My(T'o(pZy)) be a left I'g(pZy)-module, and assume that the I'g(pZjy)-action on F
extends to a left action of ¥j(p). Let S = X5(p) N GL2(Q). The pair (T, S) is then a Hecke
pair in the sense of [AS86a, §1.1] and there is a covariant (left) action of the Hecke algebra
D(T,S) on HYT, F). For each g € S, let T(g) = I'gT". Following [GS93, §1], we define, for
each positive integer n, the Hecke operators

ner((C) men(()
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Also, for each positive integer a coprime to p, let

=t (")) = ("))

Finally, for each positive integer a coprime to N, choose [, (respectively f,) in I'o(Npm)
whose lower right entry is congruent to a (respectively a~!) modulo N and let

laly = T(Ba),  laly =T (Ba)-

The isomorphism (5.1) is compatible with Hecke actions in the following sense. To distin-
guish between different levels, we shall now write Y (m) and I'(m) for the above Y and T, re-
spectively. Let s be a positive integer. Choose as above a geometric point 7 : Spec(Q) — Y (m)
and let 7, : Spec(Q) — Y (ms) be a geometric point lying above 1. Let r = 1+ ord,(s) and
choose an isomorphism .7, = Z,®Z, such that the Weil pairing on .7, corresponds to the nat-
ural determinant map on the right, and the reduction modulo p” of the element (0,1) generates
the canonical subgroup Cyr .. Using these choices to define the corresponding isomorphisms
between group cohomology and étale cohomology, there are commutative diagrams

H! *

L(Y (ms)g. F) —2 HL(Y(m)g, F) HL (Y (m)g, F) — s HL(Y (ms)g, F)

F F

cor nd res

HY(T'(ms), F) ——— H'(T'(m), F) HY(T(m), F) ——— HY(T'(ms), F).

o)

1R

Also, if (¥ 1) € ¥(p), we have the commutative diagram

HL(V (ms)g, F) =5 HL(V (ms)g, o5(F)) 3

]

HY((ms), F) =5 HY([(ms), g(F)) 25

Psx*
Helt< 7Npm Qaf)

Psx

I
%
2
2
I

— H'(T(1(s),
and, if (1) € Xy(p), the commutative diagram

HY (¥ (m)g, F) 25 HY(Y(1(s), N(pm))g, F) 5> HL(V (ms)g, ¢5(F)) > HL (¥ (m)g, F)

A T

H (T (m), F) == H'(D(1(s), N(pm)), F) —— H'(F(ms), ¢5(F)) — H'(L(m), F).

1%

In the bottom lines of the previous two diagrams, ¢3(F) is F with the action of I'g(p"Z,)
conjugated by (° 1); the map Agy is induced by the map F — % (F) defined by ¢ +— (° 1) ¢; s«
is induced by the pair of compatible maps I'(1(s), N(pm)) — T'(ms) and ¢*(F) — F defined
by v — (571 1) v (* 1) and ¢+ ¢, respectively; A% is induced by the map ¢s(F) — F defined
by ¢ — (1,)¢, and ¢* is induced by the pair of compatible maps I'(m) — I'(1(s), N(pm))
and F — ¢} (F) defined by v+ (! 1) (Y,) and ¢ ¢, respectively.

We shall denote by 7, and 75, respectively, the composition of the maps in the rows of
the previous two diagrams, both in étale cohomology and in group cohomology. Similarly, we
shall also use 71, and 7} to denote the corresponding corestriction and restriction maps.

For any rational prime ¢, a simple calculation shows that the following identities hold in
group cohomology whenever the maps involved are defined:

* ! *
Ty = T4 0Ty, Tq = T94 O .
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Therefore, under the isomorphism (5.1), the covariant action of the operators T;, T, on étale
cohomology corresponds to the covariant action of the operators Tj, Té on group cohomology,
whenever defined. Similarly, the covariant action of the operators (d), (d)’ on étale cohomology
corresponds to the covariant action of the operators [d]y, [d]’y on group cohomology.

The anti-involution ¢ extends to Matay2(Z,) in the obvious way and turns a left (respectively
right) action of Xy(p) into a right (respectively left) action of Xj(p). Thus, given an object
F € M(T'o(pZp)) whose right I'g(pZy)-action extends to a right ¥(p)-action, there is an
isomorphism Helt(Y@, F) = HYT,F) under which the contravariant action of the operators
Ty, Ty, (d), (d)" on étale cohomology corresponds to the contravariant action of the operators
Ty, Ty, [d] N, [d]ly on group cohomology, whenever defined.

Consider the modules A;, and D;, defined earlier in this section. The action of I'g(pZ,) on
T’ is transitive and the stabilizer of the element (0,1) € T’ is the subgroup

ra)={(§ 1) <o},

so we can identify T’ with P(Z,)\I'o(pZ,). Similarly, the action of I'g(pZ,) on T is transitive
and the stabilizer of the element (1,0) € T is the subgroup

Py ={(,, 4) < Cm@)|,

so we can identify T with P(Zy,)"\I'¢(pZ,). For any positive integer j, let

T (pZ,) = {(ﬁ Z) € GLy(Z,) : ¢ =0 (mod p), d = 1 (mod pf)} ,

Ty (PP Z,)" = {(;c Z) € GLe(Z,) :a=1 (mod p’), b= 0 (mod pj_l)} :
Then, for any positive integers i, j, we can define
Ay = :T1(0Zp)\LowZp) — Ofm’ | f(a-7) = v(a)- f(7)
for all a € Z%, v € L1 (p’Zp)\Lo(pZy) },

Avij={f T1(WZy)"\Lo(pZp) — O/m" | f(a-v) = v(a)- f(7)
for all a € Z, v € T1(p'Zp)"\Lo(pZp) }-
The objects A, ; ; can be regarded as left O[%;(p)]-modules. Let A, = liglj A, ; ;- Then

1,3,
A, = lim, A, ;. We denote by A, the object in S(Yer) corresponding to {4, ;}i € M(To(pZp)).
We also define D,,; = Homo(A,,; ;, O/m?). These objects can be regarded as right O[S, (p)]-

modules and we have D,, = @Z D, ;. We denote by D,, the object in S(Yt) corresponding to
{D,;}i € M(T'o(pZyp)). There are natural morphisms of O-modules

Hg(Yg, A,) = Hey (Y, A) = H'(T, A,
and
Hy(Yg: D,) = Hy (Y, D,) = H'(T, D)
compatible with the action of Hecke operators. We also have Hecke-equivariant isomorphisms

et,c et,c
where H2(T',—) = H’~Y(I', Homz(Div’(P'(Q)), —)). These isomorphisms allow us to define
continuous Gg-actions on the groups H(T', A,), HY(T',D;) and HX(T',D;)).

Given a character x : Z; — O, let O(x) be the module O with I'¢(pZj) acting via x o det,
where det : T'o(pZ,) — Z, is the determinant map.
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The natural G-equivariant evaluation map A, ®o D, — O yields a Gg-equivariant cup-
product pairing

(5.2) HYT,A)) ®0 H{(T,D;) — O(-1)

under which the Hecke operators Ty, Ty, [d]n, [d]’y acting covariantly on the left, whenever
defined, are adjoint to these same operators acting contravariantly on the right.

Let det : T' x T — Z,* be the function defined by det((z1,z2), (y1,92)) = z1y2 — z2y1 and
let det, be the composition of this function with v : Z) — O. Evaluation at this function
defines a G-equivariant map D) ®o D, — O(—v) which yields a Gg-equivariant cup-product
pairing

(5.3) H'(T',D;) ®0 H\(I',D,) — O(v)(-1),

/

where v = v 0 ecye : Gg — O*. Under this pairing, the Hecke operators Ty, Ty, [d]n, [d]y
acting contravariantly on the left, whenever defined, are adjoint to the Hecke operators Té,

Ty, [d]y, [d]n acting contravariantly on the right. We obtain a similar pairing interchanging
the roles of D, and D,,.

5.4. Ordinary cohomology. For any Z,-algebra B, let S,(B) be the set of two-variable
homogeneous polynomials of degree r in Blzy,x2]. It is a left B[Xj(p)]-module with the
action of Xj(p) defined by

gP(x1,22) = P((21,22) - 9)

for all g € ¥y(p) and P(z1,22) € Sp(B). To the p-adic I'g(pZy,)-representation S, = S,.(Z,)
there corresponds the locally contant p-adic sheaf .7, on Ye defined in §2.3. Therefore we
have an isomorphism

Hg(Yg, &) = H'(T, Sy)

which is Hecke-equivariant when we consider the covariant action of Hecke operators on both
sides, and we use this isomorphism to define an action of Gg on H Yr, s,).

We also define L,(B) = Homp(S,(B), B), which we regard as a right B[¥;(p)]-module
defining the ¥;(p)-action by

(1 9)(P(21,22)) = p(gP (21, 72))

for all g € £y(p), p € Ly(B) and P(z1,22) € Sy(B). To the p-adic I'g(pZ,)-representation
L, = L,(Z,) there corresponds the locally constant p-adic sheaf .Z;. on Y;. Therefore we have
an isomorphism

Hg(Yg, %) = H'(T, L)

which is Hecke-equivariant when we consider the contravariant action of Hecke operators on
both sides, and we use this isomorphism to define an action of Gg on H Yr, L,).

The natural I'g(pZ,)-equivariant evaluation map S, ®z, Lr — Z; yields a Gg-equivariant
cup-product pairing

(5.4) H\T,8,) ®z, HX(T, L;) — Zy(—1)

under which the Hecke operators Ty, Ty, [d]n, [d]y acting covariantly on the left, whenever
defined, are adjoint to these same operators acting contravariantly on the right. This pairing
becomes perfect after inverting p.

Let v, : Z); — Z, be the character defined by v;,(z) = 2". Evaluation at the polynomial
(r1y2 — 22y1)" € S; ®z, S; defines a I'o(pZy)-equivariant map L, ®z, L, — Zy(—v;) and thus
yields a Gg-equivariant cup-product pairing

(5.5) H'(T,Ly) ®z, H:(T', L) — Zy(r — 1)
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under which the Hecke operators Ty, Ty, [d]n, [d])y acting contravariantly on the left, whenever
defined, are adjoint to the Hecke operators T,, Ty, [d]ly, [d]y acting contravariantly on the
right. This pairing becomes perfect after inverting p.

Combining these two pairings we can define a morphism

St HY(T,8,(Qp)) — HYT, L.(Qp))(—7).

This map is Gg-equivariant and intertwines the covariant action of the operators Ty, [d]n, [a]p

on the source with the contravariant action of the operators Ty, [d]y, [a]}, on the target. We

can also define s, directly via the isomorphism S,(Q,) = L,(Q,)(r,) arising from the perfect
pairing L,(Qp) ®q, Lr(Qp) — Qp(—v;) defined by evaluation at (z1y2 — x2y1)". Therefore,
the denominators introduced by this map are bounded by r!, i.e., an element in

im (Hl(r7 Sy) — HI(F7 Sr(@p)))

is mapped to an element in

1,

5 im (HY(T,L,) — H (T, L. (Qy))) ,
as follows from [BSV22, Rmk. 3.3].

To slightly simplify the notation, we will write A, and D, for A, and D, , respectively.
Regarding two-variable polynomials as functions on T, we obtain a natural morphism of
left Z,[X;(p)]-modules S, — A.. Also, dualizing this map, we obtain a morphism of right
Zp|Ey(p)]-modules D, — L,. Thus, we have Gg-equivariant and Hecke-equivariant morphisms

HYT,S,) = HY(T,A,) and HY(T,D,) — H'T,L,).
Applying Hida’s (anti-)ordinary projector e, 4 := limnﬁoo(TZ;)”!, the previous morphisms
become isomorphisms
Cord ' (T, 8) = eoua H' (T, Ay), - equaH' (T, D;) = g H' (T, Ly).
Under these isomorphisms, the pairings (5.4) and (5.5) correspond to the pairings (5.2) and

(5.3), respectively, after applying the corresponding (anti-)ordinary projector to every term
involved.

5.5. A-adic Poincaré pairing. It will be convenient to write (a;b), with a € (Z/NZ)* and

be (Z/p"Z)*, for the diamond operator (d), where d € (Z/Np")* is congruent to a modulo N

and to b modulo p”. We also write ey : Gg — (Z/NZ)* for the mod N cyclotomic character.
For any positive integer r, let

Gr=1+pZ/p"Z), G,=(Z/p"Z)%,
and define
A = Zp|Gy], A= Zp[ér]a A= T&HAT = Zp[[1 + pZy], A= I&HAT‘ = Zp[[Z;H-

We have natural factorizations (Z/p"Z)* = pp-1 x (14 pZ/p"Z) and Z; = pp—1 X (1 + pZy)
which give natural embeddings A, < A, and A < A. We define idempotents
1 i
€ = Zfl Z e
geﬂp*l

for any integer i modulo p — 1. Let r; : ZX — A* be the character defined by z — w'(2)[(2)]
and let K; = K; 0 €gye : Gg — A*.
We will shorten notation by writing

(56)  X(m) = X(LN (m), HA(Xoo(m)g, Zy) = lim HL (X, (m)g, Z,)-
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We have a natural action of A, and A on the previous groups defined by letting group-like
elements [u] act like the diamond operators (1;u)’.

Fix compatible primitive p-power roots of unity (,~ and a primitive N-th root of unity (x.
Then one can define Atkin-Lehner automorphisms w, and w for the curve X,(m) similarly
as in [DR17, §1.2]. More precisely, X,(m) parameterizes quadruples (E, P,Q, C), where E is
an elliptic curve, P is a point of order N, () is a point of order p” and C' is a cyclic subgroup
of E of order Nm containing P. Then, we define

wr(E,P,Q,C) = (E/CQ, P+ Cy, Q + Cg,C + CQ/CQ),
where Cg C FE is the subgroup generated by @ and Q' € E[p"] satisfies (Q,Q') = (pr.
Similarly, we define
w(E, P,Q,C) = (E/C,P'+C,Q+ C,E[Nm]/C),

where P’ € E[N] satisfies (P, P') = (. These Atkin-Lehner automorphisms satisfy, for any
(oS GQ,
wg = <15 ecyc(a»wra w? = <6N(U)5 1>’LU.
We let w and w, act on cohomology via pullback.
Define Gg-equivariant pairings
(\)a, : eillg(Xr(m)g, Zp) x e—iHey(Xy(m)g, Zp) — Ar(—1)

by the formula

(a,b)c, = Z (a?,b)y - 0717
ceCGy
where (, ), stands for the natural Poincaré pairing. These pairings are A,-linear and anti-linear
in the first and second argument, respectively. Then we get Gg-equivariant A,-pairings

[)G, : eiHey(Xr(m)g, Zy) X eiHey (Xr(m)g, Zy) ((en'3 1)) — Ap(ki)(—1)
via the following modification of the previous pairing:
[a,blg, = (a, ww, - (TIZ)T “ba,.-
These pairings are compatible in the sense that the diagram

[’]GT+1

eiHy (X, 11(m)g, Zy) X eiHay (Xry1 (m) g, Zp) ((ex'5 1)) —— Mg (ki) (=1)

lﬂ'l* X T1x l
[7]Gr

eiHoy (X (m)g, Zp) X eiHoy (X (m)g, Zp)({ex' 1)) ——— Ar(ki)(=1)
commutes, which can be proved as in [DR17, Lem. 1.1]. This yields a A-adic perfect Gg-
equivariant pairing
(5.7) ei Y (Xoo(m)

where HZ (Xoo(m)
this pairing.

3 Zp)™ % eiHe (Xoo(m)g, Zp) ™ ((ey'5 1)) — Alsi) (=),
o Zp)°d = el (HL(Xoo (m)g, Zp). All Hecke operators are self-adjoint for

5.6. Big Galois representations. Let mj be the maximal ideal of A, let Cont(Z,, A) be the
A-module of continuous functions on Z, with values in A, and let x be any of the x; above.
Define the A-module

A, ={f:T = AJ f(pz,1) € Cont(Zy,A) and f(a-v) = r(a)- f(y) foralla € Z, v € T'},
equipped with the my-adic topology, and the A-module
D;. = Homeont A (AL, A)
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equipped with the weak-* topology. As in §5.2, we can regard A’ (respectively D) as a left
(respectively right) A[X{(p)]-module.
Similarly to what we did in §5.3, define, for any positive integers j, r,

e = U T Zp)\Do(pZy) — AJmiy | f(a ) = ri(a) - £(7)
for all a € Z;, v e Fl(p’"Zp)\Fo(pr)}
and Ay ; = lim A Then A, = T&lj Al ;. We denote by A the object in S(Ye) corre-

H7j77“
sponding to {A] ;}; € M(To(pZp)). We also define D;, ; = Homp (A], ; ;, A/m3), so that D;, =
@j D, ;, and denote by D the object in S(Y) corresponding to {Dj ;}; € M(To(pZp)).

There are natural Hecke-equivariant morphisms of A-modules

Hg(Yg, Ay) — He(Yg, A) = H'(T, A),

H(Yg, D)) = Hy (Yg, D)) = H'(T, D)),

He}t,c(Y@7 D;{) = Hét,c(Y@v ID;) = ‘H‘c1 (Pa Dlli)
which allow us to define continuous Gg-actions on the groups H'(T', A%), HY(I', D)) and
H: (T, Dy).
The evaluation map A, ®j D — A yields a Gg-equivariant cup-product pairing

(5.8) HYT, A)) @ H) (T, D) — A(—1)

under which the Hecke operators Ty, Ty, [d]n, [d]’y acting covariantly on the left, whenever
defined, are adjoint to these same operators acting contravariantly on the right.

Recall that in this section we have set I' = I'(1, N(pm)) and let S = X{(p) N GL2(Q). For
any positive integer r, define

r Z Z r r
50 = (8 1 )0 S =SHEINCLA@), T = T(LNY ()

We define compatibility of Hecke pairs as in [AS86a, Def. 1.1.2], but changing left-right
conventions. More precisely, we say that the Hecke pair (I'y, So) is compatible to the Hecke
pair (FB, Sﬁ) if (T, S4) C (Fﬁ,Sﬂ), Sal's = Sg and I'g N S;lSa =I',. With this definition,
the Hecke pair (I';, S;) is compatible to the Hecke pair (I't, S¢), if r > ¢, and to the Hecke pair
(T, 9).

Suppose that the Hecke pair (I'y, S, ) is compatible to (I'g, Sg) and that I', has finite index
in I'g. For any right S,-module E, we define

Ind?i E = {(,0 :T'g = E|p(xy) = o(y)z ™l forall z €Ty, y € Flg}
This module is equipped with a right action of Sg: given ¢ € Indll:i E and g € Sp

(e9)(x) = e(r)vga",
1

where the sum is over representatives 7 for the cosets in T, \I' N S,zg™".
Now define

Ay ={f T1(0"Zp)\Lo(pZp) — Ar | fla- ) = k(a) - f(v)
for all a € Z;, v e Fl(pTZp)\Fo(pr)}
and let D, = Homp, (A}, Ar). With these definitions D, =lim D[ .. Let S, act trivially
on Zj, and consider the right Z,[S;]-module Indll:i Zy. Let R be a set of representatives for
the cosets in I',\I';. The map Ind% Zp — D, . defined by

o [f ) () f(r)]

reER
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is an isomorphism of right Z,[S;]-modules. Therefore, there are natural isomorphisms
H'(T'1, D)) = lim H' (T, Dy, ) & 13_ N Zy).
T

According to [AS86a, Lem. 1.1.3] and [AS86a, Lem. 1.1.4], both corestriction and the Shapiro
isomorphism commute with the action of D(T',S) via restriction of Hecke algebras, so the
previous isomorphisms are Hecke-equivariant.

Similarly to (5.6), but omitting m from the notation, we let Y, = Y (1, Np"(m)) and put

H (YooQaZ ) :@Het(yr@az ),

where the inverse limit is with respect to the maps 7. Then

HY(T1,Dy,) £_H1 r Zp) = Hy (Y s

ZP)?
where the last isomorphism is defined by choosing a compatible system of geometric points for
the curves Y, and suitable compatible bases for the corresponding Tate modules. Under the
isomorphisms above, the contravariant operators Ty, [d]’y, [a], on the first term correspond
to the contravariant operators Té, (d; 1), (1;a)’ defined on the last term via the compatibility
of these operators with the pushforward maps ..

Also, according to [AS86a, Lem. 1.1.5], the restriction map yields a Hecke-equivariant
isomorphism

HY,D.) = e;H (T, D)
(recall that we have set kK = k;). Combining this isomorphism with the previous ones, we
obtain a Hecke-equivariant isomorphism
H'(T, D)) = eiHelt(Yoo,@’

Similarly, using [AS86b, Prop. 4.2], one proves that there is a Hecke-equivariant isomor-

phism

(5.9) H, (T, D) = eiflg (Y., 5, Zy)-

Zy).

6. PROOF OF THE WILD NORM RELATIONS

Assume that p splits in K as (p) = pp and that it does not divide the class number hg.

We keep most of the notations from §4. In particular, (g, h) is a pair of newforms of weights
(I, m) of the same parity, levels (N4, Nj,) and characters (x4, x»), and we assume that the ring
of integers O C E = Ly contains the Fourier coefficients of g and h. In addition, we assume
that p does not divide Ny nor Nj, and that both g and h are ordinary at p.

We now allow the Grossencharacter 1 to have infinity type (1 — k,0) for any even integer
k > 2, and let f be the conductor of ¥, which we assume to be coprime to p. Let x be
the unique Dirichlet character modulo Ny /q(f) such that ¢ ((n)) = nF~x(n) for integers n
coprime to N /q(f)-

As in [BL18, §3.2.1], we denote by vy the unique Grossencharacter of infinity type (—1,0),
conductor p and whose associated p-adic Galois character factors through I'y, the Galois group
of the unique Z,-extension of K unramified outside p. Then we can uniquely write ¢ = a@blg*l,
where « is a ray class character of conductor dividing fp. Since (f,p) = 1 and k is even, it
easily follows that v is non-Fisenstein and p-distinguished, meaning that

(6.1) ooy, #w (mod ),

where w is the Teichmiiller character.
Let ¢ be the continuous E-valued character of K*\A% . defined by

Pyp(z) = 2y (),
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where x;, is the projection of the idele z to the component at p. We will also denote by iy

the corresponding character of G obtained via the geometric Artin map. Then Ind% E (@Dq}l)

is the p-adic representation attached to 6, and we note that by (6.1) the associated residual

representation is absolutely irreducible and p-distinguished (see [LLZ15, Rmk. 5.1.4]).
Consider the g-expansion

0= [alg"e € O[[Hyy<]][[q]],
(a,fp)=1
where Hjyeo denotes the maximal pro-p quotient of the ray class group of K of conductor fp,
and [a] is the image of a in Hjy under the geometric Artin map. Since we assume that p
does not divide hx, we can factor Hjyee = H;j x I'y. Hence, we have © € O[Hj| ®o O[[I',]][[4]],
and we can specialize this to

(6.2) f= > aa))do((a])alg"/e € Ar[[q]),

(Cl,fp):1

where A¢ = O[[T}]]. We identify I, with I' = 1+ pZ, via the isomorphism I' = O — T,
defined by u — artp(u)_l, where art, stands for the geometric local Artin map, and in this
way we identify A with Ao = A®z, O. We can therefore regard f as a primitive Hida family
specializing to

fo= > ala)vo(a) g2l €SP Nyp, xaere! )
(a,fp)=1
at the arithmetic point v o, where Ny, = DN q(f) and xa(n) = a((n)). Note that f has
character y = yow!' " and f;, = Gf/jp ) is the ordinary p-stabilization of 6.

Let xq be the adelic character attached to x, let xx = x@ © N/ g and let ¢* = X}—(lw' We
can define a primitive Hida family f* attached to the Grossencharacter ¢* in the same way
that we defined the Hida family f attached to 9. This is just the Hida family f @ y .

We assume that xexxgxn = 1, i.e., the product of the characters of 0y, g and h is trivial.
Similarly to what we did in §4, set (r1,7r2,73) = (k—2,1—2,m —2). For every positive integer
m, let

Y(m)=Y(1,N(pm)), where N = lem(Ny, Ny, Nz),
and denote by I'(m) the corresponding modular group. Let & = &, : Z, — A* and choose a
square root of this character defined by x'/2(u) = w(u)#=2/2[(u)1/2].

We can define classes

Detfﬂh € Hgt(f/(m),A; ® Aﬂ"z ® A’fs(_'%l/z B V(T2+r3)/2))'

as in [BSV22, §8.1], but replacing the Hida families g, h in their construction by our g, h and
working with modules of continuous functions instead of modules of locally analytic functions.
Similarly to what is done in loc. cit., and adopting some of the notations there, we define the
cohomology classes

/{gfll,)fgh = (ei)rd ® €ord ® eord) oKoHSo d*(Detfgh)’
inside the group
H' (QH ([ (m), A" EH ([ (m), Ary) " O H (D(m), Ar) ™ (K +2 4 (r2 +73)/2))

where x!/2

define

=Ko €cyc; and, for each squarefree positive integer n coprime to p and N, we

Frcpgn = Xex ()i(n) 0" (I @ 1d @[n]y ) (Id @71, @ mou ) ¢



THE DIAGONAL CYCLE EULER SYSTEM FOR GL2 x GL2 27

lying in the group
1Y (@ HY (P(02), A ) EHN (1), Ay O H (P(1), Ar )62 + 24 (12 +73)/2))

Now we can prove norm relations for A-adic classes as we did for the classes in the previous
section.

Lemma 6.1. Let m be a positive integer and let g be a prime number. Assume that both m
and q are coprime to p and N. Then

= (' @ ld@1d)xY

(772* & T @ s /{ Em, fgh’

mq fgh —
tn = K V2 (@)q" (T @ 1A @ 1)k

Km fgh’
= (14 @T; @ 1)k g

E

T1x @ Tox Q) Tk 7(nq
(1)
maq,f
(1 )
mq,

(1)

)i}

)
Tix @ T2 @ T4 )R

)
Tisx @ T1s ® Wz*)ﬂmq fgh = = (ldwld ®T/) Ko fgh’

(
(
(772* R T1x @ Mok )R fgh — "{1/2( ) (rs= T2)/2(Id ®T ® Id) 7(n)f'gh7
(

1/2( )q (ro— T3)/2(Id®1d®T) (1)

1
(772* Q) Tox & 771*) (1) Ky, fgh°

mq fgh -
If q is coprime to m we also have

1
(7['1* Q T1x & 771*)"‘37(-,1()1’fgh - (q + 1) £n)fgh7

(71'2* ® s & 77—2*) grllzl fgh — (q + 1) 1/2(q)q(7“2+’r‘3)/2 gn)fgh

Proof. As in Lemma 4.2, the same arguments proving equations (174) and (176) in [BSV22]
apply mutatis mutandis to yield the proof of these identities. O

Lemma 6.2. Let n be a squarefree positive integer coprime to p and N and let g be a rational
prime coprime to p, N and n. Then

(m11e @ M@ 1)) 0 = {X(O)(0) g (I @ 1d @[q] 7' T2)

—x(@)r(g) g+ g™ (delde Id)}’{g}ghv
(214 ® Id®1d)“1(jq),fgh = {x(@)s" (@) (1A ®T, & T,)

— x(@)r(0) " ([aln) T Ty @ gl @ [a]n) } ot pgns
(m2e @ Id@1d)s' g = {X(g)g" (1A RTZ @ [g])

— x(g)(q+1)g"* " (1A ®[q] NIk

where ;. denotes the composition
H(D(n*q*), F) ™ H'(T(n’q), F) =5 H'(L(n?), F)
Proof. This can be deduced from Lemma 6.1 by the same calculation as in Lemma 4.4. [

Let I'(m) = T'(1, Np(m)) and write Y (m) and X(m) for the corresponding affine and
projective modular curves. The pairing in equation (5.8) yields a map

H'([(m), A,) — Homy (H, (T'(m), D), A)(—1) 2 Homn (er, Hop o (Yoo (m)g. Zp), A)(—1),

where the isomorphism comes from equation (5.9). Let Z,, be the maximal ideal in Hida’s
big ordinary Hecke algebra T(1, Np>®(n?))’ , corresponding to the Hida family f*; by (6.1)

ord
this ideal corresponds to a non-Eisenstein maximal ideal in T(1, Np(n?))’, so there are iso-

morphisms

1
Het c

(Yoo (n*)g, Zp) 7 =2 Hey(Xoo (), Zp) 2! 22 Hey (Yoo (n%)g, Zy) 7 -
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Hence, the pairings (5.8) and (5.7) together with the isomorphism (5.9) yield a morphism
st : H(D(n®), AL — ery Hoy (Yoo (n) g Zp) 2 (e 1)) (—5).-
This map is Gg-equivariant and intertwines the covariant action of the operators T, [d]y, [a];

p
on the source with the contravariant action of the operators Ty, (d;1)’, (1;a)’ on the target.
Fix a level-N test vector f for f and let f* = f ® X ‘ek. Fix also test vectors

7€ SN, xg)lgl, h € Sm(N,xn)lh]

and write g, and he for the corresponding ordinary p-stabilizations.
Define maps
¢n,r : T(la N’prT(n2)):)rd — O[prr,n]
attached to the Grossencharacter ax;(liﬁo as in Lemma 3.5 and let

Fno0  T(L Nyp™(n%))ora — Ol[Ripee ,,]] = O[B; ] @0 O[[Ty]]-
be the inverse limit @T ¢n,r- The test vector f* determines a degeneracy map
Hey (Yoo () g Zp(1)* = Hey (Y (1, Nyp™(n®))g, Zp(1)).
Composing this degeneracy map with the natural quotient map we get a morphism
e = eny Hey (Yoo (n%)g O(1)2 = (O[Rn] ©0 O[Ty]]) 4, 00 Hey(Y (L Nyp™(n?))g, O(1))".
The test vectors g, and he determine degeneracy maps

HL(V (D) 2o (1) 255 HL (Vi (Np)g, Z,(1)) > HL(YVi(Ny)g, Ly (1)

Q
He(Y (1)g. (1)) ux He,(Yi(Np)g, £5 (1) = He(Yi(Nn)g, L (1))

Composing these maps with projection to the g-isotypic and h-isotypic quotient, respectively,
we obtain

g ¢ eng ' (T(1), Lyy (1)) @z, O — T,
h ¢ ehg HY(T(1), Ly (1)) @z, O — Th.
For the ease of notation, we write
H'(¢,],n) = (O[R; ] ©0 OlLy]]) @4, Hi(Y (1, Nyp™(1n*)g, 0) " ((ey'5 1)) (57?)
and put H(¢,n) = n] R0[R, ] H'(3,f,n). Then we define the class

ol
6.3 ®3) 2)
(6.3) B toh (7Tf* ® Mg @ Tp) 0 (Sgx @ Spox @ ST3*)K‘n,fgh

lying in the group
H' (Q,H'(¢,n)®0(Ty ®0 Ty) ®z, Qp(—1 — (r2 +13)/2)) .

Let I'yc be the Galois group of the anticyclotomic Z,-extension of K. We can identify this
group with the anti-diagonal in (1 + pZ,) x (1 + pZ,) = Og)p X O%)p via the geometrically
normalized Artin map. Let wac : Tac — Z) be the character defined by mapping ((1 +
p)_1/2, (1+ p)1/2) to 1+ p and let Ky : Tae — AX be the character defined by mapping
(1 +p)~'2,(1 + p)'/?) to the group-like element [1 + p]. We use the same notation for the
corresponding characters of Gg. There is a Gg-equivariant isomorphism of Ap[R,]-modules

(6.4) H' (1) = Ind ) Ao (v kit 2Rl ) (=1 /2).

Let
T;,)h = Tg ®o Th(d}il)(_l - T)) th;{)h = T;,)h ®Zp Qp-
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®3)

In light of the isomorphism (6.4), using Shapiro’s lemma the classes &, ¢ oh yield classes
(65) "%wg,h,n,oo € Hl (K[n]7 AO(R;CI)(%OTZ}L(/{;%:/Q)) Ko E
for every squarefree integer n coprime to p and V.

Proposition 6.3. Let n be as above and let q be a rational prime coprime to p, N and n.
Then:

b2y (B 2
COT K [ng) /K n] (R, g,hing,00) = q”m“{xg(q)xh(q)q ( Ay 1)
—(k—=2)/2 _
_ aq(g)aq(h) “ac( )/ Y (Frg 1)Fr_1
qUrm=9/2 1 q
Xg(@) tag(9)® | xn(@) tag(h)*  ¢*+1
+ ql—2 + qm—l - q
—(k—=2)/2 _
_aglg)ag(h) (el PP
(=02 ] q
—(k—2)/2 -1 2
Kac Yp(Frz ") _
+ xo(0)xn(2)g = TR bRy g e

(ii) If q is inert in K,

ql72 qul q

COT K [ng]/ K [n] (Fip,g,hng,00) = 4 Foapg.hmco-

R {xg<q>—1aq<g>2+Xh<q>-1aq<h>2 <q+1>2}~

Proof. The proof of this proposition is similar to the proof of Proposition 4.5. We just remark
that the maps s¢ . interchange the degeneracy maps m and w2, and under the isomorphism

HI(K[n]aAO("EQCI)®OT$;1(’€§§72)/2)) ®o E
~ HY(Q, H' (¢, n)®o(Ty ®0 Th) @z, Qp(—1 — (r2 +13)/2))

arising from (6.4), the corestriction cor K[ng]/K[n) COITESpONds, in the case where (¢) = qq splits
in K, to the map

(k-2)/2, 1 (k-2)/2, 1y
n - - K Pp(Frg )la] | Fac Py (Frg )[a]
Nt = w1 = X w21 (g) | = W ot
q q
-1 k—2
TR e\ (q);u ( 22+,

and similarly in the case where ¢ is inert in K. Since the result can be deduced from Lemma 6.1
by virtually the same calculation as in the proof of Lemma 4.4, we omit the details. O

Definition 6.4. For any FE-valued Gi-representation V', put
H%W(K[npoo]a T) = @Hl (K[’I’Lpr],T), HIIW(K[npOO]? V) = HIIW(K[npOO]v T) ®o Ea
T

where T' C V is a Galois stable O-lattice.
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By another application of Shapiro’s lemma, the classes Ky g hnoo in (6.5) naturally live

in H., (K[np>),V, h(ng’é 2/ 2)) We thus arrive at the following theorem, which is the main

result of this sectlon
Theorem 6.5. Suppose that:

e | > m > 2 have the same parity and k > 2 is even,
e p splits in K,
e p does not divide the class number of K.

Let S be the set of squarefree products of primes q which split in K and are coprime to p and
N. Assume that Hl(K[nps],ngjh) is torsion-free for everyn € S and for every s > 0. There
exists a collection of classes

{w,g,h,n,m € Hiy(K[np™],T,,) : ne 8}
such that whenever n,nqg € S with q a prime, we have
COT K ng]/ K] (K9, ng,00) = Pa(Frg ) fis g n oo
where q is any of the primes of K above q, and Py(X) = det(1 — Frq_lX\(V;f’h)V(l)).

Proof. The same argument as in the proof of Theorem 4.6 (but using Proposition 6.3) yields a
system of Iwasawa cohomology classes with the stated norm-compatibilities for the represen-

tation ng (ng’é 2/ 2) By the twisting result of [Rub00, Thm. 6.3.5], the theorem follows. [J

We conclude this section by proving that the classes ky, g 1n,00 land in the balanced Selmer
group

Selpat(K[np™], T,) = lim Selpa (K [np'], T2,);

in the terminology introduced in §8.1 below, this is the same as the Greenberg Selmer group
Selg (K [np™>], T ;{’h) associated to the Gk, -invariant subspaces JF, (ngh) C V 7 in (4.1) at the
primes v | p.

Proposition 6.6. For alln € S, we have Ky ghnoo € Selbal(K[npoo],ngjh).

Proof. Let v 1 p be a finite prime of K[np*>], and for every r > 0 denote also by v the prime
of K[np"] below v. As in the proof of Proposition 4.9, we have

HY (K[np'], V,)y) = Hé(K[np'], V) = 0,
and hence
HY(K[np')y, TY,) = H (K[np' ]y, T" = H (K[np'ly, TV
( np |v, g,h) ( np |v, g’h)tors Gr( np |v, g’h)7

where the first equality follows from the local Euler characteristic formula. Hence the inclusion

resy (Ky,g,hn,c0) € lim H (K [npy, ) follows. Since by [BSV22, Cor. 8.2] it follows that
the classes Ky, g.hn,00 satisfy the balanced local condition at the primes above p, this concludes
the proof. O

Part 2. Arithmetic applications
7. IWASAWA MAIN CONJECTURES

In this section we formulate Iwasawa main conjectures for triple products of modular forms.
We give two formulations: one in terms of the triple product p-adic L-function (Conjecture 7.7)
and another in terms of diagonal cycle classes (Conjecture 7.9). In Theorem 7.15 we establish
the equivalence of the two formulations.
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7.1. Triple product p-adic L-function. Fix a triple (f, g, h) consisting of a primitive Hida
family f of tame level Nf and character yf and two p-ordinary newforms g,h of weights
[,m > 2, levels Ny, Nj, prime-to-p, and nebentypus x4, xn. Assume that f has coefficients in
a ring Af as in §5.1. Assume that x¢x,xn = w'' for some even integer 71 and put

N =lem(Ng, Ng, Np,).

Let g and h be primitive Hida families with coefficients in Ag and Ay, passing through ¢g and
h, respectively. More precisely, there exist arithmetic points yo € W, (@p) and zp € W, (@p)
such that g,, and h., are the ordinary p-stabilizations of g and h, respectively. The rings Ag
and Ay need not be regular. However, for our purposes, we can consider the A-adic families,
denoted again g and h, that result from embedding Ag and Ay in the rings of functions of
suitable wide open connected subsets Ug and Uy, of W(Q,) = Spf(A)(Q,) defined over some
finite extension E of @, and containing the points 3y and 29, respectively. From now on,
it is these rings of functions that we will denote by Ag and Ay. These rings are now non-
canonically isomorphic to O[[T]], where O is the ring of integers of E; in particular, they are
regular. Let I — [ and m — m be generators in Ag and Ay, of the prime ideals corresponding
to the points yg and zg, respectively.

We can and will assume that Ag is a finite flat extension of Ap and we will only consider
arithmetic points in Wy, (@p) lying in Homcont’@(Af,@p)

Recall that in §5.5 we defined a character r;, : Z,; — A* given by u — w" (u)[(u)] and in

§6 we fixed a square root /i%l/z of this character given by u — w™/2(u)[(u)'/?]. We let k¢ and

/{}'/2 be the composition of x,, and /@1«1/2, respectively, with the embedding A* — Af. We also

define a character kg : Z) — (Ag®oAh)X by

Fgh (u) = w (u)l+mf4 <u>l+mf4

and choose a square-root of this character defined by /{é{f(u) = w(u)Hm=4/2(y)Hm=4)/2,
Let Aggh = Af®oAg®oAh and consider the Aggn|[Ggl-module

. . _ - -1 —1/2 —1/2
(7.1) Vlgh = VeR0oVe®0Vh(ZEggh), where Zggn = Ecylcﬁf / th/
and V¢, Vg and Vy, are the big Galois representations attached to f, g and h, respectively.
Then Vigh is a self-dual twist of the tensor product of these representations. Consider also

the A¢[Ggl-module
VI‘gh = Vr ®o Tg R0 Th(Efgh), where Efgh = 6(2_l_m)/21€;1/2.

cyc

Given test vectors (f, g, h) for (f,g,h) of level N, as explained in [HT01] and [DR14, §4.2],
a generalization of Hida’s p-adic Rankin-Selberg convolution produces an element .Z,(f, g, h)
in the fraction field of Af whose specializations to arithmetic points x € W, (@p) of even
weight k& > [ 4+ m recover (a square-root of) the central critical values of the triple product
L-function L(VL oh s) for the specialization of VE g, at @ by virtue of Harris-Kudla’s pruoof ?f
Jacquet’s conjecture, [HK91]. A recent result by Hsieh [Hsi21] constructs test vectors (£, g, h)
for which a precise interpolation property for the resulting fp(f 9 ﬁ) is proved. To recall the

result in the form that will be used here, for any arithmetic point = € Wh, (@p) as above, we
set

fi . =f, ap:= ap(fk), B = Xf(p)pkflalzl,
let oy, By be the roots of the Hecke polynomial of ¢ at p with ord,(ay) = 0, and define oy, By,
similarly. As recalled in [op. cit., §1.4], when the residual Galois representation pg associated
to f is absolutely irreducible and p-distinguished, the local ring Af is known to be Gorenstein

and by a result of Hida’s the congruence module of f is isomorphic to Ag/(&) for some nonzero
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€ € Ar. We call (§) the congruence ideal of f. Finally, denote by sg(VIkgh) € {£1} the epsilon
factor of the Weil-Deligne representation attached to the restriction of Vlik gh O Go,-

Theorem 7.1. In addition to xgxgxn = W™, assume that:

(a) pr is absolutely irreducible and p-distinguished,
(b) for some arithmetic point x € Wy,(Q,), we have Eg(V}L-kgh) = +1 for all primes £ | N,
(c) ged(Ng, Ny, Np,) is squarefree.

Let € be a generator of the congruence ideal of £. There exist test vectors (f, g, E) for (£,9,h)
of level N, and an element

gpé(fméaﬁ) € Af

such that for all arithmetic points x € Wh, (@p) of even weight k > | +m with k = ry + 2
(mod 2(p — 1)) we have

fp&(fagﬁ)(%) 2 _ F(k,l,m) 8 fkaga H fkgh70)
s 9a(k,l,m) 50(fk e fﬁ fﬁ>

where:

°
’1

== (c=m)l-(c—=D)(c+1—=1—m), withc=(k+14+m—2)/2,
) € As zsalznearform in the variables k, [, m,
h)=(1

koégoéh)(l _ ka)iah)(l _ 51@;2&)(1 . ﬁkﬁgﬁh)7

(k,l,m
alk,l,m
E(fk 9, — =2

Eolfi) = (1—25), &1(f) = (1 — 2&),

po,
Ty 18 an explicit nonzero rational number independent of k,

f,g is the mewform associated to the p-stabilized newform f,

and ||f£||2 is the Petersson norm of f,g.

Proof. Letting g,h be the primitive Hida families of tame level Ny, N}, passing through the
ordinary p-stabilizations of g, h, this follows by specializing the three-variable p-adic L-function
in [Hsi21, Thm. A] attached to (f, g, h) and the congruence ideal generator &. O

Definition 7.2. For the test vectors (f, 9, E) of level N provided by Theorem 7.1, we set
Ly(f,9.h) = Z5 (£, 3, 1)°,
where £ is any fixed generator of the congruence ideal of f.

Note that Ly(f, g, h) depends on the choice of £, but the principal ideal in A it generates
is of course independent of that choice.

7.2. Reciprocity law for diagonal cycles. Keep the notations in the previous subsection
and without loss of generality assume that [ > m (reordering g and h if necessary).

Assume that the Galois representations attached to f, g and h are all residually irreducible
and p-distinguished. Let ¢ € {f,g,h}. As a G, -representation, V4 admits a filtration

(7.2) 0=V, = Vg —=Vy =0

with each Vi free of rank one over Ay, and with the Gg,-action on V; given by the unramified
character sending Frj, — a,(¢). This induces an obvious three-step filtration

F3 F2 F1 T
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by Gg,-stable Aggp-submodules of ranks 1, 4, and 7, respectively, given by
d@lwgh = (VeRoVg®o Vi + VeRoVE@oVh + V&0 Ve®oVh) (Eggn),
(7.3) Ty = (Vedo Vi@V + VE®oVe®o Vi + VE®oVg @oVn)(Sgn),
TV = V@0V ®o Vi (Eegn)-
The middle term .# ZVIgh will play a special role in the following, and we note that
(7.4) Ty | PV, 2 VE @ VPR @ VE,

where V%h = (Vg ®0Vg®ov}f )(Efgn) and similarly for the other two direct summands. We
similarly denote the induced subquotients on the specializations of Vigh (that is, # iVI oh V?h,
etc.).

Consider the class /ig?’g i, defined in (6.3) for the choice of level-N test vectors (f, g, h) given
by Theorem 7.1 and let x(f,g,h) € H* (Q’V;[gh) be the image of this class via the morphism
obained from the augmentation map O[R;] — O. By [BSV22, Cor. 8.2], the image of (f, g, h)

under the restriction map at p is contained in
1 . 1 2 1
Hyon(Qp, Vi) o= im(HN(Qp, Z2V] ) = HY(Qy, Vi)
It is easily seen that this map is an injection, so we may and will view res,(x(f,g,h)) as a
class in H(Q,, ﬁQV}gh). Let

. g2yt gh
Pregn) i Vg, — Vg

be the map induced by the projection onto the first direct summand in (7.4). The “reciprocity
law” from [BSV22, DR22]| recalled in Theorem 7.4 below relates the image of resy(x(f, g, h))
under the natural projection

h
PT(f,g,h)% - Hgal(Q%VI'gh) — Hl(Qng )
to the triple product p-adic L-function of §7.1. Recall that £ € A¢ denotes a generator of the

congruence ideal of f.

Proposition 7.3. There is an injective Ag-module homomorphism with pseudo-null cokernel
Logt : HY(Q,, VI") — A¢

characterized by the following interpolation property: for all 3 € Hl(Qp,Vgh) and all classical
points © € Wy, (Q,) of weight k > 1+ m with k =ry +2 (mod 2(p — 1)) we have

Log(3)(x) ~ (p— 1)y (1 B ﬁkagah> <1 B Oékﬁgﬁh>—1
- c pe
CUE (log, (3 fl-m<k<l
(C=aI ng( k),nfk®wgl®whm>dR, if m<k<l+m,
(k—c— 1)1 (expi(3r), ne, ® we ®whm>dR, ifk>1+m,
where ¢ = (k+14+m —2)/2.

Proof. The construction of £og® will follow by specializing the three-variable p-adic regulator
constructed in [BSV22, §7.1] (building on a generalization of the construction in [LZ14] given
by Kings—Loeffler—Zerbes [KLZ17]).

Let Ygp, : Aggh — Ag¢ be the map given by reduction modulo (I —I,m —m). This induces
isomorphisms

= h ~ yoh
Vigh @egn At = Vigy VE @y, A = V',
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and a natural map
ﬁgh* - H? (vawﬁh) ®Afgh Af — H' (QINV?}L)'

This map is clearly injective, and its surjectivity can be shown easily by an application of local
Tate duality and the Ramanujan—Petersson conjecture (cf. proof of [BSV22, (154)]). Letting

L8 HY(Qp, VEY) — Aggn

be the p-adic regulator %% defined as in [BSV22, Prop. 7.3] and multiplied by £, the map
defined by the composition

A gy Dane 1 h Z @id
Log>: H (Qp»Vf ) — H (QP’Vf )®Afgh Ag Ag

satisfies the interpolation properties in the statement of the proposition.
It remains to see that £ogf is injective with pseudo-null cokernel. By definition, we have

gh _ rgh ~1/2 1/2
Ve =Ug (ecycrie ' “hgh ),

where U%h is an unramified GQp-module on which an arithmetic Frobenius Fr, acts as multi-

plication by X]T1(p)ap(f)ap(g)_lap(h)_l, and %% is obtained by specializing the four-variable

p-adic regulator map in [KLZ17, Thm. 8.2.3] for the module U?h, paired against the differen-
tial 7f ® wg @ wp. In light of [KLZ17, Rmk. 8.2.4], the fact that £og® has the above properties

can therefore be deduced from the vanishing of H° (Qp,Ugh), where Ugh is the image of U%h
under Jgp,. O

Theorem 7.4 (Reciprocity law). We have the following equality
Log* (ves, (x(f, 9.1))) = L5 (£, 4. h).

Proof. This is the specialization of the three-variable reciprocity law of Theorem A in [BSV22]
to (f,g,h) (see also [DR22, Thm. 10]). O

7.3. Selmer groups and formulation of the main conjectures. Let (f, g, h) be as in the
preceding subsection. Throughout the rest of this section, we assume that hypotheses (a)—(c)
in Theorem 7.1 hold, so the p-adic L-function Ly (f, g, h) in Definition 7.2 is available.

Recall the Gg,-stable rank-four Aggp-submodule .7 QVIgh C V}gh in (7.3), and set
Vi = V{@0Vg®0Vh(Eggn)-

As before, we let & QVfgh and V{ oh denote the corresponding specializations.

Fix a finite set 3 of places of Q containing co and the primes dividing Np, and let Q* be
the maximal extension of QQ unramified outside X.
Definition 7.5. For £ € {bal, F} define the Selmer group Selg(Vigh) by
H'(Qp, Vi)
Sel (Vi ) = ker (Hl(@E/Q,V} L) — 9),
! " HL, V)

where
ker (HY(Qp, Vi) — HY(Qy, Vi, /F2V] ) if £ = bal,

Hé(@p,VI- h) =
J ker (HY(Qp, Vi) — HY(Q,, Vi, /VE,)) if £=F.

We call Selbal(VI» 1) (resp. Sel;(VII o)) the balanced (resp. f-unbalanced) Selmer group.
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Remark 7.6. The pairs
(Vb €lsy: I-m<k<l+m}), (Vi {keZ: k>1+m})

satisfy the Panchishkin condition in [Gre94]. Thus Selpa) (VI ) and Sel;(Vi ) may be viewed
as instances of Greenberg’s Selmer groups attached to different ranges of critical specializations
of VI .

gh

Let
AL, = Homg, (V] ;. i)

Then for £ € {bal, F}, we define the Selmer groups Selg(AIgh) as above, taking H}(Q,, Aigh)
to be the orthogonal complement of H} (Qp, V]: gh) under the local Tate duality

Hl(@IHVI‘gh) X HI(QIHAI'gh) — Qp/Zy,
and set
Xr(Al,) = Homeont(Sel (A, ), Qp/Zy).
In light of Remark 7.6, the next conjecture may be viewed as an instance of the Iwasawa—

Greenberg main conjectures [Gre94]. In the two formulations below, we also assume conditions
(b) and (c) from Theorem 7.1, so that the p-adic L-function L, (f, g, h) in (7.2) is defined.

Conjecture 7.7 (IMC “with p-adic L-functions”). The modules SeI}-(V}gh) and X]:(Algh)
are both Ag-torsion, and
Chara, (XF(Af,,) = (Lp(f,g, 1))
n Ag ®Zp Qp.
Remark 7.8. An integral formulation of the equality of ideals in Conjecture 7.7 would in

general involve certain Tamagawa factors, accounting for the fact that the construction of
L,(f,g,h) uses Hida’s congruence number, while by definition the classes in the Selmer group

X;(Algh) are trivial at the places v € ¥ \ {p, 0o}, rather than just unramified (¢f. [PW11]).

Under the local root number hypothesis (b) in Theorem 7.1, for all arithmetic point = €
Wi, (Q,) of even weight k > 2 with [ —m < k < [ — m the sign in the functional equation
for L(VLC gh s) is —1, so that the central value L(VEC gh 0) vanishes. Therefore, in the spirit
of Perrin-Riou’s main conjecture [PR87, Conj. B] in the setting of Heegner points, a natural
formulation of the Iwasawa main conjecture for Selbal(VI gh) takes the following form.

Note that it follows from [BSV22, Cor. 8.2 that x(f, g, h) lands in Selbal(V}gh).

Conjecture 7.9 (IMC “without p-adic L-functions”). Suppose k(f,g,h) € Selbal(Q,VIgh) is
not Ag-torsion. Then the modules Selbal(VIgh) and Xbal(AIgh) have both rank one, and

2
Selpai (VE,,)
)

T —
CharAf(Xbal(Afgh)tors) = Chary, (Af’i(ﬂgah

n Ag ®z, Qp, where the subscript tors denotes the Ag-torsion submodule.

Remark 7.10. Working under different hypotheses on the local signs ensuring that L(Vzkgh, s)
has sign +1 (rather than —1) for weights & > 2 with | — m < k < [ — m, the Iwasawa main
conjecture would relate the characteristic ideal of Xbal(AI gh) to the balanced triple product p-
adic L-function constructed in [Hsi21, Thm. B] (see also [GS20]), rather than diagonal classes.
In this setting, the f-unbalanced Selmer group Sel;(VI gh) should have Ag-rank one, but the
expected non-torsion Selmer class seems to not have been constructed yet.
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7.4. Equivalence of the formulations. In this subsection we show that the two formula-
tions of the Iwasawa main conjecture in the previous subsection are essentially equivalent,
focusing on the case where f is a CM Hida family! as in §6. Similar equivalences between
IMC “with” and “without” p-adic L-functions appear in [Kat04, §17], [KLZ17, §11] and, in a
setting more germane to ours, [Wan20] and [Casl7, Appendix].

The following intermediate Selmer groups will allow us to bridge between Selp,; (VI gh) and

Sel _/"-(VI' o) in the comparison. Set
nt+ _ /S 2y 1 fut+ _ /S 2yt
Vfgh _Vfghmy Vfgh’ Vfgh _Vfgh—i—y Vfgh’

which are Gg,-stable Ag-submodules of VI o Of ranks 3 and 5, respectively. Define Selz (VI gh)
for £ € {F N+, FU+} by the same recipe as in Definition 7.5, with

ker (HY(Qp, Vi) = HY(Qp. Vi, /VEGD)) i L=F 0+,

HE(Qp, V] ) =
’ ker(H'(Qp, Vigp,) = HNQ, Vig/Vigy)) i L=FU+.

We define the Selmer groups Sely:m+(AIgh) and Sel}-UJr(AIgh) taking H}m+(Qp,AIgh) and
H}:U+((@p, A;gh) to be the orthogonal complements of H}U+(Qp,Vligh) and H}?m+(Qp’VI‘gh)v
respectively. As in the preceding section, we also define the corresponding Xz (A} gh) and

Throughout this subsection, we keep the setting from §6. In particular, f € Af[[g]] is the

CM Hida family in (6.2) associated with the Hecke character ¢ of conductor f. In addition,
we assume conditions (b) and (c) from Theorem 7.1, so the p-adic L-function Ly(f, g, h) € A¢

is defined, and let k(f, g, h) € HI(Q,VIgh) be as above.
For every height one prime £ of Ay away from p, let Sq be the integral closure of Ag/9Q

and let @4 be the fraction field of Sq. Let VI ) be the extension of scalars of VI h / QVIgh
to Sq, and let Algh Q= Hom(V}ghD, fpee ). Following [MRO4], define

(7.5)

ker (H'(Qy, Vi o) = HY(QF, V], o @ @y)), if v 1 p,
ker (H'(Qu, Vi o) = HY(Qu, (Vi 0/ F2VE0) © 89)), ifv|p,
and let H@(Q,VIMQ) be the associated Selmer group. Taking H@(QU,A}W q) to be the
orthogonal complement of HQ(QU,VI ghQ) under local Tate duality, we define the Selmer

HQ(QU’ VI‘gh,Q) =

group H{ ,(Q, AI oh o) similarly.
= b _ . 2
Define V;b,h = A@(I{acl)(@()T;’)h(Iig};/ ) and let Aih = Hom((V;Z”h)C,upoo), where (V;ﬁz)c

denotes VQ; 5, With the G g-action twisted by complex conjugation. Note that VI» oh = Ind%V o

so we can define Selmer conditions for V;ﬁh using Shapiro’s lemma and for A;b,h by duality.

Define AZ},h,ﬂ = Hom((VZ”h?Q)c, tpee). We have natural maps
(7.6) VLAV, S VY o AY o — AL )

preserving both the G and the A-modules structure in the same way as in [How04, p. 1461].
Note that in the quotient VZ) b /QV; ,, and in the submodule Ag »1Q] we can define Selmer

conditions by propagating the balanced conditions for V;f’h and A;ﬁh, respectively, and we
denote these conditions in the same way.

IThis case will suffice for our applications in this paper, and makes some of the arguments simpler, but we
expect the equivalence to hold in general.



THE DIAGONAL CYCLE EULER SYSTEM FOR GLg x GLg 37
Lemma 7.11. For every height one prime Q C Ag as above and every place v of K, the maps
(7.6) induce natural maps
(Ko, Vi [QV5) — Hit (Ko, Vi o),
Hyp(Ky, Ay, ) — Hip(Ky, Ay, [9))
with finite kernel and cokernel, of order bounded by constants depending only on [Sq : Af/Q].

Proof. For the primes v { p, the same argument as in the proof of [MR04, Lem. 5.3.13] applies,
so it remains to consider the case v | p. Put

FHIE) = (T @ Ty + T, ® T (g ) (—1 = 1),
FHT)) = (T @ T (') (=1 = 7).
Under the isomorphism H!(Q, Vfgh) HY (K, Ao (K, )®@T¢h(/<;ac/ )) coming from Shapiro’s
lemma, the balanced local condition Hﬁal((@p, Vi gh) corresponds to
HY(Ky, Mol )0 (T2 (/%) @ HI (K, Mok o B (T2, (712/%).
Let Ay =T, ® Qp/Z,, and define A;, A, and A; similarly. Arguing as in the proof of
[How04, Lem. 2.2.7], we reduce to showing that the groups
HO(Kaop, (Ay @ A (W' vt 2) (=1 = 7)), H (Koo, (A ® Ap) (g st/ *) (=1 = 1))

are both finite, which follows from the fact that ayapy(p)/p*~t # 1 and Byany(p) # 1,
and this is a consequence of the Ramanujan—Petersson conjecture since we are assuming that
p1 N. Note that the other pieces in the quotient decomposition can be treated similarly. This
yields the required bounds on the kernel and cokernel of the first map in the statement of the
lemma, and the result for the second map follows as well by local duality. O

Let ¥ be the set of height one primes of Af consisting of p and those for which ei-
ther H2(Q*/Q, Vfgh)[ﬂ] is infinite or HQ(QP,VIgh)[Q] is infinite. Since H2(Q*/Q, Vfgh) and

H 2((@p,Vf gh) are both finitely generated A-modules, the set X, is finite.
Proposition 7.12. For every height one prime Q & Y5, the maps (7.6) induce natural maps
Selpat (V) /QSelbar(VE,),) — Selbal(VE,, o),
Selpat (Af o) — Selbar(Al,;,)[Q)
with finite kernel and cokernel bounded by a constant depending only on [Sq : Ag/9Q)].

Proof. This follows from Lemma 7.11 as in the proof of [MR04, Prop. 5.3.14] (see also [How04,
Lem. 2.2.8] and [How07, Lem. 3.2.10]). O

For every height one prime Q C Af as above, let mg = (7q) be the maximal ideal of Sq.

Lemma 7.13. Assume that there is a perfect pairing ng,}h X Tﬁh — O(1) such that (z,y“¢) =

(x,y)? for all x,y € ngjh and for all o € G, where ¢ stands for complex conjugation. The
following hold:

(1) ranky, Sela (V},,,) = ranka, Xpa (A ;).
(2) ranky, SelF(V},,) = ranky, Xr(A},).
(8) ranky, X;LH(AIgh) = 1 +ranky, X;m+(AIgh), and

Cha‘rAf (X]:U—l-(AI'gh)tors) = Cha‘rAf (X]-'I’H— (Ai‘gh)tors)a
mn Ag ®z, Qp-
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Proof. For part (1), it suffices to show that for all height one primes Q C Ay with Q &
YA, the modules Selbal(VIgh) /QSelbal(VIgh) and Selbal(AIgh)[Q] have the same rank over

Ag/£9. Since Selﬂ(V}gh@) is the mg-adic Tate module of Sel@(AIgh’Q) (indeed, this is a

consequence of [How04, Lem. 1.3.3] since AI gha = Vlgh o ® Qp/Zy), the result thus follows
from Proposition 7.12.

For part (2), under the isomorphism Hl(Q,VIgh) ~ HY(K, Ao(i@;})®@T;jh(/{gé/2)) the
f-unbalanced local condition H}(QP,VI o) corresponds to

H' (Ky, Ao(kyd ) @0T,,) @ {0}
and hence an analogue of Lemma 7.11 for the f-unbalanced Selmer groups follows from the
finiteness of H (K5, Ag ® Ah(lb%lngém)(—l —r)). By the same reason as above, this yields
the equality of ranks in part (2).
Finally, for the proof of part (3) we can argue similarly as in [AH06, Thm. 1.2.2]. Keeping
with the above notations, let Sel fu+(AI- gh.a) and Selrny (AI gh.0) De the Selmer groups defined

by the obvious analogues of (7.5), so from another application of the argument in Lemma 7.11
we obtain natural maps

Selzur (Al q) — Selrus (Al €],

Selrny (A, o) — Selrny (Al ,)[Q)]

with finite kernel and cokernel bounded by a constant depending only on [Sq : Af/Q)]. Since
the local condition F N+ is the orthogonal complement of F U + under the local Tate pairing
at p induced by the self-duality of VI oh from [MRO04, Thm. 4.1.13] we obtain

(77) Selzu (Afyq)[mh] = (Ba/Sa) ] © Selzne (A, o) lrh)

for all 7, where r is given (by the Greenberg—Wiles formula in [MR04, Prop. 2.3.5]) by
corankSDH1 (Qp, A{;,:“Q) — corankg, HO(R, A}:gh,ﬂ)’

sor =5—4 = 1. The proof of part (3) now follows from (7.7) as in [AH06, Lem. 1.2.6]. O

Remark 7.14. The existence of the pairing in the previous lemma is not too restrictive. In
particular, this holds automatically if g and h are non-Eisenstein.

We are now ready to establish that both formulations of the Iwasawa main conjecture are
equivalent.

Theorem 7.15. Keep the assumptions of the previous lemma and suppose k(f,g,h) is not
Ag-torsion. Then the following are equivalent:

(1) ranky, Selbal(VIgh) = ranky, Xbal(AIgh) =1
(2) ranky, Selz(V},,) = ranky, X7(Al,) =0,

and, in that case, we have Selbal(VIgh) = Sel;UJr(VEgh) and

2
Selpar(V}
& fgh))) = Chary, (Xuai(Afy, iers) - (Lp(f. 9. h))

T
Chary, (Xr (Afgh)) - Chary, (WL

in Af @z, Qp. In particular, Conjecture 7.7 and Conjecture 7.9 are equivalent.

Proof. The Poitou—Tate global duality gives rise to the exact sequence

- 0 — Selrry (VE,,) — Sela(VE,,) =3 H'(Qy, V{")
— Xfu+(AIgh) — Xbal(AJfr‘gh) — 0.
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Assume that Selbal(VIgh) and Xbal(AIgh) have both Ag-rank one. Since H'! (Qy, V?h) has Ag-
rank one, from (7.8) and Theorem 7.4 we see that Sel]:m+(V;gh) is Ag-torsion and X_FUJ,_(AI‘gh)

has Ag-rank one. By Lemma 7.13(3), it follows that Xz (AI gn) is Ag-torsion, and from the
exact sequence

(79) 0 — Selr(V,,,) — Selrur (V],,) =3 H'(Qy, VE")

— X]:(Afgh) — X]:m‘F(AI‘gh) —0

we get that X]:(Alc ,) and Self(Vf ,) are both Ag-torsion by Lemma 7.13(2). This proves
the implication (1) = (2) in the statement of the theorem, and the converse is shown sim-
ilarly. Moreover, from (7.9) we see that rankAfSel}-UJr(V}gh) = 1, and hence the quotient

Selru4 (Vlgh)/Selbal (Vigh) is a torsion Ag-module injecting into H*(Q,, V{;,:r/ﬁ?VIgh); since

this is Ag-torsion free by Proposition 7.3, it follows that

(7.10) Selbat (VE,,) = Selrus (VEy,)-

Now suppose that either (1) or (2) in the statement of theorem holds. Since pr is absolutely
irreducible by our hypotheses, the module H'(Q*/Q, VI gn) is Ag-torsion free by [PROO0, §1.3.3].

Being Ag-torsion, it follows that the module Sel;m+(VI o) Vvanishes, and therefore from (7.8)
we deduce the exact sequence

Selpar (V) HY(Q,, VE")
Af : H(fagv h) Af 'pf*(resp(’ﬁ(fagvh)))
Together with Theorem 7.4 it follows that

Selpat (VE,,)
Af ' K‘(fa g, h)

(7.11) 0— — coker(res,) — 0.

B

(7.12) Chary, ( > - Chary, (coker(res,)) = (Z¢ (£, g, b))

On the other hand, in light of (7.10), from (7.8) and (7.9) we deduce exact sequences

0 — coker(res,) — X]:UjL(AEgh) — Xbal(AI'gh) — 0,

0 — coker(res,) — X]:(Afgh) — Xfm+(AI'gh) — 0.
Taking characteristic ideals, these imply

Charp, (X7 (Af ) = Chary, (Xzny (A ;) - Chary, (coker(res,))
(7.13) = Chary, (X £ +( gnJtors) - Chary (coker(resy))
(A

= Charp,(Xpal fgh)tors) Chary, (coker(res,))?,

using Lemma 7.13(3) for the second equality. Multiplying (7.13) by the square of a generator
of the characteristic ideal of Selpy (VI-gh)/Af -k(f, g, h) and using (7.12), the result follows. O

8. ANTICYCLOTOMIC EULER SYSTEMS

In this section we highlight results from the recent work of Jetchev—Nekovair—Skinner [JNS],
where a general theory of Euler systems germane to [Rub00] is developed in the anticyclotomic
setting.
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8.1. The general theory. Let K be an imaginary quadratic field and let p be an odd prime.
If n is an integral prime ideal of K, we denote by K (n)° the ray class field of conductor n;
as in the previous sections, we write K (n) for the maximal p-subextension in K (n)°. For any
positive integer n, we denote by K[n] the maximal p-subextension in the ring class field of K
of conductor n. We denote by K, the anticyclotomic Z,-extension of K.

Let E be a finite extension of @, with ring of integers O and maximal ideal m. Let T" be a
free O-module of finite rank endowed with a continuous G g-action unramified outside a finite
set of primes, and let V = T ®p E. Assume that there exists a non-degenerate symmetric
O-bilinear pairing

(,): TxT— O(1)

such that (z7,y“¢) = (x,y)? for all x,y € T and o € Gk, where ¢ is complex conjugation.
Thus V¢ ~ VVY(1), where V¢ denotes the representation V with the G g-action twisted by c,
and, if the above pairing is perfect, we also have T¢ ~ TV (1). We also define the Gx-module
A=V/T.

If L is a finite extension of K and v is a finite place of L, we write 7 = v®. Then, the pairing
above induces a local pairing

HY(L,,V) x H'(L3,V) — E,

and similarly replacing V' by 7" and E' by O. The pair of compatible maps G, — G and
V — V¢ defined by o +— coc and w > w, respectively, induces an isomorphism H'(Ly, V) &
HY(L,,V¢) = HY(L,,V"V(1)) whereby the above local pairing is just the natural cup-product
pairing.

For the results we shall discuss, we consider two different types of “big image” hypotheses,
(HW) for the weaker ones, and (HS) for the stronger ones.

Hypothesis (HW).
(1) V is absolutely irreducible as a G -representation.

(2) There exists an element o9 € Gal (K/K(1)°K (upe)) such that the E-dimension of
V/(og — 1)V is one.

Hypothesis (HS).
(1') The residual representation T = T /mT is absolutely irreducible.
(2) There exists an element og € Gal (K /K (p>)°) such that T/(oco — 1)T ~ O is a free
O-module of rank one.
(3") There exists an element 19 € Gk such that 79 — 1 acts on T as multiplication by a
unit a;, € O with a;, —1 € O*.
(4’) The above pairing T x T — O(1) is perfect.

For each prime p of K above p, choose a G,-stable O-submodule .7-";r (T') of T, and let
Fp (T) = T/F,S(T). We also define (V) = F,(T) ®0 E €V and F, (V) = V/F (V).
Let L be a finite extension of K. For each place v of L, we define a local condition
ker (HY(L,, V) — HY(L™,V) if vt p,

H(l}r(L’Uv V) - ( )
ker (H'(Ly, V) = HY(Ly, Fy (V))) if v | p for some p | p.

We define the Greenberg Selmer group
Selge(L, V) = ker (Hl(L, V) = [[H (Lo, V)/Hé (Lo, V)),
where the product is over all finite places of L.

We also define local conditions for 7" and A by propagation of the local conditions for V/,
i.e., for each place v of L, we define
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e HL (L,,T) as the preimage of H} (L, V) by the map H'(L,,T) — H*(L,,V), and
e HL (L, A) as the image of H. (L,, V) by the map H'(L,,V) — H'(L,, A),
and use these to define the Selmer groups Selg,(L,T) and Selg;(L, A) as above. Finally, for
each positive integer n, we also put
Selgr (K [np™],T) = @SelGr(K[npr},T) and Selg, (K [np™], A) = @SelGr(K[npr], A),
T T

where the limits are with respect to the corestriction and restriction maps, respectively, and
we define

XGr(K[npoo]7 A) = Homcont(selGr(K[npoo]v A), Qp/Zp>
Let A be an ideal of K divisible by p and all the primes at which T is ramified, and let S
be the set of all squarefree products of primes of Q which split in K and are coprime to N.

Definition 8.1. A “split” anticyclotomic Euler system for (T, {F; (T)}pp, N) is a collection
of classes

Kk = {kp € Selg;(K[n],T) : neS}

such that, whenever ¢ is a rational prime and n,nq € S,
(8.1) CorK[nq]/K[n](ﬁnq) = Pq (Fr;l) Kn,

where q is any of the primes of K above ¢ and Py(X) = det(1 — Frq_lX\Tv(l)).
Similarly, a “split” A-adic anticyclotomic Euler system for (T, {f;(T)}mp,N) is a collection
of classes
Koo = {knoo € Selgy(K[np™],T) : n eS8}
satisfying the previous norm relations. In this case, the classes
Kn = Prg ) (Fn,oo) € Selge(K[n],T)
form an anticyclotomic Euler system in the previous sense, and we say that the Euler system

K = {kn}n extends along the anticyclotomic Z,-extension.

A (A-adic) anticyclotomic Euler system for (T, { 7 (T) }y|p) is just a (A-adic) anticyclotomic
Euler system for (T, {F," (T)}y|p, ) for some N as above. We shall usually drop {F," (T},
if there is no risk of confusion.

If k is an anticyclotomic Euler system for T, we define

Ko 1= corgi)/k (K1) € Selg (K, T).
If it extends along the anticyclotomic Z,-extension, we similarly define
Koo = CorK[l}/K(’{LOO) S SelGr(Koo,T),

where Koo = {Kn,0o} is the A-adic anticyclotomic Euler system extending k.
When we have an Euler system as above, we will be interested in ensuring that the following
orthogonality hypothesis holds.

Hypothesis (HO). For all n € S and for all places v of K[n] above p, the local conditions
H (K[nly,V) and H.(K[nlz, V) are orthogonal complements under the local pairing

HY(K[n],,V) x HY(K[n]s, V) — E.

Remark 8.2. The condition in hypothesis (HO) holds automatically for all places away from
p, by [Rub00, Prop. 1.4.2]. Observe also that if (HO) holds, then for all n € & and for all
places v of K[n] the local conditions HY (K[n],,T) and H} (K[n]y, T) are also orthogonal
complements under the local pairing

HY(K([n],,T) x H'(K[nl3, T) — O,
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as follows easily from the definitions using [Rub00, Prop. B.2.4] and the commutative diagram

HY(K[n],,T) x HY(K[n|s,T) — O

| |

HY(K[n],,V) x HY(K[n]s,V) — E.

We assume in the rest of this subsection that hypothesis (HO) holds for our choice of local
conditions at p.

Theorem 8.3 ([JNS]). Assume that p splits in K and that Hypothesis (HW) is satisfied, and
let k = {kn}n be an anticyclotomic Euler system for T which extends along the anticyclotomic
Ly-extension. If kg # 0, then the Selmer group Selg,(K,T') has O-rank one.

Remark 8.4. One can replace the assumptions that p splits in K and the Euler system extends
along the anticyclotomic Z,-extension by the assumption that there exists an element v € Gk
fixing the extension K (1)°(ppee, (O5)Y/P™) and such that v — 1 acts invertibly on V.

Under the stronger Hypothesis (HS), granted the non-triviality of a A-adic anticyclotomic

Euler system, the results of [JNS] yield a divisibility towards a corresponding Iwasawa main
conjecture.

Theorem 8.5 ([JNS]). Assume that p splits in K and that Hypothesis (HS) is satisfied, and
let k be a A-adic anticyclotomic Euler system for T.

(a) If ko # 0, then Selg (K, A) has O-corank one, Selg,(K,T) has O-rank one, and
Selg, (K, T)
O - ko > ’
where (=) /qiy denotes the quotient of (=) by its mazimal divisible submodule.

(b) If Koo is not Aye-torsion, then Xgr (Koo, A) and Selgy (Koo, T') have both Ayc-rank one,
and

length (Selg: (K, A) /giv) < 2 lengthy <

Selar (Koo, T) \
Aac * Koo ’

CharAac (XGI‘(KOO7 A)tors) D) ChaIﬂAaC <

where (—)iors denotes the maximal Ayc-torsion submodule of (—).

8.2. Big image results. We now give conditions under which the hypotheses in the general
results of §8.1 are verified in our setting. To that end, we shall build on [Loel7].

As before, let K/Q be an imaginary quadratic field of discriminant —D, let (g, h) be a pair
of newforms of weights (I, m) of the same parity, levels (N4, N3) and characters (xg, xp), and
let ¢ be a Grossencharacter of K of infinity type (1 — k,0) for some positive even integer k
and of conductor f. We denote by x the unique Dirichlet character modulo Ng /@(f) such that
¥((n)) = nF~1x(n) for integers n coprime to Ng (), and we assume that xexxgxn = 1.

We now make the further assumptions that:

e neither g nor h are of CM type,
e ¢ is not Galois-conjugate to a twist of h.

As in [Loel7, §3.1], we define the open subgroups H, and H}, of G, the quaternion algebras
B, and By, and the algebraic groups G4 and G,, and put

B:Bg XBh, G:Gg XGm Gh.

We define H to be the intersection of Hy, Hp, and G j)o- (Note that in loc. cit. H is defined
to be the intersection of H, and Hj, so our H might be a finite index subgroup of his H, but

this will not affect the results that follow.) We have an adelic representation g, : H — G(Q),
and representations

Pgnp: H — G(Qp)
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for every rational prime p, and, by [Loel7, Thm. 3.2.2], pg np(H) = G(Zp) for all but finitely
many p.

Remark 8.6. Note that the representations studied in [Loel7] are the dual to the ones studied
in this paper, but as pointed out in [Loel7, Rmk. 2.1.2], this difference is unimportant when
considering the image.

Let L be a finite extension of K containing the Fourier coefficients of g and h and the image
of 9. Let B be a prime of L above some rational prime p and let £ = L.

Definition 8.7. We say that the prime [ is good if the following conditions hold:

p=T;

p is unramified in B;

p is coprime to §, Ny and Nj;
Pghp(H) = G(Zp);

= (@p.

Remark 8.8. Observe that all but the last condition exclude only finitely many primes. The
last condition could be somewhat relaxed in some cases, and will be used largely for simplicity.
Note also that the above set of conditions holds for a set of primes of positive density.

From now on, we assume that both g and h are ordinary, non-Eisenstein, and distinguished
with respect to ‘.

Lemma 8.9. Assume that there is at least one prime which divides D but not Ny and one
prime which divides D but not Ny. Then, if P is a good prime,

(Pgsp X prp)(H N G pecyo) = SLa(Zp) x SLa(Zp).

Proof. Let Q(pgy) and Q(pp) be the Galois extensions of Q cut out by the representations p, and
pn, attached to g and h, respectively. These extensions are unramified outside p/N, and pNp,
respectively. Therefore, the condition on D implies that K N Q(py) = Q and K NQ(pp) = Q.
Moreover, since any Galois extension of Q contained in K., must itself contain K, we also

have Koo NQ(pg) = Q and Koo N Q(pp) = Q.
The conditions on B imply that

(Pg3 X prp) (H N Gpuyee)) = SLa(Zyp) x SLa(Zp),

and, from the remarks in the previous paragraph, it follows that

(Pgp % prgp) (H N Gi (u,00)) = SLa(Zp) x SLa(Zy).

Finally, since H NG (p)o is a normal subgroup of H NG (11po0) of index dividing p — 1 and
there are no such subgroups in SLy(Z;,) x SL2(Z,), the lemma follows. O

Now we are able to give conditions under which the results of [JNS] can be applied to our
setting, i.e., to the representation Tgwh defined above.

Proposition 8.10. Assume that there is at least one prime which divides D but not Ny and
one prime which divides D but not Ny. Let B be a good prime. Suppose that there exists
0 € G(peoyo such that Py(o) # 1/153(0) modulo p. Then, hypotheses (HS) hold for Tgl%h.

Proof. Since 1)y is trivial when restricted to H N Gk (peo)o, condition (1°) follows easily from
the previous lemma.

To prove condition (2’), we closely follow the proof of [Loel7, Prop. 4.2.1]. Write x4(0)
and xp,(c) for the images of o by x, and xy, via the natural identifications Gal (Q(un,)/Q) =
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(Z/NgZ)* and Gal (Q(pn,)/Q) =2 (Z/NpZ)*. Then, by the previous lemma, the image of
oH N Gk (pooye under pg s X ppp contains all the elements of the form

<<g 1'1>(<)g(<7)> ’ <g ylgh(g)>> , TYEL,.

Now choose & € ZX such that 2 ?x,4(0) # 1 (mod p) and 2?xp(0)Pp(0) ™2 # 1 (mod p),
which is possible since p > 7, and let y = :E_l’gZ)gp(U). Choose 0g € 0 H NGk (p)o whose image
under pg g3 X ppp is given by the element above, with the choices of x and y which we have
just specified. Then, the eigenvalues of oy acting on Tgwh are 1, 27 2x,(0), 2*xn(0)p(o) 2
and w;%(a)wm(a)*l, which proves condition (2).

To check condition (3’), we can argue as in [KLZ17, Rmk. 11.1.3]. By the previous lemma,
we can find an element 79 € H N Gk () such that

onx o = (30 %) (6 1))

so Ty acts on ng’h as multiplication by —1.
Finally, condition (4’) follows from the assumption that g and h are non-Eisenstein and
p-distinguished. O

Remark 8.11. If we are just interested in ensuring that hypotheses (HW) hold for ng%hv we can
relax some of the assumptions above. For example, we do not need to require g and h to be
non-Eisenstein, and we can require that there exist 0 € Gg(1)o( oo ) such that ¥yp (o) # wfn(a),
without requiring this inequality to hold modulo p.

9. PROOF OF THEOREMS B, C, AND D

Let the setting be as in the Introduction. In particular, g € S;(Ng, x4) and h € Sy, (Ni, xn)
are newforms of weights [ > m > 2 of the same parity, K/Q is an imaginary quadratic field of
discriminant —D < 0, ¢ is a Grossencharacter for K of infinity type (1 — k,0) for some even
integer £ > 2, and we consider the Gg-representation

Vo = Vy ©5 Vi(g ) (1 — o),
where c = (k+1+m —2)/2.

Lemma 9.1. The Bloch—Kato Selmer group of V;’ﬁh s given by

Sel(K, V"

)N{selbal(K,vg‘f’h) ifl—m<k<l+m,
> Vg.h -

|\ Sels (K, V) if k> 1+ m.

Proof. Note that by Shapiro’s lemma H' (K, V;fh) ~ HY(Q, Vtgn), where f = 6y is the theta se-
ries of ¢ and Vg, is the specialization of the big Galois representation Vigh in (7.1) to weights
(k,1,m). One immediately checks that the Hodge-Tate weights of the Gig,-subrepresentation
F 2Vfgh C Vign (resp. Vf];h C Vign) are all < 0 (with the p-adic cyclotomic character ecyc
having Hodge—Tate weight —1) if and only if | —m < k <[+ m (resp. k > [+ m). The result
follows. O

Here we collect a set of hypotheses for our later reference. For any nonzero m € Z, prime(m)
denotes the set of primes that divide m, and prime®(m) its complement.

Hypotheses 9.2.

(hl) g and h are ordinary at p, non-Eisenstein, and p-distinguished.
(h2) p splits in K,
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3) p does not divide the class number of K,

4) YplGpoore F VGG (pooye modulo p,

5) neither g nor h are of CM type,

6) g is not Galois-conjugate to a twist of h.

7) prime(D) N prime®(N,y) # 0 and prime(D) N prime®(Ny,) # 0,
8) P is a good prime in the sense of Definition 8.7.

9.1. Proof of Theorem B. Let Ky 51,00 € Hllw(K[poo},T;fh) be the Iwasawa cohomology
class of conductor n = 1 from Theorem 6.5, and set

(9.1) Kgh = Fupght € H(K,TY),

where fy,g.n1 = Prg (Ku,g,h1,00)-
Ifl—m < k < I4m, the next result recovers Theorem B in the Introduction. Note however,
that the result does not require these inequalities to hold.

Theorem 9.3. Assume hypotheses (h1)-(h8). Then the following implication holds:

Kap.g,h 75 0 = dimg Selbal(K, Vg h)

In particular, if | —m < k < 1+ m and Ky qgn # 0 then the Bloch-Kato Selmer group
Sel(K, ngh) is one-dimensional.

Proof. By Proposition 6.6, the classes ky gnn = er[n](/€¢7g7h7n’oo) land in Selpa (K [n], T;%h)7

and by Theorem 6.5 they form an anticyclotomic Euler system for ngh' Therefore, the result
follows from Theorem 8.3 and Proposition 8.10. 0

Remark 9.4. If k = 2 and | = m > 2, working with the classes Ky g, from Theorem 4.6,
rather than those from Theorem 6.5 as above, hypotheses (h2)-(h3) in Theorem 9.3 can be
replaced by the assumption that there exists an element v € G satisfying the conditions in
Remark 8.4. Further, (h1) and (h4) can be relaxed as discussed in Remark 8.11.

9.2. Proof of Theorem C. Recall that 8, € Si.(Ny, xex) is the theta series attached to 1),
and put N = lem(Ny, Ng, Np,).

The next theorem, establishing cases of the Bloch—Kato conjecture for th in analytic rank
zero, recovers Theorem C in the Introduction.

Theorem 9.5. Assume hypotheses (h1)-(h8), and in addition that:
o 4(0y,9,h) = +1 for all primes ¢ | N,
o gcd(Ny, Ny, Np,) is squarefree.

If k > 14+ m then the following implication holds:

LV, 0)#£0 = Sel(K, V) =0.

Proof. We continue to denote by ky, 45 the image of the class in (9.1) under the isomorphism
Hl(Kv V;{Jh) = Hl(@7 Vfgh)

coming from Shapiro’s lemma. If k& > [ + m, the central value L(ngh, 0) is in the range of
interpolation of the triple product p-adic L-function of Theorem 7.1, and so by Proposition 7.3
and Theorem 7.4 its non-vanishing implies that the image of y 45 under the natural map

resy : Selpar(Q, Vign) — H'(Qp, V™)
is nonzero. In particular, Ky 4, 7 0, and therefore by Theorem 9.3 the balanced Selmer group

Selpa (K, th h) = Selpal(Q, Vgn) is one-dimensional.
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From the exact sequence

resy

0 — Selrn(Q, Vign) — Selnal(Q, Vygn) —3 H'(Qy, V")
— Selru(Q, Vign)” — Selbar(Q, Vign)" — 0
coming from global duality (adopting notations similar to those in Theorem 7.15), we thus

see that Selrny(Q, Vign) = 0 and that Selryy(Q, Vign) = Selpai(Q, Vign). Together with the
exact sequence

Selru+(Q, Vign) —2 H'(Qy, Vfgh) — Sel#(Q, Vign)" — Selrn(Q, Vign)" — 0,
it follows that Selx(Q, Vy4n) = 0, and combined with Lemma 9.1 this concludes the proof. [

Refining the proof of Theorem 9.5, we can further bound the size of the Bloch—Kato Selmer
group for the discrete module A;ﬁh = V;{)h /T ;jh in terms of L-values. For the statement, let f
be the Hida family associated to 1) as in §6, so that f;, is the ordinary p-stabilization of 0,
and, keeping with the notations in Theorem 7.1, put ay = ¥(p) and B = ¥(p). Let also
ee(0y,9,h) = €¢(Vign) denote the epsilon factor associated to Vfgh|GQe7 where f = 0.

Theorem 9.6. Assume hypotheses (h1)-(h8), and in addition that:
e c¢(0y,9,h) =+1 for all primes £ | N,
o gcd(Ny, Ny, Np,) is squarefree,
° HI(QP,T]?h) is torsion-free,
o H}(Qp, Tygp) is torsion-free for L € {bal, F, F N+, F U+}.

If k> 1+ m and L(ngh, 0) # 0 then the O-module Sel r(K, Algph) is finite and

(=2 m—=2)  &(f) -
(k—c—1) 5(f2,g,h) 'Xﬁ(fygah)(ko 7

where & (f,) = (1— L), E(fy, g, h) = (1— e (1 — Aelaony () Bedoluy () Bebabu) gy q
c=(k+1+m—-2)/2.

lengthe (Selr(K, AY))) < 2vy <

Proof. As in the proof of Theorem 9.5, if £ > [ + m and L(V;f)h,O) # 0 then the class kg 4n

is nonzero. Since by Theorem 6.5 this is the bottom class of an anticyclotomic Euler system
for V;ﬁ, from Theorem 8.5 and Proposition 8.10 we deduce that Sely (K, Ag) ») has O-corank
one, with

Selbal (K, ngfh) )

2 lengtho (Selpar (K, AY,) /aiy) < 2 length
02 oS A ) < 2t (g

By the exact sequence (7.8) specialized to weight k, it follows that Selr (K, Az;h) has also

O-corank one. Thus both Sely, (K, Tgwh) C Selrus (K, T ;bh) have O-rank one, and therefore

(9.3) Selpat (K, T1y) = Selruy (K, T,,),

since their quotient is O-torsion free. Moreover, letting 7 € O be a uniformizer, as in the
proof of Lemma 7.13 we find that

Selrui (K, AY))[7'] = E/O[x'] @ Selzry (K, AL )]
for all i, and hence lengthe (Selrus (K, AY ) qiv) = lengthe (Selrn (K, A} ).

The finiteness of Selz(K, AZ’ p) with the stated bound on its O-length thus follows from
(9.2) by the same argument as in the proof of Theorem 7.15, noting that by Theorem 7.4 and
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the same calculation as in [BSV22, §8.5] (see esp. the equality following [op. cit., (189)]) the
map

& - <eXp}'§(—), NfQwy ® w;;>

where f = 0y and & is the weight % specialization of the congruence ideal generator £ € Ag,
gives an isomorphism H'(Q,, T}’h) — O taking Ky g5 to

(I=2)! (m—2)! ‘ Eo(fr) - E1(fx) )
(k—=c—1)! E(fk,9,h) !

6
More precisely, under the freeness assumption in the statement, the weight k specializations

of (7.8) and (7.9) yield the exact sequences

where & () = (1 - B—Z) is a p-adic unit.

(9.4) 0 — coker(res,) — Selruy (K, Aq’;h)v — Selpa (K, A;ﬁh)v — 0,

0 — coker(res,) — Selr (K, Ajh)v — Selrn+ (K, Aih)v — 0,
where the two terms coker(res,) are equal in light of (9.3). Thus we find
lto(Sel (K, AY ) = lto(Sel (K, AY )Y) = lto(Selzny (K, AY )Y + lto(coker(resy))
to((Selru+ (K, Aih)/div)v) + lto(coker(resy))
lto ((Selpar (K, A;f’h)/div)v) + 21t (coker(res)))
= lto(Selpa (K, A;f”h)/div) + 21lto(coker(res,)),

where the third equality follows from (9.4) and Lemma 9.7 below, concluding the proof. [

Lemma 9.7. Let0 — A5 B — C — 0 be an ezact sequence of finitely generated O-modules,
and assume that A is finite. Then Bios/j(A) = Ciops.
In particular, if B',C" are cofinitely generated O-modules and we have an exact sequence

0— AL (B) = (C")Y — 0 with A finite, then
(B;dw)\//](A) = (C;div)v)
and 50 1to((B)y;,)") = lto(A) +1to((C)y;,)"Y)-
Proof. Writing B = O" @ Biors, C = O @ Ciors We have, by the finiteness of A, r = s and
](A) C BtorSa 50
O" @ Ciors = C = B/j(A) = O" @ (Biors/J(A)),
which implies the result. O

Remark 9.8. The condition that H*(Q,, T J‘?h) is torsion-free is equivalent to the vanishing of

HY(Qy, A?h), which is satisfied if k42 # [4+m modulo 2(p—1) or if x ¢ (p)agan/ax # 1 modulo
p. Similarly, the last condition in the statement of Theorem 9.6 can be recast in terms of the
vanishing of the corresponding 0-th cohomology groups.

Remark 9.9. By Theorem 7.1, the non-vanishing of L(ng/jh, 0) implies that fpg (f, 9, E)(:U) £ 0,
so the upper bound provided by Theorem 9.6 is non-trivial. Moreover, by the interpolation
formula in Theorem 7.1, this upper bound can be expressed in terms of the central L-value

L(V;f)h, 0), thus giving a result towards the Tamagawa number conjecture of [BK90].
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9.3. Proof of Theorem D. As before, let f be the Hida family attached to ¢ as in §6. Let
Ku,g.h,1,00 be the A-adic class of conductor n = 1 constructed in Theorem 6.5, and set

Kipghoo = Fupghtoo € Hiy (Koo, Toy)-
As noted before the proof of Proposition 6.6, under the Shapiro isomorphism
H'(Q, Vi) 2 H' (K, Ao(ry)&0Ty,) = Hiy (Koo, Ty,).

the balanced Selmer group Selbal(Q,V;gh) of §7.3 is identified with the Greenberg Selmer

group SelGr(Koo,T;%h) of §8.1 attached to G, -invariant subspaces fj(‘/;fh) C Vg%h in (4.1)
at the primes v | p. Moreover, under this isomorphism, the class x(f, g, h) in §7.2 corresponds
to the class Ky, g k00

The next result, establishing one of the divisibilities predicted by the Iwasawa main con-
jectures from §7.3, recovers Theorem D in the Introduction.

Theorem 9.10. Assume hypotheses (h1)-(h8), and in addition that:
o c¢(0y,9,h) =+1 for all primes £ | N,
o gcd(Ny, Ny, Np,) is squarefree.
If k(f, g, h) is not Ag-torsion, then the following hold:
(a) The modules Selbal(VIgh) and Xbal(AIgh) have both Ag-rank one, and

2
Selpar(VE,,)

CharAf (Xbal(AI‘gh)tOTS) D) ChaIAf m

(b) The modules Self(V;[gh) and X‘T_(V-fllgh) are both Ag-torsion, and
Chara, (X#(Afy)) D (Ly(f, g, h))
mn Ag ®Zp Qp.

Proof. The non-triviality assumption on (£, g, h) implies that x4 n oo is D0t Ag-torsion. Since
by Theorem 6.5 the class Ky g,n,00 is the bottom class of a A-adic Euler system for V;]w , part

(a) follows from Theorem 8.5 and Proposition 8.10. By Theorem 7.15, part (b) of the theorem
follows from part (a), so this concludes the proof. O
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