
THE DIAGONAL CYCLE EULER SYSTEM FOR GL2 ×GL2
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Abstract. We construct an anticyclotomic Euler system for the Rankin–Selberg convolu-
tions of two modular forms, using p-adic families of generalized Gross–Kudla–Schoen diagonal
cycles. As applications of this construction, we prove new results on the Bloch–Kato conjec-
ture in analytic ranks zero and one, and a divisibility towards an Iwasawa main conjecture.
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1. Introduction

In this paper we study the anticyclotomic Iwasawa theory of Rankin–Selberg convolutions
of two modular forms using a new Euler system arising from p-adic families of diagonal cycles.
By an application of Kolyvagin’s methods, our construction yields results towards the Bloch–
Kato conjecture and the Iwasawa main conjecture in this setting.

1.1. Statement of the main results. Let g ∈ Sl(Ng, χg) and h ∈ Sm(Nh, χh) be newforms
of weights l ≥ m ≥ 2 of the same parity and nebentypus χg and χh. Let K/Q be an imaginary
quadratic field of discriminant −D < 0. Let k > 0 be an even integer, and let ψ be a Hecke
character of K of infinity type (1− k, 0), conductor f, and central character

εψ = χ̄gχ̄h.

Fix an odd prime p - NgNh such that (f, p) = 1 and an embedding ιp : Q ↪→ Qp, and let
E = LP be a finite extension of Qp containing the image under ιp of the values of ψ and the
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Fourier coefficients of g and h. We consider the E-valued GK-representation

V ψ
g,h := Vg ⊗ Vh(ψ−1

P )(1− c),

where c = (k+ l+m−2)/2, Vg and Vh are the (dual of Deligne’s) p-adic Galois representations
associated to g and h, respectively, and ψP is a p-adic Galois character attached to ψ.

The cyclotomic Iwasawa theory of Vg⊗Vh has been extensively studied in a series of works
of Lei–Loeffler–Zerbes [LLZ14, LLZ15] and Kings–Loeffler–Zerbes [KLZ17, KLZ20], among
others ([BLLV19], [BL21], etc.). The key tool exploited in these works is the Euler system of
Beilinson–Flach classes, a system of cohomology classes arising from certain special elements
(introduced by Beilinson [Bei84], and further studied by Flach [Fla92] and Bertolini–Darmon–
Rotger [BDR15a, BDR15b]) in the K1 of products of two modular curves.

In contrast, the anticyclotomic Iwasawa theory of Vg ⊗ Vh (or rather of its conjugate self-

dual twists, such as V ψ
g,h) appears to not have been studied before. The principal contribution

of this paper is the construction of an anticyclotomic Euler system for V ψ
g,h. As stated in

Theorem A below (which corresponds to Theorem 6.5 in the body of the paper), for general
weights (k, l,m) our construction requires the additional assumptions that p splits in K and
p - hK (the class number of K), and that both g and h are ordinary at p, but note that for
(k, l,m) = (2, l, l) Theorem 4.6 contains a version of our main result without these additional
hypotheses.

Theorem A. Suppose that p splits in K and p - hK , and that both g and h are ordinary at
p. Let S be the set of all squarefree products of primes split q in K and coprime to DNgNhf,
and denote by K[n] the maximal p-extension of K inside the ring class field of conductor n.
Then there exists a family of cohomology classes

κψ,g,h,npr ∈ H1(K[npr], Tψg,h)

for all n ∈ S and r ≥ 0, where Tψg,h is a fixed GK-stable lattice inside V ψ
g,h, such that for all

nq ∈ S with q prime, we have

corK[nqpr]/K[npr](κψ,g,h,nqpr) =

{
Pq(Fr−1

q )κψ,g,h,npr if q 6= p,

κψ,g,h,npr if q = p,

where q is any of the primes of K above q, and Pq(Fr−1
q ) = det(1− Fr−1

q X|(V ψ
g,h)∨(1)).

The construction of this Euler system, which is taken up in the first part of the paper, is
based on the diagonal classes studied by Darmon–Rotger [DR14, DR17, DR22] and Bertolini–
Seveso–Venerucci [BSV22], extending earlier constructions due to Gross–Kudla [GK92] and
Gross–Schoen [GS95]. Roughly speaking, our classes κψ,g,h,npr are suitable modifications of

diagonal classes for the triples (θ̃ψ,npr , g, h), where θ̃ψ,npr is a certain deformation of the theta
series associated to ψ, and the main difficulty in the proof of Theorem A is in establishing
the Euler system norm relations.

The main results in the second part of the paper are the proof of new cases of the Bloch–Kato

conjecture for V ψ
g,h in analytic rank zero and a divisibility towards the Iwasawa main conjecture

for V ψ
g,h. These are obtained by applying Kolyvagin’s methods (in the form recently developed

by Jetchev–Nekovář–Skinner [JNS] in the anticyclotomic setting) to our Euler system. In the
results that follow, we use “big image” to refer to Hypothesis (HS) in §8.1, for which sufficient
conditions are given in §8.2.

Theorem B. Suppose that:

(a) g and h are ordinary at p, non-Eisenstein and p-distinguished,
(b) p splits in K,
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(c) p does not divide the class number of K,

(d) V ψ
g,h has big image.

Let

κψ,g,h := κψ,g,h,1.

If l −m < k < l +m, then the following implication holds:

κψ,g,h 6= 0 =⇒ dimE Sel(K,V ψ
g,h) = 1,

where Sel(K,V ψ
g,h) ⊂ H1(GK , V

ψ
g,h) is the Bloch–Kato Selmer group.

Remark. (1) For k = l = m = 2, together with the Gross–Zagier formula for diagonal
cycles by Yuan–Zhang–Zhang [YZZ], Theorem B supports the Bloch–Kato conjecture

for V ψ
g,h in analytic rank one, reducing it to the expected injectivity of the p-adic étale

Abel–Jacobi map.
(2) Still in the case k = l = m = 2, combined with the p-adic Gross–Zagier formula for

diagonal cycles in forthcoming work of Hsieh–Yamana [HY], Theorem B establishes
some cases of Perrin-Riou’s p-adic Beilinson conjecture in analytic rank one.

(3) In general, by the main result of [DR14], the nonvanishing of κψ,g,h also follows from
the nonvanishing of a special value of the triple product p-adic L-function Lp(f , g, h)
introduced below.

In analytic rank zero, we get unconditional applications to the Bloch–Kato conjecture. Let

f = θψ ∈ Sk(Nψ, εψ) be the theta series associated to ψ, let ε`(V
ψ
g,h) be the epsilon factor of

the Weil–Deligne representation associated to the restriction of Vf ⊗ Vg ⊗ Vh(1 − c) to GQ` ,
and put N = lcm(Nψ, Ng, Nh).

Theorem C. Let the hypotheses be as in Theorem B, and assume in addition that

• ε`(V ψ
g,h) = +1 for all primes ` | N ,

• gcd(Nψ, Ng, Nh) is squarefree.

If k ≥ l +m, then

L(V ψ
g,h, 0) 6= 0 =⇒ Sel(K,V ψ

g,h) = 0,

and hence the Bloch–Kato conjecture for V ψ
g,h holds in analytic rank zero.

Remark. Here L(V ψ
g,h, s) is the triple product L-function introduced by Garrett, Piatetski–

Shapiro and Rallis, which satisfies a functional equation relating its values at s and −s.
When k ≥ l+m, the local root number condition in Theorem C implies that the sign in this

functional equation is +1, and so the central L-values L(V ψ
g,h, 0) are expected to be generically

nonzero.

A third application is to the anticyclotomic Iwasawa main conjectures for Rankin–Selberg
convolutions. Let (f ,g,h) be a triple of p-adic Hida families. In [Hsi21], Hsieh has constructed
a square-root triple product p-adic L-function Lp(f ,g,h) whose square interpolates the central
values of the triple product L-function attached to the classical specializations of (f ,g,h) to
weights (k1, k2, k3) with k1 ≥ k2 + k3. Letting g and h be the Hida families passing through
the ordinary p-stabilizations of g and h, respectively, we obtain an element

Lp(f , g, h) ∈ Λf

interpolating a square-root of the above central L-values for the specializations of f to weights
k ≥ l + m, where Λf is the finite flat extension of Λ = Zp[[1 + pZp]] generated by the coeffi-
cients of f . Greenberg’s generalization of the Iwasawa main conjectures [Gre94] predicts that

Lp(f , g, h)2 generates the Λf -characteristic ideal of a certain torsion Selmer group XF (A†fgh).
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We also show that our classes κψ,g,h,n are universal norms in the p-direction, therefore giving
rise in particular to an Iwasawa cohomology class

κψ,g,h,∞ ∈ H1
Iw(K∞, T

ψ
g,h)

for the anticyclotomic Zp-extension K∞/K.
The class κψ,g,h,∞ is associated with the triple (f , g, h), where f = fψ is a CM Hida family

attached to ψ for which Λf
∼= Λac, the anticyclotomic Iwasawa algebra. Assuming the non-

triviality of κψ,g,h,∞, we can prove the following result towards the Iwasawa main conjecture
for Lp(f , g, h)2.

Theorem D. Let f = fψ, and suppose that:

(a) g and h are ordinary at p, non-Eisenstein and p-distinguished,
(b) p splits in K,
(c) p does not divide the class number of K,

(d) V ψ
g,h has big image,

(e) ε`(V
ψ
g,h) = +1 for all primes ` | N ,

(f) gcd(Nψ, Ng, Nh) is squarefree.

If κψ,g,h,∞ is not Λac-torsion, then the module XF (A†fgh) is Λac-torsion, and

CharΛac(XF (A†fgh)) ⊃ (Lp(f , g, h)2)

in Λac ⊗Zp Qp.

Remark. The classes κψ,g,h,n may be viewed as a counterpart in the study of the arithmetic of

V ψ
g,h to systems of Heegner points and Heegner cycles for individual modular forms. It would

be interesting to see whether the methods of Cornut–Vatsal can be extended to establish the
non-triviality of κψ,g,h,∞.

Remark. The “big image” hypothesis on V ψ
g,h excludes some cases of arithmetic interest; no-

tably, the case in which h = g∗ is the dual of g (assuming ψ has trivial central character) is
excluded from our applications in this paper. We study this case in [ACR22], where building
on (a suitable projection of) the classes κψ,g,g∗,n constructed in this paper, we obtain a new

anticyclotomic Euler systems for twists of the three-dimensional GK-representation ad0(Vg),
with applications to the Bloch–Kato conjecture in rank zero and the Iwasawa main conjecture
in this setting.

Remark. As already noted, the anticyclotomic Euler system classes constructed in this paper
arise from diagonal classes attached to triples (f, g, h) of modular forms in which f varies
over certain CM form by K. A modification of this construction with g and h varying among
certain CM forms for the same imaginary quadratic field K gives rise to a new anticyclotomic
Euler system for twists of Vf |GK . This construction, and its arithmetic applications, is studied
in [Do22, CD23].
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boduk, Daniel Disegni, Ming-Lun Hsieh, Antonio Lei, Victor Rotger and Shou-Wu Zhang, for
several helpful conversations related to this work. This project has received funding from the
ERC under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 682152). During the preparation of this paper, F.C. was partially supported by
the NSF grants DMS-1946136 and DMS-2101458; O.R. was supported by a Royal Society New-
ton International Fellowship and by “la Caixa” Foundation (grant LCF/BQ/ES17/11600010).
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Part 1. The diagonal cycle Euler system

2. Preliminaries

In this section be begin by discussing our conventions regarding modular curves and Hecke
operators, for which we shall largely follow [Kat04, §2] and [BSV22, §2].

2.1. Modular curves. Given integers M ≥ 1, N ≥ 1, m ≥ 1 and n ≥ 1 with M +N ≥ 5, we
denote by Y (M(m), N(n)) the affine modular curve over Z[1/MNmn] representing the functor
taking a Z[1/MNmn]-scheme S to the set of isomorphism classes of 5-tuples (E,P,Q,C,D),
where:

• E is an elliptic curve over S,
• P is an S-point of E of order M ,
• Q is an S-point of E of order N ,
• C is a cyclic order-Mm subgroup of E defined over S and containing P ,
• D is a cyclic order-Nn subgroup of E defined over S and containing Q,

and such that C and D have trivial intersection. If either m = 1 or n = 1 we omit it from the
notation, and we will often write Y1(N) for Y (1, N).

We will denote by

E(M(m), N(n))→ Y (M(m), N(n))

the universal elliptic curve over Y (M(m), N(n)).
Define the modular group

Γ(M(m), N(n)) =

{(
a b
c d

)
∈ SL2(Z) : a ≡ 1 (M), b ≡ 0 (Mm), c ≡ 0 (Nn), d ≡ 1 (N)

}
.

Then, letting H be the Poincaré upper half-plane, we have the complex uniformization

(2.1) Y (M(m), N(n))(C) ∼= (Z/MZ)× × Γ(M(m), N(n))\H,

with a pair (a, τ) on the right-hand side corresponding to the isomorphism class of the 5-tuple
(C/Z + Zτ, aτ/M, 1/N, 〈τ/Mm〉, 〈1/Nn〉).

If r ≥ 1 is an integer, there is an isomorphism of Z[1/MNmnr]-schemes

ϕr : Y (M(m), N(nr))
'−→ Y (M(mr), N(n))

defined in terms of moduli by

(E,P,Q,C,D) 7→ (E′, P ′, Q′, C ′, D′),

where E′ = E/NnD, P ′ is the image of P in E′, Q′ is the image of r−1(Q)∩D in E′, C ′ is the
image of r−1(C) in E′, and D′ is the image of D in E′. Under the complex uniformizations
(2.1), the isomorphism ϕr sends (a, τ) 7→ (a, r · τ). If

ϕ∗r(E(M(mr), N(n)))→ Y (M(m), N(nr))

denotes the base change of E(M(mr), N(n))→ Y (M(mr), N(n)) under ϕr, there is a natural
degree-r isogeny

λr : E(M(m), N(nr))→ ϕ∗r(E(M(mr), N(n))).

2.2. Degeneracy maps. With the same notations as above, we have natural degeneracy
maps

Y (M(m), Nr(n))
µr−→ Y (M(m), N(nr))

νr−→ Y (M(m), N(n)),

Y (Mr(m), N(n))
µ̌r−→ Y (M(mr), N(n))

ν̌r−→ Y (M(m), N(n)),
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forgetting the extra level structure, e.g.

µr(E,P,Q,C,D) = (E,P, r ·Q,C,D),

νr(E,P,Q,C,D) = (E,P,Q,C, rD).

We also define degeneracy maps

(2.2)
π1 : Y (M(m), Nrs(nt))→ Y (M(m), N(ns)),

π2 : Y (M(m), Nrs(nt))→ Y (M(m), N(ns)),

acting on the moduli space by

π1(E,P,Q,C,D) = (E,P, rs ·Q,C, rtD),

π2(E,P,Q,C,D) = (E′, P ′, Q′, C ′, D′),

where E′ = E/NnsD, P ′ is the image of P in E′, Q′ is the image of t−1(s ·Q) ∩D in E′, C ′

is the image of C in E′ and D′ is the image of D in E′. Under the complex uniformizations
(2.1), the maps π1 and π2 correspond to the identity and to multiplication by rt, respectively,
on H. It is straightforward to check that the maps π1 and π2 are given by the compositions

Y (M(m), Nrs(nt))
µrs−−→ Y (M(m), N(nrst))

νrt−−→ Y (M(m), N(ns)),

Y (M(m), Nrs(nt))
µrs−−→ Y (M(m), N(nrst))

ϕrt−−→ Y (M(mrt), N(ns))
ν̌rt−−→ Y (M(m), N(ns)),

respectively.

2.3. Relative Tate modules. Fix a prime p. Let S be a Z[1/MNmnp]-scheme and let

v : E(M(m), N(n))S → Y (M(m), N(n))S

be the structural morphism. For every Z[1/MNmnp]-scheme X, denote by A = AX either
the locally constant constructible sheaf Z/pt(j) or the locally constant p-adic sheaf Zp(j) on
Xet, for fixed t ≥ 1 and j ∈ Z. Set

TM(m),N(n)(A) = R1v∗Zp(1)⊗Zp A and T ∗M(m),N(n)(A) = Hom(TM(m),N(n)(A), A).

In particular, in the case A = Zp this gives the relative Tate module of the universal elliptic
curve and its dual, respectively; in this case, we will often drop A from the notation.

From the proper base change theorem, both TM(m),N(n)(A) and T ∗M(m),N(n)(A) are locally

constant p-adic sheaves on Y (M(m), N(n))S of formation compatible with base changes along
morphisms of Z[1/MNmnp]-schemes S′ → S.

For every integer r ≥ 0, define

LM(m),N(n),r(A) = Tsymr
A TM(m),N(n)(A), SM(m),N(n),r(A) = Symmr

A T ∗M(m),N(n)(A),

where, for any finite free module M over a profinite Zp-algebra R, one denotes by Tsymr
RM

the R-submodule of symmetric tensors in M⊗r and by Symmr
RM the maximal symmetric

quotient of M⊗r.
When the level of the modular curve Y (M(m), N(n))S is clear, we may use the simplified

notations

Lr(A) = LM(m),N(n),r(A), Lr = Lr(Zp), Sr(A) = SM(m),N(n),r(A), Sr = Sr(Zp).
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2.4. Hecke operators. Let F r
M(m),N(n) denote either LM(m),N(n),r(A) or SM(m),N(n),r(A)

and let q be a rational prime. Then there are natural isomorphisms of sheaves

(2.3) ν∗q (F r
M(m),N(n))

∼= F r
M(m),N(nq) and ν̌∗q (F r

M(m),N(n))
∼= F r

M(mq),N(n),

and therefore pullback morphisms

H i
et(Y (M(m), N(n))S ,F

r
M(m),N(n))

ν∗q−→ H i
et(Y (M(m), N(nq))S ,F

r
M(m),N(nq)),

H i
et(Y (M(m), N(n))S ,F

r
M(m),N(n))

ν̌∗q−→ H i
et(Y (M(mq), N(n))S ,F

r
M(mq),N(n)),

and traces

(2.4)
H i

et(Y (M(m), N(nq))S ,F
r
M(m),N(nq))

νq∗−−→ H i
et(Y (M(m), N(n))S ,F

r
M(m),N(n)),

H i
et(Y (M(mq), N(n))S ,F

r
M(mq),N(n))

ν̌q∗−−→ H i
et(Y (M(m), N(n))S ,F

r
M(m),N(n)).

Also, the isogeny λq induces morphisms of sheaves

λq∗ : F r
M(m),N(nq) → ϕ∗q(F

r
M(mq),N(n)) and λ∗q : ϕ∗q(F

r
M(mq),N(n))→ F r

M(m),N(nq).

These morphisms allow us to define

Φq∗ : H i
et(Y (M(m), N(nq))S ,F

r
M(m),N(nq))→ H i

et(Y (M(mq), N(n))S ,F
r
M(mq),N(n)),

Φ∗q : H i
et(Y (M(mq), N(n))S ,F

r
M(mq),N(n))→ H i

et(Y (M(m), N(nq))S ,F
r
M(m),N(nq)),

as the compositions

Φq∗ = ϕq∗ ◦ λq∗ and Φ∗q = λ∗q ◦ ϕ∗q .
We define the Hecke operators Tq and the adjoint Hecke operators T ′q acting on the étale

cohomology groups

H i
et(Y (M(m), N(nq))S ,F

r
M(m),N(nq))

as the compositions

Tq = ν̌q∗ ◦ Φq∗ ◦ ν∗q and T ′q = νq∗ ◦ Φ∗q ◦ ν̌∗q .

If we define pullbacks

H i
et(Y (M(m), N(n))S ,F

r
M(m),N(n))

π∗1−→ H i
et(Y (M(m), N(nq))S ,F

r
M(m),N(nq)),

H i
et(Y (M(m), N(n))S ,F

r
M(m),N(n))

π∗2−→ H i
et(Y (M(mq), N(n))S ,F

r
M(mq),N(n)),

and pushforwards

H i
et(Y (M(m), N(nq))S ,F

r
M(m),N(nq))

π1∗−−→ H i
et(Y (M(m), N(n))S ,F

r
M(m),N(n)),

H i
et(Y (M(mq), N(n))S ,F

r
M(mq),N(n))

π2∗−−→ H i
et(Y (M(m), N(n))S ,F

r
M(m),N(n)),

as

π∗1 = ν∗q , π∗2 = Φ∗q ◦ ν̌∗q , π1∗ = νq∗ and π2∗ = ν̌q∗ ◦ Φq∗,

then we can write

Tq = π2∗ ◦ π∗1 and T ′q = π1∗ ◦ π∗2.
Now we introduce diamond operators. For d ∈ (Z/MNZ)×, these are defined on the curves

Y (M(m), N(n)) as the automorphisms 〈d〉 acting on the moduli space by

(E,P,Q,C,D) 7→ (E, d−1 · P, d ·Q,C,D).

We can also define the diamond operator 〈d〉 on the corresponding universal elliptic curve as
the unique automorphism making the diagram
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E(M(m), N(n))S E(M(m), N(n))S

Y (M(m), N(n))S Y (M(m), N(n))S

〈d〉

〈d〉

v v

cartesian. This in turn induces automorphisms 〈d〉 = 〈d〉∗ and 〈d〉′ = 〈d〉∗ on the group
H i

et(Y (M(m), N(n))S ,F
r
M(m),N(n)) which are inverses of each other.

In general, we will be interested in modular curves of the form Y (1(m), N(n)). In this case,
the natural pairing Lr ⊗Zp Sr → Zp together with cup-product yields a pairing

H1
et(Y (1(m), N(n))S ,Lr(1))⊗Zp H

1
et,c(Y (1(m), N(n))S ,Sr)→ Zp

which becomes perfect after inverting p. The operators Tq, T
′
q, 〈d〉, 〈d〉′ induce endomorphisms

on compactly supported cohomology and

(Tq, T
′
q), (T ′q, Tq), (〈d〉, 〈d〉′) and (〈d〉′, 〈d〉)

are adjoint pairs under this pairing.

2.5. Galois representations. Let f ∈ Sk(Nf , χf ) be a newform of weight k = r + 2 ≥ 2,
level Nf and character χf . Let p be a prime and let E be a finite extension of Qp with ring of
integers O containing the Fourier coefficients of f . By work of Eichler–Shimura and Deligne,
there is a two-dimensional representation

ρf : GQ −→ GL2(E)

unramified outside pNf and characterized by the property that

trace ρf (Frq) = aq(f)

for all primes q - pNf , where Frq denotes an arithmetic Frobenius element at q. (In fact, this
is the dual of the p-adic representation constructed by Deligne.)

It will be convenient for our purposes to work with the following geometric realization of
ρf . Let

H1
et(Y1(Nf )Q,Lr(1))⊗Zp E � Vf

be the maximal quotient on which T ′q and 〈d〉′ act as multiplication by aq(f) and χf (d) for all

primes q - Nf and all d ∈ (Z/NfZ)×. Then Vf is a two-dimensional E-vector space affording
the p-adic representation ρf , and we let Tf ⊂ Vf be the lattice defined by the image of

H1
et(Y1(Nf )Q,Lr(1))⊗Zp O

under the above quotient map.

3. Hecke algebras and ring class fields

In this section we extend the results of [LLZ15, §5.2], including ring class field extensions
of an imaginary quadratic field K. The resulting Corollary 3.6 will allow us to obtain classes
over ring class field extensions of K from diagonal cycles over Q on triple products of modular
curves of varying levels.

Thus let K be an imaginary quadratic field of discriminant −D < 0, and let εK be the
corresponding quadratic character. Let ψ be a Grössencharacter of K of infinity type (−1, 0)
and conductor f, taking values in a finite extension L/K, and let χ be the unique Dirichlet
character modulo NK/Q(f) such that ψ((n)) = nχ(n) for integers n coprime to NK/Q(f). Put
Nψ = NK/Q(f)D, and let θψ ∈ S2(Nψ, χεK) be the newform attached to ψ, i.e.,

θψ =
∑

(a,f)=1

ψ(a)qNK/Q(a).
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Fix a prime p ≥ 5 unramified in K, a prime p of K above p and a prime P of L above
p. Let E = LP and let O ⊂ E be the ring of integers. Let ψP be the continuous E-valued

character of K×\A×K,f defined by

ψP(x) = x−1
p ψ(x),

where xp is the projection of the idèle x to the component at p. We will also denote by ψP the

corresponding character of GK obtained via the geometric Artin map. Then IndQ
K E(ψ−1

P ) is
the p-adic representation attached to θψ.

Definition 3.1. For an integral ideal n of K, we denote by Hn the maximal p-quotient of the
corresponding ray class group, and by K(n) the maximal p-extension in the corresponding ray
class field. We similarly define Rn and K[n], for each integer n > 0, as the maximal p-quotient
in the corresponding ring class group and the maximal p-extension in the corresponding ring
class field.

Let n be an integral ideal of K divisible by f, and let N = NK/Q(n)D, which is of course a
multiple of Nψ. Let T′1(N) be the algebra generated by all the Hecke operators T ′q, 〈d〉′ acting

on H1(Y1(N)(C),Z).

Proposition 3.2. With the previous definitions and notations, there exists a homomorphism
φn : T′1(N)→ O[Hn] defined on generators by

φn(T
′
q) =

∑
q

ψ(q)[q]

for every rational prime q, where the sum runs over ideals coprime to n of norm q; and

φn(〈d〉′) = χ(d)εK(d)[(d)].

Proof. This follows immediately from [LLZ15, Prop. 3.2.1]. �

Now let n′ = nq for some prime ideal q above a rational prime q. Assume that n′ is coprime
to p, and let N ′ = NK/Q(n′)D. Following [LLZ15, §3.3], we define norm maps

N n′
n : O[Hn′ ]⊗(T′1(N ′)⊗Zp,φn′ )H

1
et(Y1(N ′)Q,Zp(1)) −→ O[Hn]⊗(T′1(N)⊗Zp,φn)H

1
et(Y1(N)Q,Zp(1))

by the formulae:

• if q | n,

N n′
n = 1⊗ π1∗;

• if q - n and q is ramified or split,

N n′
n = 1⊗ π1∗ −

ψ(q)[q]

q
⊗ π2∗;

• if q - n and q is inert,

N n′
n = 1⊗ π1∗ −

ψ(q)[q]

q2
⊗ π2∗.

More generally, for n′ = nr with r a product of (not necessarily distinct) prime ideals, we

define the map N n′
n by composing in the natural way the previously defined norm maps.

From now on, we assume that in the case where (p) = pp splits in K the following holds:
If p | f then p - f and ψ|O×K,p is not congruent to the Teichmüller character modulo P.

Theorem 3.3. Let A be the set of prime ideals of K coprime to p (resp. p) if p splits (resp.
is inert) in K and divisible by f. Then there is a family of GQ-equivariant isomorphisms of
O[Hn]-modules

νn : O[Hn]⊗(T′1(N)⊗Zp,φn) H
1
et(Y1(N)Q,Zp(1)) IndQ

K(n)O(ψ−1
P ),

'
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for all n ∈ A, such that for n | n′ the diagram

O[Hn′ ]⊗(T′1(N ′)⊗Zp,φn′ ) H
1
et(Y1(N ′)Q,Zp(1)) IndQ

K(n′)O(ψ−1
P )

O[Hn]⊗(T′1(N)⊗Zp,φn) H
1
et(Y1(N)Q,Zp(1)) IndQ

K(n)O(ψ−1
P )

νn′

'

N n′
n

νn

'

commutes, where the right vertical arrow is the natural norm map.

Proof. This is [LLZ15, Cor. 5.2.6]. �

Definition 3.4. For any positive integer n with (n, pf) = 1, we let K(f)[n] be the compositum
of K(f) and K[n], and put Rf,n = Gal(K(f)[n]/K).

Let T′(1, Nψ(n2)) ⊂ EndZ(H1(Y (1, Nψ(n2))(C),Z)) be the subalgebra generated by all
Hecke operators T ′q and 〈d〉′.

Lemma 3.5. There exists a homomorphism

φn : T′(1, Nψ(n2)) −→ O[Rf,n]

defined on generators by the same formula as in Proposition 3.2.

Proof. Take the modulus n = f(n). By Proposition 5.1.2 and Remark 5.1.3 in [LLZ15], the
kernel I of the composition

T′1(Nψn
2)

φn−→ O[Hn] −→ O −→ O/P,

where φn is as in Proposition 3.2, is a non-Eisenstein maximal ideal of T′1(Nψn
2) in the sense

of [op.cit., Def. 4.1.2]. Therefore, denoting I-adic completions with the subscript I, we have
an isomorphism of T′1(Nψn

2)I-modules

H1(Y1(Nψn
2)(C),Z)I ∼= H1

c (Y1(Nψn
2)(C),Z)I .

On the other hand, as in the proof of [LLZ15, Lem. 4.2.4], the natural pullback map yields
an isomorphism

H1
c (Y (1, Nψ(n2))(C),Z) ∼= H1

c (Y1(Nψn
2)(C),Z)∆,

where ∆ is the set of diamond operators 〈d〉′ with d ≡ 1 (mod Nψ). Since ∆ maps to 1 under
the composition

T′1(Nψn
2)

φn−→ O[Hn] −→ O[Rf,n],

the result follows. �

Corollary 3.6. Let B be the set of positive integers n coprime to pf. Then there is a family
of GQ-equivariant isomorphisms of O[Rf,n]-modules

νn : O[Rf,n]⊗(T′(1,Nψ(n2))⊗Zp,φn) H
1
et(Y (1, Nψ(n2))Q,Zp(1)) IndQ

K(f)[n]O(ψ−1
P )

'

for all n ∈ B, such that for n | n′ the diagram

O[Rf,n′ ]⊗(T′(1,Nψ(n′2))⊗Zp,φn′ ) H
1
et(Y (1, Nψ(n′2))Q,Zp(1)) IndQ

K(f)[n′]O(ψ−1
P )

O[Rf,n]⊗(T′(1,Nψ(n2))⊗Zp,φn) H
1
et(Y (1, Nψ(n2))Q,Zp(1)) IndQ

K(f)[n]O(ψ−1
P )

νn′

'

N f,n′

f,n

νn

'

commutes, where N f,n′

f,n is induced by N f(n)
f(n′) and the right vertical arrow is the natural norm

map.
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Proof. Let n = f(n), I and ∆ be as in the proof of Lemma 3.5. Since I is non-Eisenstein, the
natural trace map

H1
et(Y1(Nψn

2)Q,Zp(1))∆ −→ H1
et(Y (1, Nψ(n2))Q,Zp(1))

becomes an isomorphism after taking I-adic completions. Since the map φn of Lemma 3.5 is
induced by φn (as shown in the proof of that result), it follows that the O[Rf,n]-module

O[Rf,n]⊗(T′(1,Nψ(n2))⊗Zp,φn) H
1
et(Y (1, Nψ(n2))Q,Zp(1))

is naturally isomorphic to

O[Rf,n]⊗O[Hn]

(
O[Hn]⊗(T′1(Nψn2)⊗Zp,φn) H

1
et(Y1(Nψn

2)Q,Zp(1))
)
.

The result now follows from Theorem 3.3. �

4. Proof of the tame norm relations

We keep the notations introduced in §3. Fix two newforms (g, h) of weights (l,m) of the
same parity, levels (Ng, Nh), and characters (χg, χh) such that χεKχgχh = 1. Enlarging L if
necessary, assume that it contains the Fourier coefficients of g and h.

Let N = lcm(Nψ, Ng, Nh), and (since N will be fixed throughout) put Y (m) = Y (1, N(m))
for every positive integer m.

Definition 4.1. Let r = (r1, r2, r3) be a triple of non-negative integers such that

r1 + r2 + r3 = 2r

with r ∈ Z≥0, and ri + rj ≥ rk for every permutation (i, j, k) of (1, 2, 3). Put

L[r] = L1,N(m),r1(Zp)⊗Zp L1,N(m),r2(Zp)⊗Zp L1,N(m),r3(Zp),

and define

κ
(1)
m,r ∈ H1

(
Q, H3

et(Y (m)3
Q,L[r])⊗Zp Qp(2− r)

)
to be the class κN(m),r = sr∗ ◦HS◦d∗(DetrN(m)) constructed as in [BSV22, §3] for the modular

curve Y (m).

Lemma 4.2. Let m be a positive integer and let q be a prime number. Assume that both m
and q are coprime to p and N . Then

(π2, π1, π1)∗κ
(1)
mq,r = (Tq, 1, 1)κ

(1)
m,r; (π1, π2, π2)∗κ

(1)
mq,r = qr−r1(T ′q, 1, 1)κ

(1)
m,r;

(π1, π2, π1)∗κ
(1)
mq,r = (1, Tq, 1)κ

(1)
m,r; (π2, π1, π2)∗κ

(1)
mq,r = qr−r2(1, T ′q, 1)κ

(1)
m,r;

(π1, π1, π2)∗κ
(1)
mq,r = (1, 1, Tq)κ

(1)
m,r; (π2, π2, π1)∗κ

(1)
mq,r = qr−r3(1, 1, T ′q)κ

(1)
m,r.

If q is coprime to m we also have

(π1, π1, π1)∗κ
(1)
mq,r = (q + 1)κ

(1)
m,r; (π2, π2, π2)∗κ

(1)
mq,r = (q + 1)qrκ

(1)
m,r.

Proof. The same argument proving equations (174) and (176) in [BSV22] yields these identi-
ties, adding the prime q to the level rather than the prime p. �

We next consider the following ‘asymmetric’ diagonal classes.

Definition 4.3. For each squarefree positive integer n coprime to p and N , let

κ
(2)
n,r = nr2(1, 1, 〈n〉′)(1, π1, π2)∗κ

(1)
n2,r
∈ H1

(
Q, H3

et(Y (n2)Q × Y (1)2
Q,L[r])⊗Zp Qp(2− r)

)
,

where π1, π2 : Y (n2)→ Y (1) are the degeneracy maps in (2.2).
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Lemma 4.4. Let n be as above and let q be a rational prime coprime to p, N and n. Then

(π11, 1, 1)∗κ
(2)
nq,r =

{
qr2(1, 1, TqT

′
q)− (q + 1)qr2+r3(1, 1, 1)

}
κ

(2)
n,r,

(π21, 1, 1)∗κ
(2)
nq,r =

{
qr(1, T ′q, T

′
q)− qr2+r3(T ′q, 〈q〉′, 〈q〉′)

}
κ

(2)
n,r,

(π22, 1, 1)∗κ
(2)
nq,r =

{
qr1+r3(1, T ′2q , 〈q〉′)− (q + 1)q2r(1, 〈q〉′, 〈q〉′)

}
κ

(2)
n,r,

where πij : Y (n2q2)→ Y (n2) denotes the composite map

Y (n2q2)
πi−→ Y (n2q)

πj−→ Y (n2).

Proof. To better distinguish between the degeneracy maps πi for different levels, in this proof
we use $i to denote the map πi descending the level by q, so that $j ◦$i is the degeneracy
map πij in the statement of the lemma. Thus we find

($1, 1, 1)∗κ
(2)
nq,r = nr2qr2(1, 1, 〈nq〉′)(1, π1, π2)∗($1, $1, $2)∗κ

(1)
n2q2,r

= nr2qr2(1, 1, 〈nq〉′)(1, π1, π2)∗(1, 1, Tq)κ
(1)
n2q,r

,

using Lemma 4.2 for the second equality; and similarly,

($2, 1, 1)∗κ
(2)
nq,r = nr2qr2(1, 1, 〈nq〉′)(1, π1, π2)∗($2, $1, $2)∗κ

(1)
n2q2,r

= nr2qr(1, 1, 〈nq〉′)(1, π1, π2)∗(1, T
′
q, 1)κ

(1)
n2q,r

.

Descending the level again by q this gives

(π11, 1, 1)∗κ
(2)
nq,r = nr2qr2(1, 1, 〈nq〉′)(1, π1, π2)∗($1, $1, $2)∗(1, 1, Tq)κ

(1)
n2q,r

= nr2qr2(1, 1, 〈nq〉′)(1, π1, π2)∗($1∗, $1∗, Tq$2∗ − qr3〈q〉$1∗)κ
(1)
n2q,r

= nr2qr2(1, 1, 〈nq〉′)(1, π1, π2)∗
{

(1, 1, T 2
q )− (q + 1)qr3(1, 1, 〈q〉)

}
κ

(1)
n2,r

= qr2
{

(1, 1, TqT
′
q)− (q + 1)qr3(1, 1, 1)

}
nr2(1, 1, 〈n〉′)(1, π1, π2)∗κ

(1)
n2,r

=
{
qr2(1, 1, TqT

′
q)− (q + 1)qr2+r3(1, 1, 1)

}
κ

(2)
n,r,

and similarly

(π21, 1, 1)∗κ
(2)
nq,r = nr2qr(1, 1, 〈nq〉′)(1, π1, π2)∗($1, $1, $2)∗(1, T

′
q, 1)κ

(1)
n2q,r

= nr2qr(1, 1, 〈nq〉′)(1, π1, π2)∗($1∗, T
′
q$1∗ − 〈q〉′$2∗, $2∗)κ

(1)
n2q,r

= nr2qr(1, 1, 〈nq〉′)(1, π1, π2)∗
{

(1, T ′q, Tq)− qr−r1(T ′q, 〈q〉′, 1)
}
κ

(1)
n2,r

= qr
{

(1, T ′q, T
′
q)− qr−r1(T ′q, 〈q〉′, 〈q〉′)

}
nr2(1, 1, 〈n〉′)(1, π1, π2)∗κ

(1)
n2,r

=
{
qr(1, T ′q, T

′
q)− qr2+r3(T ′q, 〈q〉′, 〈q〉′)

}
κ

(2)
n,r,

and

(π22, 1, 1)∗κ
(2)
nq,r = nr2qr(1, 1, 〈nq〉′)(1, π1, π2)∗($2, $1, $2)∗(1, T

′
q, 1)κ

(1)
n2q,r

= nr2qr(1, 1, 〈nq〉′)(1, π1, π2)∗($2∗, T
′
q$1∗ − 〈q〉′$2∗, $2∗)κ

(1)
n2q,r

= nr2qr(1, 1, 〈nq〉′)(1, π1, π2)∗
{
qr−r2(1, T ′2q , 1)− (q + 1)qr(1, 〈q〉′, 1)

}
κ

(1)
n2,r

= qr
{
qr−r2(1, T ′2q , 〈q〉′)− (q + 1)qr(1, 〈q〉′, 〈q〉′)

}
nr2(1, 1, 〈n〉′)(1, π1, π2)∗κ

(1)
n2,r

=
{
qr1+r3(1, T ′2q , 〈q〉′)− (q + 1)q2r(1, 〈q〉′, 〈q〉′)

}
κ

(2)
n,r,

hence the result. �
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Projection of the classes κ
(2)
n,r to the (1, 1, 1)-component in the Künneth decomposition yields

classes κ
(3)
n,r in

H1
(
Q, H1

et(Y (n2)Q,Lr1(1))⊗H1
et(Y (1)Q,Lr2(1))⊗H1

et(Y (1)Q,Lr3(1))⊗Zp Qp(−1− r)
)
.

Now set (r1, r2, r3) = (0, l − 2,m− 2). Fix test vectors

f̆ ∈ Sk(N,χεK)[θψ], ğ ∈ Sl(N,χg)[g], h̆ ∈ Sm(N,χh)[h].

These test vectors determine maps

H1
et(Y (n2)Q,Zp(1))→ H1

et(Y (1, Nψ(n2))Q,Zp(1))

H1
et(Y (1)Q,Lr2(1))→ H1

et(Y1(Ng)Q,Lr2(1))

H1
et(Y (1)Q,Lr3(1))→ H1

et(Y1(Nh)Q,Lr3(1))

which we use to project the classes κ
(3)
n,r to classes κ

(3)
n,ψgh in

H1(Q,O[Rf,n]⊗(T′(1,Nψ(n2))⊗Zp,φn) H
1
et(Y (1, Nψ(n2))Q,Zp(1))⊗O Tg ⊗O Th ⊗Zp Qp(−1− r)).

Let
Tψg,h = Tg ⊗O Th(ψ−1

P )(−1− r), V ψ
g,h = Tψg,h ⊗Zp Qp,

Using the isomorphisms

νn : O[Rf,n]⊗(T′(1,Nψ(n2))⊗Zp,φn) H
1
et(Y (1, Nψ(n2))Q,Zp(1)) IndQ

K(f)[n]O(ψ−1
P )

'

of Corollary 3.6, and taking the projection of both sides via the quotient mapO[Rf,n]→ O[Rn],
we obtain new isomorphisms

ν̃n : O[Rn]⊗(T′(1,Nψ(n2))⊗Zp,φn) H
1
et(Y (1, Nψ(n2))Q,Zp(1)) IndQ

K[n]O(ψ−1
P ),

'

so that applying the corresponding projection map to the classes κ
(3)
n,ψgh and using Shapiro’s

lemma we obtain classes
κ̃ψ,g,h,n ∈ H1(K[n], V ψ

g,h).

Proposition 4.5. Let n be as above, and let q be a rational prime coprime to p, N and n.

(i) If q splits in K as (q) = qq, then

corK[nq]/K[n](κ̃ψ,g,h,nq) = ql+m−4

{
χg(q)χh(q)q

(
ψ(q)

q
Fr−1

q

)2

− aq(g)aq(h)

q(l+m−4)/2

(
ψ(q)

q
Fr−1

q

)
+
χg(q)

−1aq(g)2

ql−1
+
χh(q)−1aq(h)2

qm−2
− q2 + 1

q

− aq(g)aq(h)

q(l+m−4)/2

(
ψ(q)

q
Fr−1

q

)
+ χg(q)χh(q)q

(
ψ(q)

q
Fr−1

q

)2}
κ̃ψ,g,h,n.

(ii) If q is inert in K, then

corK[nq]/K[n](κ̃ψ,g,h,nq) = ql+m−4

{
χg(q)

−1aq(g)2

ql−1
+
χh(q)−1aq(h)2

qm−2
− (q + 1)2

q

}
κ̃ψ,g,h,n.

Proof. We have the commutative diagram

H1(K[nq], V ψ
g,h) H1(Q, IndQ

K[nq]O(ψ−1
P )⊗O Tg ⊗O Th ⊗Zp Qp(−1− r))

H1(K[n], V ψ
g,h) H1(Q, IndQ

K[n]O(ψ−1
P )⊗O Tg ⊗O Th ⊗Zp Qp(−1− r)),

∼=

∼=

corK[nq]/K[n]
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where the horizontal isomorphisms are given by Shapiro’s lemma and the right vertical arrow
comes from the natural norm map between induced representations. Using the isomorphisms
ν̃n above, the vertical arrows in the previous diagram correspond to the map

H1(Q,O[Rnq]⊗φnq H1
et(Y (1, Nψ(n2q2))Q,Zp(1))⊗O Tg ⊗O Th ⊗Zp Qp(−1− r))

H1(Q,O[Rn]⊗φn H1
et(Y (1, Nψ(n2))Q,Zp(1))⊗O Tg ⊗O Th ⊗Zp Qp(−1− r)).

N f,nq
f,n ⊗ Id⊗ Id

If q splits in K, the map N f,nq
f,n is given by

N f,nq
f,n = π11∗ −

(
ψ(q)[q]

q
+
ψ(q)[q]

q

)
π21∗ +

χ(q)

q
π22∗,

using the notations introduced in Lemma 4.4 for the degeneracy maps, and from the relations
in that lemma we find

N f,nq
f,n (κ̃ψ,g,h,nq) =

[
1⊗

{
qr2(1, 1, TqT

′
q)− (q + 1)qr2+r3(1, 1, 1)

}
−
(
ψ(q)[q]

q
+
ψ(q)[q]

q

)
⊗
{
qr(1, T ′q, T

′
q)− qr2+r3(T ′q, 〈q〉′, 〈g〉′)

}
+
χ(q)

q
⊗
{
qr1+r3(1, T ′q

2
, 〈q〉′)− (q + 1)q2r(1, 〈q〉′, 〈q〉′)

}]
κ̃ψ,g,h,n

=

[
χh(q)−1aq(h)2qr2 + (q + 1)qr2+r3

−
(
ψ(q)[q]

q
+
ψ(q)[q]

q

){
aq(g)aq(h)qr − χg(q)χh(q)qr2+r3(ψ(q)[q] + ψ(q)[q])

}
+
χ(q)

q

{
χh(q)aq(g)2qr1+r3 − χg(q)χh(q)(q + 1)q2r

}]
κ̃ψ,g,h,n.

This implies the result in this case. When q is inert in K, we have

N f,nq
f,n = π11∗ −

χ(q)

q
π22∗,

and the result in this case follows by a very similar computation that we leave to the reader. �

In particular, restricting to positive integers n as above that are divisible only by primes q
which split in K, Proposition 4.5 yields the following result. (Note that since in this section
we assume ψ has infinity type (−1, 0), the balanced condition forces l = m.)

Theorem 4.6. Suppose the weights of g, h are l = m. Let S be the set of squarefree products

of primes q which split in K and are coprime to p and N . Assume that H1(K[n], Tψg,h) is

torsion-free for every n ∈ S. There exists a collection of classes{
κψ,g,h,n ∈ H1(K[n], Tψg,h) : n ∈ S

}
such that whenever n, nq ∈ S with q a prime, we have

corK[nq]/K[n](κψ,g,h,nq) = Pq(Fr−1
q )κψ,g,h,n,

where q is any of the primes of K above q, and Pq(X) = det(1− Fr−1
q X|(V ψ

g,h)∨(1)).
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Proof. We begin by noting that the only possible denominators of the classes κ̃ψ,g,h,n are
divisors of (l− 2)!(m− 2)! (as follows from [BSV22, Rmk. 3.3]), so after multiplying them by

a suitable power of p they all have coefficients in Tψg,h.

Now given a prime q ∈ S, we note that for any prime v of K above q we have

Pv(X) = 1− aq(g)aq(h)

q(l+m−2)/2

ψ(v)

q
X

+

(
χg(q)aq(h)2

qm−1
+
χh(q)aq(g)2

ql−1
− 2χg(q)χh(q)

)
ψ(v)2

q2
X2

− χg(q)χh(q)aq(g)aq(h)

q(l+m−2)/2

ψ(v)3

q3
X3 + χg(q)

2χh(q)2ψ(v)4

q4
X4.

Writing (q) = qq and using that ψ(q)ψ(q) = χ(q)q and χg(q)χh(q)χ(q) = 1, we therefore find
the congruences

Pq(Fr−1
q )χg(q)χh(q)ψ(q)2Fr−2

q ≡ Pq(Fr−1
q )χg(q)χh(q)ψ(q)2Fr−2

q (mod q − 1)

≡ χg(q)χh(q)ψ(q)2Fr−2
q − aq(g)aq(h)ψ(q)Fr−1

q

+ χg(q)
−1aq(g)2 + χh(q)−1aq(h)2 − 2

− aq(g)aq(h)ψ(q)Fr−1
q + χg(q)χh(q)ψ(q)2Fr−2

q (mod q − 1)

as endomorphisms of H1(K[n], Tψg,h). Since these expressions agree modulo q − 1 with the

factor appearing in the norm relation of Proposition 4.5(i), together with [Rub00, Lem. 9.6.1
and Lem. 9.6.3] the result follows. �

Remark 4.7. The condition that H1(K[n], Tψg,h) is torsion-free for every n ∈ S holds, for

example, under the assumptions in Lemma 8.9 below. Indeed, since SL2(Zp) × SL2(Zp) has
no proper normal subgroups of finite p-power index, it follows from this lemma that the

residual GK[n]-representation attached to Tψg,h is absolutely irreducible for every n ∈ S, so

that H0(K[n], V ψ
g,h/T

ψ
g,h) is trivial for every n ∈ S and the condition follows.

Remark 4.8. In the inert case, writing q = (q) we have

Pq(X) = det(1− Fr−1
q X|(Tψg,h)∨(1))

= 1−
(
aq(g)2

ql−1
− 2χg(q)

)(
ah(q)2

qm−1
− 2χh(q)

)
ψ(q)

q2
X

+

(
χh(q)2

(
aq(g)2

ql−1
− 2χg(q)

)2

+ χg(q)
2

(
aq(h)2

qm−1
− 2χh(q)

)2

− 2χg(q)
2χh(q)2

)
ψ(q)2

q4
X2

− χg(q)2χh(q)2

(
aq(g)2

ql−1
− 2χg(q)

)(
aq(h)2

qm−1
− 2χh(q)

)
ψ(q)3

q6
X3 + χg(q)

4χh(q)4ψ(q)4

q8
X4,

and similarly as in the proof of Theorem 4.6 we find the congruence

Pq(Fr−1
q ) ≡ χg(q)−2aq(g)4 + χh(q)−2aq(h)4 + 2χg(q)

−1χh(q)−1aq(g)2aq(h)2q

− 4
χg(q)

−1aq(g)2(q + 1)

ql−1
− 4

χh(q)−1aq(h)2(q + 1)

qm−1
+ 8(q + 1) (mod q2 − 1)

as endomorphisms of H1(K[n], Tψg,h). Similarly as above, this expression agrees modulo q2−1

with the square of the Euler factor appearing in the norm relation of Proposition 4.5(ii).

Now assume that (p) = pp splits in K, with p the prime of K above p induced by our fixed
embedding ιp : Q ↪→ Qp, and let f = θψ be the theta series associated to ψ. Assume also that
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both g and h are ordinary at p. Then, for φ ∈ {f, g, h}, the GQp-representation Vφ admits a
filtration

0 −→ V +
φ −→ Vφ −→ V −φ −→ 0

where V ±φ is one-dimensional and V −φ is unramified with Frp acting as multiplication by αφ,

the unit root of the Hecke polynomial of φ at p. Letting Vfgh = Vf ⊗Vg ⊗Vh(−1− r), we can
therefore consider the GQp-subrepresentation

F 2Vfgh = (Vf ⊗ V +
g ⊗ V +

h + V +
f ⊗ Vg ⊗ V

+
h + V +

f ⊗ V
+
g ⊗ Vh)(−1− r)

and define the balanced local condition H1
bal(Qp, Vfgh) ⊂ H1(Qp, Vfgh) to be the image of the

natural map H1(Qp,F 2Vfgh)→ H1(Qp, Vfgh).
Setting

(4.1) F+
p (V ψ

g,h) = (V +
g ⊗Vh+Vg⊗V +

h )(ψ−1
P )(−1−r), F+

p (V ψ
g,h) = (V +

g ⊗V +
h )(ψ−1

P )(−1−r),

one readily checks that under the isomorphism H1(Q, Vfgh) ∼= H1(K,V ψ
g,h) of Shapiro’s lemma,

the balanced local condition H1
bal(Qp, Vfgh) corresponds to the natural image of⊕

v|p

H1(Kv,F+
v (V ψ

g,h)) −→
⊕
v|p

H1(Kv, V
ψ
g,h).

This motivates the following definition. Let L/K be a finite extension, and for every finite
prime v of L put

H1
bal(Lv, V

ψ
g,h) =

{
im
(
H1(Lv,F+

v (V ψ
g,h))→ H1(Lv, V

ψ
g,h)
)

if v | p,

ker
(
H1(Lv, V

ψ
g,h)→ H1(Lnr

v , V
ψ
g,h)
)

if v - p,

where Lnr
v is the maximal unramified extension of Lv. We then let H1

bal(Lv, T
ψ
g,h) be the

inverse image of H1
bal(Lv, V

ψ
g,h) under the natural map H1(Lv, T

ψ
g,h) → H1(Lv, V

ψ
g,h), and let

Selbal(L, T
ψ
g,h) ⊂ H1(L, Tψg,h) be the Greenberg Selmer group cut out by these local conditions.

(Note that this is a special case of the more general construction discussed in §8.1.)

Proposition 4.9. For every n ∈ S, the class κψ,g,h,n lies in the group Selbal(K[n], Tψg,h).

Proof. Fix n ∈ S and v a finite prime of K[n]. If v - p, then it follows from the Weil conjectures

that V ψ
g,h is pure of weight −1, and hence

(4.2) H1
ur(K[n]v, V

ψ
g,h) := ker

(
H1(K[n]v, V

ψ
g,h)→ H1(K[n]nr

v , V
ψ
g,h)
)

= 0.

By [Rub00, Cor. 1.3.3(i)] and local Tate duality (using the fact that the GK-representation

V ψ
g,h is conjugate self-dual), it follows that

H0(K[n]v, V
ψ
g,h) = H2(K[n]v, V

ψ
g,h) = 0.

Repeating the argument with the roles of v and v reversed, from (4.2) and [Rub00, Cor. 1.3.3(ii)]
we conclude that

H1(K[n]v, V
ψ
g,h) = H1

ur(K[n]v, V
ψ
g,h) = 0,

and so the inclusion resv(κψ,g,h,n) ∈ H1
bal(K[n]v, T

ψ
g,h) is automatic.

Now suppose v | p. As noted in [BSV22, Prop. 3.2], it follows from the results of [NN16] that

the classes κ
(1)
m,r are geometric at p, and therefore the class resv(κψ,g,h,n) ∈ H1(K[n]v, T

ψ
g,h)

lands in the inverse image of

H1
geo(K[n]v, V

ψ
g,h) = ker

(
H1(K[n]v, V

ψ
g,h)→ H1(K[n]v, V

ψ
g,h ⊗Qp BdR)

)
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under the natural map H1(K[n]v, T
ψ
g,h) → H1(K[n]v, V

ψ
g,h). Since H1

geo(K[n]v, V
ψ
g,h) agrees

with the Bloch–Kato finite subspace H1
fin(K[n]v, V

ψ
g,h) (see [Nek93, Prop. 1.24(2)]), and the

latter agrees with H1
bal(K[n]v, V

ψ
g,h) (see Lemma 9.1 below), the result follows. �

5. Hida families and Galois representations

In the next section we will prove that the classes κψ,g,h,n of Theorem 4.6 extend along the
anticyclotomic Zp-extension of K, i.e., they are anticyclotomic universal norms, and explain
the construction of κψ,g,h,n for more general weights. In this section we collect the background
results we shall need, closely following the treatment in [BSV22].

5.1. Hida families. Let Λ = Zp[[1 + pZp]] and let

W = Spf(Λ)

be the weight space. Then, for any extension E of Qp, we haveW(E) = Homcont(1+pZp, E×).
Points of the form νr,ε(n) = ε(n)nr, where r is a non-negative integer and ε is a finite order
character, will be called arithmetic. We refer to k = r + 2 as the weight of νr,ε. Arithmetic
points of the form νr = νr,1 will be called classical.

More generally, let R be a normal domain finite flat over Λ and let WR = Spf(R). Then, a
point x ∈ WR(Qp) will be called arithmetic if it lies above an arithmetic point νr,ε of W(Qp)

and classical if it lies above a classical point νr of W(Qp). Again, we refer to k = r+ 2 as the
weight of x.

Let M be a positive integer coprime to p. A Hida family of tame level M and character

χ : (Z/MpZ)× → Q×p is a formal q-expansion

f =
∑
n≥1

an(f)qn ∈ Λf [[q]],

where Λf is a normal domain finite flat over Λ, such that, for any arithmetic point x ∈
WΛf

(Qp) lying over some νr,ε, the corresponding specialization is a p-ordinary eigenform
fx ∈ Sk(Mps, χεω−r). As above, we have denoted by k the weight of x and we can take
s = max{1, ordp(cond(ε))}. We say that a Hida family f is primitive if the specializations fx
at arithmetic points x are p-stabilized newforms. We say that it is normalized if a1(f) = 1.

Let f be a normalized primitive Hida family of tame level M . For each arithmetic point x ∈
WΛf

(Qp), let fx denote the specialization of f at x and let fx be the corresponding newform.
There exists a locally-free rank-two Λf -module Vf equipped with a continuous action of GQ
such that, for any arithmetic point x ∈ WΛf

(Qp), the corresponding specialization Vf⊗Λf ,xQp

recovers the GQ-representation Vfx attached to fx. In particular, the representation Vf is
unramified at any prime q - Mp and Tr(Frq) = aq(f). We refer to Vf as the big Galois

representation attached to f . If for some (equivalently all) arithmetic point x0 ∈ WΛf
(Qp) the

GQ-representation Tfx0 attached to fx0 is residually irreducible, then Vf is a free Λf -module.

5.2. Continuous functions and distributions. Define the semigroups

Σ0(p) =

(
Z×p Zp
pZp Zp

)
and Σ′0(p) =

(
Zp Zp
pZp Z×p

)
.

The sets T = Z×p ×Zp and T′ = pZp×Z×p bear a right action of Σ0(p) and Σ′0(p), respectively.

Let ν be a character of Z×p taking values in a finite extension E of Qp. Let O be the ring
of integers of E and denote by m its maximal ideal. Let Cont(Zp,O) denote the module of
continuous functions on Zp with values in O. Define O-modules

Aν =
{
f : T→ O | f(1, z) ∈ Cont(Zp,O) and f(a · t) = ν(a) · f(t) for all a ∈ Z×p , t ∈ T

}
,

A′ν =
{
f : T′ → O | f(pz, 1) ∈ Cont(Zp,O) and f(a · t) = ν(a) · f(t) for all a ∈ Z×p , t ∈ T′

}
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equipped with the m-adic topology, and O-modules

Dν = Homcont,O(Aν ,O), D′ν = Homcont,O(A′ν ,O)

equipped with the weak-∗ topology. The right Σ·0(p)-action on T· yields naturally a left
Σ·0(p)-action on A·ν and a right Σ·0(p)-action on D·ν .

5.3. Group cohomology and étale cohomology. Let N and m be coprime positive inte-
gers which are also coprime to p, let Y = Y (1, N(pm)) and let Γ be the corresponding modular
group. Let E → Y be the universal elliptic curve over Y , and denote by Cp the canonical
cyclic p-subgroup. Let T be the relative p-adic Tate module of E over Y . Fix a geometric
point η : Spec(Q)→ Y , and choose an isomorphism Tη

∼= Zp ⊕ Zp such that the Weil pairing
on Tη corresponds to the natural determinant map on the right and the reduction modulo p
of the element (0,1) generates Cp,η.

Let G = πet
1 (Y, η). The action of G on T yields an action of G on Zp ⊕ Zp, and hence a

continuous representation ρ : G → GL2(Zp). More precisely, for any g ∈ G,

g · (a, b) = (a, b)ρ(g)−1.

In fact, since the action of G preserves the canonical subgroup, we have a continuous repre-
sentation ρ : G → Γ0(pZp), where

Γ0(pZp) =

{(
a b
c d

)
∈ GL2(Zp) : p | c

}
.

The anti-involution of GL2(Zp) given by γ 7→ γι = det(γ)γ−1 restricts to Γ0(pZp) and
allows us to think of this group as acting on the right or left as convenient.

Taking the stalk at η gives an equivalence of categories between the category Sf (Yet) of
locally constant constructible sheaves with finite stalk of p-power order at η and the category
Mf (G) of finite G-sets of p-power order. For any topological group G, define Mf (G) as we
did for G. Let Mcont(G) be the category of G-modules which are filtered unions ∪i∈IMi with
Mi ∈ Mf (G) and let M(G) ⊂ Mcont(G)N be the category of inverse systems of objects in
Mcont(G). Define S(Yet) similarly. Then, there is an equivalence of categories between M(G)
and S(Yet). Moreover, the representation ρ defined above yields a functor M(Γ0(pZp)) →
M(G). Regarding this functor, we adopt the following criterion: if an object F ∈M(Γ0(pZp))
is given as a left Γ0(pZp)-module, we define the left G-action via the map ρ : G → Γ0(pZp); if
it is given as a right Γ0(pZp)-module, we define the left G-action via the map g 7→ ρ(g)−1.

Given an inverse system of sheaves F = (F i)i∈N ∈ S(Yet), we use the notation Hj
et(Y,F) for

continuous étale cohomology as defined by Jannsen, and write H
j
et(Y,F) = lim←−iH

j
et(Y,F i).

There is a natural surjective morphism Hj
et(Y,F) → H

j
et(Y,F). The compactly supported

cohomology groups Hj
et,c(Y,F) and H

j
et,c(Y,F) are defined similarly.

There is an isomorphism πet
1 (YQ, η) ∼= Γ̂. Thus, if F ∈Mf (G) is a discrete G-module and

F is the corresponding object in Sf (Yet), there are natural isomorphisms

(5.1) H1
et(YQ,F) ∼= H1(Γ̂,F) ∼= H1(Γ,F).

Let F ∈Mf (Γ0(pZp)) be a left Γ0(pZp)-module, and assume that the Γ0(pZp)-action on F
extends to a left action of Σ·0(p). Let S = Σ·0(p) ∩ GL2(Q). The pair (Γ, S) is then a Hecke
pair in the sense of [AS86a, §1.1] and there is a covariant (left) action of the Hecke algebra
D(Γ, S) on H1(Γ,F). For each g ∈ S, let T (g) = ΓgΓ. Following [GS93, §1], we define, for
each positive integer n, the Hecke operators

Tn = T

((
1

n

))
, T ′n = T

((
n

1

))
.



THE DIAGONAL CYCLE EULER SYSTEM FOR GL2 ×GL2 19

Also, for each positive integer a coprime to p, let

[a]p = T

((
a

a

))
, [a]′p = T

((
a

a

))
.

Finally, for each positive integer a coprime to N , choose βa (respectively β′a) in Γ0(Npm)
whose lower right entry is congruent to a (respectively a−1) modulo N and let

[a]N = T (βa), [a]′N = T (β′a).

The isomorphism (5.1) is compatible with Hecke actions in the following sense. To distin-

guish between different levels, we shall now write Ỹ (m) and Γ̃(m) for the above Y and Γ, re-

spectively. Let s be a positive integer. Choose as above a geometric point η : Spec(Q)→ Ỹ (m)

and let ηs : Spec(Q) → Ỹ (ms) be a geometric point lying above η. Let r = 1 + ordp(s) and
choose an isomorphism Tηs

∼= Zp⊕Zp such that the Weil pairing on Tηs corresponds to the nat-
ural determinant map on the right, and the reduction modulo pr of the element (0,1) generates
the canonical subgroup Cpr,ηs . Using these choices to define the corresponding isomorphisms
between group cohomology and étale cohomology, there are commutative diagrams

H1
et(Ỹ (ms)Q,F) H1

et(Ỹ (m)Q,F) H1
et(Ỹ (m)Q,F) H1

et(Ỹ (ms)Q,F)

H1(Γ̃(ms),F) H1(Γ̃(m),F) H1(Γ̃(m),F) H1(Γ̃(ms),F).

π1∗ π∗1

cor res

∼= ∼= ∼= ∼=

Also, if ( s 1 ) ∈ Σ·0(p), we have the commutative diagram

H1
et(Ỹ (ms)Q,F) H1

et(Ỹ (ms)Q, ϕ
∗
s(F)) H1

et(Y (1(s), N(pm)Q,F) H1
et(Ỹ (m)Q,F)

H1(Γ̃(ms),F) H1(Γ̃(ms), ϕ∗s(F)) H1(Γ(1(s), N(pm)),F) H1(Γ̃(m),F),

λs∗ ϕs∗ ν̌s∗

λs∗ ϕs∗ cor

∼= ∼= ∼= ∼=

and, if ( 1
s ) ∈ Σ·0(p), the commutative diagram

H1
et(Ỹ (m)Q,F) H1

et(Y (1(s), N(pm))Q,F) H1
et(Ỹ (ms)Q, ϕ

∗
s(F)) H1

et(Ỹ (m)Q,F)

H1(Γ̃(m),F) H1(Γ(1(s), N(pm)),F) H1(Γ̃(ms), ϕ∗s(F)) H1(Γ̃(m),F).

ν̌∗s ϕ∗s λ∗s

res ϕ∗s λ∗s

∼= ∼= ∼= ∼=

In the bottom lines of the previous two diagrams, ϕ∗s(F) is F with the action of Γ0(prZp)
conjugated by ( s 1 ); the map λs∗ is induced by the map F → ϕ∗s(F) defined by c 7→ ( s 1 ) c; ϕs∗
is induced by the pair of compatible maps Γ(1(s), N(pm))→ Γ̃(ms) and ϕ∗s(F)→ F defined
by γ 7→

(
s−1

1

)
γ ( s 1 ) and c 7→ c, respectively; λ∗s is induced by the map ϕs(F)→ F defined

by c 7→ ( 1
s ) c, and ϕ∗s is induced by the pair of compatible maps Γ̃(m) → Γ(1(s), N(pm))

and F → ϕ∗s(F) defined by γ 7→
(

1
s−1

)
γ ( 1

s ) and c 7→ c, respectively.
We shall denote by π2∗ and π∗2, respectively, the composition of the maps in the rows of

the previous two diagrams, both in étale cohomology and in group cohomology. Similarly, we
shall also use π1∗ and π∗1 to denote the corresponding corestriction and restriction maps.

For any rational prime q, a simple calculation shows that the following identities hold in
group cohomology whenever the maps involved are defined:

Tq = π1∗ ◦ π∗2, T ′q = π2∗ ◦ π∗1.
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Therefore, under the isomorphism (5.1), the covariant action of the operators Tq, T
′
q on étale

cohomology corresponds to the covariant action of the operators Tq, T
′
q on group cohomology,

whenever defined. Similarly, the covariant action of the operators 〈d〉, 〈d〉′ on étale cohomology
corresponds to the covariant action of the operators [d]N , [d]′N on group cohomology.

The anti-involution ι extends to Mat2×2(Zp) in the obvious way and turns a left (respectively
right) action of Σ0(p) into a right (respectively left) action of Σ′0(p). Thus, given an object
F ∈ M(Γ0(pZp)) whose right Γ0(pZp)-action extends to a right Σ·0(p)-action, there is an
isomorphism H1

et(YQ,F) ∼= H1(Γ,F) under which the contravariant action of the operators

Tq, T
′
q, 〈d〉, 〈d〉′ on étale cohomology corresponds to the contravariant action of the operators

Tq, T
′
q, [d]N , [d]′N on group cohomology, whenever defined.

Consider the modules A·ν and D·ν defined earlier in this section. The action of Γ0(pZp) on
T′ is transitive and the stabilizer of the element (0, 1) ∈ T′ is the subgroup

P (Zp) =

{(
a b
0 1

)
∈ GL2(Zp)

}
,

so we can identify T′ with P (Zp)\Γ0(pZp). Similarly, the action of Γ0(pZp) on T is transitive
and the stabilizer of the element (1, 0) ∈ T is the subgroup

P (Zp)w =

{(
1 0
pc d

)
∈ GL2(Zp)

}
,

so we can identify T with P (Zp)w\Γ0(pZp). For any positive integer j, let

Γ1(pjZp) =

{(
a b
c d

)
∈ GL2(Zp) : c ≡ 0 (mod pj), d ≡ 1 (mod pj)

}
,

Γ1(pjZp)w =

{(
a b
pc d

)
∈ GL2(Zp) : a ≡ 1 (mod pj), b ≡ 0 (mod pj−1)

}
.

Then, for any positive integers i, j, we can define

A′ν,i,j =
{
f : Γ1(pjZp)\Γ0(pZp)→ O/mi | f(a · γ) = ν(a) · f(γ)

for all a ∈ Z×p , γ ∈ Γ1(pjZp)\Γ0(pZp)
}
,

Aν,i,j =
{
f : Γ1(pjZp)w\Γ0(pZp)→ O/mi | f(a · γ) = ν(a) · f(γ)

for all a ∈ Z×p , γ ∈ Γ1(pjZp)w\Γ0(pZp)
}
.

The objects A·ν,i,j can be regarded as left O[Σ·0(p)]-modules. Let A·ν,i = lim−→j
A·ν,i,j . Then

A·ν ∼= lim←−iA
·
ν,i. We denote by A·ν the object in S(Yet) corresponding to {A·ν,i}i ∈M(Γ0(pZp)).

We also define D·ν,i = HomO(A·ν,i,i,O/mi). These objects can be regarded as right O[Σ·0(p)]-

modules and we have D·ν ∼= lim←−iD
·
ν,i. We denote by D·ν the object in S(Yet) corresponding to

{D·ν,i}i ∈M(Γ0(pZp)). There are natural morphisms of O-modules

H1
et(YQ,A

·
ν)→ H1

et(YQ,A
·
ν) ∼= H1(Γ,A·ν)

and

H1
et(YQ,D

·
ν) ∼= H1

et(YQ,D
·
ν) ∼= H1(Γ,D·ν)

compatible with the action of Hecke operators. We also have Hecke-equivariant isomorphisms

H1
et,c(YQ,D

·
ν) ∼= H1

et,c(YQ,D
·
ν) ∼= H1

c (Γ,D·ν),

where Hj
c (Γ,−) = Hj−1(Γ,HomZ(Div0(P1(Q)),−)). These isomorphisms allow us to define

continuous GQ-actions on the groups H1(Γ,A·ν), H1(Γ,D·ν) and H1
c (Γ,D·ν).

Given a character χ : Z×p → O×, let O(χ) be the module O with Γ0(pZp) acting via χ◦det,

where det : Γ0(pZp)→ Z×p is the determinant map.
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The natural G-equivariant evaluation map A·ν ⊗O D·ν → O yields a GQ-equivariant cup-
product pairing

(5.2) H1(Γ,A·ν)⊗O H1
c (Γ,D·ν) −→ O(−1)

under which the Hecke operators Tq, T
′
q, [d]N , [d]′N acting covariantly on the left, whenever

defined, are adjoint to these same operators acting contravariantly on the right.
Let det : T′ × T→ Z×p be the function defined by det((x1, x2), (y1, y2)) = x1y2 − x2y1 and

let detν be the composition of this function with ν : Z×p → O. Evaluation at this function
defines a G-equivariant map D′ν ⊗O Dν → O(−ν) which yields a GQ-equivariant cup-product
pairing

(5.3) H1(Γ,D′ν)⊗O H1
c (Γ,Dν) −→ O(ν)(−1),

where ν = ν ◦ εcyc : GQ → O×. Under this pairing, the Hecke operators Tq, T
′
q, [d]N , [d]′N

acting contravariantly on the left, whenever defined, are adjoint to the Hecke operators T ′q,
Tq, [d]′N , [d]N acting contravariantly on the right. We obtain a similar pairing interchanging
the roles of Dν and D′ν .

5.4. Ordinary cohomology. For any Zp-algebra B, let Sr(B) be the set of two-variable
homogeneous polynomials of degree r in B[x1, x2]. It is a left B[Σ·0(p)]-module with the
action of Σ·0(p) defined by

gP (x1, x2) = P ((x1, x2) · g)

for all g ∈ Σ·0(p) and P (x1, x2) ∈ Sr(B). To the p-adic Γ0(pZp)-representation Sr = Sr(Zp)
there corresponds the locally contant p-adic sheaf Sr on Yet defined in §2.3. Therefore we
have an isomorphism

H1
et(YQ,Sr) ∼= H1(Γ, Sr)

which is Hecke-equivariant when we consider the covariant action of Hecke operators on both
sides, and we use this isomorphism to define an action of GQ on H1(Γ, Sr).

We also define Lr(B) = HomB(Sr(B), B), which we regard as a right B[Σ·0(p)]-module
defining the Σ·0(p)-action by

(µ · g)(P (x1, x2)) = µ(gP (x1, x2))

for all g ∈ Σ·0(p), µ ∈ Lr(B) and P (x1, x2) ∈ Sr(B). To the p-adic Γ0(pZp)-representation
Lr = Lr(Zp) there corresponds the locally constant p-adic sheaf Lr on Yet. Therefore we have
an isomorphism

H1
et(YQ,Lr) ∼= H1(Γ, Lr)

which is Hecke-equivariant when we consider the contravariant action of Hecke operators on
both sides, and we use this isomorphism to define an action of GQ on H1(Γ, Lr).

The natural Γ0(pZp)-equivariant evaluation map Sr ⊗Zp Lr → Zp yields a GQ-equivariant
cup-product pairing

(5.4) H1(Γ, Sr)⊗Zp H
1
c (Γ, Lr) −→ Zp(−1)

under which the Hecke operators Tq, T
′
q, [d]N , [d]′N acting covariantly on the left, whenever

defined, are adjoint to these same operators acting contravariantly on the right. This pairing
becomes perfect after inverting p.

Let νr : Z×p → Z×p be the character defined by νr(z) = zr. Evaluation at the polynomial
(x1y2− x2y1)r ∈ Sr ⊗Zp Sr defines a Γ0(pZp)-equivariant map Lr ⊗Zp Lr → Zp(−νr) and thus
yields a GQ-equivariant cup-product pairing

(5.5) H1(Γ, Lr)⊗Zp H
1
c (Γ, Lr) −→ Zp(r − 1)
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under which the Hecke operators Tq, T
′
q, [d]N , [d]′N acting contravariantly on the left, whenever

defined, are adjoint to the Hecke operators T ′q, Tq, [d]′N , [d]N acting contravariantly on the
right. This pairing becomes perfect after inverting p.

Combining these two pairings we can define a morphism

sr∗ : H1(Γ, Sr(Qp)) −→ H1(Γ, Lr(Qp))(−r).

This map is GQ-equivariant and intertwines the covariant action of the operators Tq, [d]N , [a]p
on the source with the contravariant action of the operators T ′q, [d]′N , [a]′p on the target. We
can also define sr∗ directly via the isomorphism Sr(Qp) ∼= Lr(Qp)(νr) arising from the perfect
pairing Lr(Qp) ⊗Qp Lr(Qp) → Qp(−νr) defined by evaluation at (x1y2 − x2y1)r. Therefore,
the denominators introduced by this map are bounded by r!, i.e., an element in

im
(
H1(Γ, Sr)→ H1(Γ, Sr(Qp))

)
is mapped to an element in

1

r!
im
(
H1(Γ, Lr)→ H1(Γ, Lr(Qp))

)
,

as follows from [BSV22, Rmk. 3.3].
To slightly simplify the notation, we will write A·r and D·r for A·νr and D·νr , respectively.

Regarding two-variable polynomials as functions on T·, we obtain a natural morphism of
left Zp[Σ·0(p)]-modules Sr → A·r. Also, dualizing this map, we obtain a morphism of right
Zp[Σ·0(p)]-modules D·r → Lr. Thus, we have GQ-equivariant and Hecke-equivariant morphisms

H1(Γ, Sr)→ H1(Γ,A·r) and H1(Γ,D·r)→ H1(Γ, Lr).

Applying Hida’s (anti-)ordinary projector e·ord := limn→∞(T ·p)
n!, the previous morphisms

become isomorphisms

e·ordH
1(Γ, Sr) ∼= e·ordH

1(Γ,A·r), e·ordH
1(Γ,D·r) ∼= e·ordH

1(Γ, Lr).

Under these isomorphisms, the pairings (5.4) and (5.5) correspond to the pairings (5.2) and
(5.3), respectively, after applying the corresponding (anti-)ordinary projector to every term
involved.

5.5. Λ-adic Poincaré pairing. It will be convenient to write 〈a; b〉, with a ∈ (Z/NZ)× and
b ∈ (Z/prZ)×, for the diamond operator 〈d〉, where d ∈ (Z/Npr)× is congruent to a modulo N
and to b modulo pr. We also write εN : GQ → (Z/NZ)× for the mod N cyclotomic character.

For any positive integer r, let

Gr = 1 + p(Z/prZ), G̃r = (Z/prZ)×,

and define

Λr = Zp[Gr], Λ̃r = Zp[G̃r], Λ = lim←−
r

Λr = Zp[[1 + pZp]], Λ̃ = lim←−
r

Λ̃r = Zp[[Z×p ]].

We have natural factorizations (Z/prZ)× = µp−1 × (1 + pZ/prZ) and Z×p = µp−1 × (1 + pZp)
which give natural embeddings Λr ↪−→ Λ̃r and Λ ↪−→ Λ̃. We define idempotents

ei =
1

p− 1

∑
ζ∈µp−1

ζ−i[ζ]

for any integer i modulo p− 1. Let κi : Z×p → Λ× be the character defined by z 7→ ωi(z)[〈z〉]
and let κi = κi ◦ εcyc : GQ → Λ×.

We will shorten notation by writing

(5.6) Xr(m) = X(1, Npr(m)), H1
et(X∞(m)Q,Zp) = lim←−

r

H1
et(Xr(m)Q,Zp).
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We have a natural action of Λ̃r and Λ̃ on the previous groups defined by letting group-like
elements [u] act like the diamond operators 〈1;u〉′.

Fix compatible primitive p-power roots of unity ζpr and a primitive N -th root of unity ζN .
Then one can define Atkin–Lehner automorphisms wr and w for the curve Xr(m) similarly
as in [DR17, §1.2]. More precisely, Xr(m) parameterizes quadruples (E,P,Q,C), where E is
an elliptic curve, P is a point of order N , Q is a point of order pr and C is a cyclic subgroup
of E of order Nm containing P . Then, we define

wr(E,P,Q,C) = (E/CQ, P + CQ, Q
′ + CQ, C + CQ/CQ),

where CQ ⊆ E is the subgroup generated by Q and Q′ ∈ E[pr] satisfies 〈Q,Q′〉 = ζpr .
Similarly, we define

w(E,P,Q,C) = (E/C,P ′ + C,Q+ C,E[Nm]/C),

where P ′ ∈ E[N ] satisfies 〈P, P ′〉 = ζN . These Atkin–Lehner automorphisms satisfy, for any
σ ∈ GQ,

wσr = 〈1; εcyc(σ)〉wr, wσ = 〈εN (σ); 1〉w.
We let w and wr act on cohomology via pullback.

Define GQ-equivariant pairings

〈 , 〉Gr : eiH
1
et(Xr(m)Q,Zp)× e−iH

1
et(Xr(m)Q,Zp) −→ Λr(−1)

by the formula

〈a, b〉Gr =
∑
σ∈Gr

〈aσ, b〉r · σ−1,

where 〈 , 〉r stands for the natural Poincaré pairing. These pairings are Λr-linear and anti-linear
in the first and second argument, respectively. Then we get GQ-equivariant Λr-pairings

[ , ]Gr : eiH
1
et(Xr(m)Q,Zp)× eiH

1
et(Xr(m)Q,Zp)(〈ε

−1
N ; 1〉′) −→ Λr(κi)(−1)

via the following modification of the previous pairing:

[a, b]Gr = 〈a,wwr · (T ′p)r · b〉Gr .
These pairings are compatible in the sense that the diagram

eiH
1
et(Xr+1(m)Q,Zp)× eiH

1
et(Xr+1(m)Q,Zp)(〈ε

−1
N ; 1〉′) Λr+1(κi)(−1)

eiH
1
et(Xr(m)Q,Zp)× eiH

1
et(Xr(m)Q,Zp)(〈ε

−1
N ; 1〉′) Λr(κi)(−1)

[ , ]Gr+1

π1∗ × π1∗
[ , ]Gr

commutes, which can be proved as in [DR17, Lem. 1.1]. This yields a Λ-adic perfect GQ-
equivariant pairing

(5.7) eiH
1
et(X∞(m)Q,Zp)

ord × eiH1
et(X∞(m)Q,Zp)

ord(〈ε−1
N ; 1〉′) −→ Λ(κi)(−1),

where H1
et(X∞(m)Q,Zp)

ord = e′ordH
1
et(X∞(m)Q,Zp). All Hecke operators are self-adjoint for

this pairing.

5.6. Big Galois representations. Let mΛ be the maximal ideal of Λ, let Cont(Zp,Λ) be the
Λ-module of continuous functions on Zp with values in Λ, and let κ be any of the κi above.
Define the Λ-module

A′κ =
{
f : T′ → Λ | f(pz, 1) ∈ Cont(Zp,Λ) and f(a · γ) = κ(a) · f(γ) for all a ∈ Z×p , γ ∈ T′

}
,

equipped with the mΛ-adic topology, and the Λ-module

D′κ = Homcont,Λ(A′κ,Λ)
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equipped with the weak-∗ topology. As in §5.2, we can regard A′κ (respectively D′κ) as a left
(respectively right) Λ[Σ′0(p)]-module.

Similarly to what we did in §5.3, define, for any positive integers j, r,

A′κ,j,r =
{
f : Γ1(prZp)\Γ0(pZp)→ Λ/mj

Λ | f(a · γ) = κ(a) · f(γ)

for all a ∈ Z×p , γ ∈ Γ1(prZp)\Γ0(pZp)
}

and A′κ,j = lim−→r
A′κ,j,r. Then A′κ = lim←−j A

′
κ,j . We denote by A′κ the object in S(Yet) corre-

sponding to {A′κ,j}j ∈M(Γ0(pZp)). We also define D′κ,j = HomΛ(A′κ,j,j ,Λ/m
j
Λ), so that D′κ =

lim←−j D
′
κ,j , and denote by D′κ the object in S(Yet) corresponding to {D′κ,j}j ∈ M(Γ0(pZp)).

There are natural Hecke-equivariant morphisms of Λ-modules

H1
et(YQ,A

′
κ)→ H1

et(YQ,A
′
κ) ∼= H1(Γ,A′κ),

H1
et(YQ,D

′
κ) ∼= H1

et(YQ,D
′
κ) ∼= H1(Γ,D′κ),

H1
et,c(YQ,D

′
κ) ∼= H1

et,c(YQ,D
′
κ) ∼= H1

c (Γ,D′κ).

which allow us to define continuous GQ-actions on the groups H1(Γ,A′κ), H1(Γ,D′κ) and
H1
c (Γ,D′κ).
The evaluation map A′κ ⊗Λ D′κ → Λ yields a GQ-equivariant cup-product pairing

(5.8) H1(Γ,A′κ)⊗Λ H
1
c (Γ,D′κ) −→ Λ(−1)

under which the Hecke operators Tq, T
′
q, [d]N , [d]′N acting covariantly on the left, whenever

defined, are adjoint to these same operators acting contravariantly on the right.
Recall that in this section we have set Γ = Γ(1, N(pm)) and let S = Σ′0(p) ∩GL2(Q). For

any positive integer r, define

Σ′1(pr) =

(
Zp Zp
prZp 1 + prZp

)
, Sr = Σ′1(pr) ∩GL2(Q), Γr = Γ(1, Npr(m)).

We define compatibility of Hecke pairs as in [AS86a, Def. 1.1.2], but changing left-right
conventions. More precisely, we say that the Hecke pair (Γα, Sα) is compatible to the Hecke
pair (Γβ, Sβ) if (Γα, Sα) ⊆ (Γβ, Sβ), SαΓβ = Sβ and Γβ ∩ S−1

α Sα = Γα. With this definition,
the Hecke pair (Γr, Sr) is compatible to the Hecke pair (Γt, St), if r ≥ t, and to the Hecke pair
(Γ, S).

Suppose that the Hecke pair (Γα, Sα) is compatible to (Γβ, Sβ) and that Γα has finite index
in Γβ. For any right Sα-module E, we define

Ind
Γβ
Γα
E =

{
ϕ : Γβ → E | ϕ(xy) = ϕ(y)x−1 for all x ∈ Γα, y ∈ Γβ

}
This module is equipped with a right action of Sβ: given ϕ ∈ Ind

Γβ
Γα
E and g ∈ Sβ

(ϕg)(x) =
∑

ϕ(γ)γgx−1,

where the sum is over representatives γ for the cosets in Γα\Γ ∩ Sαxg−1.
Now define

A′κ,r =
{
f : Γ1(prZp)\Γ0(pZp)→ Λr | f(a · γ) = κ(a) · f(γ)

for all a ∈ Z×p , γ ∈ Γ1(prZp)\Γ0(pZp)
}

and let D′κ,r = HomΛr(A
′
κ,r,Λr). With these definitions D′κ = lim←−rD

′
κ,r. Let Sr act trivially

on Zp and consider the right Zp[S1]-module IndΓ1
Γr

Zp. Let R be a set of representatives for

the cosets in Γr\Γ1. The map IndΓ1
Γr

Zp → D′κ,r defined by

ϕ 7→
[
f 7→

∑
r∈R

ϕ(r)f(r)
]
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is an isomorphism of right Zp[S1]-modules. Therefore, there are natural isomorphisms

H1(Γ1,D′κ) ∼= lim←−
r

H1(Γ1, D
′
κ,r)
∼= lim←−

r

H1(Γr,Zp).

According to [AS86a, Lem. 1.1.3] and [AS86a, Lem. 1.1.4], both corestriction and the Shapiro
isomorphism commute with the action of D(Γ, S) via restriction of Hecke algebras, so the
previous isomorphisms are Hecke-equivariant.

Similarly to (5.6), but omitting m from the notation, we let Yr = Y (1, Npr(m)) and put

H1
et(Y∞,Q,Zp) := lim←−

r

H1
et(Yr,Q,Zp),

where the inverse limit is with respect to the maps π1∗. Then

H1(Γ1,D′κ) ∼= lim←−
r

H1(Γr,Zp) ∼= H1
et(Y∞,Q,Zp),

where the last isomorphism is defined by choosing a compatible system of geometric points for
the curves Yr and suitable compatible bases for the corresponding Tate modules. Under the
isomorphisms above, the contravariant operators T ′q, [d]′N , [a]′p on the first term correspond
to the contravariant operators T ′q, 〈d; 1〉′, 〈1; a〉′ defined on the last term via the compatibility
of these operators with the pushforward maps π1∗.

Also, according to [AS86a, Lem. 1.1.5], the restriction map yields a Hecke-equivariant
isomorphism

H1(Γ,D′κ) ∼= eiH
1(Γ1,D′κ)

(recall that we have set κ = κi). Combining this isomorphism with the previous ones, we
obtain a Hecke-equivariant isomorphism

H1(Γ,D′κ) ∼= eiH
1
et(Y∞,Q,Zp).

Similarly, using [AS86b, Prop. 4.2], one proves that there is a Hecke-equivariant isomor-
phism

(5.9) H1
c (Γ,D′κ) ∼= eiH

1
et,c(Y∞,Q,Zp).

6. Proof of the wild norm relations

Assume that p splits in K as (p) = pp and that it does not divide the class number hK .
We keep most of the notations from §4. In particular, (g, h) is a pair of newforms of weights

(l,m) of the same parity, levels (Ng, Nh) and characters (χg, χh), and we assume that the ring
of integers O ⊂ E = LP contains the Fourier coefficients of g and h. In addition, we assume
that p does not divide Ng nor Nh and that both g and h are ordinary at p.

We now allow the Grössencharacter ψ to have infinity type (1 − k, 0) for any even integer
k ≥ 2, and let f be the conductor of ψ, which we assume to be coprime to p. Let χ be
the unique Dirichlet character modulo NK/Q(f) such that ψ((n)) = nk−1χ(n) for integers n
coprime to NK/Q(f).

As in [BL18, §3.2.1], we denote by ψ0 the unique Grössencharacter of infinity type (−1, 0),
conductor p and whose associated p-adic Galois character factors through Γp, the Galois group

of the unique Zp-extension of K unramified outside p. Then we can uniquely write ψ = αψk−1
0 ,

where α is a ray class character of conductor dividing fp. Since (f, p) = 1 and k is even, it
easily follows that ψ is non-Eisenstein and p-distinguished, meaning that

(6.1) αψ0|O×K,p 6≡ ω (mod P),

where ω is the Teichmüller character.
Let ψP be the continuous E-valued character of K×\A×K,f defined by

ψP(x) = x1−k
p ψ(x),
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where xp is the projection of the idèle x to the component at p. We will also denote by ψP

the corresponding character of GK obtained via the geometric Artin map. Then IndQ
K E(ψ−1

P )

is the p-adic representation attached to θψ, and we note that by (6.1) the associated residual
representation is absolutely irreducible and p-distinguished (see [LLZ15, Rmk. 5.1.4]).

Consider the q-expansion

Θ =
∑

(a,fp)=1

[a]qNK/Q(a) ∈ O[[Hfp∞ ]][[q]],

where Hfp∞ denotes the maximal pro-p quotient of the ray class group of K of conductor fp∞,
and [a] is the image of a in Hfp∞ under the geometric Artin map. Since we assume that p
does not divide hK , we can factor Hfp∞

∼= Hf×Γp. Hence, we have Θ ∈ O[Hf]⊗OO[[Γp]][[q]],
and we can specialize this to

(6.2) f =
∑

(a,fp)=1

α([a])ψ0([a])[a]qNK/Q(a) ∈ Λf [[q]],

where Λf = O[[Γp]]. We identify Γp with Γ = 1 + pZp via the isomorphism Γ ∼= O(1)
K,p → Γp

defined by u 7→ artp(u)−1, where artp stands for the geometric local Artin map, and in this
way we identify Λf with ΛO = Λ⊗Zp O. We can therefore regard f as a primitive Hida family
specializing to

fk′ =
∑

(a,fp)=1

α([a])ψ0([a])k
′−1qNK/Q(a) ∈ Sord

k′ (Nψp, χαεKω
1−k′)

at the arithmetic point νk′−2, where Nψ = DNK/Q(f) and χα(n) = α((n)). Note that f has

character χ = χαω
1−k and fk = θ

(p)
ψ is the ordinary p-stabilization of θψ.

Let χQ be the adelic character attached to χ, let χK = χQ ◦NK/Q and let ψ∗ = χ−1
K ψ. We

can define a primitive Hida family f∗ attached to the Grössencharacter ψ∗ in the same way
that we defined the Hida family f attached to ψ. This is just the Hida family f ⊗ χ−1.

We assume that χεKχgχh = 1, i.e., the product of the characters of θψ, g and h is trivial.
Similarly to what we did in §4, set (r1, r2, r3) = (k−2, l−2,m−2). For every positive integer
m, let

Ỹ (m) = Y (1, N(pm)), where N = lcm(Nψ, Ng, Nh),

and denote by Γ̃(m) the corresponding modular group. Let κ = κr1 : Z×p → Λ× and choose a

square root of this character defined by κ1/2(u) = ω(u)(k−2)/2[〈u〉1/2].
We can define classes

Detfghm ∈ H0
et(Ỹ (m),A′κ ⊗Ar2 ⊗Ar3(−κ1/2 − ν(r2+r3)/2)).

as in [BSV22, §8.1], but replacing the Hida families g,h in their construction by our g, h and
working with modules of continuous functions instead of modules of locally analytic functions.
Similarly to what is done in loc. cit., and adopting some of the notations there, we define the
cohomology classes

κ
(1)
m,fgh = (e′ord ⊗ eord ⊗ eord) ◦ K ◦ HS ◦ d∗(Detfghm ),

inside the group

H1
(
Q, H1(Γ̃(m),A′κ)ord⊗̂H1(Γ̃(m),Ar2)ord⊗̂H1(Γ̃(m),Ar3)ord(κ1/2 + 2 + (r2 + r3)/2)

)
,

where κ1/2 = κ1/2 ◦ εcyc; and, for each squarefree positive integer n coprime to p and N , we
define

κ
(2)
n,fgh = χεK(n)κ(n)−1nr2(Id⊗ Id⊗[n]N )(Id⊗π1∗ ⊗ π2∗)κ

(1)
n2,fgh
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lying in the group

H1
(
Q, H1(Γ̃(n2),A′κ)ord⊗̂H1(Γ̃(1),Ar2)ord⊗̂H1(Γ̃(1),Ar3)ord(κ1/2 + 2 + (r2 + r3)/2)

)
.

Now we can prove norm relations for Λ-adic classes as we did for the classes in the previous
section.

Lemma 6.1. Let m be a positive integer and let q be a prime number. Assume that both m
and q are coprime to p and N . Then

(π2∗ ⊗ π1∗ ⊗ π1∗)κ
(1)
mq,fgh = (T ′q ⊗ Id⊗ Id)κ

(1)
m,fgh;

(π1∗ ⊗ π2∗ ⊗ π2∗)κ
(1)
mq,fgh = κ−1/2(q)q(r2+r3)/2(Tq ⊗ Id⊗ Id)κ

(1)
m,fgh;

(π1∗ ⊗ π2∗ ⊗ π1∗)κ
(1)
mq,fgh = (Id⊗T ′q ⊗ Id)κ

(1)
m,fgh;

(π2∗ ⊗ π1∗ ⊗ π2∗)κ
(1)
mq,fgh = κ1/2(q)q(r3−r2)/2(Id⊗Tq ⊗ Id)κ

(1)
m,fgh;

(π1∗ ⊗ π1∗ ⊗ π2∗)κ
(1)
mq,fgh = (Id⊗ Id⊗T ′q)κ

(1)
m,fgh;

(π2∗ ⊗ π2∗ ⊗ π1∗)κ
(1)
mq,fgh = κ1/2(q)q(r2−r3)/2(Id⊗ Id⊗Tq)κ(1)

m,fgh.

If q is coprime to m we also have

(π1∗ ⊗ π1∗ ⊗ π1∗)κ
(1)
mq,fgh = (q + 1)κ

(1)
m,fgh;

(π2∗ ⊗ π2∗ ⊗ π2∗)κ
(1)
mq,fgh = (q + 1)κ1/2(q)q(r2+r3)/2κ

(1)
m,fgh.

Proof. As in Lemma 4.2, the same arguments proving equations (174) and (176) in [BSV22]
apply mutatis mutandis to yield the proof of these identities. �

Lemma 6.2. Let n be a squarefree positive integer coprime to p and N and let q be a rational
prime coprime to p, N and n. Then

(π11∗ ⊗ Id⊗ Id)κ
(2)
nq,fgh =

{
χ(q)κ(q)−1qr2(Id⊗ Id⊗[q]−1

N T 2
q )

− χ(q)κ(q)−1(q + 1)qr2+r3(Id⊗ Id⊗ Id)
}
κ

(2)
n,fgh,

(π21∗ ⊗ Id⊗ Id)κ
(2)
nq,fgh =

{
χ(q)κ−1/2(q)q(r2+r3)/2(Id⊗Tq ⊗ Tq)

− χ(q)κ(q)−1qr2+r3(([q]′N )−1T ′q ⊗ [q]N ⊗ [q]N )
}
κ

(2)
n,fgh,

(π22∗ ⊗ Id⊗ Id)κ
(2)
nq,fgh =

{
χ(q)qr3(Id⊗T 2

q ⊗ [q]N )

− χ(q)(q + 1)qr2+r3(Id⊗[q]N ⊗ [q]N )
}
κ

(2)
n,fgh,

where πij∗ denotes the composition

H1(Γ̃(n2q2),F)
πi∗−→ H1(Γ̃(n2q),F)

πj∗−→ H1(Γ̃(n2),F).

Proof. This can be deduced from Lemma 6.1 by the same calculation as in Lemma 4.4. �

Let Γ(m) = Γ(1, Np(m)) and write Y (m) and X(m) for the corresponding affine and
projective modular curves. The pairing in equation (5.8) yields a map

H1(Γ̃(m),A′κ)→ HomΛ(H1
c (Γ(m),D′κ),Λ)(−1) ∼= HomΛ(er1H

1
et,c(Y∞(m)Q,Zp),Λ)(−1),

where the isomorphism comes from equation (5.9). Let In be the maximal ideal in Hida’s
big ordinary Hecke algebra T(1, Np∞(n2))′ord corresponding to the Hida family f∗; by (6.1)
this ideal corresponds to a non-Eisenstein maximal ideal in T(1, Np(n2))′, so there are iso-
morphisms

H1
et,c(Y∞(n2)Q,Zp)

ord
In
∼= H1

et(X∞(n2)Q,Zp)
ord
In
∼= H1

et(Y∞(n2)Q,Zp)
ord
In .
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Hence, the pairings (5.8) and (5.7) together with the isomorphism (5.9) yield a morphism

sf ,n∗ : H1(Γ̃(n2),A′κ)ord −→ er1H
1
et(Y∞(n2)Q,Zp)

ord
In (〈ε−1

N ; 1〉′)(−κ).

This map is GQ-equivariant and intertwines the covariant action of the operators T ′q, [d]′N , [a]′p
on the source with the contravariant action of the operators T ′q, 〈d; 1〉′, 〈1; a〉′ on the target.

Fix a level-N test vector f̆ for f and let f̆∗ = f̆ ⊗ χ−1εK . Fix also test vectors

ğ ∈ Sl(N,χg)[g], h̆ ∈ Sm(N,χh)[h]

and write ğα and h̆α for the corresponding ordinary p-stabilizations.
Define maps

φn,r : T(1, Nψp
r(n2))′ord −→ O[Rfpr,n]

attached to the Grössencharacter αχ−1
K ψ0 as in Lemma 3.5 and let

φn,∞ : T(1, Nψp
∞(n2))′ord −→ O[[Rfp∞,n]] = O[Rf,n]⊗O O[[Γp]].

be the inverse limit lim←−r φn,r. The test vector f̆∗ determines a degeneracy map

H1
et(Y∞(n2)Q,Zp(1))ord → H1

et(Y (1, Nψp
∞(n2))Q,Zp(1))ord.

Composing this degeneracy map with the natural quotient map we get a morphism

πf∗ : er1H
1
et(Y∞(n2)Q,O(1))ord

In → (O[Rn]⊗O O[[Γp]])⊗φn,∞ H1
et(Y (1, Nψp

∞(n2))Q,O(1))ord.

The test vectors ğα and h̆α determine degeneracy maps

H1
et(Ỹ (1)Q,Lr2(1))

µ∗p−→ H1
et(Y1(Np)Q,Lr2(1))→ H1

et(Y1(Ng)Q,Lr2(1))

H1
et(Ỹ (1)Q,Lr3(1))

µ∗p−→ H1
et(Y1(Np)Q,Lr3(1))→ H1

et(Y1(Nh)Q,Lr3(1)).

Composing these maps with projection to the g-isotypic and h-isotypic quotient, respectively,
we obtain

πg : e′ordH
1(Γ̃(1), Lr2(1))⊗Zp O −→ Tg

πh : e′ordH
1(Γ̃(1), Lr3(1))⊗Zp O −→ Th.

For the ease of notation, we write

H1(ψ, f, n) = (O[Rf,n]⊗O O[[Γp]])⊗φn,∞ H1
et(Y (1, Nψp

∞(n2))Q,O)ord(〈ε−1
N ; 1〉′)(κ−1/2)

and put H1(ψ, n) = O[Rn]⊗O[Rf,n] H
1(ψ, f, n). Then we define the class

(6.3) κ
(3)
n,fgh = (πf∗ ⊗ πg ⊗ πh) ◦ (sf∗ ⊗ sr2∗ ⊗ sr3∗)κ

(2)
n,fgh

lying in the group

H1
(
Q, H1(ψ, n)⊗̂O(Tg ⊗O Th)⊗Zp Qp(−1− (r2 + r3)/2)

)
.

Let Γac be the Galois group of the anticyclotomic Zp-extension of K. We can identify this

group with the anti-diagonal in (1 + pZp) × (1 + pZp) ∼= O(1)
K,p × O

(1)
K,p via the geometrically

normalized Artin map. Let κac : Γac → Z×p be the character defined by mapping ((1 +

p)−1/2, (1 + p)1/2) to 1 + p and let κac : Γac → Λ× be the character defined by mapping

((1 + p)−1/2, (1 + p)1/2) to the group-like element [1 + p]. We use the same notation for the
corresponding characters of GQ. There is a GQ-equivariant isomorphism of ΛO[Rn]-modules

(6.4) H1(ψ, n) ∼= IndQ
K[n] ΛO(ψ−1

P κr1/2ac κ−1
ac )(−r1/2).

Let
Tψg,h = Tg ⊗O Th(ψ−1

P )(−1− r), V ψ
g,h = Tψg,h ⊗Zp Qp.
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In light of the isomorphism (6.4), using Shapiro’s lemma the classes κ
(3)
n,fgh yield classes

(6.5) κ̃ψ,g,h,n,∞ ∈ H1(K[n],ΛO(κ−1
ac )⊗̂OTψg,h(κr1/2ac ))⊗O E

for every squarefree integer n coprime to p and N .

Proposition 6.3. Let n be as above and let q be a rational prime coprime to p, N and n.
Then:

(i) If q splits in K as (q) = qq,

corK[nq]/K[n](κ̃ψ,g,h,nq,∞) = ql+m−4

{
χg(q)χh(q)q

(
κ
−(k−2)/2
ac ψP(Fr−1

q )

qk−1
Fr−1

q

)2

− aq(g)aq(h)

q(l+m−4)/2

(
κ
−(k−2)/2
ac ψP(Fr−1

q )

qk−1
Fr−1

q

)

+
χg(q)

−1aq(g)2

ql−2
+
χh(q)−1aq(h)2

qm−1
− q2 + 1

q

− aq(g)aq(h)

q(l+m−4)/2

κ−(k−2)/2
ac ψP(Fr−1

q )

qk−1
Fr−1

q


+ χg(q)χh(q)q

κ−(k−2)/2
ac ψP(Fr−1

q )

qk−1
Fr−1

q

2}
κ̃ψ,g,h,n,∞.

(ii) If q is inert in K,

corK[nq]/K[n](κ̃ψ,g,h,nq,∞) = ql+m−4

{
χg(q)

−1aq(g)2

ql−2
+
χh(q)−1aq(h)2

qm−1
− (q + 1)2

q

}
κ̃ψ,g,h,n,∞.

Proof. The proof of this proposition is similar to the proof of Proposition 4.5. We just remark
that the maps sf ,n∗ interchange the degeneracy maps π1 and π2, and under the isomorphism

H1(K[n],ΛO(κ−1
ac )⊗̂OTψg,h(κ(k−2)/2

ac ))⊗O E
∼= H1(Q, H1(ψ, n)⊗̂O(Tg ⊗O Th)⊗Zp Qp(−1− (r2 + r3)/2))

arising from (6.4), the corestriction corK[nq]/K[n] corresponds, in the case where (q) = qq splits
in K, to the map

N nq
n = π11∗ − χ−1(q)ω(k−2)/2(q)

κ−(k−2)/2
ac ψP(Fr−1

q )[q]

qk/2
+
κ
−(k−2)/2
ac ψP(Fr−1

q )[q]

qk/2

π21∗

+
χ−1(q)ωk−2(q)

q
π22∗,

and similarly in the case where q is inert in K. Since the result can be deduced from Lemma 6.1
by virtually the same calculation as in the proof of Lemma 4.4, we omit the details. �

Definition 6.4. For any E-valued GK-representation V , put

H1
Iw(K[np∞], T ) := lim←−

r

H1(K[npr], T ), H1
Iw(K[np∞], V ) := H1

Iw(K[np∞], T )⊗O E,

where T ⊂ V is a Galois stable O-lattice.
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By another application of Shapiro’s lemma, the classes κψ,g,h,n,∞ in (6.5) naturally live

in H1
Iw(K[np∞], V ψ

g,h(κ
(k−2)/2
ac )). We thus arrive at the following theorem, which is the main

result of this section.

Theorem 6.5. Suppose that:

• l ≥ m ≥ 2 have the same parity and k ≥ 2 is even,
• p splits in K,
• p does not divide the class number of K.

Let S be the set of squarefree products of primes q which split in K and are coprime to p and

N . Assume that H1(K[nps], Tψg,h) is torsion-free for every n ∈ S and for every s ≥ 0. There

exists a collection of classes{
κψ,g,h,n,∞ ∈ H1

Iw(K[np∞], Tψg,h) : n ∈ S
}

such that whenever n, nq ∈ S with q a prime, we have

corK[nq]/K[n](κψ,g,h,nq,∞) = Pq(Fr−1
q )κψ,g,h,n,∞,

where q is any of the primes of K above q, and Pq(X) = det(1− Fr−1
q X|(V ψ

g,h)∨(1)).

Proof. The same argument as in the proof of Theorem 4.6 (but using Proposition 6.3) yields a
system of Iwasawa cohomology classes with the stated norm-compatibilities for the represen-

tation V ψ
g,h(κ

(k−2)/2
ac ). By the twisting result of [Rub00, Thm. 6.3.5], the theorem follows. �

We conclude this section by proving that the classes κψ,g,h,n,∞ land in the balanced Selmer
group

Selbal(K[np∞], Tψg,h) := lim←−
r

Selbal(K[npr], Tψg,h);

in the terminology introduced in §8.1 below, this is the same as the Greenberg Selmer group

SelGr(K[np∞], Tψg,h) associated to the GKv -invariant subspaces F+
v (V ψ

g,h) ⊂ V ψ
g,h in (4.1) at the

primes v | p.

Proposition 6.6. For all n ∈ S, we have κψ,g,h,n,∞ ∈ Selbal(K[np∞], Tψg,h).

Proof. Let v - p be a finite prime of K[np∞], and for every r ≥ 0 denote also by v the prime
of K[npr] below v. As in the proof of Proposition 4.9, we have

H1(K[npr]v, V
ψ
g,h) = H1

Gr(K[npr]v, V
ψ
g,h) = 0,

and hence

H1(K[npr]v, T
ψ
g,h) = H1(K[npr]v, T

ψ
g,h)tors = H1

Gr(K[npr]v, T
ψ
g,h),

where the first equality follows from the local Euler characteristic formula. Hence the inclusion

resv(κψ,g,h,n,∞) ∈ lim←−rH
1
Gr(K[npr]v, T

ψ
g,h) follows. Since by [BSV22, Cor. 8.2] it follows that

the classes κψ,g,h,n,∞ satisfy the balanced local condition at the primes above p, this concludes
the proof. �

Part 2. Arithmetic applications

7. Iwasawa main conjectures

In this section we formulate Iwasawa main conjectures for triple products of modular forms.
We give two formulations: one in terms of the triple product p-adic L-function (Conjecture 7.7)
and another in terms of diagonal cycle classes (Conjecture 7.9). In Theorem 7.15 we establish
the equivalence of the two formulations.
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7.1. Triple product p-adic L-function. Fix a triple (f , g, h) consisting of a primitive Hida
family f of tame level Nf and character χf and two p-ordinary newforms g, h of weights
l,m ≥ 2, levels Ng, Nh prime-to-p, and nebentypus χg, χh. Assume that f has coefficients in
a ring Λf as in §5.1. Assume that χfχgχh = ωr1 for some even integer r1 and put

N = lcm(Nf , Ng, Nh).

Let g and h be primitive Hida families with coefficients in Λg and Λh passing through g and

h, respectively. More precisely, there exist arithmetic points y0 ∈ WΛg(Qp) and z0 ∈ WΛh
(Qp)

such that gy0 and hz0 are the ordinary p-stabilizations of g and h, respectively. The rings Λg

and Λh need not be regular. However, for our purposes, we can consider the Λ-adic families,
denoted again g and h, that result from embedding Λg and Λh in the rings of functions of

suitable wide open connected subsets Ug and Uh of W(Qp) = Spf(Λ)(Qp) defined over some
finite extension E of Qp and containing the points y0 and z0, respectively. From now on,
it is these rings of functions that we will denote by Λg and Λh. These rings are now non-
canonically isomorphic to O[[T ]], where O is the ring of integers of E; in particular, they are
regular. Let l − l and m−m be generators in Λg and Λh of the prime ideals corresponding
to the points y0 and z0, respectively.

We can and will assume that Λf is a finite flat extension of ΛO and we will only consider
arithmetic points in WΛf

(Qp) lying in Homcont,O(Λf ,Qp)

Recall that in §5.5 we defined a character κr1 : Z×p → Λ× given by u 7→ ωr1(u)[〈u〉] and in

§6 we fixed a square root κ
1/2
r1 of this character given by u 7→ ωr1/2(u)[〈u〉1/2]. We let κf and

κ
1/2
f be the composition of κr1 and κ

1/2
r1 , respectively, with the embedding Λ× ↪−→ Λ×f . We also

define a character κgh : Z×p → (Λg⊗̂OΛh)× by

κgh(u) = ω(u)l+m−4〈u〉l+m−4

and choose a square-root of this character defined by κ
1/2
gh (u) = ω(u)(l+m−4)/2〈u〉(l+m−4)/2.

Let Λfgh = Λf ⊗̂OΛg⊗̂OΛh and consider the Λfgh[GQ]-module

(7.1) V†fgh := Vf ⊗̂OVg⊗̂OVh(Ξfgh), where Ξfgh = ε−1
cycκ

−1/2
f κ

−1/2
gh

and Vf , Vg and Vh are the big Galois representations attached to f , g and h, respectively.

Then V†fgh is a self-dual twist of the tensor product of these representations. Consider also

the Λf [GQ]-module

V†fgh := Vf ⊗O Tg ⊗O Th(Ξfgh), where Ξfgh = ε(2−l−m)/2
cyc κ

−1/2
f .

Given test vectors (f̆ , ğ, h̆) for (f , g, h) of level N , as explained in [HT01] and [DR14, §4.2],

a generalization of Hida’s p-adic Rankin–Selberg convolution produces an element Lp(f̆ , ğ, h̆)

in the fraction field of Λf whose specializations to arithmetic points x ∈ WΛf
(Qp) of even

weight k ≥ l + m recover (a square-root of) the central critical values of the triple product

L-function L(V†fxgh, s) for the specialization of V†fgh at x by virtue of Harris–Kudla’s proof of

Jacquet’s conjecture, [HK91]. A recent result by Hsieh [Hsi21] constructs test vectors (f̆ , ğ, h̆)

for which a precise interpolation property for the resulting Lp(f̆ , ğ, h̆) is proved. To recall the

result in the form that will be used here, for any arithmetic point x ∈ WΛf
(Qp) as above, we

set

fk := fx, αk := ap(fk), βk := χf (p)p
k−1α−1

k ,

let αg, βg be the roots of the Hecke polynomial of g at p with ordp(αg) = 0, and define αh, βh
similarly. As recalled in [op. cit., §1.4], when the residual Galois representation ρ̄f associated
to f is absolutely irreducible and p-distinguished, the local ring Λf is known to be Gorenstein
and by a result of Hida’s the congruence module of f is isomorphic to Λf/(ξ) for some nonzero
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ξ ∈ Λf . We call (ξ) the congruence ideal of f . Finally, denote by ε`(V†fkgh) ∈ {±1} the epsilon

factor of the Weil–Deligne representation attached to the restriction of V†fkgh to GQ` .

Theorem 7.1. In addition to χfχgχh = ωr1, assume that:

(a) ρ̄f is absolutely irreducible and p-distinguished,

(b) for some arithmetic point x ∈ WΛf
(Qp), we have ε`(V†fkgh) = +1 for all primes ` | N ,

(c) gcd(Nf , Ng, Nh) is squarefree.

Let ξ be a generator of the congruence ideal of f . There exist test vectors (f̆ , ğ, h̆) for (f , g, h)
of level N , and an element

L ξ
p (f̆ , ğ, h̆) ∈ Λf

such that for all arithmetic points x ∈ WΛf
(Qp) of even weight k ≥ l + m with k ≡ r1 + 2

(mod 2(p− 1)) we have(
L ξ
p (f̆ , ğ, h̆)(x)

ξx

)2

=
Γ(k, l,m)

2α(k,l,m)
· E(fk, g, h)2

E0(fk)2 · E1(fk)2
·
∏
`|N

τ` ·
L(V†fkgh, 0)

π2k · 〈f ]k, f
]
k〉2

,

where:

• Γ(k, l,m) = (c− 1)! · (c−m)! · (c− l)! · (c+ 1− l −m)!, with c = (k + l +m− 2)/2,
• α(k, l,m) ∈ Λf is a linear form in the variables k, l, m,

• E(fk, g, h) = (1− βkαgαh
pc )(1− βkβgαh

pc )(1− βkαgβh
pc )(1− βkβgβh

pc ),

• E0(fk) = (1− βk
αk

), E1(fk) = (1− βk
pαk

),

• τ` is an explicit nonzero rational number independent of k,

• f ]k is the newform associated to the p-stabilized newform fk,

and ‖f ]k‖
2 is the Petersson norm of f ]k.

Proof. Letting g,h be the primitive Hida families of tame level Ng, Nh passing through the
ordinary p-stabilizations of g, h, this follows by specializing the three-variable p-adic L-function
in [Hsi21, Thm. A] attached to (f ,g,h) and the congruence ideal generator ξ. �

Definition 7.2. For the test vectors (f̆ , ğ, h̆) of level N provided by Theorem 7.1, we set

Lp(f , g, h) := L ξ
p (f̆ , ğ, h̆)2,

where ξ is any fixed generator of the congruence ideal of f .

Note that Lp(f , g, h) depends on the choice of ξ, but the principal ideal in Λf it generates
is of course independent of that choice.

7.2. Reciprocity law for diagonal cycles. Keep the notations in the previous subsection
and without loss of generality assume that l ≥ m (reordering g and h if necessary).

Assume that the Galois representations attached to f , g and h are all residually irreducible
and p-distinguished. Let φ ∈ {f ,g,h}. As a GQp-representation, Vφ admits a filtration

(7.2) 0→ V+
φ → Vφ → V−φ → 0

with each V±φ free of rank one over Λφ, and with the GQp-action on V−φ given by the unramified

character sending Frp 7→ ap(φ). This induces an obvious three-step filtration

0 ⊂ F 3V†fgh ⊂ F 2V†fgh ⊂ F 1V†fgh ⊂ V†fgh
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by GQp-stable Λfgh-submodules of ranks 1, 4, and 7, respectively, given by

F 1V†fgh = (Vf ⊗̂OVg⊗̂OV+
h + Vf ⊗̂OV+

g ⊗̂OVh + V+
f ⊗̂OVg⊗̂OVh)(Ξfgh),

F 2V†fgh = (Vf ⊗̂OV+
g ⊗̂OV+

h + V+
f ⊗̂OVg⊗̂OV+

h + V+
f ⊗̂OV

+
g ⊗̂OVh)(Ξfgh),

F 3V†fgh = V+
f ⊗̂OV

+
g ⊗̂OV+

h (Ξfgh).

(7.3)

The middle term F 2V†fgh will play a special role in the following, and we note that

(7.4) F 2V†fgh/F
3V†fgh ∼= Vgh

f ⊕ Vfh
g ⊕ Vfg

h ,

where Vgh
f := (V−f ⊗̂OV

+
g ⊗̂OV+

h )(Ξfgh) and similarly for the other two direct summands. We

similarly denote the induced subquotients on the specializations of V†fgh (that is, F iV†fgh,V
gh
f ,

etc.).

Consider the class κ
(3)
1,fgh defined in (6.3) for the choice of level-N test vectors (f̆ , ğ, h̆) given

by Theorem 7.1 and let κ(f , g, h) ∈ H1(Q,V†fgh) be the image of this class via the morphism

obained from the augmentation map O[R1]→ O. By [BSV22, Cor. 8.2], the image of κ(f , g, h)
under the restriction map at p is contained in

H1
bal(Qp,V†fgh) := im

(
H1(Qp,F

2V†fgh)→ H1(Qp,V†fgh)
)
.

It is easily seen that this map is an injection, so we may and will view resp(κ(f , g, h)) as a

class in H1(Qp,F 2V†fgh). Let

pr(f ,g,h) : F 2V†fgh −→ Vghf
be the map induced by the projection onto the first direct summand in (7.4). The “reciprocity
law” from [BSV22, DR22] recalled in Theorem 7.4 below relates the image of resp(κ(f , g, h))
under the natural projection

pr(f ,g,h)∗ : H1
bal(Qp,V†fgh) −→ H1(Qp,Vghf )

to the triple product p-adic L-function of §7.1. Recall that ξ ∈ Λf denotes a generator of the
congruence ideal of f .

Proposition 7.3. There is an injective Λf -module homomorphism with pseudo-null cokernel

Logξ : H1(Qp,Vghf ) −→ Λf

characterized by the following interpolation property: for all Z ∈ H1(Qp,Vghf ) and all classical

points x ∈ WΛf
(Qp) of weight k ≥ l +m with k ≡ r1 + 2 (mod 2(p− 1)) we have

Logξ(Z)(x)

ξx
= (p− 1)αk

(
1− βkαgαh

pc

)(
1− αkβgβh

pc

)−1

×


(−1)c−k

(c−k)! ·
〈
logp(Zk), ηfk ⊗ ωgl ⊗ ωhm

〉
dR
, if l −m < k < l +m,

(k − c− 1)! ·
〈
exp∗p(Zk), ηfk ⊗ ωgl ⊗ ωhm

〉
dR
, if k ≥ l +m,

where c = (k + l +m− 2)/2.

Proof. The construction of Logξ will follow by specializing the three-variable p-adic regulator
constructed in [BSV22, §7.1] (building on a generalization of the construction in [LZ14] given
by Kings–Loeffler–Zerbes [KLZ17]).

Let ϑgh : Λfgh → Λf be the map given by reduction modulo (l − l,m −m). This induces
isomorphisms

V†fgh ⊗Λfgh
Λf
∼= V†fgh, Vgh

f ⊗Λfgh
Λf
∼= Vghf ,



34 RAÚL ALONSO, FRANCESC CASTELLA, AND ÓSCAR RIVERO

and a natural map

ϑgh∗ : H1(Qp,Vgh
f )⊗Λfgh

Λf −→ H1(Qp,Vghf ).

This map is clearly injective, and its surjectivity can be shown easily by an application of local
Tate duality and the Ramanujan–Petersson conjecture (cf. proof of [BSV22, (154)]). Letting

L ξ
f : H1(Qp,Vgh

f ) −→ Λfgh

be the p-adic regulator Lf defined as in [BSV22, Prop. 7.3] and multiplied by ξ, the map
defined by the composition

Logξ : H1(Qp,Vghf )
ϑ−1
gh∗−−−→ H1(Qp,Vgh

f )⊗Λfgh
Λf

L ξ
f ⊗id
−−−−→ Λf

satisfies the interpolation properties in the statement of the proposition.
It remains to see that Logξ is injective with pseudo-null cokernel. By definition, we have

Vgh
f = Ugh

f (εcycκ
−1/2
f κ

1/2
gh ),

where Ugh
f is an unramified GQp-module on which an arithmetic Frobenius Frp acts as multi-

plication by χ−1
f (p)ap(f)ap(g)−1ap(h)−1, and Lf is obtained by specializing the four-variable

p-adic regulator map in [KLZ17, Thm. 8.2.3] for the module Ugh
f , paired against the differen-

tial ηf ⊗ωg⊗ωh. In light of [KLZ17, Rmk. 8.2.4], the fact that Logξ has the above properties

can therefore be deduced from the vanishing of H0(Qp,Ughf ), where Ughf is the image of Ugh
f

under ϑgh. �

Theorem 7.4 (Reciprocity law). We have the following equality

Logξ(resp(κ(f , g, h))) = L ξ
p (f̆ , ğ, h̆).

Proof. This is the specialization of the three-variable reciprocity law of Theorem A in [BSV22]
to (f , g, h) (see also [DR22, Thm. 10]). �

7.3. Selmer groups and formulation of the main conjectures. Let (f , g, h) be as in the
preceding subsection. Throughout the rest of this section, we assume that hypotheses (a)–(c)
in Theorem 7.1 hold, so the p-adic L-function Lp(f , g, h) in Definition 7.2 is available.

Recall the GQp-stable rank-four Λfgh-submodule F 2V†fgh ⊂ V†fgh in (7.3), and set

Vffgh := V+
f ⊗̂OVg⊗̂OVh(Ξfgh).

As before, we let F 2Vfgh and Vffgh denote the corresponding specializations.

Fix a finite set Σ of places of Q containing ∞ and the primes dividing Np, and let QΣ be
the maximal extension of Q unramified outside Σ.

Definition 7.5. For L ∈ {bal,F} define the Selmer group SelL(V†fgh) by

SelL(V†fgh) = ker

(
H1(QΣ/Q,V†fgh) −→

H1(Qp,V†fgh)

H1
L(Qp,V†fgh)

)
,

where

H1
L(Qp,V†fgh) =

ker
(
H1(Qp,V†fgh) −→ H1(Qp,V†fgh/F

2V†fgh)
)

if L = bal,

ker
(
H1(Qp,V†fgh) −→ H1(Qp,V

†
fgh/V

f
fgh)

)
if L = F .

We call Selbal(V†fgh) (resp. SelF (V†fgh)) the balanced (resp. f -unbalanced) Selmer group.
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Remark 7.6. The pairs(
F 2V†fgh, {k ∈ Z≥2 : l −m < k < l +m}

)
,
(
Vffgh, {k ∈ Z : k ≥ l +m}

)
satisfy the Panchishkin condition in [Gre94]. Thus Selbal(V†fgh) and SelF (V†fgh) may be viewed

as instances of Greenberg’s Selmer groups attached to different ranges of critical specializations

of V†fgh.

Let
A†fgh = HomZp(V

†
fgh, µp∞).

Then for L ∈ {bal,F}, we define the Selmer groups SelL(A†fgh) as above, taking H1
L(Qp,A†fgh)

to be the orthogonal complement of H1
L(Qp,V†fgh) under the local Tate duality

H1(Qp,V†fgh)×H1(Qp,A†fgh) −→ Qp/Zp,

and set
XL(A†fgh) := Homcont(SelL(A†fgh),Qp/Zp).

In light of Remark 7.6, the next conjecture may be viewed as an instance of the Iwasawa–
Greenberg main conjectures [Gre94]. In the two formulations below, we also assume conditions
(b) and (c) from Theorem 7.1, so that the p-adic L-function Lp(f , g, h) in (7.2) is defined.

Conjecture 7.7 (IMC “with p-adic L-functions”). The modules SelF (V†fgh) and XF (A†fgh)

are both Λf -torsion, and

CharΛf
(XF (A†fgh)) = (Lp(f , g, h))

in Λf ⊗Zp Qp.

Remark 7.8. An integral formulation of the equality of ideals in Conjecture 7.7 would in
general involve certain Tamagawa factors, accounting for the fact that the construction of
Lp(f , g, h) uses Hida’s congruence number, while by definition the classes in the Selmer group

XF (A†fgh) are trivial at the places v ∈ Σ r {p,∞}, rather than just unramified (cf. [PW11]).

Under the local root number hypothesis (b) in Theorem 7.1, for all arithmetic point x ∈
WΛf

(Qp) of even weight k ≥ 2 with l −m < k < l −m the sign in the functional equation

for L(V†fxgh, s) is −1, so that the central value L(V†fxgh, 0) vanishes. Therefore, in the spirit

of Perrin-Riou’s main conjecture [PR87, Conj. B] in the setting of Heegner points, a natural

formulation of the Iwasawa main conjecture for Selbal(V†fgh) takes the following form.

Note that it follows from [BSV22, Cor. 8.2] that κ(f , g, h) lands in Selbal(V†fgh).

Conjecture 7.9 (IMC “without p-adic L-functions”). Suppose κ(f , g, h) ∈ Selbal(Q,V†fgh) is

not Λf -torsion. Then the modules Selbal(V†fgh) and Xbal(A†fgh) have both rank one, and

CharΛf
(Xbal(A†fgh)tors) = CharΛf

(
Selbal(V†fgh)

Λf · κ(f , g, h)

)2

in Λf ⊗Zp Qp, where the subscript tors denotes the Λf -torsion submodule.

Remark 7.10. Working under different hypotheses on the local signs ensuring that L(V†fkgh, s)
has sign +1 (rather than −1) for weights k ≥ 2 with l −m < k < l −m, the Iwasawa main

conjecture would relate the characteristic ideal of Xbal(A†fgh) to the balanced triple product p-

adic L-function constructed in [Hsi21, Thm. B] (see also [GS20]), rather than diagonal classes.

In this setting, the f -unbalanced Selmer group SelF (V†fgh) should have Λf -rank one, but the

expected non-torsion Selmer class seems to not have been constructed yet.
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7.4. Equivalence of the formulations. In this subsection we show that the two formula-
tions of the Iwasawa main conjecture in the previous subsection are essentially equivalent,
focusing on the case where f is a CM Hida family1 as in §6. Similar equivalences between
IMC “with” and “without” p-adic L-functions appear in [Kat04, §17], [KLZ17, §11] and, in a
setting more germane to ours, [Wan20] and [Cas17, Appendix].

The following intermediate Selmer groups will allow us to bridge between Selbal(V†fgh) and

SelF (V†fgh) in the comparison. Set

Vf∩+
fgh = Vffgh ∩F 2V†fgh, Vf∪+

fgh = Vffgh + F 2V†fgh,

which are GQp-stable Λf -submodules of V†fgh of ranks 3 and 5, respectively. Define SelL(V†fgh)

for L ∈ {F ∩+,F ∪+} by the same recipe as in Definition 7.5, with

H1
L(Qp,V†fgh) =

ker
(
H1(Qp,V†fgh)→ H1(Qp,V†fgh/V

f∩+
fgh )

)
if L = F ∩+,

ker
(
H1(Qp,V†fgh)→ H1(Qp,V

†
fgh/V

f∪+
fgh )

)
if L = F ∪+.

We define the Selmer groups SelF∩+(A†fgh) and SelF∪+(A†fgh) taking H1
F∩+(Qp,A†fgh) and

H1
F∪+(Qp,A†fgh) to be the orthogonal complements of H1

F∪+(Qp,V†fgh) and H1
F∩+(Qp,V†fgh),

respectively. As in the preceding section, we also define the corresponding XF∩+(A†fgh) and

XF∪+(A†fgh).

Throughout this subsection, we keep the setting from §6. In particular, f ∈ Λf [[q]] is the
CM Hida family in (6.2) associated with the Hecke character ψ of conductor f. In addition,
we assume conditions (b) and (c) from Theorem 7.1, so the p-adic L-function Lp(f , g, h) ∈ Λf

is defined, and let κ(f , g, h) ∈ H1(Q,V†fgh) be as above.

For every height one prime Q of Λf away from p, let SQ be the integral closure of Λf/Q

and let ΦQ be the fraction field of SQ. Let V†fgh,Q be the extension of scalars of V†fgh/QV†fgh
to SQ, and let A†fgh,Q = Hom(V†fgh,Q, µp∞). Following [MR04], define

(7.5)

H1
bal(Qv,V†fgh,Q) :=

ker
(
H1(Qv,V†fgh,Q)→ H1(Qnr

v ,V
†
fgh,Q ⊗ ΦQ)

)
, if v - p,

ker
(
H1(Qv,V†fgh,Q)→ H1(Qv, (V†fgh,Q/F

2V†fgh,Q)⊗ ΦQ)
)
, if v | p,

and let H1
bal(Q,V

†
fgh,Q) be the associated Selmer group. Taking H1

bal(Qv,A†fgh,Q) to be the

orthogonal complement of H1
bal(Qv,V†fgh,Q) under local Tate duality, we define the Selmer

group H1
bal(Q,A

†
fgh,Q) similarly.

Define Vψg,h = ΛO(κ−1
ac )⊗̂OTψg,h(κ

r1/2
ac ) and let Aψg,h = Hom((Vψg,h)c, µp∞), where (Vψg,h)c

denotes Vψg,h with the GK-action twisted by complex conjugation. Note that V†fgh = IndQ
KVψg,h,

so we can define Selmer conditions for Vψg,h using Shapiro’s lemma and for Aψg,h by duality.

Define Aψg,h,Q = Hom((Vψg,h,Q)c, µp∞). We have natural maps

(7.6) Vψg,h/QVψg,h → Vψg,h,Q, Aψg,h,Q → Aψg,h[Q]

preserving both the GK and the Λ-modules structure in the same way as in [How04, p. 1461].

Note that in the quotient Vψg,h/QVψg,h and in the submodule Aψg,h[Q] we can define Selmer

conditions by propagating the balanced conditions for Vψg,h and Aψg,h, respectively, and we

denote these conditions in the same way.

1This case will suffice for our applications in this paper, and makes some of the arguments simpler, but we
expect the equivalence to hold in general.
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Lemma 7.11. For every height one prime Q ⊂ Λf as above and every place v of K, the maps
(7.6) induce natural maps

H1
bal(Kv,Vψgh/QVψgh) −→ H1

bal(Kv,Vψgh,Q),

H1
bal(Kv,Aψgh,Q) −→ H1

bal(Kv,Aψgh[Q])

with finite kernel and cokernel, of order bounded by constants depending only on [SQ : Λf/Q].

Proof. For the primes v - p, the same argument as in the proof of [MR04, Lem. 5.3.13] applies,
so it remains to consider the case v | p. Put

F+
p (Tψg,h) = (T+

g ⊗ Th + Tg ⊗ T+
h )(ψ−1

P )(−1− r),

F+
p (Tψg,h) = (T+

g ⊗ T+
h )(ψ−1

P )(−1− r).

Under the isomorphism H1(Q,V†fgh) ∼= H1(K,ΛO(κ−1
ac )⊗̂OTψg,h(κ

r1/2
ac )) coming from Shapiro’s

lemma, the balanced local condition H1
bal(Qp,V†fgh) corresponds to

H1(Kp,ΛO(κ−1
ac )⊗̂OF+

p (Tψg,h)(κr1/2ac ))⊕H1(Kp,ΛO(κ−1
ac )⊗̂OF+

p (Tψg,h)(κr1/2ac )).

Let A−g = T−g ⊗ Qp/Zp, and define A+
g , A−h and A+

h similarly. Arguing as in the proof of
[How04, Lem. 2.2.7], we reduce to showing that the groups

H0(K∞,p, (A
−
g ⊗A−h )(ψ−1

P κr1/2ac )(−1− r)), H0(K∞,p, (A
+
g ⊗A−h )(ψ−1

P κr1/2ac )(−1− r))

are both finite, which follows from the fact that αgαhψ(p)/pk−1 6= 1 and βgαhψ(p) 6= 1,
and this is a consequence of the Ramanujan–Petersson conjecture since we are assuming that
p - N . Note that the other pieces in the quotient decomposition can be treated similarly. This
yields the required bounds on the kernel and cokernel of the first map in the statement of the
lemma, and the result for the second map follows as well by local duality. �

Let ΣΛ be the set of height one primes of Λf consisting of p and those for which ei-

ther H2(QΣ/Q,V†fgh)[Q] is infinite or H2(Qp,V†fgh)[Q] is infinite. Since H2(QΣ/Q,V†fgh) and

H2(Qp,V†fgh) are both finitely generated Λ-modules, the set ΣΛ is finite.

Proposition 7.12. For every height one prime Q 6∈ ΣΛ, the maps (7.6) induce natural maps

Selbal(V†fgh)/QSelbal(V†fgh) −→ Selbal(V†fgh,Q),

Selbal(A†fgh,Q) −→ Selbal(A†fgh)[Q]

with finite kernel and cokernel bounded by a constant depending only on [SQ : Λf/Q].

Proof. This follows from Lemma 7.11 as in the proof of [MR04, Prop. 5.3.14] (see also [How04,
Lem. 2.2.8] and [How07, Lem. 3.2.10]). �

For every height one prime Q ⊂ Λf as above, let mQ = (πQ) be the maximal ideal of SQ.

Lemma 7.13. Assume that there is a perfect pairing Tψg,h×T
ψ
g,h → O(1) such that 〈xσ, ycσc〉 =

〈x, y〉σ for all x, y ∈ Tψg,h and for all σ ∈ GK , where c stands for complex conjugation. The

following hold:

(1) rankΛf
Selbal(V†fgh) = rankΛf

Xbal(A†fgh).

(2) rankΛf
SelF (V†fgh) = rankΛf

XF (A†fgh).

(3) rankΛf
XF∪+(A†fgh) = 1 + rankΛf

XF∩+(A†fgh), and

CharΛf
(XF∪+(A†fgh)tors) = CharΛf

(XF∩+(A†fgh)tors),

in Λf ⊗Zp Qp.
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Proof. For part (1), it suffices to show that for all height one primes Q ⊂ Λf with Q 6∈
ΣΛ, the modules Selbal(V†fgh)/QSelbal(V†fgh) and Selbal(A†fgh)[Q] have the same rank over

Λf/Q. Since Selbal(V†fgh,Q) is the πQ-adic Tate module of Selbal(A†fgh,Q) (indeed, this is a

consequence of [How04, Lem. 1.3.3] since A†fgh,Q ∼= V†fgh,Q ⊗ Qp/Zp), the result thus follows

from Proposition 7.12.

For part (2), under the isomorphism H1(Q,V†fgh) ∼= H1(K,ΛO(κ−1
ac )⊗̂OTψg,h(κ

r1/2
ac )) the

f -unbalanced local condition H1
F (Qp,V†fgh) corresponds to

H1(Kp,ΛO(κ−1
ac )⊗̂OTψg,h)⊕ {0}

and hence an analogue of Lemma 7.11 for the f -unbalanced Selmer groups follows from the

finiteness of H0(K∞,p, Ag ⊗Ah(ψ−1
P κ

r1/2
ac )(−1− r)). By the same reason as above, this yields

the equality of ranks in part (2).
Finally, for the proof of part (3) we can argue similarly as in [AH06, Thm. 1.2.2]. Keeping

with the above notations, let SelF∪+(A†fgh,Q) and SelF∩+(A†fgh,Q) be the Selmer groups defined

by the obvious analogues of (7.5), so from another application of the argument in Lemma 7.11
we obtain natural maps

SelF∪+(A†fgh,Q) −→ SelF∪+(A†fgh)[Q],

SelF∩+(A†fgh,Q) −→ SelF∩+(A†fgh)[Q]

with finite kernel and cokernel bounded by a constant depending only on [SQ : Λf/Q]. Since
the local condition F ∩+ is the orthogonal complement of F ∪+ under the local Tate pairing

at p induced by the self-duality of V†fgh, from [MR04, Thm. 4.1.13] we obtain

(7.7) SelF∪+(A†fgh,Q)[πiQ] ∼= (ΦQ/SQ)r[πiQ]⊕ SelF∩+(A†fgh,Q)[πiQ]

for all i, where r is given (by the Greenberg–Wiles formula in [MR04, Prop. 2.3.5]) by

corankSQ
H1(Qp,Af∪+

fgh,Q)− corankSQ
H0(R,A†fgh,Q),

so r = 5− 4 = 1. The proof of part (3) now follows from (7.7) as in [AH06, Lem. 1.2.6]. �

Remark 7.14. The existence of the pairing in the previous lemma is not too restrictive. In
particular, this holds automatically if g and h are non-Eisenstein.

We are now ready to establish that both formulations of the Iwasawa main conjecture are
equivalent.

Theorem 7.15. Keep the assumptions of the previous lemma and suppose κ(f , g, h) is not
Λf -torsion. Then the following are equivalent:

(1) rankΛf
Selbal(V†fgh) = rankΛf

Xbal(A†fgh) = 1;

(2) rankΛf
SelF (V†fgh) = rankΛf

XF (A†fgh) = 0,

and, in that case, we have Selbal(V†fgh) = SelF∪+(V†fgh) and

CharΛf
(XF (A†fgh)) · CharΛf

(
Selbal(V†fgh)

Λf · κ(f , g, h)

)2

= CharΛf
(Xbal(A†fgh)tors) · (Lp(f , g, h))

in Λf ⊗Zp Qp. In particular, Conjecture 7.7 and Conjecture 7.9 are equivalent.

Proof. The Poitou–Tate global duality gives rise to the exact sequence

0 −→ SelF∩+(V†fgh) −→ Selbal(V†fgh)
resp−→ H1(Qp,Vghf )

−→ XF∪+(A†fgh) −→ Xbal(A†fgh) −→ 0.
(7.8)
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Assume that Selbal(V†fgh) and Xbal(A†fgh) have both Λf -rank one. Since H1(Qp,Vghf ) has Λf -

rank one, from (7.8) and Theorem 7.4 we see that SelF∩+(V†fgh) is Λf -torsion and XF∪+(A†fgh)

has Λf -rank one. By Lemma 7.13(3), it follows that XF∩+(A†fgh) is Λf -torsion, and from the
exact sequence

0 −→ SelF (V†fgh) −→ SelF∪+(V†fgh)
resp−→ H1(Qp,Vghf )

−→ XF (A†fgh) −→ XF∩+(A†fgh) −→ 0
(7.9)

we get that XF (A†fgh) and SelF (V†fgh) are both Λf -torsion by Lemma 7.13(2). This proves

the implication (1) ⇒ (2) in the statement of the theorem, and the converse is shown sim-

ilarly. Moreover, from (7.9) we see that rankΛf
SelF∪+(V†fgh) = 1, and hence the quotient

SelF∪+(V†fgh)/Selbal(V†fgh) is a torsion Λf -module injecting into H1(Qp,Vf∪+
fgh /F

2V†fgh); since

this is Λf -torsion free by Proposition 7.3, it follows that

(7.10) Selbal(V†fgh) = SelF∪+(V†fgh).

Now suppose that either (1) or (2) in the statement of theorem holds. Since ρ̄f is absolutely

irreducible by our hypotheses, the moduleH1(QΣ/Q,V†fgh) is Λf -torsion free by [PR00, §1.3.3].

Being Λf -torsion, it follows that the module SelF∩+(V†fgh) vanishes, and therefore from (7.8)

we deduce the exact sequence

(7.11) 0 −→
Selbal(V†fgh)

Λf · κ(f , g, h)
−→

H1(Qp,Vghf )

Λf · pf∗(resp(κ(f , g, h)))
−→ coker(resp) −→ 0.

Together with Theorem 7.4 it follows that

(7.12) CharΛf

(
Selbal(V†fgh)

Λf · κ(f , g, h)

)
· CharΛf

(coker(resp)) = (L ξ
p (f̆ , ğ, h̆)).

On the other hand, in light of (7.10), from (7.8) and (7.9) we deduce exact sequences

0 −→ coker(resp) −→ XF∪+(A†fgh) −→ Xbal(A†fgh) −→ 0,

0 −→ coker(resp) −→ XF (A†fgh) −→ XF∩+(A†fgh) −→ 0.

Taking characteristic ideals, these imply

(7.13)

CharΛf
(XF (A†fgh) = CharΛf

(XF∩+(A†fgh)) · CharΛf
(coker(resp))

= CharΛf
(XF∪+(A†fgh)tors) · CharΛf

(coker(resp))

= CharΛf
(Xbal(A†fgh)tors) · CharΛf

(coker(resp))
2,

using Lemma 7.13(3) for the second equality. Multiplying (7.13) by the square of a generator

of the characteristic ideal of Selbal(V†fgh)/Λf ·κ(f , g, h) and using (7.12), the result follows. �

8. Anticyclotomic Euler systems

In this section we highlight results from the recent work of Jetchev–Nekovář–Skinner [JNS],
where a general theory of Euler systems germane to [Rub00] is developed in the anticyclotomic
setting.
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8.1. The general theory. Let K be an imaginary quadratic field and let p be an odd prime.
If n is an integral prime ideal of K, we denote by K(n)◦ the ray class field of conductor n;
as in the previous sections, we write K(n) for the maximal p-subextension in K(n)◦. For any
positive integer n, we denote by K[n] the maximal p-subextension in the ring class field of K
of conductor n. We denote by K∞ the anticyclotomic Zp-extension of K.

Let E be a finite extension of Qp with ring of integers O and maximal ideal m. Let T be a
free O-module of finite rank endowed with a continuous GK-action unramified outside a finite
set of primes, and let V = T ⊗O E. Assume that there exists a non-degenerate symmetric
O-bilinear pairing

〈 , 〉 : T × T −→ O(1)

such that 〈xσ, ycσc〉 = 〈x, y〉σ for all x, y ∈ T and σ ∈ GK , where c is complex conjugation.
Thus V c ' V ∨(1), where V c denotes the representation V with the GK-action twisted by c,
and, if the above pairing is perfect, we also have T c ' T∨(1). We also define the GK-module
A = V/T .

If L is a finite extension of K and v is a finite place of L, we write v = vc. Then, the pairing
above induces a local pairing

H1(Lv, V )×H1(Lv, V ) −→ E,

and similarly replacing V by T and E by O. The pair of compatible maps GLv → GLv and
V → V c defined by σ 7→ cσc and w 7→ w, respectively, induces an isomorphism H1(Lv, V ) ∼=
H1(Lv, V

c) ∼= H1(Lv, V
∨(1)) whereby the above local pairing is just the natural cup-product

pairing.
For the results we shall discuss, we consider two different types of “big image” hypotheses,

(HW) for the weaker ones, and (HS) for the stronger ones.

Hypothesis (HW).

(1) V is absolutely irreducible as a GK-representation.
(2) There exists an element σ0 ∈ Gal (K̄/K(1)◦K(µp∞)) such that the E-dimension of

V/(σ0 − 1)V is one.

Hypothesis (HS).

(1’) The residual representation T̄ = T/mT is absolutely irreducible.
(2’) There exists an element σ0 ∈ Gal (K̄/K(p∞)◦) such that T/(σ0 − 1)T ' O is a free

O-module of rank one.
(3’) There exists an element τ0 ∈ GK such that τ0 − 1 acts on T as multiplication by a

unit aτ0 ∈ O× with aτ0 − 1 ∈ O×.
(4’) The above pairing T × T −→ O(1) is perfect.

For each prime p of K above p, choose a GKp-stable O-submodule F+
p (T ) of T , and let

F−p (T ) = T/F+
p (T ). We also define F+

p (V ) = F+
p (T ) ⊗O E ⊆ V and F−p (V ) = V/F+

p (V ).
Let L be a finite extension of K. For each place v of L, we define a local condition

H1
Gr(Lv, V ) =

ker
(
H1(Lv, V )→ H1(Lnr

v , V )
)

if v - p,

ker
(
H1(Lv, V )→ H1(Lv,F−p (V ))

)
if v | p for some p | p.

We define the Greenberg Selmer group

SelGr(L, V ) = ker
(
H1(L, V )→

∏
v

H1(Lv, V )/H1
Gr(Lv, V )

)
,

where the product is over all finite places of L.
We also define local conditions for T and A by propagation of the local conditions for V ,

i.e., for each place v of L, we define
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• H1
Gr(Lv, T ) as the preimage of H1

Gr(Lv, V ) by the map H1(Lv, T )→ H1(Lv, V ), and
• H1

Gr(Lv, A) as the image of H1
Gr(Lv, V ) by the map H1(Lv, V )→ H1(Lv, A),

and use these to define the Selmer groups SelGr(L, T ) and SelGr(L,A) as above. Finally, for
each positive integer n, we also put

SelGr(K[np∞], T ) = lim←−
r

SelGr(K[npr], T ) and SelGr(K[np∞], A) = lim−→
r

SelGr(K[npr], A),

where the limits are with respect to the corestriction and restriction maps, respectively, and
we define

XGr(K[np∞], A) = Homcont(SelGr(K[np∞], A),Qp/Zp).
Let N be an ideal of K divisible by p and all the primes at which T is ramified, and let S

be the set of all squarefree products of primes of Q which split in K and are coprime to N .

Definition 8.1. A “split” anticyclotomic Euler system for (T, {F+
p (T )}p|p,N ) is a collection

of classes

κ = {κn ∈ SelGr(K[n], T ) : n ∈ S}
such that, whenever q is a rational prime and n, nq ∈ S,

(8.1) corK[nq]/K[n](κnq) = Pq(Fr−1
q )κn,

where q is any of the primes of K above q and Pq(X) = det(1− Fr−1
q X|T∨(1)).

Similarly, a “split” Λ-adic anticyclotomic Euler system for (T, {F+
p (T )}p|p,N ) is a collection

of classes

κ∞ = {κn,∞ ∈ SelGr(K[np∞], T ) : n ∈ S}
satisfying the previous norm relations. In this case, the classes

κn = prK[n](κn,∞) ∈ SelGr(K[n], T )

form an anticyclotomic Euler system in the previous sense, and we say that the Euler system
κ = {κn}n extends along the anticyclotomic Zp-extension.

A (Λ-adic) anticyclotomic Euler system for (T, {F+
p (T )}p|p) is just a (Λ-adic) anticyclotomic

Euler system for (T, {F+
p (T )}p|p,N ) for some N as above. We shall usually drop {F+

p (T )}p|p
if there is no risk of confusion.

If κ is an anticyclotomic Euler system for T , we define

κ0 := corK[1]/K(κ1) ∈ SelGr(K,T ).

If it extends along the anticyclotomic Zp-extension, we similarly define

κ∞ := corK[1]/K(κ1,∞) ∈ SelGr(K∞, T ),

where κ∞ = {κn,∞} is the Λ-adic anticyclotomic Euler system extending κ.
When we have an Euler system as above, we will be interested in ensuring that the following

orthogonality hypothesis holds.

Hypothesis (HO). For all n ∈ S and for all places v of K[n] above p, the local conditions
H1

Gr(K[n]v, V ) and H1
Gr(K[n]v, V ) are orthogonal complements under the local pairing

H1(K[n]v, V )×H1(K[n]v, V ) −→ E.

Remark 8.2. The condition in hypothesis (HO) holds automatically for all places away from
p, by [Rub00, Prop. 1.4.2]. Observe also that if (HO) holds, then for all n ∈ S and for all
places v of K[n] the local conditions H1

Gr(K[n]v, T ) and H1
Gr(K[n]v, T ) are also orthogonal

complements under the local pairing

H1(K[n]v, T )×H1(K[n]v, T ) −→ O,
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as follows easily from the definitions using [Rub00, Prop. B.2.4] and the commutative diagram

H1(K[n]v, T )×H1(K[n]v, T )

��

// O

��
H1(K[n]v, V )×H1(K[n]v, V ) // E.

We assume in the rest of this subsection that hypothesis (HO) holds for our choice of local
conditions at p.

Theorem 8.3 ([JNS]). Assume that p splits in K and that Hypothesis (HW) is satisfied, and
let κ = {κn}n be an anticyclotomic Euler system for T which extends along the anticyclotomic
Zp-extension. If κ0 6= 0, then the Selmer group SelGr(K,T ) has O-rank one.

Remark 8.4. One can replace the assumptions that p splits in K and the Euler system extends
along the anticyclotomic Zp-extension by the assumption that there exists an element γ ∈ GK
fixing the extension K(1)◦(µp∞ , (O×K)1/p∞) and such that γ − 1 acts invertibly on V .

Under the stronger Hypothesis (HS), granted the non-triviality of a Λ-adic anticyclotomic
Euler system, the results of [JNS] yield a divisibility towards a corresponding Iwasawa main
conjecture.

Theorem 8.5 ([JNS]). Assume that p splits in K and that Hypothesis (HS) is satisfied, and
let κ be a Λ-adic anticyclotomic Euler system for T .

(a) If κ0 6= 0, then SelGr(K,A) has O-corank one, SelGr(K,T ) has O-rank one, and

lengthO(SelGr(K,A)/div) ≤ 2 lengthO

(
SelGr(K,T )

O · κ0

)
,

where (−)/div denotes the quotient of (−) by its maximal divisible submodule.
(b) If κ∞ is not Λac-torsion, then XGr(K∞, A) and SelGr(K∞, T ) have both Λac-rank one,

and

CharΛac(XGr(K∞, A)tors) ⊃ CharΛac

(
SelGr(K∞, T )

Λac · κ∞

)2

,

where (−)tors denotes the maximal Λac-torsion submodule of (−).

8.2. Big image results. We now give conditions under which the hypotheses in the general
results of §8.1 are verified in our setting. To that end, we shall build on [Loe17].

As before, let K/Q be an imaginary quadratic field of discriminant −D, let (g, h) be a pair
of newforms of weights (l,m) of the same parity, levels (Ng, Nh) and characters (χg, χh), and
let ψ be a Grössencharacter of K of infinity type (1 − k, 0) for some positive even integer k
and of conductor f. We denote by χ the unique Dirichlet character modulo NK/Q(f) such that

ψ((n)) = nk−1χ(n) for integers n coprime to NK/Q(f), and we assume that χεKχgχh = 1.
We now make the further assumptions that:

• neither g nor h are of CM type,
• g is not Galois-conjugate to a twist of h.

As in [Loe17, §3.1], we define the open subgroups Hg and Hh of GQ, the quaternion algebras
Bg and Bh, and the algebraic groups Gg and Gh, and put

B = Bg ×Bh, G = Gg ×Gm Gh.

We define H to be the intersection of Hg, Hh and GK(f)◦ . (Note that in loc. cit. H is defined
to be the intersection of Hg and Hh, so our H might be a finite index subgroup of his H, but

this will not affect the results that follow.) We have an adelic representation ρ̃g,h : H → G(Q̂),
and representations

ρ̃g,h,p : H −→ G(Qp)
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for every rational prime p, and, by [Loe17, Thm. 3.2.2], ρ̃g,h,p(H) = G(Zp) for all but finitely
many p.

Remark 8.6. Note that the representations studied in [Loe17] are the dual to the ones studied
in this paper, but as pointed out in [Loe17, Rmk. 2.1.2], this difference is unimportant when
considering the image.

Let L be a finite extension of K containing the Fourier coefficients of g and h and the image
of ψ. Let P be a prime of L above some rational prime p and let E = LP.

Definition 8.7. We say that the prime P is good if the following conditions hold:

• p ≥ 7;
• p is unramified in B;
• p is coprime to f, Ng and Nh;
• ρ̃g,h,p(H) = G(Zp);
• E = Qp.

Remark 8.8. Observe that all but the last condition exclude only finitely many primes. The
last condition could be somewhat relaxed in some cases, and will be used largely for simplicity.
Note also that the above set of conditions holds for a set of primes of positive density.

From now on, we assume that both g and h are ordinary, non-Eisenstein, and distinguished
with respect to P.

Lemma 8.9. Assume that there is at least one prime which divides D but not Ng and one
prime which divides D but not Nh. Then, if P is a good prime,

(ρg,P × ρh,P)(H ∩GK(p∞)◦) = SL2(Zp)× SL2(Zp).

Proof. Let Q(ρg) and Q(ρh) be the Galois extensions of Q cut out by the representations ρg and
ρh attached to g and h, respectively. These extensions are unramified outside pNg and pNh,
respectively. Therefore, the condition on D implies that K ∩Q(ρg) = Q and K ∩Q(ρh) = Q.
Moreover, since any Galois extension of Q contained in K∞ must itself contain K, we also
have K∞ ∩Q(ρg) = Q and K∞ ∩Q(ρh) = Q.

The conditions on P imply that

(ρg,P × ρh,P)(H ∩GQ(µp∞ )) = SL2(Zp)× SL2(Zp),

and, from the remarks in the previous paragraph, it follows that

(ρg,P × ρh,P)(H ∩GK∞(µp∞ )) = SL2(Zp)× SL2(Zp).

Finally, since H ∩GK(p∞)◦ is a normal subgroup of H ∩GK∞(µp∞ ) of index dividing p− 1 and

there are no such subgroups in SL2(Zp)× SL2(Zp), the lemma follows. �

Now we are able to give conditions under which the results of [JNS] can be applied to our

setting, i.e., to the representation Tψg,h defined above.

Proposition 8.10. Assume that there is at least one prime which divides D but not Ng and
one prime which divides D but not Nh. Let P be a good prime. Suppose that there exists

σ ∈ GK(p∞)◦ such that ψP(σ) 6= ψcP(σ) modulo p. Then, hypotheses (HS) hold for Tψg,h.

Proof. Since ψP is trivial when restricted to H ∩ GK(p∞)◦ , condition (1’) follows easily from
the previous lemma.

To prove condition (2’), we closely follow the proof of [Loe17, Prop. 4.2.1]. Write χg(σ)
and χh(σ) for the images of σ by χg and χh via the natural identifications Gal (Q(µNg)/Q) ∼=
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(Z/NgZ)× and Gal (Q(µNh)/Q) ∼= (Z/NhZ)×. Then, by the previous lemma, the image of
σH ∩GK(p∞)◦ under ρg,P × ρh,P contains all the elements of the form((

x 0
0 x−1χg(σ)

)
,

(
y 0
0 y−1χh(σ)

))
, x, y ∈ Z×p .

Now choose x ∈ Z×p such that x−2χg(σ) 6= 1 (mod p) and x2χh(σ)ψP(σ)−2 6= 1 (mod p),

which is possible since p ≥ 7, and let y = x−1ψP(σ). Choose σ0 ∈ σH ∩GK(p∞)◦ whose image
under ρg,P × ρh,P is given by the element above, with the choices of x and y which we have

just specified. Then, the eigenvalues of σ0 acting on Tψg,h are 1, x−2χg(σ), x2χh(σ)ψP(σ)−2

and ψcP(σ)ψP(σ)−1, which proves condition (2’).

To check condition (3’), we can argue as in [KLZ17, Rmk. 11.1.3]. By the previous lemma,
we can find an element τ0 ∈ H ∩GK(p∞)◦ such that

(ρg,P × ρh,P)(τ0) =

((
−1 0
0 −1

)
,

(
1 0
0 1

))
,

so τ0 acts on Tψg,h as multiplication by −1.

Finally, condition (4’) follows from the assumption that g and h are non-Eisenstein and
p-distinguished. �

Remark 8.11. If we are just interested in ensuring that hypotheses (HW) hold for Tψg,h, we can

relax some of the assumptions above. For example, we do not need to require g and h to be
non-Eisenstein, and we can require that there exist σ ∈ GK(1)◦(µp∞ ) such that ψP(σ) 6= ψcP(σ),
without requiring this inequality to hold modulo p.

9. Proof of Theorems B, C, and D

Let the setting be as in the Introduction. In particular, g ∈ Sl(Ng, χg) and h ∈ Sm(Nh, χh)
are newforms of weights l ≥ m ≥ 2 of the same parity, K/Q is an imaginary quadratic field of
discriminant −D < 0, ψ is a Grössencharacter for K of infinity type (1− k, 0) for some even
integer k ≥ 2, and we consider the GK-representation

V ψ
g,h = Vg ⊗E Vh(ψ−1

P )(1− c),

where c = (k + l +m− 2)/2.

Lemma 9.1. The Bloch–Kato Selmer group of V ψ
g,h is given by

Sel(K,V ψ
g,h) ∼=

{
Selbal(K,V

ψ
g,h) if l −m < k < l +m,

SelF (K,V ψ
g,h) if k ≥ l +m.

Proof. Note that by Shapiro’s lemmaH1(K,V ψ
g,h) ∼= H1(Q, Vfgh), where f = θψ is the theta se-

ries of ψ and Vfgh is the specialization of the big Galois representation V†fgh in (7.1) to weights

(k, l,m). One immediately checks that the Hodge–Tate weights of the GQp-subrepresentation

F 2Vfgh ⊂ Vfgh (resp. V f
fgh ⊂ Vfgh) are all < 0 (with the p-adic cyclotomic character εcyc

having Hodge–Tate weight −1) if and only if l−m < k < l+m (resp. k ≥ l+m). The result
follows. �

Here we collect a set of hypotheses for our later reference. For any nonzero m ∈ Z, prime(m)
denotes the set of primes that divide m, and primec(m) its complement.

Hypotheses 9.2.

(h1) g and h are ordinary at p, non-Eisenstein, and p-distinguished.
(h2) p splits in K,
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(h3) p does not divide the class number of K,
(h4) ψP|GK(p∞)◦ 6= ψcP|GK(p∞)◦ modulo p,

(h5) neither g nor h are of CM type,
(h6) g is not Galois-conjugate to a twist of h.
(h7) prime(D) ∩ primec(Ng) 6= ∅ and prime(D) ∩ primec(Nh) 6= ∅,
(h8) P is a good prime in the sense of Definition 8.7.

9.1. Proof of Theorem B. Let κψ,g,h,1,∞ ∈ H1
Iw(K[p∞], Tψg,h) be the Iwasawa cohomology

class of conductor n = 1 from Theorem 6.5, and set

(9.1) κψ,g,h = κψ,g,h,1 ∈ H1(K,Tψg,h),

where κψ,g,h,1 = prK(κψ,g,h,1,∞).
If l−m < k < l+m, the next result recovers Theorem B in the Introduction. Note however,

that the result does not require these inequalities to hold.

Theorem 9.3. Assume hypotheses (h1)–(h8). Then the following implication holds:

κψ,g,h 6= 0 =⇒ dimE Selbal(K,V
ψ
g,h) = 1.

In particular, if l − m < k < l + m and κψ,g,h 6= 0 then the Bloch–Kato Selmer group

Sel(K,V ψ
g,h) is one-dimensional.

Proof. By Proposition 6.6, the classes κψ,g,h,n := prK[n](κψ,g,h,n,∞) land in Selbal(K[n], Tψg,h),

and by Theorem 6.5 they form an anticyclotomic Euler system for V ψ
g,h. Therefore, the result

follows from Theorem 8.3 and Proposition 8.10. �

Remark 9.4. If k = 2 and l = m ≥ 2, working with the classes κψ,g,h,n from Theorem 4.6,
rather than those from Theorem 6.5 as above, hypotheses (h2)-(h3) in Theorem 9.3 can be
replaced by the assumption that there exists an element γ ∈ GK satisfying the conditions in
Remark 8.4. Further, (h1) and (h4) can be relaxed as discussed in Remark 8.11.

9.2. Proof of Theorem C. Recall that θψ ∈ Sk(Nψ, χεK) is the theta series attached to ψ,
and put N = lcm(Nψ, Ng, Nh).

The next theorem, establishing cases of the Bloch–Kato conjecture for V ψ
g,h in analytic rank

zero, recovers Theorem C in the Introduction.

Theorem 9.5. Assume hypotheses (h1)–(h8), and in addition that:

• ε`(θψ, g, h) = +1 for all primes ` | N ,
• gcd(Nψ, Ng, Nh) is squarefree.

If k ≥ l +m then the following implication holds:

L(V ψ
g,h, 0) 6= 0 =⇒ Sel(K,V ψ

g,h) = 0.

Proof. We continue to denote by κψ,g,h the image of the class in (9.1) under the isomorphism

H1(K,V ψ
g,h) ∼= H1(Q, Vfgh)

coming from Shapiro’s lemma. If k ≥ l + m, the central value L(V ψ
g,h, 0) is in the range of

interpolation of the triple product p-adic L-function of Theorem 7.1, and so by Proposition 7.3
and Theorem 7.4 its non-vanishing implies that the image of κψ,g,h under the natural map

resp : Selbal(Q, Vfgh) −→ H1(Qp, V
gh
f )

is nonzero. In particular, κψ,g,h 6= 0, and therefore by Theorem 9.3 the balanced Selmer group

Selbal(K,V
ψ
g,h) = Selbal(Q, Vfgh) is one-dimensional.
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From the exact sequence

0 −→ SelF∩+(Q, Vfgh) −→ Selbal(Q, Vfgh)
resp−→ H1(Qp, V

gh
f )

−→ SelF∪+(Q, Vfgh)∨ −→ Selbal(Q, Vfgh)∨ −→ 0

coming from global duality (adopting notations similar to those in Theorem 7.15), we thus
see that SelF∩+(Q, Vfgh) = 0 and that SelF∪+(Q, Vfgh) = Selbal(Q, Vfgh). Together with the
exact sequence

SelF∪+(Q, Vfgh)
resp−−→ H1(Qp, V

gh
f ) −→ SelF (Q, Vfgh)∨ −→ SelF∩+(Q, Vfgh)∨ −→ 0,

it follows that SelF (Q, Vfgh) = 0, and combined with Lemma 9.1 this concludes the proof. �

Refining the proof of Theorem 9.5, we can further bound the size of the Bloch–Kato Selmer

group for the discrete module Aψg,h = V ψ
g,h/T

ψ
g,h in terms of L-values. For the statement, let f

be the Hida family associated to ψ as in §6, so that fk is the ordinary p-stabilization of θψ,
and, keeping with the notations in Theorem 7.1, put αk = ψ(p) and βk = ψ(p). Let also
ε`(θψ, g, h) = ε`(Vfgh) denote the epsilon factor associated to Vfgh|GQ`

, where f = θψ.

Theorem 9.6. Assume hypotheses (h1)–(h8), and in addition that:

• ε`(θψ, g, h) = +1 for all primes ` | N ,
• gcd(Nψ, Ng, Nh) is squarefree,

• H1(Qp, T
gh
f ) is torsion-free,

• H1
L(Qp, Tfgh) is torsion-free for L ∈ {bal,F ,F ∩+,F ∪+}.

If k ≥ l +m and L(V ψ
g,h, 0) 6= 0 then the O-module SelF (K,Aψg,h) is finite and

lengthO(SelF (K,Aψg,h)) ≤ 2 vP

(
(l − 2)!(m− 2)!

(k − c− 1)!
· E1(fk)

E(fk, g, h)
·L ξ

p (f̆ , ğ, h̆)(k)

)
,

where E1(fk) =
(
1− βk

pαk

)
, E(fk, g, h) =

(
1− αkαgαh

pc

)(
1− βkβgαh

pc

)(
1− βkαgβh

pc

)(
1− βkβgβh

pc

)
, and

c = (k + l +m− 2)/2.

Proof. As in the proof of Theorem 9.5, if k ≥ l + m and L(V ψ
g,h, 0) 6= 0 then the class κψ,g,h

is nonzero. Since by Theorem 6.5 this is the bottom class of an anticyclotomic Euler system

for V ψ
gh, from Theorem 8.5 and Proposition 8.10 we deduce that Selbal(K,A

ψ
g,h) has O-corank

one, with

(9.2) lengthO(Selbal(K,A
ψ
g,h)/div) ≤ 2 lengthO

(
Selbal(K,T

ψ
g,h)

O · κψ,g,h

)
.

By the exact sequence (7.8) specialized to weight k, it follows that SelF∪+(K,Aψg,h) has also

O-corank one. Thus both Selbal(K,T
ψ
g,h) ⊂ SelF∪+(K,Tψg,h) have O-rank one, and therefore

(9.3) Selbal(K,T
ψ
g,h) = SelF∪+(K,Tψg,h),

since their quotient is O-torsion free. Moreover, letting π ∈ O be a uniformizer, as in the
proof of Lemma 7.13 we find that

SelF∪+(K,Aψg,h)[πi] ∼= E/O[πi]⊕ SelF∩+(K,Aψg,h)[πi]

for all i, and hence lengthO(SelF∪+(K,Aψg,h)/div) = lengthO(SelF∩+(K,Aψg,h)).

The finiteness of SelF (K,Aψg,h) with the stated bound on its O-length thus follows from

(9.2) by the same argument as in the proof of Theorem 7.15, noting that by Theorem 7.4 and
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the same calculation as in [BSV22, §8.5] (see esp. the equality following [op. cit., (189)]) the
map

ξk ·
〈

exp∗p(−), ηf̆ ⊗ ωğ ⊗ ωh̆
〉

where f = θψ and ξk is the weight k specialization of the congruence ideal generator ξ ∈ Λf ,

gives an isomorphism H1(Qp, T
gh
f )→ O taking κψ,g,h to

(l − 2)! · (m− 2)!

(k − c− 1)!
· E0(fk) · E1(fk)

E(fk, g, h)
·L ξ

p (f̆ , ğ, h̆)(k),

where E0(fk) =
(
1− βk

αk

)
is a p-adic unit.

More precisely, under the freeness assumption in the statement, the weight k specializations
of (7.8) and (7.9) yield the exact sequences

(9.4) 0 −→ coker(resp) −→ SelF∪+(K,Aψg,h)∨ −→ Selbal(K,A
ψ
g,h)∨ −→ 0,

0 −→ coker(resp) −→ SelF (K,Aψg,h)∨ −→ SelF∩+(K,Aψg,h)∨ −→ 0,

where the two terms coker(resp) are equal in light of (9.3). Thus we find

ltO(SelF (K,Aψg,h)) = ltO(SelF (K,Aψg,h)∨) = ltO(SelF∩+(K,Aψg,h)∨) + ltO(coker(resp))

= ltO((SelF∪+(K,Aψg,h)/div)∨) + ltO(coker(resp))

= ltO((Selbal(K,A
ψ
g,h)/div)∨) + 2 ltO(coker(resp))

= ltO(Selbal(K,A
ψ
g,h)/div) + 2 ltO(coker(resp)),

where the third equality follows from (9.4) and Lemma 9.7 below, concluding the proof. �

Lemma 9.7. Let 0→ A
j−→ B → C → 0 be an exact sequence of finitely generated O-modules,

and assume that A is finite. Then Btors/j(A) ∼= Ctors.
In particular, if B′, C ′ are cofinitely generated O-modules and we have an exact sequence

0→ A
j−→ (B′)∨ → (C ′)∨ → 0 with A finite, then

(B′/div)∨/j(A) ∼= (C ′/div)∨,

and so ltO((B′/div)∨) = ltO(A) + ltO((C ′/div)∨).

Proof. Writing B ∼= Or ⊕ Btors, C ∼= Os ⊕ Ctors we have, by the finiteness of A, r = s and
j(A) ⊂ Btors, so

Or ⊕ Ctors
∼= C ∼= B/j(A) ∼= Or ⊕ (Btors/j(A)),

which implies the result. �

Remark 9.8. The condition that H1(Qp, T
gh
f ) is torsion-free is equivalent to the vanishing of

H0(Qp, A
gh
f ), which is satisfied if k+2 6= l+m modulo 2(p−1) or if χf (p)αgαh/αk 6= 1 modulo

p. Similarly, the last condition in the statement of Theorem 9.6 can be recast in terms of the
vanishing of the corresponding 0-th cohomology groups.

Remark 9.9. By Theorem 7.1, the non-vanishing of L(V ψ
g,h, 0) implies that L ξ

p (f̆ , ğ, h̆)(x) 6= 0,

so the upper bound provided by Theorem 9.6 is non-trivial. Moreover, by the interpolation
formula in Theorem 7.1, this upper bound can be expressed in terms of the central L-value

L(V ψ
g,h, 0), thus giving a result towards the Tamagawa number conjecture of [BK90].
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9.3. Proof of Theorem D. As before, let f be the Hida family attached to ψ as in §6. Let
κψ,g,h,1,∞ be the Λ-adic class of conductor n = 1 constructed in Theorem 6.5, and set

κψ,g,h,∞ := κψ,g,h,1,∞ ∈ H1
Iw(K∞, T

ψ
g,h).

As noted before the proof of Proposition 6.6, under the Shapiro isomorphism

H1(Q,V†fgh) ∼= H1(K,ΛO(κ−1
ac )⊗̂OTψg,h) ∼= H1

Iw(K∞, T
ψ
g,h),

the balanced Selmer group Selbal(Q,V†fgh) of §7.3 is identified with the Greenberg Selmer

group SelGr(K∞, T
ψ
g,h) of §8.1 attached to GKv -invariant subspaces F+

v (V ψ
g,h) ⊂ V ψ

g,h in (4.1)

at the primes v | p. Moreover, under this isomorphism, the class κ(f , g, h) in §7.2 corresponds
to the class κψ,g,h,∞.

The next result, establishing one of the divisibilities predicted by the Iwasawa main con-
jectures from §7.3, recovers Theorem D in the Introduction.

Theorem 9.10. Assume hypotheses (h1)–(h8), and in addition that:

• ε`(θψ, g, h) = +1 for all primes ` | N ,
• gcd(Nψ, Ng, Nh) is squarefree.

If κ(f , g, h) is not Λf -torsion, then the following hold:

(a) The modules Selbal(V†fgh) and Xbal(A†fgh) have both Λf -rank one, and

CharΛf
(Xbal(A†fgh)tors) ⊃ CharΛf

(
Selbal(V†fgh)

Λf · κ(f , g, h)

)2

.

(b) The modules SelF (V†fgh) and XF (V†fgh) are both Λf -torsion, and

CharΛf
(XF (A†fgh)) ⊃ (Lp(f , g, h))

in Λf ⊗Zp Qp.

Proof. The non-triviality assumption on κ(f , g, h) implies that κψ,g,h,∞ is not Λf -torsion. Since

by Theorem 6.5 the class κψ,g,h,∞ is the bottom class of a Λ-adic Euler system for V ψ
g,h, part

(a) follows from Theorem 8.5 and Proposition 8.10. By Theorem 7.15, part (b) of the theorem
follows from part (a), so this concludes the proof. �
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Math. France 115 (1987), no. 4, 399–456.

[PR00] , p-adic L-functions and p-adic representations, SMF/AMS Texts and Monographs, vol. 3,
American Mathematical Society, Providence, RI, 2000, Translated from the 1995 French original by
Leila Schneps and revised by the author.

[PW11] Robert Pollack and Tom Weston, On anticyclotomic µ-invariants of modular forms, Compos. Math.
147 (2011), no. 5, 1353–1381.

[Rub00] Karl Rubin, Euler systems, Annals of Mathematics Studies, vol. 147, Princeton University Press,
Princeton, NJ, 2000, Hermann Weyl Lectures. The Institute for Advanced Study.

[Wan20] Xin Wan, Heegner point Kolyvagin system and Iwasawa main conjecture, Acta Math. Sin. 37 (2020),
no. 1, 104–120.

[YZZ] Xinyi Yuan, Shouwu Zhang, and Wei Zhang, Triple product L-series and Gross–Kudla–Schoen
cycles, preprint.

R. A.: Department of Mathematics, Princeton University, Fine Hall, Princeton, NJ 08544-
1000, USA

Email address: raular@math.princeton.edu

F. C.: Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
Email address: castella@ucsb.edu

O. R.: Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL,
UK

Email address: Oscar.Rivero-Salgado@warwick.ac.uk


	1. Introduction
	Part 1. The diagonal cycle Euler system
	2. Preliminaries
	3. Hecke algebras and ring class fields
	4. Proof of the tame norm relations
	5. Hida families and Galois representations
	6. Proof of the wild norm relations

	Part 2. Arithmetic applications
	7. Iwasawa main conjectures
	8. Anticyclotomic Euler systems
	9. Proof of Theorems B, C, and D
	References


