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FORMULA FOR MULTIPLICATIVE PRIMES”

FRANCESC CASTELLA

Abstract. We fix a mistake in [Cas18] and prove a version of the main Theorem A in op. cit.
that is both weaker and stronger than the original result.

1. Introduction

When f ∈ I[[q]] is a Hida family passing through a p-new p-stabilized newform in weight 2,
the existence of a point φ ∈ X a

I as used in the proof of [Cas18, Thm. 4.2] is not guaranteed in
general. This affects the proof of [op. cit., Thm. 4.4].

In the case p‖N (which is the case where such f arises, so we only consider this case below),
Theorem 4.4 in [Cas18] should be replaced by Theorem 1.1 below, which we shall prove here
without using [Cas18, Thm. 4.2] and allowing E to have primes of additive reduction.

Theorem 1.1. Let E/Q be an elliptic curve of conductor N with multiplicative reduction at
p > 3, and let K be an imaginary quadratic field such that there exists an ideal N ⊂ OK with
OK/N ' Z/NZ and in which p = pp splits. Assume that:

(i) E[p] is irreducible as a GQ-module.
(ii) If 2 is nonsplit in K, then 2‖N .
(iii) E has nonsplit multiplicative reduction at each prime q‖N which is nonsplit in K, and

that there is at least one such prime q at which E[p] is ramified.
(iv) E(Qp)[p] = 0.

Then ChΛ(Xac(E[p∞])) is Λ-torsion and

ChΛ(Xac(E[p∞]))ΛR0 = (Lp(f)).

Using Theorem 1.1 in place of [Cas18, Thm. 4.4], the same argument as in [Cas18, §5] yields
the following result, which should replace the main Theorem A in op. cit. when p‖N .

Theorem A’. Let E/Q be an elliptic curve of conductor N with multiplicative reduction at
p > 3. Assume that E[p] is irreducible as a GQ-module, E has nonsplit multiplicative reduction
at some prime q 6= p where E[p] is ramified, and E(Qp)[p] = 0. If ords=1L(E, s) = 1, then

ordp

(
L′(E, 1)

Reg(E/Q) · ΩE

)
= ordp

(
#Ø(E/Q)

∏
`|N

c`(E/Q)

)
,

where

• Reg(E/Q) is the discriminant of the Néron–Tate height pairing on E(Q)⊗R;
• ΩE is the Néron period of E;
• Ø(E/Q) is the Tate–Shafarevich group of E; and
• c`(E/Q) is the Tamagawa number of E at the prime `,

and hence the p-part of the Birch and Swinnerton-Dyer formula holds for E.

Remark. Compared to Theorem A of [Cas18] in the case p‖N , Theorem A’ assumes in addition
that
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(1) the prime q‖N different from p where E[p] is required to ramify should be a prime of
nonsplit multiplicative reduction for E;

(2) E(Qp)[p] = 0,

but does not require the E to be semistable. These additional hypotheses arise from (ii), (iii),
and (iv) in Theorem 1.1: (ii) has its origin in [Wan20, CLW22], where it is used to overcome
some technicality at 2, while (iii) mostly arises from [Hsi14]; both hypotheses should have been
included in [Cas18, Thm. 4.4]—they are not intrinsically needed for the argument presented
here, but rather inherited from (the final versions of) the results quoted in loc. cit. (and here).
On the other hand, the new hypothesis (2) will be forced on us to show that the Selmer groups
SelΣp (K∞, Af ) behave well under congruences.

Remark. Using Tate’s p-adic uniformization, it is easy to see that (2) is equivalent to condition
(b) in [SZ14, Thm. 1.1] when E has split multiplicative reduction at p (i.e. the condition that
p - ordp(qE) and logp(qE) ∈ pZ×p , where qE ∈ Q×p is the Tate period of E/Qp).

2. Proof of Theorem 1.1

We refer to [Cas18] for any unexplained notation. Fix an embedding of ıp : Q ↪→ Qp, and
let g ∈ Sk(Γ0(M)) be a p-ordinary newform of even weight k ≥ 2 and level M ≥ 3 with p -M
defined over O, the ring of integers of a finite extension of Qp. Let

ρ̄g : GQ → GL2(O/($))

be the associated (semi-simple) residual Galois representation, where $ ∈ O is a uniformizing
parameter. Let Vg be the self-dual Tate twist of the Galois representation associated to g by
Deligne, let Tg ⊂ Vg be the GQ-stable O-lattice in [Nek92, §3], and put Ag := Vg/Tg.

Let K be an imaginary quadratic field in which p = pp splits, with p the prime of K above
p induced by ıp. Similarly as in [Cas18, §2.1], put ΛO = O[[Γ]] and

Mg := Tg ⊗O Λ∗O ,

where GK acts on Λ∗O via Ψ−1. For any finite set Σ of primes v - p of K, and for m ≥ 1, set

SelΣp (K,Mg[$m]) := ker

{
H1(K,Mg[pm])→ H1(Kp,Mg[$m])×

∏
w-p
w/∈Σ

H1(Kw,Mg[$m])

}
,

dropping Σ from the notation when Σ = ∅. On the other hand, define SelΣp (K,Mg) following
[Cas18, Def. 2.2].

Lemma 2.1. Suppose Σ contains all primes v - p where Tg is ramified, ρ̄g|GK
is irreducible,

and H0(Kp, Ag[$]) = 0. Then the inclusion Mg[$m] ⊂Mg induces an isomorphism

SelΣp (K,Mg[$m]) ' SelΣp (K,Mg)[$m].

Proof. Let Sp be the set of primes of K above p, put S = Σ∪Sp, and denote by GK,S the Galois
group of the maximal algebraic extension of K unramified outside S. By our assumption on Σ,
the Selmer groups SelΣp (K,Mg) and SelΣp (K,Mf [$m]) are submodules of H1(GK,S ,Mg) and

H1(GK,S ,Mg[$m]), respectively. Since H0(K,Mg) = H0(K∞, Ag) = 0 by Shapiro’s lemma
and the irreducibility of ρ̄g|GK

, the inclusion Mg[$m]→Mg induces an isomorphism

H1(GK,S ,Mg[$m]) ' H1(GK,S ,Mg)[$m].

By definition, under the above identification SelΣp (K,Mg)[$m] is the kernel of the composite
map

H1(GK,S ,Mg[pm])→ H1(Kp,Mg[$m])→ H1(Kp,Mg)[$m].

Since the kernel of the second arrow is given by H0(Kp,Mg)/$mH0(Kp,Mg) and this vanishes
when so does H0(Kp, Ag[$]), the proof concludes. �
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Write XΣ
ac(Ag) = SelΣp (K,Mg)∗ for the Pontryagin dual of SelΣp (K,Mg).

Lemma 2.2. Suppose Xac(Ag) is ΛO-torsion. Then for any finite set Σ of primes v - p of K,

SelΣp (K,Mg) has no proper finite index ΛO-submodules.

Proof. This is a special case of Greenberg’s general results [Gre16]. For Σ = ∅, the details are
given in [HL19, Lem. 3.12], and the case of arbitrary Σ follows as in [Ski16, Prop. 2.3.3(ii)]. �

Suppose now that in addition K satisfies the following Heegner hypothesis:

there exists an ideal M ⊂ OK with OK/M ' Z/MZ.

Let π(g) = ⊗vπ(g)v be the cuspidal automorphic representation of GL2(A) generated by g,
and put ΛOur = ΛR0 ⊗Zp O.

The key result we need is the following higher weight extension of [Cas18, Thm. 4.1].

Theorem 2.3. Let g ∈ Sk(Γ0(M)) be a p-ordinary newform of weight k ≥ 2 and level M ≥ 3
with p -M . Assume that:

(i) ρ̄g|GK
is irreducible.

(ii) If 2 is nonsplit in K, then 2‖M .
(iii) There is a prime q‖M which is nonsplit in K.
(iv) If `‖M is nonsplit in K, then the local component π(f)` is the special representation

twisted by the unramified character sending ` 7→ −`k/2−1.

If Σ is any finite set of primes v - p of K, then XΣ
ac(Ag) is ΛO-torsion, and

ChΛO
(XΣ

ac(Ag))ΛOur =
(
LΣ
p (g)

)
,

where LΣ
p (g) is as in [Cas18, (5.1)].

Proof. The argument goes along the same lines as the proof of [Cas18, Thm. 4.1] (contained in
[Cas17] and [Wan21]) in the weight 2 case. Let zg,c ∈ Sel(Hc, Tg) be the system of generalized
Heegner classes defined in [CH18, (4.7)] (taking χ = 1 in loc. cit.), where c runs over the
positive integers prime to M , and Hc is the ring class field of K of conductor c. Put

Tg := Tg ⊗O ΛO ,

where GK acts on ΛO through Ψ, and let κg,∞ ∈ H1(K,Tg) be the Heegner class constructed
in [CH18, §5.2] from the classes zg,pm for varying m ≥ 0. By [LV19, Thm. 4.7], there is a
Kolyvagin system

(2.1) κHg
g = {κHg

g,n}n∈N ∈ KS(Tg,FΛ,L)

for the Selmer structure FΛ in [op. cit., §3.3], where L is a certain set of primes inert in K (see
[LV19, §4.1]), and N is the set of squarefree products of primes ` ∈ L. In the same way as in

[CGLS22, Rem. 4.1.3], we see that κHg
g,1 agrees with κg,∞ up to a p-adic unit. Since κg,∞ is not

ΛO -torsion by [CH18, Thm. 6.1], the Kolyvagin system (2.1) is non-trivial, and so by [CGS23,
Thm. 5.5.1] the modules Xord(Ag) := H1

FΛ
(K,Mg)∗ and H1

FΛ
(K,Tg) both have ΛO -rank one,

and we have the divisibility

(2.2) ChΛO
(Xord(Ag)tors) ⊃ ChΛO

(
H1
FΛ

(K,Tg)/ΛOκg,∞
)2
,

where the subscript tors denotes the maximal ΛO -torsion submodule. The divisibility directly
obtained in loc. cit. is up to powers of p, an ambiguity that can be removed if the constants
C1 and C2 defined as in [CGLS22, §3.3.1] can both be taken to be zero. As noted in [loc. cit.,
Rem. 3.3.5], the irreducibility of ρ̄g implies that C2 = 0. On the other hand, C1 is a p-power
exponent sufficient to annihilate the kernel of the restriction map in the proof of [CGLS22,
Prop. 3,3,6], and it follows from [Cha05, Thm. 2] (see also [MN19, (0.9)]) that under hypothesis
(i) one may take C2 = 0. Thus the divisibility (2.2) holds in ΛO . Using the explicit reciprocity
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law for κg,∞ in [CH18, Thm. 5.7], the same global duality argument as in [BCK21, Thm. 5.2]
shows that the module Xac(Ag) is ΛO -torsion, and that (2.2) implies the divisibility

(2.3) ChΛO
(Xac(Ag))ΛOur ⊃

(
Lp(g)

)
in ΛOur .

Conversely, let Λ̃O = O[[Gal(K̃∞/K)]] be the Iwasawa algebra for the Z2
p-extension K̃∞/K,

and put Λ̃Our := Λ̃O⊗̂ZpR0. For any finite set Σ of primes of K away from p, let XΣ
K(Ag)

denote the Σ-imprimitive Selmer group defined as in [Cas18, §2.1] with K̃∞ in place of K∞,
omitting Σ from the notation if Σ = ∅. By [FW21, Thm. 4.41], we then have the divisibility

(2.4) Ch
Λ̃O

(XK(Ag))Λ̃Our ⊂
(
LGr
p (g)

)
in Λ̃Our , where LGr

p (g) is a certain two-variable p-adic L-function deduced from [EW16]. (Note
that the proof of this integral divisibility uses the µ = 0 result of [Hsi14, Thm. B].) By [FO12,
Cor. 7.2.1], LGr

p (g) agrees (up to a unit) with the product of a two-variable Hida p-adic Rankin
L-series, an anticyclotomic Katz p-adic L-function, and the class number of K. As a result,

by the same calculation as in [CGS23, Prop. 1.4.5], letting LGr,Σ
p (g)ac denote the image of the

Σ-imprimitive LGr,Σ
p (g) (defined in the same manner as in [Cas18, (3.1)]) under the natural

projection Λ̃O → ΛO , we have
LGr,Σ
p (g)ac = LΣ

p (g)

up to a p-adic unit. Taking a Σ that contains all primes dividing M , by [JSW17, Cor. 3.4.2]
it follows that (2.4) yields the divisibility

(2.5) ChΛO
(XΣ

ac(Ag))ΛOur ⊂
(
LΣ
p (g)

)
in ΛOur . Since we have seen that XΣ

ac(Ag) is ΛO -torsion, by the same argument as in [JSW17,
Thn. 6.1.6] the divisibility (2.5) for Σ containing all the bad primes implies the same divisibility
for any Σ. Together with (2.3), this concludes the proof. �

Proof of Theorem 1.1. The result can now be deduced following the approach in [Ski16, §3.1].
Put M = N if p - N , and M = N/p if p‖N . As in the proof of Theorem 2.3, it suffices to
prove the result for XΣ

ac(E[p∞]) and LΣ
p (f) for Σ a finite set of primes v - p of K containing

the primes dividing M . We claim that, after possibly enlarging O, for each m ≥ 1 there exists

(a) a p-ordinary newform gm ∈ Skm(Γ0(M)) defined over O of weight km > 2 with km ≡ 2
(mod p− 1);

(b) a GQ-stable lattice Tgm ⊂ Vgm and an isomorphism Tgm/p
mTgm ' T/pmT as O[GQ]-

modules;
(c) an equality (LΣ

p (gm), pm) = (LΣ
p (f), pm) ⊂ ΛOur .

Indeed, (a) and (b) follow from Hida theory (see the discussion in [Ski16, §2.6]), and (c) follows
from [Cas20, Thm. 2.11]. By Theorem 2.31, the module XΣ

ac(Agm) is ΛO -torsion, with

ChΛO
(XΣ

ac(Agm))ΛOur = (LΣ
p (gm)).

Moreover, by Lemma 2.2 we know that ChΛO
(XΣ

ac(Agm)) = FittΛO

(
XΣ

ac(Agm)
)
, and so from

(b), Lemma 2.1, and basic properties of Fitting ideals we deduce the equality

(FittΛO
(XΣ

ac(E[p∞])), pm)ΛOur = (LΣ
p (f), pm).

From this, the argument in [Ski16, p. 192] applies verbatim, using the nonvanishing of Lp(f)
that follows from the work of Cornut–Vatsal [CV07] and the explicit reciprocity law in [Cas20,
Thm. 5.3] specialized to f (see also [BCK21, Cor. 4.5]). �

1Note that the hypothesis that ρ̄gm ' E[p] is irreducible as a GQ-module and ramified at some prime q‖N
nonsplit in K implies that ρ̄gm |GK is irreducible, see [Ski20, Lem. 2.8.1]. Moreover, by “rigidity of automorphic
types” [FO12, Lem. 2.14], condition (iii) in Theorem 1.1 implies conditions (iii) and (iv) in Theorem 2.3.



ERRATUM 5

References

[BCK21] Ashay Burungale, Francesc Castella, and Chan-Ho Kim, A proof of Perrin-Riou’s Heegner point
main conjecture, Algebra Number Theory 15 (2021), no. 7, 1627–1653.

[Cas17] Francesc Castella, p-adic heights of Heegner points and Beilinson-Flach classes, J. Lond. Math. Soc.
(2) 96 (2017), no. 1, 156–180.

[Cas18] , On the p-part of the Birch-Swinnerton-Dyer formula for multiplicative primes, Camb. J.
Math. 6 (2018), no. 1, 1–23.

[Cas20] , On the p-adic variation of Heegner points, J. Inst. Math. Jussieu 19 (2020), no. 6, 2127–
2164.

[CGLS22] Francesc Castella, Giada Grossi, Jaehoon Lee, and Christopher Skinner, On the anticyclotomic
Iwasawa theory of rational elliptic curves at Eisenstein primes, Invent. Math. 227 (2022), no. 2,
517–580.

[CGS23] Francesc Castella, Giada Grossi, and Christopher Skinner, Mazur’s main conjecture at Eisenstein
primes, preprint, arXiv:2303.04373.

[CH18] Francesc Castella and Ming-Lun Hsieh, Heegner cycles and p-adic L-functions, Math. Ann. 370
(2018), no. 1-2, 567–628.

[Cha05] Byungchul Cha, Vanishing of some cohomology groups and bounds for the Shafarevich-Tate groups
of elliptic curves, J. Number Theory 111 (2005), no. 1, 154–178.

[CLW22] Francesc Castella, Zheng Liu, and Xin Wan, Iwasawa-Greenberg main conjecture for nonordinary
modular forms and Eisenstein congruences on GU(3,1), Forum Math. Sigma 10 (2022), Paper No.
e110, 90.

[CV07] Christophe Cornut and Vinayak Vatsal, Nontriviality of Rankin-Selberg L-functions and CM points,
L-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge
Univ. Press, Cambridge, 2007, pp. 121–186.

[EW16] Ellen Eischen and Xin Wan, p-adic Eisenstein series and L-functions of certain cusp forms on
definite unitary groups, J. Inst. Math. Jussieu 15 (2016), no. 3, 471–510.

[FO12] Olivier Fouquet and Tadashi Ochiai, Control theorems for Selmer groups of nearly ordinary defor-
mations, J. Reine Angew. Math. 666 (2012), 163–187.

[FW21] Olivier Fouquet and Xin Wan, The Iwasawa Main Conjecture for universal families of modular
forms, preprint, arXiv:2107.13726.

[Gre16] Ralph Greenberg, On the structure of Selmer groups, Elliptic curves, modular forms and Iwasawa
theory, Springer Proc. Math. Stat., vol. 188, Springer, Cham, 2016, pp. 225–252.

[HL19] Jeffrey Hatley and Antonio Lei, Comparing anticyclotomic Selmer groups of positive coranks for
congruent modular forms, Math. Res. Lett. 26 (2019), no. 4, 1115–1144.

[Hsi14] Ming-Lun Hsieh, Special values of anticyclotomic Rankin-Selberg L-functions, Doc. Math. 19 (2014),
709–767. MR 3247801

[JSW17] Dimitar Jetchev, Christopher Skinner, and Xin Wan, The Birch and Swinnerton-Dyer formula for
elliptic curves of analytic rank one, Camb. J. Math., to appear (2017).

[LV19] Matteo Longo and Stefano Vigni, Kolyvagin systems and Iwasawa theory of generalized Heegner
cycles, Kyoto J. Math. 59 (2019), no. 3, 717–746.

[MN19] Ahmed Matar and Jan Nekovář, Kolyvagin’s result on the vanishing of III(E/K)[p∞] and its conse-
quences for anticyclotomic Iwasawa theory, J. Théor. Nombres Bordeaux 31 (2019), no. 2, 455–501.
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