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IWASAWA-GREENBERG MAIN CONJECTURE FOR NON-ORDINARY
MODULAR FORMS AND EISENSTEIN CONGRUENCES ON GU(3,1)

FRANCESC CASTELLA, ZHENG LIU, AND XIN WAN

ABSTRACT. In this paper we prove one side divisibility of the Iwasawa-Greenberg main conjecture
for Rankin-Selberg product of a weight two cusp form and an ordinary CM form of higher weight,
using congruences between Klingen Eisenstein series and cusp forms on GU(3, 1), generalizing earlier
result of the third-named author to allow non-ordinary cusp forms. The main result is a key input
in the third author’s proof for Kobayashi’s +-main conjecture for supersingular elliptic curves. The
new ingredient here is developing a semi-ordinary Hida theory along an appropriate smaller weight
space, and a study of the semi-ordinary Eisenstein family.
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1. INTRODUCTION

Let p be an odd prime number. In this paper, under some assumptions, we prove one divisibility
of a two-variable Greenberg type main conjecture for a weight 2 newform form unramified at p.
The result is a key ingredient in the third author’s proof [Wan14] of the Iwasawa Main Conjecture
for elliptic curves with supersingular reduction at p and a, = 0 formulated by Kobayashi [Kob03].

Let m be an irreducible cuspidal automorphic representation of GLa(Aq) generated by a newform
of weight 2. Associated to 7 is a continuous two-dimensional p-adic Galois representation p, of
Gal(Q/Q) over L, a finite extension of Q,, for which we can fix a Gal(Q/Q)-stable Op-lattice Tr.
(We use the geometric convention for Galois representations. The determinant of p, is egylc.)

Let K be an imaginary quadratic field in which p splits as pp. Denote by K~ the maximal abelian
pro-p extension of I unramified outside p. Then the Galois group Gal(K/K) is isomorphic to Z?,

and we denote it by I'x. We have the tautological character
‘II/C : Gal(Q/IC) — F;C — Zp[[F;C]]X.

Let £ : K*\Ag — C* be an algebraic Hecke character associated to which is a character Gal(Q/K) —
O . We denote this Galois character also by &.
We consider the Gal(Q/K)-module

Trig = Tﬂ(ezyc)’(;al@/;c) ¢ hHe Zp[[F]C]](\Illzl).
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Define the Selmer group
(1.0.1)

Selr e = ker § H' (K, Tr e @0, re] OLTk]*) — [ H' (To, Tr ke ®o, ) OLlTl”) ¢ 5
v#p
with Op[['x]* = Homgz, (OL[I'c], Qp/Zp), the Pontryagin dual of O [I'x]. (This Selmer group has
relaxed condition at p and unramified condition at p.) Let

(1.0.2) Xr k¢ = Homgz, (Selr x.¢,Qp/Zp)

which is well-known to be a finitely generated Op[I'x]-module. We recall the following definition
of characteristic ideals.

Definition 1.0.1. For a Noetherian normal domain A and a finitely generated A-module M, we
define the characteristic ideal of M as

charg(M) = {x € A:ordp(z) > length, ,(Mp) for all height one prime ideal P C A} .

The Iwasawa-Greenberg main conjectures [Gre94] predict that the characteristic ideal of X x ¢
is generated by the following p-adic L-function.

Denote by @f the completion of the maximal unramified extension of Op. It follows from the
construction in [EW16] that there is a p-adic L-function L x¢ € Frac(@f[[l“;g]]) satisfying the

interpolation property: for all algebraic Hecke characters 7 : K*\Ag — C* such that its p-adic
avatar T adic factors through I'x and &7 has oco-type (ki, ko) with ki,ke € Z, k1 <0, ko > 2 — ky,

Q 2(k2—k1) F(]Q)F(kg — 1) 3 — (kl + k.2) B
(1 0 3) £W,K,§(Tp-adic) = (S]:;) (277-2')2k2—1 “Yp < 5 ’7.(.]\)/ % (507'0),3 1)
XLt (klﬂz@_l BC(r) x sm) ,

_k1+kg
where {o70 = {7[ - [5. * and BC(m) denotes the unitary automorphic representation of GLa(Ax)
obtained as the base change of .

Remark 1.0.2. More precisely, by using the doubling method, an imprimitive p-adic L-function is
constructed in [EW16] as an element in O¥[T'k], interpolating the L-values in (1.0.3) with certain
local L-factors away from poo removed. The inverses of these local L-factors are easily seen to be
p-adically interpolated by elements in Or,[T'x]. Multiplying those local factors to the imprimitive p-
adic L-function, one obtains the complete p-adic L-function L, x ¢. Note also that the interpolation
formulas in [EW16] are completely computed for k1 = 0, and one can get the general case by using
the results on the computation of the doubling archimedean zeta integrals in [EL].

We are interested in the following (two-variable) Greenberg type main conjecture.

Conjecture 1.0.3.
charoyr, ) (Xrxe) = (Lrke):

The main result of this paper is Theorem 8.2.1, which is a partial result towards this conjecture.
Like the previous works [Urb01,Urb06,SU14, Wan20] on proving Greenberg type main conjecture for
modular forms, the proof uses the congruences between the Klingen Eisenstein series and cuspidal
holomorphic automorphic forms. The L-values in our case here are the same as those in [Wan20]
and we also use Klingen Eisenstein series on GU(3,1) as in loc.cit. The main difference is that the
modular form is not assumed to be ordinary at p, so the standard Hida theory is not applicable.
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The key idea is to introduce the notion of semi-ordinary automorphic forms on GU(3,1). In
§§2-4, we develop a Hida theory for p-adic families of (cuspidal and non-cuspidal) semi-ordinary
forms on GU(3,1) along an appropriate two-dimensional subspace of its three-dimensional weight
space. The main results are stated in Theorem 2.9.1. In §5, by using the doubling method, we
construct a Klingen Fisenstein family Eghng and prove its semi-ordinarity. In §6, we study the

degenerate Fourier-Jacobi coefficients of Egling . The analogus computations in [Wan20] assume a
sufficient ramification condition (see Definition 6.30 in op. cit) which is not available in our case
here, so we need a better way to do the computation at p by using the functional equations for
doubling zeta integrals. In §7, we study the non-degenerate Fourier—Jacobi coefficients of Eghng.
This part is very similar to [Wan20] and we cite many results there, but the presentation is slightly
rearranged. For example, the auxiliary data for constructing the Klingen Eisenstein family are
chosen at the beginning of the construction (§5.6) instead of till the end of the analysis of the
non-degenerate Fourier—Jacobi coefficients, and a explanation on the strategy for analyzing the
non-degenerate Fourier—Jacobi coefficients is included in §7.5. In §8, combining the results in §6
and §7, we deduce a result on the Klingen Eisenstein congruence ideal, and use it as an input for
the lattice construction to deduce the results on Selmer groups.

Notation. We fix a prime p > 3 and an imaginary quadratic field X in which p splits in K as pp.
Denote by Dy /q the Discriminant of £/Q and by 0k /q the different ideal of K/Q. Denote by nx/q
the quadratic character of Q*\Ag associated to K/Q. Let ¢ be the nontrivial element in Gal(/Q).
For z € K, denote by Z its image of under c. For a finite place v of Q, we put K, = K ®q Q, and
OIC,v = Ok ®z Z,.

Fix embeddings

(1.0.4) loo : K=—=0C, 1: K—Q,

such that the valuation of Q, and ¢, induce the valuation of K given by p. The embedding ¢, :
K — Q, induces a homomorphism g, : £, = K ®q Q, — Q,. We denote by g5 : K ®q Q, — Q,, the
composition of g, and the non-trivial element ¢ € Gal(C/Q). Then

(Qpa Qﬁ) K ®q Qp —> Qp X Qp, a— (Qp(a)’ Qﬁ(a))

is an isomorphism. We also fix a totally imaginary element 6 € K such that Nm(d) = §6 is a p-adic
unit.
Fix the standard additive character ea, = &), €, : Q\A — C* with

—2mi{z}o
(1035) @) ={ G LT

V=00

where {z}, is the fractional part of x.

Acknowledgments. We would like to thank Eric Urban for pointing out to us the possibility
to develop the semi-ordinary Hida theory needed in this paper. We also thank Ming-Lun Hsieh,
Kai-Wen Lan and Christopher Skinner for useful communications. During the preparation of this
paper, the first author was partially supported by the NSF grant DMS-1946136 and DMS-2101458,
the second author was partially supported by the NSF grant DMS-2001527, the third author was
partially supported by NSFC grants 11688101, 11621061 and National Key R and D Program of
China 2020YFA0712600.

2. HIDA THEORY FOR SEMI-ORDINARY FORMS ON GU(3,1)

We define semi-ordinary forms on GU(3,1) and state the control theorem for semi-ordinary
families (Theorem 2.9.1). The proof of Theorem 2.9.1 is given in the following two sections.
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2.1. Some notation. Let Lg be a free Ox-module of rank 2 with basis w1, wo, and we equip Lo®zQ

with a skew-Hermitian form (, ) L, Whose matrix with respect to the basis w, ws is given by a matrix

Co € Hera(Ox) with 6y positive definite. Let X, Y be free Ox-modules of rank 1 with bases x1,y;.

Let XV = DE}Q ‘xpand L = XV & Ly® Y. Equip L ®z Q with the skew-Hermitian form (, ),
1

whose matrix with respect to the basis x1,wy,wo,y1 is given by ¢ = Co
—1
Define the similitude unitary groups G’ = GU(2) and G = GU(3,1) (over Z)) as: for all Z-algebra
R

(2.1.1) {(9,v) € GLoxw,r(Lo ®z R) x R* : {(gu1, gua), = v (v1,v2), 1},
- GU(3,1)(R) = {(9,v) € GLoce r(L @z R) x R* : (gu1, gva), = v (v1,v2) .},

and the unitary groups U(2) (resp. U(3,1)) as the subgroup of GU(2) (resp. GU(3,1)) consisting
of elements with v = 1.

2.2. Shimura variety. We fix an open compact subgroup K ? cG (Ag f), assumed throughout to
be neat. Let 27mi(,) : L x L — Z(1) be the alternating pairing 27i - Tric/q o (, ), and h : C —
Endo,g,r(L ®z R) be the homomorphism given by

l1®u —-1®v

1®u+5®\/%

h(u + iv) : (x1,w1,w2,y1) — (X1,W1, W2, ¥1)
) b b ) b b 1®u+5® U7
VT

1®wv 1®u

Then the tuple (Ox,c, L,27i (, ), h) defines a Shimura datum of PEL type with reflex field K.
Consider the moduli problem sending every locally noetherian connected O (,)-scheme S to the
set of isomorphism classes of tuples (A, A, i, aP) with:

A an abelian scheme of relative dimension 4 over S

A:A— AV a Z(Xp)—polarization;

i : Ox < EndgA an embedding such that the induced Ox-action on Lie A5 satisfies the deter-
minant condition defined by h, i.e.,

det (X —i(b)| Lie A/g) = (X — b)*(X —b)

for all b € Ok (where on the right-hand side b is viewed as an element in &g under the morphism
Ok — O5s);

aP an (integral) K?—level structure on (4, \, 1) of type <L ® z(p),Tr,C/Q o(, >L>; that is, a K?—

orbit of Ox-module isomorphisms LRZ® — 7P Az, where TP) A is the prime-to-p Tate module
of Ag, together with an isomorphism Z®) (1) 5 Gyn,s making the following diagram commute:

~ ~ Tr o, ~
(L®Z®P) x (LeZ®) Mz(p)(l)

| |

TW A, x TW) 4, —2Weil Gumss.

(See [Lanl3, Def. 1.4.1.4].)

Since K ]’c’ is neat, the above moduli problem is represented by a smooth quasi-projective scheme

& over O (p) (see [Lanl3, Thm. 1.4.1.2, Cor. 7.2.3.10]).
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Denote by ' the toroidal compactification of .7, which is a proper smooth scheme over
Ok, (p) containing .’ as an open dense subscheme with complement being a relative Cartier divisor
with normal crossings. (In our special case GU(3,1) here, there is a unique choice of polyhedral
cone decomposition for the toroidal compactification.) We denote by Z tor the ideal sheaf of the
boundary of .#''. By [Lan13, Thm. 6.4.1.1], the universal family (<, \,i,aP) over . extends
to a degenerating family (4, \,i,aP) over .#*r. Moreover, the base change of .7 (resp. .7*") to
K agrees with the Shimura variety over K (resp. its toroidal compactification) representing the
moduli problem with full level structure at p (see [Lanl5, (A.4.17), (A.4.18)]).

2.3. Hasse invariant. Set w := e*Qé J tor where e : .7 — & is the zero section of the semi-
abelian scheme ¢ over .7'°F. Let w be the line bundle det w = A*Pw. The minimal compactification

of .7 is defined by
o @)

k>0

Let 7 : .#%" — ™t he the canonical projection. The push-forward m,w is an ample line bundle,
and m*m.w = w (see [Lanl3, Thm. 7.2.4.1]).

In the following, with a slight abuse of notation, we also denote by .#*" and .#™®" their base
change to Z,, via the map Ok ,) — Z, induced by our fixed embedding ¢, and let Y/tor and . /Iﬁm
be their corresponding special fibers.

Let Ha € H° (y/tl‘:’r,wp 1) be the Hasse invariant defined as in [Lan18, §6.3.1]. In particular, for
each geometric point § of Y/mr the Hasse invariant of the corresponding semi-abelian scheme %5
is nonzero if and only if the abelian part of % is ordinary. Because 7w is ample, for some tg > 0,
there exists an element in H° (™ (r,w)t#(P=1) lifting the ¢ p(p—1)-th power of the push-forward
of Ha; we denote by FE the pullback under 7 of any such lift, which (because m*m.w = w) defines
an element £ € HY (Ytor,th(p_l)).

2.4. Some groups. Before moving on, we need to introduce some more group-theoretic notations.
Given a matrix a € GLy(K ®q Q,), we define a™,a™ € GL4(Q,) as
+ = Qp(a)v CL_ = ‘Qﬁ(a)7

where gy, 05 1 K ®q Qp are defined as in Notation, and we view an element g € G(Q,) as a
matrix inside GL4(K ®qQ,) via the basis (x1, w1, w2, y1). Then the corresponding matrices g, g~ €
GL4(Qp) satisfy

97 e(O) g =v(9) - p(C).
In the following, we will often write g € G(Q,) as (g7, ¢ ) Note that the map

G(Qp) = GL4(Qp) X

(2.4.1) 0o (g% 0o ))

is an isomorphism.
There is a filtration D = {D'}; of L ®z Z,, given by

(2.4.2) p'=0c =X @eL{,eX, C D—1:L®Zzp,

where XI‘," CXV®zZ,=X®zZ, (resp. X, CX®zZp, Ly, C Lo®zZ, ) is the subspace on which
b € Ok acts by 1,(b) (resp. (D), tp(D)). Note that D is 1sotrop1c with respect to Trx)qo (, ). For
R =27, or Qp,, we put
Py(R) = {g € G(R) : g(0°) =D"};
6



e., Po(R) is the subgroup of G(R) stabilizing the filtration D in (2.4.2). We see that Pi(R) :=
{g™: g € Py(R)} are the subgroups of GL4(R) given by

n * ok ok ok * ok ok ok
pr=d(iin) e m=q( i)
* * ko k

Because P preserves both X\ @ Lafp and X, there is a natural projection Pp(R) — GL3(R) X
GL;(R) which in terms of matrices is given by

b11 b1z b13 b1g
a11 a1z a3 aiq
I e a21 a22 a23 a4 bao ba3 bag a1l ai2 a13
9=("97)= (( ) ) ( boa boa bos | | (G20 622628 ) bun )
a4

bao a43 bag

We will consider the p-level subgroups given by
Ky i= {9 €G(Zy): 9" = <”* "

Kp, = {g €G(Zy): gt = <”* 1

where n is a positive integer.

T ET
N———

=

o

(oW

=

3
——

2.5. Igusa towers. Let .7, be the ordinary locus of level K}, attached to the filtration D in
(2.4.2) and the PEL type Shimura data introduced in §2.2, constructed in [Lan18, Theorem 3.4.2.5].
By [Lanl8, Prop. 3.4.6.3], .7, is a smooth quasi-projective scheme over Z, representing a moduli
problem for tuples (4, A, i, a”, o), where (A4, A, i, aP) is as in §2.2, and «,, is an ordinary K;m—level
structure of A, i.e., a K;vn—orbit of group scheme embeddings p,» ®D° < A[p"] with image isotropic
for the A\-Weil pairing, compatible with the Ox-actions on D and A[p"] through i, as described
in [HLTT16, §3.1.1].

Remark 2.5.1. In [Lan18, Chapter 3|, the ordinary locus is defined as a normalization of the naive
moduli problem introduced in [loc. cit., Def. 3.4.1.1]. In our case, because p is a good prime in the
sense of [Lan18, Def. 1.1.1.6] and v (K, ! n) = Z), this construction of the ordinary locus agrees with
the moduli problem. (See [HLTT16, B. 10] for more details).

Let 71" be the partial toroidal compactification of the ordinary locus .7, ( [Lan18, Thm. 5.2.1.1]);
it is obtained by gluing to .7, the toroidal boundary charts parameterizing degenerating families
defined in [Lan18, Def. 3.4.2.0] (including an extensibility condition on the ordinary level structure).
We note that, even though the generic fibre of .7, agrees with the Shimura variety of level K J’c’K !
over Qy, the generic fibre of 7" is in general just an open subscheme of a toroidal compactification
of the Shimura variety of level K7k, over Q.

Let /%0 (resp. .Zp") be the base change of .7,°" (resp. *') to Z/p™Z. By [Lanls,
Lem. 6.3.2.7], '[1/E] agrees with the ordinary locus in [Lanl8, Thm. 5.2.1.1] for full level
at p, and by [Lan18, Cor. 5.2.2.3] the map 7,'%% — .7%*[1/E] that forgets the ordinary K -level
structure is finite étale. Concretely, we can describe ﬂnt% as

(2.5.1) Tsom ey (1 @ 00,9 1p")™) /K, 0 P (Z,),

where Pp(Zp) acts on an element oy € Isom yorpy /) (hpn @ DO, Z[p"™) by (g - ap)(v) = (g~ 0)
for v € D', The fiber at a geometric point 5 € 7" parameterizes tuples (F*, 85, 6, ,F{ [p]), where
F* are filtrations

Ft.0= F+ C F+ C Ff = G- [pn]mult—i-

F :0=F, CF =%[p"]™""
7
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compatible with the Weil pairing; 5; and ¢; are isomorphisms
~ + — ~ -
5;3Np”:Gr§ ’ Op ¢ ppn = GrY
and F{ [p] is a two-step filtration of Fj [p].
2.6. p-adic forms forms. Define the space of mod p™ automorphic forms on G of level n by

Vo i= H (755, O30y )

n,m?

Letting Zgtor = (/o — L [1/E])*Lytor, we similarly define the space of mod p™ cuspidal
automorphic forms on G of level n by

Vo= HO (705, Ty )

Passing to the limit, we obtain corresponding spaces of p-adic automorphic forms (with p-power
torsion coefficients) by

V=l lig Vi, 90 = limlim V7,

1
Let Ty(Zp) = Z5 x ZF. The map sending (a1, az) to g € G(Z,) with g* = ( Y ) and
—1

aa
v(g) = 1 identifies Tyo(Z/p™) = (Z/p"Z)* x (Z/p"Z)* with K;},O/K;,n' Hence the group Ty (Z))
v, Y making these spaces into Z,[Tx(Z,)]-modules.
By a p-adic weight (for a semi-ordinary form) we mean a Gp—valued character of Ty, (Z,), i.e., a

naturally acts on V;, ,,, V,ﬂm,
pair (7F,77), where 7% : VANESS 6; are continuous characters, and we say that a p-adic weight is

arithmetic if it is of the form (z,y) — et (z)a'" - e~ (y)y' , where e* is of finite order and t* € Z. If
(7, 77) is arithmetic, we put 77~ := €= and Tolg = t*. Given a p-adic weight (7F,77), we denote
by Vpm|7T, 7] the subspace of V,, , ®z, Oq,(r+-) on which Tso(Zp) acts by the inverse of the

character (7+,77). Similarly, we define the eigenspaces V) [7+, 7], ¥[rF,77], 0@, 77].

2.7. Classical automorphic forms. The weights of classical holomorphic automorphic forms on
G are indexed by tuples of integers t = (¢}, t;,t;; t7) with ¢ >t > t;{. (When t; > —t; +4,
the archimedean component of the corresponding automorphic representation is isomorphic to a

holomorphic discrete series.)
Let W; be the algebraic representation of GL3 x GL; given by

Wei= Wi agan W
Here, for any algebra R, letting R[z, det z71] be the polynomial ring in the variables z;; (1 <1,j <
3) and (det(xi]‘)lgi,jgg)_l, W(t1+ o t;)(R) is the R-submodule of R[z, (detz)~!] spanned by
b b b r11 T2 T &
1 2 3 11 12 13
riiz 3213 det I 12) - gep (P10 1) gep (P12 P13 et Tol Toa T93 ,
T21 22 T21 23 T2 T23
L31 T32 33
where a;,b; > 0, a1 +as + a3z = tf — t;, b1+ b+ b3 = t; — tgr, and Wt; (R) is the R-submodule of
R[z,27!] spanned by z's .
The groups GL3 and GL; act on W; by right translation. One can check that the left translation
T
of (a*l az ) on Wi+ 1+ 4+ is by the scalar ail a? a?f’ ; when R = C, it is the irreducible algebraic
* % ag 129"3

representation of GL3(C) of highest weight (t],t3,t5). Let ecan : Wy — Al be the linear functional
defined by the evaluation at (13,11).
8



Let w' (resp. w™) be the subsheaf of w on which i(b) acts by b (resp. b) for all b € Ox. Because
p is unramified in K, w* (resp. w™) is locally free of rank 3 (resp. rank 1) and w = wt G w™.
Set

wh @3 4y GL
it ap gy = Bomreor (O o @) X0 Wit o s
Wt— = Isﬂytor (Oytor, ) « GL1 W ( )®t1 ’
1
and put w; = w Dw
PUREL = %t ag )
Letting F'/Q, be a ﬁmte extension containing the values of e*, and S;‘(’}; 4«1 be the toroidal

Bpm
compactification of the Shimura variety of level K ?Kg,n defined over K, we have

. W(o,o;t+;r)) ®K F) [, e,

M(O,O,t"';t‘) (KJIzK;nv ) _;F) (HO(SKf

which is the space of classical automorphic forms on G of weight (0,0,¢%;¢7), level K% K;n, nd
nebentypus (e1, e for the action of Kgn / K]}m. Here F is viewed as a K-algebra via K -5 Qp — F.
Similarly, we have the space of classical cuspidal automorphic forms

Mot imy (KPEp €565 F) = (HO(Si iy wiormy © T ) @ F ) [€5,€7).
There are classical embeddings

H° (ytorag(o,o,ﬁ;t*)) — limlim V;, pn[tF, 7],
(2.7.1) ol men .
H («7 7 W00+ ®Iytor> — H%nli%vn,m[tﬁt_]-

induced by the trivialization of w over the Igusa tower and the canonical functional ec,,. More
precisely, the trivialization of w arises from the the Hodge-Tate map (G /S[p"]m““)D ®z O3 =
e*Qé /s ®z Z/p"Z, where Q?S is an ordinary semi-abelian variety over S, the superscript © denotes
the Cartier dual, and e : S — G is the zero section.

Similarly, we have embeddings

M(O,O,fr;t*) (KfK;n7 ’ 7; F) — (I&nhgl Vn;m ®Zp F) [(t+7 6+), (ti, 67)],
(2.7.2) mon
M(OO,O,ﬁ-;t—) (KpKém € F) — (Lmhgv,?m ®z, F) (1, eN), (t,€)].

2.8. The Up-operator. Given a tuple (A A, i, 0P, op) parameterized by 7, p,, where oy : pipn ®
DY — A[p"]m‘llt is an isomorphism up to K}, N Py(Z,), the corresponding filtration F= of A[p™]™uit=
is

Fr: Fi ={el,ed} CFJ ={e],eq,e5} =can™ CF] = {ef,eq,ed,el},

F : Ff ={ej}=can” CF, ={ej,e5} CF, ={e],e5,€5,¢,},

+ o+ .- + ot
where (e],e5,e3;€e7) = op(x],w],wy ,X1 ).
Now we define three U,-operators U 2 U



2.8.1. Up-operators on V. For j = 2,3, let €'t denote the solution to the moduli problem

‘77n’m
classifying tuples (A, X\, 7,0P, oy, C) with C C A[p?] a Lagrange subgroup (i.e., maximal isotropic

for the \-Weil pairing) stable under the Ok-action through i such that Afp] = C[p] & Fj [p]. With

ef, eQi, egf, eff a basis of A[p"] as above, such a C' is spanned by (ef, eét, e3i, ejf) -p”’yép, where for

J=2

1 U] * 1
1 wuy = 1
+ _ 2
7071) - 1 1 ’
P
1 1
(2.8.1) 1 8 N
- T -
Yop = tp(Co) ™ —us 1wy Y tp(Co)
1 P 1
! »
with uq, u2,* € Z,, and for j = 3,
1
1 * 1 1 * P .
1 * 1 1 * posrt
o — P
(2.8.2) Yop 1 1 . Yep 1 ]%
1
1 , ! »
with * € Z,.
Similarly, let %11,;,771 be the moduli space classifying tuples (4, A, i, o, a,, C) with C C Ap?] a

Lagrange subgroup stable under the O-action through ¢ such that A[p] = C[p| ®F; [p]. Then such
a C' is spanned by (ef, ezi, eét, eff) -p”’ygp with

1
p 1 1

=

1 _
(2.8.3) 7g,p = s Yop = 1

—

— % % %
S

— % % %
|

1
P2

For (e,j) = (+,2),(+,3),(—, 1), we consider the diagram

le
(2.8.4) G

N
Tnm

Tnm

with pq, p2 the projections given by

1 (AN 0,0P ap,C) = (AN 0,0P, ap), P2 (AN 4,0P, ap, C) — (AN, (ap)',a;),
10



where A’ = A/C, X is such that 7¥ o A o7 = p?\ with 7 : A — A’ the natural projection i’ is the

Ofx-action i on A descended to A', (a?)’ = 7o a?, and aj, given by (ef’,e5’ ed’;e7’) defined as

1 u 1
_ 1 .
W((ef76;a€;;61)< 17112 >< p_l 1))7 .:+a]:2,
1 p-

1
/ / / + ot ot 1 _ .
(ef ed’ es’sel’) = W<(€1762763a61)< 1p1>>> o=+,7=3,

p—l
+ o -1 i
7r<el,e;,e§f,el)( p - )), e=— j=1.
( 1

One can check that if (ef, e, ed;e) is up to K}, N Py(Zp), then (ef’,ed’, e5’sel’) is well-defined
up to K, N P(Zp).
Define

(2.85) Uf: HY (T, Oz,) 5 HO(%+

J,m,m’

0z.) Y B 0 O ), (G =2,3)

(2.8.6) Usy: H T, O ) 22 HOE 0 O ) il HY (T, O ).

D, ,n,m?

The normalization factors p~/ and p~3 are the inverse of the pure inseparability degree of the

corresponding projection p;; they are the optimal normalization to preserve integrality [Hid02, p.71].
By computing the effect of (2.8.5) and (2.8.6) on Fourier—Jacobi expansions, one can check that
the operators preserve V,, ,,, and V,gm

2.8.2. Up-operators on H° <90;§fr,wt).

Let Znm 0:tor he the quotient of Fior by K., which can be described as

Isom grior(y (Mp" © D', g[ﬁ"]““) /Ky

Compared to 7' the level structure at p for %[),;%or forgets 5§L ,6; and parameterizes (F£, F{ [p]).

n,m?

We can define Up-operators on H 0 %Ont@or, L)- In order to see that they increase the level, we

)}

N Py(Z,), i.e. the cor-

oo] mult

need to introduce Igusa towers of more general level structure at p.
Given ni,no < ng < nj + no, define the level group

* * *
0 = R A
Kp,nhnz,na’ - {g € G(Zp) g = <p"1* Pk ok

p”S * pn3 * p”2 *

* % X %

Define 790

1 namsm s the quotient of 7, ;,,, n > ny,ng, n3, by K

p ni,n2z,n3
responding level structure at p parameterizes isomorphism o, : pyn ® D’ — Alp
K? N Po(Zy).

p,n1,n2,n3

Like above for (e,j) = (+,2),(+,3),(—, 1), let ‘KJO,‘” na.ns.m P€ the moduli space parameterizing
tuples (A, A, i, aP, a;, C) with C C A[p?] a Lagrange subgroup stable under the Og-action through
i such that Afp] = C[p] ® F}.

Consider the diagrams

up to

0+
2,n1,n2,n3,Mm

/ \
g0 F9

ni,n2,n3,m ni1+1,n2,n3+1,m
11



3 n1,n2,n37

N

ni,n2,n3,m nl,n2+1 n3+1,m

0_
1 N1,N2,M3,m

NN

ni,n2,n3,m nl,n2+1 n3+1,m

where pi, po are defined in the same way as in the diagram (2.8.4). This time for (e],e5,ed;,e7)
up to Kgm nams (1 Pp(Zp), the (ef’,eq’ ed’; e1’) is well defined up to K b1t Lngmstl () PD(Zp) in
case Gyt nme and well defined up to KD i mat1mst1 N Po(Zy) in case ‘537 and case ‘Klonl nonsm

In order to define the U,-operators on the global sections of vector bundles we also need maps
0 0
tH (Cgl n1+1 ng,ng—i—l,m?p;wE) — H (Cgl n1,n2,n3,m7p>{w£>

0 0 *
tH ((gl ni,na+1,n3+1, m7p2wt> > H (%1 nl,ng,ng,m7p1w§> :

Suppose that g4 (resp. €4/¢) is a basis of wy (resp. wy /) compatible with a;, (vesp. aj,). We
have €4 = (T"w4/¢)g with

( l1
h p1 n, o=+, j =2,
p1
1
9= h( 11 1>h/’ o=+,7=3,
pt .
h p~ p1 h/7 * — _7j: 17

1

* px pTx

for some h, h' = <: o > € GL4(Z,). In all the cases, g~! belongs to the semi-group

*

A, = {(h (‘“ as QS) h’,a4> b = ( i ]’3) € GL3(Z,), a7 'as, ay'as € zp} .

We make A, act on Wy by

al / p Up(al) (o) ail / —v (a4)y
. — —vp(a P
(h( a2a3>h’7a4) q(&ay)_q p- P2 :Uh( a2a3>h7a4p )

p~vp(as) o
and define 7* as
7'('*]?(14, >‘7 ia ap’ apa Ca §A) = f(Aa >\a ia apv apa 07 §A7 (W*gA/C)g) = g_l : f(Aa )‘7 i? apa apa 07 §A/C)-

The Up-operators are defined as

+ 0 0 *Trp; 0/ 50

Up, (gnl-!—l ng,n3+1, m:wt) — H ((g ,n1,n2,m3, m7p2wt) *) H ((g ,n1,m2,n3, mvplwt) ~—°_> H (ynl,ng,ng,mvwﬁ)v
+ . 170 0 0 0 * —3Trpy 0 0

UP’S : (%17n2+1,n3+1,m7 wt) — H (( 3 nlynz’nsﬁm’p”‘)t) H (%3 nl,n‘z,nsym?plwt) H (ynl,n%nsﬂm wi)?
- . 0 0 0 * 0 * TrPl 0

Up,l :H (%1,n2+1,n3+1,m7wt) — H (Cgl nl,nz,ng,m7p2wt) H (Cgl nl,ng,ng,mvplwt) H (ynl ng,n3, mth)

12



Similarly as Vj,,n, one can check that these U,-operators preserve the spaces H 0 (%(),;Zor,wg
and H° (%O,;fzor,w£®l'%?%,r). It is also easy to see that U;2U;3U1;1 maps H° (%Q%Or,wi) (resp.
HY (%%‘”,%@Iﬂﬁr)) into H° (*Zloitﬁl;mwt> (resp. H° (%Off%,wt ®Iy£ffrm>), i.e. the oper-

+ 77+ 77—
ator Up,QUpBUp,l increases the level.

2.8.3. Adelic. If we identify G(Q,) with GL4(Q,) x GL1(Q,) via (2.4.1), the Up,-operators defined
above acting on classical automorphic forms on G of weight (tf,t; .t;;tl_) corresponds to the
following adelic operators (up to the action of the center of G(Q))):

U, plh 8 45-t)+200,(1,1,0:0)) / R<u <pp1 )1> du;
" N(Zy) !

— p
(2.8.7) Ups : ple 8 4 )“967(1’1’1;0»/ R <u< "p > ,1> du;
N(Zp) 1

1
Uyp: plUE =6 +200(000:-1) / R <u< L )1) du;
N(Zp) p!

1 % % %
where N(Z,) = { ( Lx I) € GL4(Zp)}, R(—) denotes the right translation, and 2p. = (2,0, —2;0)
1
is the sum of the compact positive roots of G.

2.9. Statement of main theorem. Let Tj,(Z,)° be the connected component of Ty,(Z,) contain-
ing 1o, i.e., Tso(1 + pZ,), and put Ago = Z,[Ts0(Zp)°].
Theorem 2.9.1. The following hold:
(1) Let U, = U;2U;'3Up_l. Then for each f € v, lim (Up)”f converges, and we can define the
’ ’ ’ r—00

semi-ordinary projector as es, = lgn (Up)’”!. The Z,[Ts(Zp)]-modules
T o

q/s%* = HomZp (eso ,V07 Qp/zp) ) Vi Homzp (eso v, Qp/zp)

are both free of finite rank over Ago.
(2) The spaces of Ago-families of tame level K]Zﬁ are defined as

Mgo = Homy,, ('Vs%*? ASO) , Mso = Homp,, (V5 Aso) -

For a given weight (7%, 77) € Homeons (Tso(Zp), F*), let Pr+ .~ be the ideal in Op [Ty (Z,)]
generated by {(z,y) — 7 (2)77(y): (z,y) € Tso(Zp)}. Then for 0 > t+ > —t~ + 4, we have

Mgo ®ZPIIT30(Zp)H Or [[TSO(ZP)]]/PT+,T— — (@hﬂesov’gm ¥z, OF) [7-+7 7__]7
(2.9.1) "

Mso Oz, [Te0(Zp)] OF [[TSO(ZP)]]/PT+,T— — (@hgesovmm ®z, OF) [7-+’ ]

m n

The semi-ordinary projector preserves the spaces of classical forms, and by combining (2.9.1)
with (2.7.2), we have the embeddings

esoM{p,0,4+4-) (KﬁKg,n»€+7€_;F ) — (MG @2z, 110(2,)] OF [Ts0(Zp)] /P ) [1/p),
eSOM(0707t+;t7) (K‘?K;J” 6+’ 67; F) — (MSO ®ZpIITso(Zp)II OF IITSO(ZP)]]/PT+,T7) [1/p]7

+ _ _+ + _ _+
where t = Talg and € = 1.
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(3) Given 0 > t*, there exists A > —t* + 4 such that the above embedding for the cuspidal
forms is surjective if t— > A.

(4) There is the following so-called fundamental exact sequence (in the study of Klingen Eisen-
stein congruences),

0— MY — Mg, — @ M,0) (K}jg; Z,) ®z, Zy[Ts(Z,)] — 0,
9€(GL(QxPL(AG )\G(AG ;) /K

where K}, C G’(Agf) is defined in (4.2.1), and Mo )(K} ;: Zp) denotes the space of clas-

sical automorphic forms on G’ of weight (0,0) and level K},g'
Remark 2.9.2. In general, one can consider semi-ordinary families whose members have weight
t= (tf,t;’,t;’; t7) with tf,t; fixed and t}f,tl_ varying in the family. We only consider the case
th = t; = 0 because it suffices for proving Theorem 8.2.1, and we want to avoid having the main
idea obscured by the extra complications of working with vector bundles. For the general case,
instead of considering the global sections of the structure sheaf over the Igusa tower, one considers
the global sections of a vector bundle w;. For defining 9° (cf. §4.3) such that the quotient 9/ 7" has

a nice structure, besides the requirement of vanishing outside the strata labeled by cusp labels in

C(K ?Ké,n)zrm one also requires that the elements are global sections of wz C wy with WZ a subsheaf

defined as in [Hsil4a, Section 4.1].

3. THE PROOF OF THEOREM 2.9.1 FOR THE CUSPIDAL PART

In this section, we prove Theorem 2.9.1 for cuspidal families. The results for cuspidal families
will be used to deduce the results for non-cuspidal families in §4

Proposition 3.0.1 (Base change property). Let Z0 " [1/E] the open subscheme of """ where
E, our fixed lift of Hasse invariant viewed as a section over %O’tor, 18 nonvanishing. For any
classical dominant weight t, the natural map

H (Z0 1/ Bl @ T oo ) @ Z/p"Z > HO (T8 w1 @ T yoor )

18 an isomorphism.

Proof. Over Z'°", we have the exact sequence of sheaves
0 — Wt ® I{qygor p—> WL ® I{yfgor — WL ® Ig}goﬂr@ — 0

By [Lanl8, Thm. 8.2.1], R}rn7*(WL®Iygor) = 0 (where 7, is the projection 7, : Z°" — FZMin) g0
we have the exact sequence of sheaves

0— 7Tn7*(WL & I(«y’%or) p—)m WnV*(WL X Iﬂqﬁor) — 7Tn7*(WL X Iqﬁoﬂr@) —0
over 7™ Since 7M1 [1/E] is affine by definition, taking global sections gives the result. O
Proposition 3.0.2. Let U, = U,,U, U . Let f € 1° and f € H° (%%“,%@Iyo,m). Then

both limits li)m (U)"™ f and ll)m (Up)“f converge.

Proof. Consider 7, the ordinary locus of level

- 1 % % %
glz{gCG(Zp)]g“‘E( 1?%) modp"}.

Let j}or be the partial toroidal compactification of .Z,, and put f/,am = H(7, o wr®ZL5

n,m? 7tor )
n,m

The definition of the U,-operators in §2.8 can be naturally extended to VO so it suffices to show

n,m?
14



. T! . C O . . . . . s 0
that Tlggo (Up)™ f converges for every f € V.. As explained in [Hid02], lim lim V,

n,m 15 p-torsion

m n
free and there is an embedding

@ HO (ytor,gé(ngytor)@Q;) (@@V£m> [1/p]
t dominant m. n
The Z,-modules H 0 (y tor w; ®ZL ytor) are free of finite rank and stable under the action of Up, so
the limit lim (U,)" exists on them. Since

r—00

(3.0.1) P H (7w ©Tpe)@Q| Nlimlim Ty,

t dominant

is dense in l&nhﬁf@?m by [Hid02], the convergence of ILm (U,)"™ f for every f € f/T?m follows.
On the other hand, let fe HO <%?;%°r, wr ® Iyo,tor). By Proposition 3.0.1, flifts to
?e HO (%O,tor[l/EL(A)z ® Igy{),&)l") .

For ! > 0, we have fEl e H° <%O’t°r, wg ® Igo,tor>, which by the Koecher principle can be viewed as

an element in the finite dimensional space M? (K ?Kgm; Qp). Thus the limit rhﬁrg(} (Up)“(fEl)

t+itp(p—1)

converges. Since £ = 1 mod p, we have ]?El = f mod p™, and the convergence of lim (U,)" f
T—00

follows. .

Thanks to the convergence of lim (U,)™ on 9% and H° (%%Or, w L yo,tor), we can define the
T—00 - T,

. . . . |
semi-ordinary projector on them as es, = lim (Up,)".
r—00

Proposition 3.0.3. For n > m and a dominant weight (0,0,t7;¢t7), the map
esoH° (%(T’rfloraw(o,o,ﬁ;t*) & Ig%%) — esoV,gm[tﬂ t7]
induced by (2.7.1) is an isomorphism.

Proof. Given f, we have
(3.0.2)

7 . — n — " n n Iy :
Uy AN, 0P, ap,e, ) =p~ FT3H) ;(tug( P p) 0’ ) (A/C N, (aP) 0y eqr)-

Here C runs over the subgroups of A[p*"] which can be spanned as

1 wup * P n
+ o+ o+ A+ .nf 1 P
(e1,€5,€5,€)p < “f:) p2n ;
1 p—4n
—2
1 T * ok p " —5n
- . »
(61762563564)'}9 < —u21—u1> p74n 9
1 —5n
ith ¢, ¢, e, e a basis of Afp" ible with o, For such a C, ug = ( 142 ). B
with e, €5, e5,e; a basis of A[p"] compatible with «y,. For such a C, uc = luy ). By our

definition of the Aj-action on Wy, we know that if w € W g+,-) is a vector of non-highest
15



weight, then

p" 9
(( p" 2),p”)-w50 mod p™.
p’VL

Therefore, from (3.0.2) we see that Uy f is actually determined by the projection of its values to
the highest weight space.

On one hand, this shows that the map in the statement is injective. On the other hand, given
[ € eV [th,t7], we can define f by the rule

(30.3)  flAN G0 ape,) = p BN (g 1) w0 F(A/C N, (aP) ap),
C

where C runs over the same range as above. One can check that f satisfies
— o * px -1 o
(A,A,Z,CV y Op oga§apog) = ((Jl JQ al) 7a2) : f(A,)\,’L,OZ 7ap7§ap)
* ok UL

*
Dk ok Uk
*

for g* = a1 mod p", so (3.0.3) defines an element in H° (%(),;%Or,w(o’oﬁ;f) ® I__qnt%>,

-1

ag
and it is easy to check its semi-ordinarity from the semi-ordinarity of f. The composition of (3.0.3)
and the map in the statement is U)'. Hence, the map is a bijection. ]

1m >

Proposition 3.0.4. ey, H° (%O,;ffr, wr ® sz%) = e HY (90 T oy ® Iglt%).

Proof. This follows immediately from the fact that U, maps the space H 0 (%(T,T%or, wt ® Lgtor > into
HO (0000 © Ty ). (See §2.8.2.) 0

1,m>

Proposition 3.0.5. For a fixed tame level Kp and a fixed integer B > 0, the dimension of
eso M} (KpK 15 Qp) is uniformly bounded for all t+ >t5 >tf > —t] +4 witht] —t5 < B.

Proof. Suppose that II is an irreducible cuspidal automorphic representation of G(Aq) generated by
a semi-ordinary form ¢ € ego M} (Kp KD s Qp> whose (generalized) eigenvalue of U; 5 (resp. Up 3)
UpJ) is Ay (resp. A}, A]). The semi-ordinarity condition implies that AJ, A3, A] are all p-adic
units. We view II, as an irreducible representation of GL4(Q,) via (2.4.1). Let @ be the parabolic

k ok ok ok
subgroup { <* - I) } C GL4 with Levi factorization Q = MgNg. Let

Hp ng = IL,/{p(u)v —v : v € 1L, u € No(Qp)},

the Jacquet module of II, with respect to the parabolic @ acted on by Mg(Q,) = GL2(Qp) X
GL1(Qp) x GL1(Qp). It follows from Jacquet’s Lemma (see [Cas95, Theorem 4.1.2, Proposi-

M, K9
tion 4.1.4]) that Hp ﬁéQp JNEpn equals the image under the natural projection of
p2
K9, 2
ﬂ (UP:IOC)T HP " ) Up,loc :/ Hp u p » du.
r>1 Nq(Zp) 1

p

The semi-ordinary form ¢ € II is fixed by K, and belongs to a generalized eigenspace of Uy 1oc

p’fL

with a nonzero eigenvalue. Thus, we deduce that HfﬁéQp)mK”" # 0 and II, is isomorphic to a
subquotient of
In dGL4( )Jﬁxﬁxl,

Q(Qp)
16



where o is an irreducible smooth admissible representation of GL2(Q,), and x, x’ are smooth char-
acters of QY. We have Mg(Qp) N K;?,l = K, x (1+p"Zy) x (1+p"Zp) with K}, = {(;* I)} C
GL ) : Mq(Qp)NKY,, .. K ‘

2(Zp). If o is supercuspidal, I, Ny, # 0 implies that o # 0 ( [Cas95, Theorem 6.3.5]).
However, a supercuspidal representation of GL2(Q,) does not contain any nonzero vector fixed by
KI’D. Therefore, we see that o is not supercuspidal, and II, is isomorphic to a subquotient of a
principal series. Denote by aj, as, a3, ay the evaluations at p of the corresponding characters of
Q, - Then, up to reordering, we have

+ +_1
t] t

1
T2ap-p

(3.0.4) Ay =p 27 2qy,
(3.0.5) N = pt1++%oz1 pt;r %ag P 5 %Oég,
(3.0.6) Al = pt;*%azl

Now, in addition to U; 2 U;r 3 Up_ 1, we also consider the action of the operator

_ p
(3.0.7) U,y = pltht it )“907(17070?0»/ R (u( L > ,1> du
N(Zp) !

on ME (K?Kgm; Qp). The operator U; , has a geometric interpretation analogous to (2.8.5), and

the above normalization makes all its eigenvalues p-integral. If 041_1042 £ ptl, then pt;”r%al and

ptr"’%og are both eigenvalues for the action of U; 1 on the holomorphic forms in II of level K?Kz(?)m’
SO
3.0.8 + 42 + 42
(3.0.8) vp(ar) +t] +§ZO, vp(a2)+t1+§zo.
By using that (3.0.4) is a p-adic unit and our condition 0 < t{ —tJ < B,
1 1
(3.0.9) (vp(ar) +# +5) + (vp(a2) +#f + ) =t —tf +1< B +1.
Combining (3.0.8) and (3.0.9), we get
1
(3.0.10) ogvp(aj+t1++§) <B+1, j=12.
If al_laz = pT!, then (3.0.4) being a p-adic unit implies that
PR + gt
1

t—t .
5 Supley) <A 4L =12

Combining this with our condition 0 < tf — t;“ < B, we get
B
(3.0.11) 0 <wvp(ay) < 5 +1, j57=12.

Therefore, all the semi-ordinary forms in eSOMEO(K?KSJ; Qp), tf >t3 > t:}f > —t] +4, tf —ty < B,
have slope < B for the Up,-operator U;IU;CQUJ’F?,UZII.

Recall that the theory of Coleman families for unitray groups (developed in [Bral6] as a general-
ization of [AIP15]) shows that for every point in the weight space Homeont ((Z))*, C)), there exists
a neighborhood U of that point and a projective 4;~-module of finite rank interpolating all the cus-
pidal overconvergent forms of weights in &/ and U; 1 U; QU;F 3U, 1-slope < B and a fixed tame level.
Since all the algebraic weights ¢ are contained in a compact subset of Homeont((Z) )4,Cp), when
t varies among all the algebraic weights, there is a uniform bound on the dimension of the space
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of cuspidal overconvergent forms of weight ¢ and slopes < B and tame level K ]’Z . The Proposition
follows. 0

Proposition 3.0.6.
(1) dimg, eso HY (%(’)itor,u@@I Otor) < 00.
(2) (Classicity) There is a canonical embedding

eSOM(OOaOﬂf*;t*) ( vaQp) — (Y&ﬂﬁgﬂesovﬁm[tﬂﬂ) ® Qp,

and given 0 > t+, there exists A(tT) > —t* +4 such that if t— > A(t") then the embedding
s an isomorphism.

Proof. (1) Suppose that fq,...,f; € esoH" <e7loitor,wt ®170,t0r> are linearly independent. By
’ = 1,1

Proposition 3.0.1, they lift to fi,..., fq € H® (%O’tor[l/E],wi ® I{qo,mI-). Recall that E has scalar

weight tg(p—1) and let t+1lkg(p—1) = (t] +ltp(p—1),t +ltp(p—1),t5 +itp(p—1);t] +itp(p—1)).
For [ > 0, we have

flEl, ceey del S HO (%07t0r7w£+ltE(p— ) I Otor) .

Because E =1 mod p, we have es(f;E') = ?j, and therefore eg,(f1E), ..., es0(f4E') are linearly
independent. Thus d can be at most the bound in Proposition 3.0.5.
(2) We have M(0 04+:t-) (K KO 1 Qp) =H° (flo’tor, W(0,0,t+;t-) ®Igo,wr) ®,, Qp. (As mentioned

tor
K?KO 5

principle to get the equality of global sections.) The map (2.7.1) induces

HO ((%O’tor’w(070,t+;t7) ®I Otor) — (l&nhg’lesovq’gm[t+,t]> 3

and this gives the canonical embedding in the statement.
Put V2t t7] = 11m1_n>1650 mltT,t7]. Note that from Propositions 3.0.3 and 3.0.4, for n > m,

above, the base change of 310 tor to K is an open subscheme of § here we use the Koecher

we have
esovgm[t+7t_] = esoHO (%0%0r7 W(0,0,t+;t~ ) ®1, Utof) :
It follows that V2[tT,¢7] is p-torsion free, and together with Proposition 3.0.1 we get
dimg, V§ [t+ t ]/pV% [t+, t7] = dimp, eso H' (zoitor, W(0,0,t+;t—) @ I?O,tor)
3 Uy ) 1,1
— dlme esoHO (go tOI‘[l/E] 0 0 t+ it— ) ® Ieylo,tor) ® Qp.

Denote this dimension by d. The above shows that V2[t*,¢7] is a free Z,-module of rank d. Thus it
suffices to show that there exists A(tT) > —t* such that dimg, €soM(00,07t+ ) (K?Kgl; Qp> > d for
t~ > A(t"). Pick an unramified Hecke character x of K*\Ag of oo-type (—tg(p—1),0). Twisting E
by the character obtained by composing x with det : G(Q)\G(Aq) — K*\AZ, we get a holomorphic

form E’ of weight (0,0,0; 2tz (p — 1)) with the same vanishing locus as E. Multiplying by (E’)! and
applying ey, gives an injection

0 0 0
650M(0,0,t+;t*) (K Kp 1>Qp> — eSOM(O,O,t*;t*—&-%E(p—l)) (K K 17Qp>
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S0
: 0 (VI : 0 0 .
dimg, eSOM(()’O’ﬁ;t_) (K?Kp’l, Qp) < dimg, eSOM(0,07t+;t_+2tE(p—1)) (K?KPJ, Qp> .

By the definition of d, we thus see that for each 0 < j < 2tg(p — 1) — 1 there exists ;(¢t7) > 0 such
that

. 0 0
dimg, eso]\/[(o,o,ﬁ;—t++4+j+2tE(p—l)lj(1;+)) (KngJ? Qp) > d.
Therefore, A(tT) = —tT + 4+ 2tg(p — 1)(max;{l;(tT)} + 1) has the required property. O
Theorem 3.0.7 (Vertical Control Theorem). Vo s a free Ago-module of finite rank.

Proof. Let m be a maximal ideal of Z,[Ty(Z,)]. (We know that m N Ago = (p, T, T7), where we
identify Ay, with Z,[T, T~ ] by identifying (1+p,1) € To(Z,) (vesp. (1,14 p) € Tso(Zp) with TT
(resp. T7).) We show that ’Vs%”}, the localization of V% at m, is a free Ago-module of finite rank.

First, we consider the quotient fl/s%fn @Ae Aso/(p, TT,T7), which by definition, equals (es,¥[m])*.
Take 0 > t* > —t~ + 4 with P+ ;- C m. Then

eso”[m] = p-torsion of lim ling e, Vﬁ mltt 7]

(Prop 3.0.3)

n,m

p-torsion of lim lim esoH° (%O’;tnor, W(0,0,t+5t—) @ Ig(),tor)
m n

Prop 3.0.4 . .
(Prop : )p—torsmn of hgesoHo <<y07tor “(0,0,t+5t7) ®I,710’“">
- ,m

1m >

= es [p—torsion of lignHO (%?;,ior,w(o,o,ﬁ;t*) ® Igf“ﬁ)] :
m ,m
Also, Proposition 3.0.1 implies
hﬂHO <<71[,)7’7t10r7 W(0,0,t+5t—) @ Iﬂf’“‘") = hﬂHO (zo’tor[l/ELw(o,o,ﬁ;tf) ® Iglﬂ»tor> ®Z/p"Z.
m o m

It follows that
p-torsion of @HO <<71?;20r, W(0,0,t+5t—) @ Iylo;flor> = H" (%O’tor[l/E],W(0707t+;t—) ® I‘ZO,tor> ®Z/pZ
p :

0,t
— HO ({%,1 OI" W(0,0,t+;t_) ® Itqlo,ltor) 5
where Proposition 3.0.1 is used again for the second equality. Thus,
0,t
esoV[m] = esoH” (L?l,i Orvw(O,O,tJr;t*) ® Ig&“”) :

By Proposition 3.0.6, we know this is finite dimensional over F,,. Hence, ‘Vs%}(@ ANso/(p, TT,T7) =
(esoV[m])* is finite dimensional over F,. Let

d= dime ’VO’* ®ASO Aso/(pa T+> T_)

so,m
By Nakayama’s Lemma, there exist Fi,..., Fy € 'VS%} such that
{V07* — AsoF‘l +--+ AsoF‘d-

so,m
Next, we show that Fi,..., Fy are Ag-linearly independent. Suppose that ay,...,aq € Ay are
such that a1 Fy + - - + aqgFy = 0. Given any 0 > t* > —t~ + 4 with P+ ;- C m, we put

o
pra- = Nso NP -
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In view of Proposition 3.0.1, the Z,-module h_n}hgnH 0 (%(),;Zor,wt RTL 5797%)0 is p-divisible, and by
Proposition 3.0.3 so is es, VOt T, t7]. Therefor:an, !
Ve @neo Nso/ P - = (s’ [tT,27])"
is p-torsion free. On the other hand,
dime, (Vi ©r Ao/ Pl 1 ) ©2 Z/pZ = dime, Vi ©r., Ao/ (0. TF,T7) = d.

It follows that the Z,-module ‘Vs%’;n(@ AsoDNso/ PPy, is free of rank d, and therefore ay, ..., aq € Py, .

Then from N 7+ — = 0 we conclude that a; = --- = ag = 0, and hence 'Vs%”;n is a free
0>t+>—t~+4 ’

Ago-module of rank d. O

This completes the proof of part (1) of Theorem 2.9.1 for cuspidal forms. For part (2), because
2% is free over Ay, letting V) _[77,77] = eso hgrl Vé),m ®z, Op[rT,77] we have
n

m,so

Mgo ®ZP|ITSO(ZP)]] Or HTSO(ZP)H/PT+ T = HOIl’lZp (‘VS%* ®ZP OF/,PTjL’Ti ’ Zp)
= Homzp ((esorVO [T+7 Tﬁ])*’ Zp)

= Homzp ((hﬂ VT?L,SO [T+7 T]) ,Zp> .

Since the left hand side is a free Z,-module (because MY is a free Ag-module), we see that
@V&SO[TJF, 77]) is p-divisible, and V9 | [, 77] = V)9 [T, 77] is surjective, so
m

(3.0.12)

m,so

Homgz, (hﬂ Vr(r)L,so Aot Qp/zp> = Homgz, (@ Vr(r]L,so Aot Zp)

and hence

m

(3.0.12) = Homg, <Homzp <1£1 Vo sl r],zp> ,zp> = lim Vi o [7", 77

- (@hﬂ%vﬁm ®z, OF) [T+v T,

concluding the proof of part (2) of Theorem 2.9.1 for cuspidal forms. Part (3) follows from Propo-
sition 3.0.6.

4. THE PROOF OF THEOREM 2.9.1 FOR THE NON-CUSPIDAL PART

We apply the approach in [LR20] to prove the vertical control theorem for semi-ordinary forms
on GU(3,1) by analyzing the quotient %//%° and using the vertical control theorem for cuspidal
semi-ordinary forms on GU(3,1). When studying 7/7°, we introduce an auxiliary space 9. One
difference from loc.cit is that g-expansions are used there to reduce proving some properties for
the Up-action on ¥/, 7” to matrix computations, but g-expansions are not available in the case
of GU(3,1). The analogue of those properties in our case are proved in §4.5 by working with
semi-abelian schemes over the boundary of the partial toroidal compactification.
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4.1. Cusp labels. Following [Lanl13], a cusp label is a Ky-orbit of triples (Z, ®,6), with:

©2:0CZ2C2Z21=2CL® Za fully symplectic admissible filtration.
e & = (X,Y,0,p_2,p0) a torus argument, where ¢ : Y — X is an Og-linear embedding of
locally free Ox-modules with finite cokernel, and where, writing Gr%;, = Z_;/Z_;_1, p_2 :

Gr%, = Hom (X®Z,2(1)) and ¢ : GrZ 5 Y ® Z are isomorphisms such that (v, w) =

eo(v) (#(ip-2(w)).
¢ §:Grt=Grt,pGrt, 0G5 S L® Z is an Ox ® Z-equivariant splitting.
Following [Lan18, Def. 3.2.3.1], an ordinary cusp label of tame level K% is a K} Pp(Z,)-orbit of
triples (Z, ®, d) as above compatible with D, in the sense that
Z9®52Z,CDCZ1R®s57Z

There is a unique cusp label for which Z_5 = 0, and in our case, all other cusp labels have Z_o
with rank 1. As explained in [HLTT16, B.2, B.3, B.11], the latter are parametrized by a certain
double coset space. To recall this, we have the filtration

(4.1.1) XVcXVoLycL=X"®L @Y.
Let P C G be the parabolic subgroup preserving this filtration, and P’ C P be the kernel of the
natural projection P — GL(Y). Define the triple (z(1), ®™1) §V)) as
e zW: 7 , XV®2 Z,=XVeL)®Z
o o = x® vy M Y Sy with XV = Home, (XV,0c(1), YU =V, 6D . ¥V —
Homo, ( K/Q " x1, Ok (1 )) induced by our fixed basis of x; and y; of X and Y and the
pairing 27i - Tric g0 (, ), cp( % = 2my/—1-id and cp( ) = id.
o 0 =id.
Denote by V: 0 C V_5 C V_; C L ® Q the filtration obtained as (4.1.1) tensored with Q. For every
g € G(Aq.f) define (z9),®(9) §9) by
o 2 = (' (V0 Ag ) N (L0 2).
o $9) — (x(g)jy(g),¢(g)790(_9%’80(()9)) with (X9),79), @) = (x®,y1) gD), (_g) (vesp. (pég)) is
the composition of go(_lg (resp. <p[(]1)) Wlth g: Grz(g) — Gr%, (resp. g: Grz(g> — Gr13).
¢ 50 is G2 MW B Loz Loz

Then the map that sends g to (the cusp label represented by) (2(9), ®(9) §(9) sets up a bijection
between the set of cusp labels with Z_5 rank 1 and the double coset space

C(K?) = GL(X @ Q) w P'(A} )\G(A )/KP.

(See [Lanl5, Prop. A.5.9].)
Similarly, the ordinary cusp labels with Z_gy of rank 1 are parameterized by

(41:2)  CUKPK) )ora = I (G(AG )Po(Qy) — GL(X © Q) x P'(Aq.)\G(Aq,)/KVE},)
which is in a natural bijection with
(GL(Xg)) x (P'RG 1) x P'(Zp)) \G(AG 1) x Po(Zy) | KJ(KY,, 0 Po(Zy))

= C(KY) x (Uk sz  P(Z)\Po(Z,)/ K} N Bo(Zy))
21
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where Uy K? = {a € Og: (a 1 ot ) € Kp}. By abuse of notation, we shall denote by g both

elements in G( 0.7)(Qp) and in its quotient C(K% 7 pn)ord. The context should eliminate any
possible confusions.

4.2. The formal completion along boundary strata. Let 2, be the stratum associated to
geC(K ]Z?K;’n)ord in the partial toroidal compactification .Z'°*. Then we have

7r=g0 [ 2
gec( f pn)ord

(The choice of a polyhedral cone decomposition is unique in our special case GU(3,1) because
with (S (9) ) defined as below and P ) the subset of Homz (S@(w Z) ® R consisting

kal KpKl KEK)
f f f

of positive semi-definite Hermitian forms, we have P = R>p.) Let ynmm be the partial

minimal compactification of .7, (constructed in [Lanl8, Theorem 6.2.1.1]). Denoting by % ,, the
stratum associated to g € C(K ?K;,n)ord in Z™", we similarly have

gmin — g1 | | Yy
QEC(K?K;%,n)Ord

The stratum %, can be identified with the 0-dimensional Shimura variety .7 Ko where
k) ,g,Mn

(4.2.1) K} g =T (P(Aq) NgK g™ = G/(AY 1))
We have the following diagram:
(4.2.2) Eod B
¢
|
e K

where € ord — S K, is a torsor of an abelian scheme quasi-isogenous to Hom (x(9), A) with

A the unlversal abehan scheme over . K, gord Cﬁord is a torsor of the torus with character

7 ‘—'g n
group S ) , which is a finite index subgroup of the free quotient of
KPK)
f
<1Y(g> 9y X<g>> (y @I (y) —y'© ¢(g)c(y)>
N (bﬁy) ® xr— (Wy ® (b ‘T) y,y’GY(g),:pGX(9>,b€OK

—=Or

where N is sufficiently large with respect to the level K% K;n; and ngg — Eg, Is the torus
embedding with respect to the unique cone decomposition.
Denote by X, the formal completion of 7" along the stratum 2, . Then X, is canonically

isomorphic to the quotient by I'y of the formal completion of E;rd along the boundary Eord ”gfg.
Here T, is the (finite, in our case) subgroup of GL(X\9)) x GL(Y\) preserving go( % and Lp(g) (as

orbits).
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4.3. The subset C(K?K;}n)zrd of C(K?K;’n)ord and the subspace 1” of 7. By a generic point,

denoted by 7, of the formal completion X, ,, we mean a generic point of Spec(I'(U, Oy)) with U
an affine open subscheme of X,,. Let (G, \,i,a”, ) be the pullback to Spec(I'(U,Oy)) of the
family of semi-abelian varieties over Z'°', which is a degenerating family obtained by Mumford’s
construction. Let

0—T —G —A—=0

be the Raynaud extension of G. Then, for any positive integer N, T[N] (resp. G*[N]) is canonically
isomorphic to a subgroup (G[N])* C G[N] (resp. (G[N])! c G[N]), and (G[N])* C (G[N])f. The
quotient (G[N1])2P = (G[N])f/(G[N])* is canonically isomorphic to A[N]. (See also [Lanl8, §3.4.2].)

Let 77 be a geometric point over 7. The ordinary level structure o, 7 of G5 gives rise to a filtration

Fi:0CFy, CFi.CGylp" ™"
(refer to text around (2.5.2)). We define a subset C(K?K;n)grd C C(K?K;m)ord in terms of the

relative positions of Fy. 7 and (Gz[p])".

Definition 4.3.1. Define the subset C(K?K;%,n)?wd of C(K?K;,n)ord consisting of g such that

F5; 0 (Galpl)" =0
for a geometric point i) over a generic point n of Xg,.
One can check that the preceding definition does not depend on the choice of 7.
Proposition 4.3.2. We have
(431)  CORPEY, g =T (G(AS ) FS(Qy) — GL(X © Q) x P/(Ag)\G(Ag1) /KK,
which is in a natural bijection with
(4.3.2) C(KY) x (Ur sy % P'Z)\P(Zp) /Ky OV Po(Z5))

where

P(Q,) = {g e P(Q)

+ ail a1z ai3 a4 1 9

— a21 a22 a23 a24 y ( a1 a22 )_ az3

g - a3l a3z2 a33 az4 wlth a3l asz2 (a33 ) € Zp
aq4

and

Pg(zp) = {gp € H(Zp)

+ gll 312 213 314 . a a
9p = (agi ass asy 3§3> with (a3; ass ) € GL2(Zp)}
44
/ 1 !
=P (Zp) ( 1
Proof. Given g, € Py(Z,) with

Cc11 C12 C13 * di1 *

(g—l)+ — [ c21 c22 co3 % (g—l)— — *
P €1 32 ¢33 % |0 P *

*

the corresponding Fo 7 is spanned by the image of 2], w;” under oy, ;, and 75[p] is spanned by the
image under a7 of

1) (Kp, N P(Zp)) .

*
*
* 9
*

3\‘{ * ¥ ¥ *

C11 €12 (13

+ 4+ 4..— | €21 c22 c23
(4.3.3) (X1»W17W2ax1) €31 C3n 33

OO O
_— o O

d11
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Therefore, the condition F;ﬁﬂ (Grlp))* = 0 is equivalent to the condition that clle —i—czlwir +C31W§_
does not belong to Spaan {XT,WT}, which is equivalent to c3; € Z;. The condition c3; € Z) for
(9,1)" is equivalent to the condition (g2 §22) € GLy(Z,) for g;. This shows that C(Kngn)Ord
equals (4.3.2). It is also easy to see that there is a natural bijection between (4.3.1) and (4.3.2). O

Definition 4.3.3. Let
Ve =4S € Vam : S, =0 for all g € COKVE )ora = CORTEG )i}

i.e. the space of forms in V,, ,, vanishing along all the boundary strata of Z,'°" indexed by ordinary

cusp labels outside C(KpK;n)md, and

:ﬁgﬂliganm

4.4. The exact sequence for V,him When g € C(KpKl ) 4 the level K}

is independent of
p,n
n, and we denote it by K’ ~with

»g,m

K? =Tm (P(Agyf) Ngklg™ — G’(Agf)) ,
(4.4.1) .
K, = {h €G'(Z,): h* = ( *> mod p} :

Let Mg,0)(K I g,Z/me) be the space of classical automorphic forms on G’ valued in Z/p™Z of
weight (0,0) and level K | (which are functions valued in Z/p™Z on the finite set G'(Q)\G'(Aq,1)/ K} ),

and Mo,0) (K} o Qp/Zp) = lim Mo 0) (K7 : Z/p™Z).

Proposition 4.4.1. We have the exact sequences

EB‘1> m
(442) 0=V, — V2 = D MoK}y Z/p"Z) @ Z,[Tio(Zy) Uk ] — 0
9eC(K?Y)
and
(4.4.3) 0— 90— g 2% @ Mo,0)(K},4; Qp/Zp) @ Zp[ Teo p)/UIC,K?]] — 0,
9eC(KY)

where ®4 is obtained by restriction to the stratum 2y, (whose global sections are the same as the
global sections of %, which can be identified with the 0-dimensional Shimura variety S K ),
o fhg

and is sometimes called a Siegel operator.

Proof. Let m, : Z%°F — ™0 be the natural map. By [Lan18, Lem. 8.2.2.10], we have
A
(m O pior *zgm> ~ hOpora ®Z)PZ =0y, . RZ/p"Z.
) n,m ) n,m %,n g,n G ’Kf,g

(Here h is the map in the diagram (4.2.2).) Taking global sections over the affine scheme 750 w
get

(4.4.4) Vam/Viem = @B MoK} y.:2/p"2).
QEC(KPK n)Ord

By definition, an element in V/, ,,, belongs to Vb’m if and only if it vanishes along the strata associated

to the cusp labels outside C(KpK;n)ord,

(4.4.5) Vol Viem= @ Moy}, Z/p"2).
gEC(KpKI )ord
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The action of Ty(Zp) on V;, ,, preserves Vrgm, so it descends to Vj, ./ V,ﬂ m- This action permutes

the direct summands of the right-hand side of (4.4.4). More precisely, the corresponding action of
(a1,a2) € Tso(Z,) on the index set

C(K K )ora = CUKR) x (U gr % P/(Zp)\Po(Zy)/ K} 1 Po(Z,))

ai,a2 .
Qg

1
sends g = gPg, t0 gPgpta, ay Where to, 4, € G(Z,) with tf , = ( Y ) It is easy to see that

Tso(Zp)-action on C(K]IZK;n)ord preserves C(K}IZK;,n)Zrm so the Ts,(Z,) on Vi, preserves V,'l’vm

and induces an action on V,'l”m SV
For given g € C(K}O), set

C(K?K;,n)ord,g = {elements in C(K?K;m)ord whose projection to C’(KJIZ) is g},

C(K]ng,n)ird,g = {elements in C(K?K;’n)ird whose projection to C(K7) is g}

(4.4.6)

The Z,[Tso(Z,)]-module structures of Vi, 1 /V,2,, (resp. Vﬁym /V.2,,) are determined by the Z,,[Tyo(Z,)]-
actions on C(K‘?K];n)ord,g (resp. C(K?K]:Jl,n)grd,g)‘ The Ty (Zp)-action on C(K?K;’n)ordg has
too many orbits, and the number of orbits grows with n, so Vj, .,/ ng is not very nice as a
Z,[Tso(Zp)]-module. In contrast, the Ty, (Zp)-action on C(K]’?K;m)zrdg is transitive, factoring
through Z,[Ts0(Z,/p"Z) /Uy szz]], and the action of this quotient is free. Therefore, by fixing an

1

element in P]IJ’(ZP), which we will always choose to be <1 1 ), we get the isomorphism

1
(4.4.7) RHS of (4.4.5) = Mg ) (K}y; Z/p"Z) ® Zp[[TSO(Zp)/U,QKJz;]],

from which the exact sequence (4.4.2) follows. The exact sequence (4.4.3) follows from (4.4.2) by
taking the direct limit. O

4.5. Three propositions on the U,-action on 7 and 7”. We introduce some setting for the
proof of the following propositions. Given g € C(K ?K;,n)orm recall that 1 denotes a generic point
of Xy n.m, and 7 denotes a geometric point over n. Let (Gy, ig, A, ag, ap5) be the pullback to 7 of
the family of semi-abelian schemes over fnt% Recall that certain Lagrange subgroups C' C G5 [p?]
are used in the construction of €'*ar;,, , for defining Uy ; in §2.8. (Here (o,j) = (+,2), (+,3) or

(—,1).) Let

(4.5.1) (G = Ga/C.igs Ay, () 0, )

be the tuple defined as in the construction of €77, .. If (ef,ef,ef, eF) is a basis of G[p™] compatible
with a5, then C' is spanned by (ef,ef,ef,ef) -pnvép with v¢, given as in equations (2.8.1),

(2.8.2), and (2.8.3). From Mumford’s construction of the degenerating family over Xy, ., we see
that the tuple (4.5.1), corresponds to a geometric point 77’ over a generic point 7’ of Xy p, ,, Where

9 =9 70y
Proposition 4.5.1. The space 1V’ is preserved by the U,-operators.

Proof. We shall show that ¢’ = g-vc, € C(K2K! )’ 4 only if g € C(K?K} )’ .. By the definition

fron fpmn/ord:
of the Uy,-operators, this will imply that if f € 7 vanishes along the strata outside C (K?K;,n)(b)rd,
then so does Uy ;(f). We use the description (4.3.1) for C’(K?K;,n)zrd. Consider the case (e,j) =
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li i ! !
a1y Gy Q13 Qg4

gll 212 313 314 " I + al al. al. a +
: _ 21 @22 a23 a24 _ _ 21 @2 Gg3 Gy : ;
(+,2). Write g, = | a3} a3 ass az and and g," = g7 -0, = 0l abe ahe ah, with ¢, as in
aj4
(2.8.1). We have
ai13+tuiailt+uza
ayy ap ayy ayy an ap S 1171 e
/ / / / a23+u1a21+u20a22
(4.5.2) Ay Gy A3 Goq | _ [ @21 @22 » *
<. / / / / - asztuiazi+usazz
gy o
and

-1 -1
(4.5.3) ay a3 =pt az1  a22 a23) L (U1}
az,  as azy asi @32 as3 u2

Since u1,up € Zp, the right hand side can be integral only if (32! 222)~1 (42 ¢ ZZQ). Therefore,

g =g v, € C(KfK;n)Ord only if g € C(KpKén)ord The argument for the other two cases is

similar. O

Proposition 4.5.2. There exists a positive integer N such that the exact sequences in Proposi-
tion 4.4.1 are (Up; )N -equivariant for (e,j) = (+,2),(+,3),(—,1) in the sense that for all g €
C(K}K,, ) 4 and f € 1°, we have

© (Up )N ) = @4(f)-

Proof. Take g € C (Kp K, 1 ) cd and we use the setting described at the beginning of this subsection.
In order to look at the 1mage of U o > .f under the Siegel operator ®,, we consider the abelian quotients
Ajz and Ay of the Raynaud extensions

O—>777—>Q%—>Aﬁ—>0, 0—>777/—>gf7,—>Aﬁ/—>0.
Let
O = (C+ (Galp")") N (Galp™)"
= C"/(Gylp")".
(See the beginning of §4.3 for the definition of (G;[p"])* and (G5[p"])!.) Then we have
Ay = A/ C?.
We use the description (4.1.3) and (4.3.2) for C(K}K},,)ora and C(KpK;n)ord Write g = gPg,
with g, € Pp(Z,) and
€11 C12 €13 * diy * *
(4.55) wh = (E8E) Wy - (M

The condition g € C’(KpK 2)°.q implies that cz,'ci1, c5'co1 € Z,. Thus we see that (Gy[p"])* is
spanned by

(4.5.4)

(4.5.6) caicrief +egltearey +ef, ef
(cf. (4.3.3)), and (Gz[p"])" is spanned by
—p(G) v
(4.5.7) ef, e;, ez{, e, (62,63,64)< PO 1) cgllcn 03_11621
0
26



We first consider the operator U 5- By a direct computation, we see that for g € C (Kp K;n) ords
the p-part of ¢’ € C’(Kpr,n)ord is

1 *
1 *

(4.5.8) g}lj‘ - g; . 'Vap = ( 1 *1> g;)ﬂ
o

where x € Q,. This shows that the cusp label ¢’ is independent of C' and belongs to C' (K?K;n) ord
For given C spanned by (ef, e3, e3i, er) - ph 27§p with yép as in (2.8.2), from the definition (4.5.4)

and the basis (4.5.7) of (Gg[p"])f, we see that C* is spanned by

0 1
_ _ _ - o —t _ _
ciienef fogene; +eg, ep, (ey.ez,ep) p" T < r() 1) cienn cypea |
1 0
its quotient C®" is independent of the choice of C, and is spanned by (e, €5 ) - p" 2, with (e}, €;)
—u (C 0 1
the image of (e5,e3,¢e;) < tp(Co) 1) <c3—11¢11 cgllcm) under the quotient map g% — Ay which is
1 0

a basis of A;[p"]~. (Here we identify (G;[p"])" with g,% [p"] by the canonical isomorphism between
them.) Thus we get

(4.5.9) Ay = Ap/ Az ]

Denote by (p)~ the operator on M) (K} ;Z/p™Z) induced by taking the quotient by Alp?~.
Combining (4.5.8) and (4.5.9), we see that the trace cancels the normalizer in (2.8.5) due to the
independence of the choice of C, and

0(U,5f) = ((0) )@y (f)-

1
With K]Zﬁ fixed, there exists N7 > 1, such that < 1, > g and g represent the same element
P

p
in the double coset C(KPK;R)Ord, and ((p)7)?M =1 on M,0)(K} s Z/p™Z). For such Ny, we
deduce that

‘I’g ((U;,—g)le> - ‘I’g(f)'

for all f € 9” and g € C(K? K;n) ?q- A similar calculation shows that that there exists No > 1
such that

@, ((U; 0" F) = 24(f).
for all f € 9 and g € C(KVK} )2 4.

p,n
a1l a1z aig * a1y Gy G13 G1y
! ! ! i
i i + i — [ a21 a22 a3z * o + | aby aby abs aby,
It remains to consider Up’2. Write g, = <a31 azs azs + | and gy~ = gp Voo =\ ot a’34
*
aly

with 'yap as in (2.8.1). Then we have (4.5.2) and (4.5.3), and ¢’ € C(KPK1 ) 4 if and only if

-1
(4.5.10) <u1> = - <a21 a22> <a23) mod p.
U az1 as2 as3
Now suppose ¢ € C(KpKl )2 4> d-e. the entries uy,up in 'ygp (see (2.8.1)) satisfy the congru-

p,n

pTl k% x
ence (4.5.10). Then we have g, € ( Lox ) 95 K} ., and as an element in the double coset
pfl
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pfl

C(K}K, ) 4> and ¢’ represents the same element as b ) g in C(KTK,, )’ - The con-

p,n
pfl
gruence (4.5.10) implies that the ¢;;’s in (4.5.5) satisfies

(4.5.11) = —cgllcn mod p, us = —cgllcgl mod p.

From the definition (4.5.4) and the relation (4.5.11), by using the basis (4.5.7) of (G;[p"])! and the
basis of C' in (2.8.1), we see that C! is spanned by

- 0 1
-1 + -1 + + — - - - n—2 _Lp(CO) -1 -1
Geney o eaey +eg, e, (eg,e3,e0)p 1) | Gcr G c2
1 0

Like in the case of U7

f3, we can deduce that C*" = Ag[p"]~, and

Ay = Ag/Aqlp?]™.
The independence of C* on the ’s in ’yg cancels the normalizer in (2.8.5), and we get

Oy(U,2f) = ((0))* @y (f)-

_ N3
D 1
For fixed K? , take N3 such that < b ) g and g represent the same element in the double
pl

P
coset C(KpK1 ).q and ((p)7)2N¥s =1 on M,0)(K} s Z/p™Z). Then

@, (U7)F) = @y(f).

forall fe€ " and g € C’(KpK;n)Ord By taking N = Ny Ny N3, we conclude the proof. O

Proposition 4.5.3. (U;2)mf € anm for all f € Vy, .

Proof. We shall show that for all g € C(K?Kp}m)ord - C(KpK1 )2 g and f € Vi,

(4.5.12) o, (Ul;f2 f) € pM(g.0) (K" ,: Z/p"2);

it is easy to see that the proposition follows from this. For a given g € C(K?K; n)ord— C(KPK; n)ord,
we use the setting described at the beginning of this subsection. As in the proof of Proposition 4.5.2,

we consider Ay, the abelian quotient of the Raynaud extension associated to Gy = G;/C. We have
Aﬁ/ = Af,/Cab,

where Aj; is the abelian quotient of the Raynaud extension associated to G, and C? is defined

n (4.5.4). Since the U,-operator con81dered here is U 2 the Lagrangian subgroup C' C Gg[p 2]

is spanned by (eic, eét, eét, eff) P 'ch with ’yo as in (2 8.1). We use the description (4.1.3) and

(4.3.2) for C(KPKY, )org and C(KPKL, ). Write (g;)* = (551 2 33 I) (1) = <d“ “ i)
-9, f ord p,n/ord" c31 c32 33+ |0 \Gp * ok ok
(which are elements in GL4(Z,)). The condition g ¢ C (Kp K, ! ) 2 cq implies that c31 € pZ, and ¢y

or cg1 belongs to Z.
Suppose c11 € Z). The group (Gz[p"])* is spanned by

(4.5.13) ciief +eaed +ezied, ep,
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and (Gz[p"])! is spanned by

_ c 0

4514 + 4 - N A 1O .
(4.5.14) el, ey, e, e, (ey,e3,e;) 1 0 c11
—C21 €31

By the definition of C* in (4.5.4), a direct computation shows that C' is spanned by (G5[p"])* plus
(4.5.15)

-1 C11 0
+ +\ n—1 — [ —() c11 0
Cl11U2 — Co1U1)es + c11€q ) , (e5,eq,€ 0 c .
((c11uz = ezur)e; 1eg)-p (e, e5,€5) ( 1 e C:i C11Ug — Co1U1 P

Hence, C?" is spanned by the image of (4.5.15) modulo (G;[p"])*. Let uy = ci1uz — coup. The
trace in (2.8.5) corresponds to a sum with u, !, and the two *’s in ¢, varying in Z/pZ. Since
(4.5.15) depends only on uj, we see that C? and hence Az depends only on u5. Its independence
of the two *’s implies that the sum over the two *’s cancels the normalization factor in (2.8.5). Its
independence of u; implies that the sum over w; contributes a factor p. Therefore, the evaluation

of @, (U;f 9 f) at 77’ is divisible by p. This shows the inclusion (4.5.12), hence the result in this case.
The case ¢c91 € Z;j can be similarly treated. O
4.6. The ordinary projection on 7 and the fundamental exact sequence. In this section,

we use the exact sequence in Proposition 4.4.1 and the three propositions proved in §4.5 to show
that lim (U,)™ f converges for all f € ¥, that 1% = Homgz, (eso¥,Qp/Zp) is a free Ago-module of
r—00

finite rank, and deduce the fundamental exact sequence in part (4) of Theorem 2.9.1.

Theorem 4.6.1 (Vertical Control Theorem). Let U, = U;QU;:SU;T Then for each f € v,

lim (U,)" f converges, and we can define the semi-ordinary projector as es, = lim (U,)". The
r—00 r—00

Z,[Ts0(Zp)]-module v, = Homz, (esoV, Qp/Zy) is free of finite rank over Ag,.
Proof. Given f € V,, ,,,, we define the following finiteness property for f:
(F)  The submodule generated by (Up,)" f, r > 0, is finitely generated over Z/p™.

It is easy to see that the convergence of lim (Up)™ f follows from the property (F) for f. By
T [o.¢]

Proposition 4.5.3, in order to show that all f € V,,,, satisfy (F), it suffices to show that all
fe V);m satisfy (F). Given f € V’rim? it follows from Proposition 4.5.2 that f' = Ulﬁvf — f belongs
to Vqﬁm. Proposition 3.0.2 implies that there exists M > 0 such that

UYL e Spang { f/, Upf US ', ... .U '}
Then
UMTNTLf € Spang { £, Upf, U f, ..., UMTNFY
from which it follows that for all » > 0,

Uy f € Spang {f,Upf,USf,... .UMM f}.
Hence (F) holds for f. Therefore, we have proved that lgn (Up)r! f converges for all f € 7, and we
T—00

can define the semi-ordinary projector eg, on ¥ as

(4.6.1) eso = lim (U,)".

r—00

By Proposition 4.5.3, we have

(4.6.2) eso” = eso V.
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Applying ey, to the Pontryagin dual of the exact sequence in Proposition 4.4.1 and using (4.6.2),
we obtain the exact sequence

(4.6.3) 0 — Mio,0)(K} 43 Zp) ® Zy[Teo(Zp) /Ui er] — Yoy — Vg™ — 0.

We know that Mg ) (K} ;1 Zp) is a free Zy-module of finite rank, so the leftmost term in (4.6.3) is

a free Ago-module of finite rank. The rightmost term ‘Vs%’* is also a free Ag,-module of finite rank
by Theorem 3.0.7. Since Ext,lxso (M, N) vanishes for free Ago-modules M, we deduce that 175, as a
Ago-module, is isomorphic to the direct sum of the terms on the two ends of (4.6.3), and therefore

is a free Ago-module of finite rank. O

Part (2) of Theorem 2.9.1 for non-cuspidal semi-ordianry families can be proved in the same way
as the cuspidal semi-ordianry families. The freeness of PO implies that applying Homp_ (-, Ago)
preserves the exactness of (4.6.3), and part (4) of Theorem 2.9.1 follows.

4.7. The Fourier—Jacobi expansion. We introduce the Fourier—Jacobi expansions of p-adic
forms on GU(3, 1), which will be used in §7 for analyzing the Klingen Eisenstein family on GU(3, 1)
constructed in §5.

In §4.2, for an ordinary cusp label g € C (K?K;’n)ord, we described X, the formal completion

of 7" along the boundary stratum Z4n- From the description there, we see that

Fg
H (X0, 0x,,) = | [T H° (658 £08) |
B
where 8 runs over Sg(g) NP4 , which can be identified with a subset of Her;(K)>o,
K?K}Ln K?K;%,n
and L£(f) is the invertible sheaf over ‘K;rnd of f-homogeneous functions on ngﬁ. Therefore, given

g e C(K?K;m)ord and 8 € Her{(K)>o, the restriction to X, induces a map

(4.7.1) Vi — HO (%Ord L(B) ® Z/me) .

g7n7

We consider g = 14 and € Her(K)>o. In this case, the p-component of level group for the
Shimura variety .#¢, K, in the diagram (4.2.2) is
sdg,m

Kpaon = {oe Uz o= (5 ;) moar}.
(depending on n). Let
(4.7.2) Vit = limlim HO (6719, £(8) © Z/p"Z) .

The map gives the map of taking the S-th Fourier—Jacobi coefficient of p-adic forms on GU(3,1)
along the boundary stratum labeled by 14:

(4.7.3) Flg: Vauen — Vit

5. THE CONSTRUCTION OF THE KLINGEN FAMILY

5.1. Some notation. Let K, be the maximal abelian pro-p extension of K unramified outside p

and ' = Gal(Koo/K). Then I'c = Z2. Denote by Qo € C* (resp. ©, € Z3"*) the complex CM

period (p-adic CM period) with respect to the embeddings in (1.0.4) (cf. [Hsil4a, Section 2.8]).

We also fix an isomorphism Gp & C compatible with the embeddings in (1.0.4). Let L C Gp be a
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sufficiently large finite extension of Q,, and denote by @Er the ring of integers of the completion of
the maximal unramified extension of L.
Four our later use of theta correspondence for unitary groups, we also fix a Hecke character

At K\AL — C*,

such that
z
AMax = Aoo = —.
‘AQ 77]C/Q7 (Z) |22’1/2

5.2. Our setup. We assume the following conditions on m, an irreducible cuspidal automorphic
representation of GLa(Aq) generated by a newform f of weight 2:

e for all finite places v of Q, m, is either unramified or Steinberg or Steinberg twisted by an
unramified quadratic character of Q.

e 7, is unramified,

e there exists a prime ¢ not split in K such that 7 is ramified at ¢, and if 2 does not split in I,
then 7 is ramified at 2,

® pr| Gal(Q/K) is irreducible, (which is automatically true if 7 is not ordinary at p because in this
case prl|aep = Prlcg, is irreducible by [Edi92]), where p, denotes the residual representation
of the Galois representation p.

We also fix an algebraic Hecke character £ : K*\AZ — C* of co-type (0,kg) with kg an even
integer.

5.3. The weight space. For an algebraic Hecke character x : K*\Ag — C* of co-type (ki, k2),
we denote by xg its associated unitary Hecke character, i.e.

_kitko
X0 = X‘ : |AKZ ? 9
and denote by Xp-adic its associated p-adic character, sometimes called the p-adic avatar of x, as
— 5
(5.3.1) Xp-adic : K\AS f — Qs Xpeadie(®) = X(2)zpt 252,

Applying this convention to &, we get § and &p.adic-

The weight space we will use for constructing the semi-ordinary Klingen Eisenstein family on
GU(3,1) is Homcent (I‘;C,QX). By identifying I'xc with a quotient of ICX\A,é’f, the arithmetic points
in the weight space are p-adic avatars of the algebraic Hecke characters of K*\Ag whose p-adic
avatars factor through I'. We will use 7 to denote such a Hecke character, and 7, aqic to denote
its p-adic avatar. By the above convention, 7y denotes the associated unitary character of 7. The
interpolation points we will use are the 7’s satisfying that 7 has co-type (0, k) with k an even integer
> 6. (One can consider more general oo-types by using Masss—Shimura differential operators. For
our purpose here, only considering the case of co-type (0, k) suffices.)

5.4. The groups. By the assumption on 7 in §5.2, we can fix a prime ¢ such that

g does not split in K and 7, is ramified, if 2 splits in /C,
q=2, if 2 does not split in K.

Let D be the quaternion algebra over Q ramified exactly at ¢ and oo, and let 7° be the Jacquet—
Langlands transfer of m to D*(Aq).

We can take a square free positive integer s, coprime to pDy /o and all the primes inert in
K where D splits, such that inv, (D) = (=5, Dx/q)v, Where (-, +), is the Hilbert symbol. Define

(=0 <5 1> with d the totally imaginary element in K with 42 a p-adic unit as fixed in Notation.
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This (p is a skew—Hermitian matrix. Define the unitary group U(2) (resp. similitude unitary group
GU(2)) over Z as: for all Z-algebra R,

(5.4.1) U(2)(R) = {g € GL2(R®z Ok) : 9607 = (o}
(5.4.2) GU(2)(R) = {g € GL2(R®z Ok) : gCo'g = v(g)o, ¥(g) € R*}.
We have ~
D= {g € Ma(K): go'g = detta)io} = { (5 =) st e ).
and we view both D* and GU(2) as subgroups of Resy g GL2(K). Then the homomorphism
K* x D* — GU(2)(Q), (a,9) — ag
induces an isomorphism
(5.4.3) GU(2) =~ (Resi/qGm x D*)/{(a,a '13) : a € G, }.

Given an automorphic form on ¢ on D* with central character x1, by picking an extension x of
X1 to KX\AX, one obtains an automorphic form ¢“Y(2) on GU(2) by (5.4.3).

We denote by 77 the Jacquet-Langlands transfer of 7 to D>, and by f the unique automorphic
form on D* which is a newform for the action of D*(Q,) ~ GL2(Q,) for all v # ¢, 00 and takes
value 1 at 15. By our assumption, 77 has trivial central character. We can extend fP to a form
fGVU®) via (5.4.3) and the trivial character. We denote this form by fSU() and denote by 7GU(2)
the automorphic representation of GU(2)(Aq) generated by f GU@®),

Define the unitary group U(3,1) (resp. similitude unitary group GU(3,1)) over Z as

1 1
UB,1)(R) =9 9€GLy(R®z0k) : g o g = o ,
-1 -1
1 1
GU3,1)(R) =9 € GLy(R®zOk) : g Co 7 =v(g) Co ,v(g) € R &,
-1 —1
Let
X k *
(5.4.4) Pau@sy = g * € GU(3,1) : g € GU(2), = € Resg/qGm ¢,
v(g)z™?

the (standard) Klingen parabolic subgroup of GU(3,1). Its Levi subgroup is
Mpgy ., = Resg /oG x GU(2).
We consider the Klingen Eisenstein series on GU(3,1) inducing 7Y X &y7y] - |'S°\;Xc from Pqus,1)-
Define the unitary group U(1) over as
U(1)(R)={a€ (Rxz0k)" :aa=1}.
The projection g, : K, = K ® Q, — Q) induces maps
U(2)(Qp) — GL2(Qp), U3, 1)(Qp) — GL4(Qy), U)(Qp) — Q

and they are all isomorphisms. We denote the inverse maps by o, L,

(54.5) 05 : GLa(Qp) — U(2)(Qp), 05" : GLa(Qp) — U(3,1)(Qp), 051 : QX — U(1)(Qy).
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5.5. The Klingen Eisenstein series and the doubling method. We briefly recall the definition
of Klingen Eisenstein series and Garrett’s (generalized) doubling method formula which expresses a
Klingen Eisenstein series on GU(3,1) as an integral involving a Siegel Eisenstein series on GU(3, 3).

5.5.1. The Klingen Eisenstein series on GU(3,1). Let UPqus.ay be the unipotent subgroup of the
Klingen parabolic subgroup Pgy(s,) in (5.4.4). For a unitary character om0 : K*\A¢ — C* and a
complex number s, define I Paus.) (s,&070) as the space of smooth K-finite functions (where K is a
maximal compact subgroup of GU(3,1)(Aq))

F(Sv 507—0) : UP(;u(3,1) (AQ>Mpcu3,1) (Q)\ GU(?)’ 1)(AQ> —C

satisfying
€z 3
(i) F(s,&m0) 1, gl = foTo(x)|xa_c]ZZ§ for all z € AY, g € GU(3,1)(Ag),
T
1
(ii) for all g € GU(3,1)(Aq), the function g — F(s,&o70) g1 g | is a cuspidal

v(g1)
automorphic form on GU(2)(Ag).

The Klingen Eisenstein series on GU(3,1) attached to F'(s,&70) € Ipyy s ,,(s;€070) is defined as

BN (g F(s,&om0)) = > F(s,&070)(79)-
YEPcu3,1(Q\GU(3,1)(Q)
If the cuspidal automorphic form in (ii) belongs to 7GU@) | the Galois representation attached to
EXling (. s F'(s,6070))|,_r—3 (where we assume that &7 has oo-type (0,k)) is
2

ET - e ONM @ (€7) 7 - €cye o N @ PrlGa@/i)

where the Hecke characters of K*\AZ are viewed as characters of Gal(Q/K). The congruences

between this Klingen Eisenstein series and cuspidal forms on GU(3,1) can be used to construct

elements in the Selmer group for pw(egyc)|Gal(6/,C) ® L

5.5.2. The Siegel Eisenstein series on GU(3,3). Let GU(3,3) be the similitude unitary group over
Z defined by

GUe. (W) = {gecLarez 00 Ly B)a=v () ) e em ),

The group GU(3,1) xg,, GU(2) = {(g1,92) € GU(3,1) x GU(2) : v(g1) = v(g2)} embeds into H by
1: GU(3,1) xg,, GU(2) — GU(3,3)

5.9.1
( ) (91792) — S_l (gl ) S’
92
1

_%

where § = = 1 2

1, _%0

Let Qquys,3) be the (standard) Siegel parabolic subgroup of GU(3,3). For a Z-algebra R,

Qaus)(R) = { (61 g) € GLg(R®z Ox) : D = v"A~ v € R*, A™'B € Hers(R ®2 (’);C)} :
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For a place v of Q, a unitary character &y ,70, of I} and a complex number s, the degenerate
principal series I 5),0(8: 0,070,0) is defined as the space consisting of smooth GU(3, 3)(Z,)-finite
functions fy(s,£0v70.0) : GU(3,3)(Q,) — C satisfying

fv(37 go,vTO,v) <(Sl g) g) = ‘SO,UTO,U(det A)‘ det AD_1‘2+%f(g)

for all g € GU(3,3)(Q,), (é g) € Qau3,3)(Qu)-

Given a unitary character o7 : K*\AZ — C* and a section f(s,&70) = ®; Jv(5,€0,070,0) inside
X, 1Qcus.3)0(8:§0,0T0,0), the Siegel Eisenstein series on GU(3,3) attached to f(s,&o7o) is defined
as

ES8(g: f(s, &om0)) = > f(s,&10)(19)-

7€EQcu(3,3)(Q\GU(3,3)(Q)
5.5.3. The (generalized) doubling method formula.

Theorem 5.5.1 ( [Gar89]). Let {omo @ K*\Ag — C* be a unitary character. For a section
f(8:8070) € IQgy s, (5:€0T0) and a cuspidal automorphic form ¢ on GU(2)(Aq),

/ ES8(1(g, g1t) 5 (s, &070)) @ (91t) (§070) ™" (det g1t) dgr = EX"8 (g3 F(f(s,&0m0), ©)),
U(2)(Q\U(2)(Aq)

where t is an element of GU(3,1)(Aq) with v(t) = v(g) (and it is easy to see that the left hand side
does not depend on the choice of t), and F(f(s,8070),p) is the section in Ipyy,, (s,&o70) defined

by
F(f(s, €om0), ©)(9) = /U g /6000 plar0) o)™ (et 10
Q

5.6. The auxiliary data for the Klingen family. Let 3 be the set of finite places of Q containing
the prime 2, the prime ¢, the finite places v # p where 7 or £ or K/Q is ramified and the primes
dividing s. We denote by 3 the set of primes in X split in I and X5 the set of primes in X
non-split in /.

The Klingen Eisenstein family we will construct is not of the optimal level. It depends on some
auxiliary data which are chosen such that we can prove the desired properties of its non-degenerate
Fourier—Jacobi coefficients. In this subsection, we fix these auxiliary data. We first fixes places ¢, ¢/
and positive integers ¢, for v € X, U {¢'}. Then we choose Hecke characters xg, x5, satisfying a
list of conditions. Then we fix positive integers ¢, for v € 35 U {¢}. The Siegel Eisenstein family
on GU(3,3) we use for constructing the Klingen Eisenstein family depends on the choice of ¢, ¢, ¢,,
v e XU{L '}, the automorphic form on GU(2) to pair with the restriction to GU(3,1) xg,, GU(2)
of the Seigel Eisenstein family is chosen from the space (5.6.12) defined below which depends on
Xhw, U € X U{l}. The characters xp, x5 will show up in our analysis of non-degenerate Fourier
coefficients.

We fix:
— primes £, ¢ # 2, p such that ¢ splits in £/Q, ¢ is inert in K/Q, and 7y, 7y are unramified,
— for each place v € Xs U {¢'}, a positive integer
¢y > max{ord,(cond(\,),ord,(cond(m,)),3)} + 1.

Before choosing the auxiliary Hecke characters xg, xn, we need to first introduce a Proposition
on certain Schwartz functions in the Schrodinger model of Weil representations of U(2,1). Let
V,V~ (resp. Wg) be the two dimensional skew-Hermitian spaces (resp. one dimensional Hermitian
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space) over IC, and ej,es € V@ Wg, e],e5 € V™ @ Wg as in §7.1. We have U(V @ V™) = U(2,2)
and U(Wp) = U(1).

Proposition 5.6.1. Let v be a finite place of Q non-split in K/Q. Denote by wg,(+, ) the Weil
representation of U(2,2)(Qy) x U(1)(Q,) on the Schridinger model S (Ky(e1 +e7) ® Ky(e2 + €3))
(with respect to Aw, = ). Let

T+ 5(Quer ® Quez ® Quel ® Quey ) — S(Ku(er +e7) @ Kylea + €3))

be the intertwining map between Schrodinger models.
For p =1, there exists a character x, : U(1)(Q)) — C* with

ord, (cond(xv)) > max{ordy(cond(xy|qx, ordy(cond(Ay)), ordy (cond(ry)), 3},
a Schwartz function ¢1., on Quer ® Quez, and uy,...,ur € U(1)(Qy), b1,...,bs € C such that the

function
¢
_ 1 .1
yHij/Q o 1(““’“((()2 i 2)””) %’”) ) ) de
j=1 ve1DQye2

is nonzero and belongs to the Xv)\?}]U(l)(QU)—eignespace for the action of U(1)(Qy), where ®g ,, is the

characteristic function of O, el;el ® Okv 62262 .

Proof. [Wan20, Lemma 6.26]. O

Now we fix auxiliary Hecke characters
~ X0, Xh  KX\AE = C* of oo-type (0,0) with th§|AS = triv satisfying the following proper-
ties:
(i) x6,xn are unramified away from 3 U {p, £,¢'} and xpx§ is unramified at g.
(ii) X0.,p> Xh,5 are unramified, and Xh,p|z§ = XG_,%|Z§ = 507P|Z§'
(iii) For v € X5 U {¢'},

X6,0U(1)(Q,) = @ Xv as in Proposition 5.6.1,
ord, (cond(Xn,vXf.)); ord, (cond((A2xn.vX6.)) > ord,(cond(m,)), if v # g,
(iv) For v = vv € ¥4 U {{}, xg is unramified, and
ordg(cond(xp,5)) > 2ord,(cond(my)) + 2,

and

ordy (cond((xnxg)e) = {

(v) If ¢ = ¢? is ramified in K/Q,

ord, (cond(xp5)) — ord,(cond(m,)), m, ramified,
ord, (cond(xp,5)) — 1, m, unramified.

(XnX8)a(wq) = Xq(a),
where Y, is the unramified quadratic character of K such that m; & Steinberg @ x4, and
@y is a uniformizer of K.
(vi) Furthermore, the value

o\ 1 o
(5.6.1) <Qp> 3 (2,7rp X (>\2th)ﬁ> L (TBC(W) X >\2XhX9>
is a p-adic unit, and
1
(5.6.2) L1 (2,BC(7r) X thf,) #0.



For some algebraic Hecke character 7 : ICX\A;& — C* such that 7, 4qic factors through I'x
and £7 has oco-type (0, k), k > 2, the values

Q N\ k—2 o (k-2

653 (g2) @ - o (S5 gt ) 2 (5 wgton).
Q,\"? k—2 k—2

(5.6.4) <Qp> (27TZ)2 ’“F(k — 2) . Lp <27 AZXhXGfST(?) P> (2, )‘2XhX9§(C)Tg> ,

k—2

(5.6.5) 1 —(xaxgéom0)e(@)g™ 2 ,

are all p-adic units.

The existence of the characters yg, xn satisfying the above assumptions follows from the mod
p nonvanishing results. We can first choose xg.1, xn,1 satisfying the conditions (1)-(5). (The inert
prime ¢ is introduced to ensure the existence.) Then we can apply mod p nonvanishing results
[Hsil4b] (for the L-values in (5.6.1)) and [Hsil2] (for the L-values in (5.6.3)(5.6.4)) to choose a
character v of {-power conductor such that xo = xp,1, Xn = Xn,1v satisfy (1)-(6). (The conditions
in (3) on the conductors at non-split primes and the condition (5) implies that the local root
numbers are +1 as required for applying [Hsil4b]. Our assumption that £ has oco-type (0, ko) with
ko even implies that the L-values in (5.6.3)(5.6.4)) fall into the non-residually self-dual case for
which [Hsil2, Theorem B] can be applied.) (The strategy explained in §7.5 explains why we need
to make such a choice the auxiliary g, x5-)

Besides the positive integers ¢, for v € X,s U {¢'} fixed earlier in this subsection, we also fix

— for each place v € X5 U {/}, a positive integer

(5.6.6) ¢y > max {ordﬁ(cond(xgj)), ordy (cond(§p,p)), ords (cond(o5)), ords (cond()\a))}.

With our fixed ¢,’s for all v € ¥ U {¢, '}, define

(5.6.7) K, = {g € GU(2)(Zy): g=12 mod qzcv"‘ordv@ﬁ)}’
and the tame level group K ]1? C GU(2)(ZP) as
(5.6.8) Kf= () GU2)(Z) K Ko

v SU{o0,0,0'} veSU{L, '}

Given an open subgroup K, C GU(2)(Z,) and a ring R, let
(5.6.9) Mgy <K§Kp; R) - {functions on GU(2)(Q)\ CU(2)(Aq)/ K%K, U(2)(R) valued R} :

the space of R-valued automorphic forms on GU(2) of weight (0,0) and level K}I),.

We also define the following twist of the form fGU(2):
1 St
(5.6.10) fa@=11 Y. xns(-m)R ((n 1) (qv 1) ) £,
v=00€XsU{l} ne(Z, /qtv Z,) v v
where ¢, = ordg(cond(x4,5)). Then fShU(z) € Mgu(2) (Kfc) GU(2)(Z,); C’)L). Let

(5.6.11) L[GU(2) (Qs,.uqey)] - fi7®

denote the space generated by fSlU@) and the action of GU(Q,), v € Xps U {¢'}.
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Remark 5.6.2. We will use ¢ inside the space
(5.6.12) Mgy () (K;’ GU(2)(Z,); OL) NL[GU2)(Qs,.uqey)] - fSUP

to pair with the Siegel Eisenstein family on GU(3,3) to get the Klingen Eisenstein family on
GU(3,1). The twist at the split primes is to make the nebentypus match those of the auxiliary CM
families @ and h constructed from our chosen auxiliary characters xp and xj,. The flexibility at the
non-split primes is to ensure the non-vanishing of the local triple product integrals at the non-split
primes.

5.7. The choice of the local sections for the Siegel Eisenstein series on GU(3,3). With
¢y’s chosen in §5.6, given an algebraic Hecke character 7 such that {7 has oco-type (0,k) with &
an even integer > 6, we make the following choices of f(s,&070) € IQqy s (S,8070), so that after

a suitable normalization, ES8(. ; f (3,5070))‘5_ r—3 can be interpolated by a two-variable p-adic
-2

family when 7 varies.
5.7.1. The archimedean place. We choose foo(s,&070) € IQGU(373)7OO(S,TQ) as

fools: o) <g B @ g)) :(detg)k\det(g)@‘%—ﬁ
S

xdet(C(i%o)—|—D>7k)det(0(i%o>+D) ]

5.7.2. Unramified places. For v ¢ X U {p,{,{'}, we choose f,(s,£070) € IQgye.sv(S;T0) to be
the standard spherical section, i.e. the section that is invariant under the right translation of
GU(3,3)(Z,) and takes value 1 at 1¢.

5.7.3. Places v € SU{{,{'}. We choose f,(s,£070) € 1Qqy 3.4 0(8: T0) as

Jols: foro) (g B @ ﬁ)) = [u(g) Iy det 'O (Eom)e (v(9) (det ©) )

_ 0 0
X ]lHer(3,0lc,u) (C ‘D T (O q;cv : 12)) ’

5.7.4. The place p. We have the isomorphisms
U(373)(Qp) — GLG(QP)7 9= (aij) — (Qp(aij)),
Her3(KCp) — M33(Qp), v = (25) — op(x) = (0p(2s))-
and we will often use them to identify U(3,3)(Q,) with GL¢(Q,) and Herz(/C,) with M3 3(Qp).

(5.7.1)

where ¢, is the fixed positive integer in §5.6.

T11 X12 13
For x € Her3(K,), we write gp(x) as | 21 @22 23 |. Define the Schwartz function agr, on
31 T32 T33
Her3(ICp) as

0 (0) = Dy, (0) Ty o) anaizy (3202 (ol (e (220 72)).

I31 I32 I31 I32
and let F _10%771, be the inverse Fourier transform of agr,, i.e.
Flagepla) = [ acnylu)eplTran) dy

Her3(KCp)
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where e, is the additive character in (1.0.5). (A simple computation shows that

_ _ 2 _ _
F agrp(z) =p g ((S0m0), ') Izs (w11, T21, 431, T32, 233) - Lz2 (255 13, To3 To2)

-1 2t T12 T13
XA, iz (1623)111342; (212 — 213255 T22) (0T0)p <10 det <$22 $23>> .

(5.7.2)

if (£70)p has conductor p, ¢ > 1.) In order to define the f,(s,&y7o) for our purpose, we first define
the section

ig-ce —c A B —s+3 ~15—3
gt (s o)) (9= (5 ) ) = @l Hdee 0l Heom), ((a)(der )
x F g, ,(C7'D),
which belongs t0 gy 4),p(—S; (§070) ™) and is supported on the big cell

0 —-13
Qcu(3,3)(Qy) (13 ) Qcu,3)Qy)-

We choose fy(s,&om0) € IQGU(3,3),p(Sa€OTO) as
Tols, €00)(9) = (=25, (€87 ™) 9y (=25 = 1. (7)) Mmics)  (—25 — 2, (€87 )
x My (—s, (£070)~°) f;ig’ceu (=s, (€070)7%) (97p),

where f(? (resp. T(?) denotes the restriction of & (resp. 79) to Q*\Ag, and M), (—s, (§o70)~¢) is the
intertwining operator, .e.

My (—s, (070) ™€) £8M (=s, (€070) ") (9Yp)

5.7.4 . _
(65:7.4) :/Hem(lc )f;?lg'ceu(—s, (§10)7°) ((13 13) <13 13/3) gT> dy,

and Y, is the element in U(3,3)(Q,) such that

(5.7.3)

1
1, —%
QP(TP) = 1 2
—1, _%0

Remark 5.7.1. When (58 7'0Q )p is ramified with conductor p’,
T <—25,( 8™ ) T (—25 -1, (5(?7(?)_1%@) gl (—28 -2, (&) 1)

o ((68)") Rl pe O

Combining this with (5.7.2), one can see that the formula for the section f,(s,&p70) in (5.7.3) agrees
with the formula in [Wan20, (6-5)].)

Remark 5.7.2. For the unitary group attached to 1 1") and f € Her,(K), the factor for the
—4in

functional equation of the S-th local Fourier coefficients of the degenerate principal series inducing
(&o70)p 1 - i) 1s
(5.7.5)

-1
enp( =5, (€070) ™, B) = e - (E570 )pldlet B) | det B2, H%( 28+ 1=, (&570) )
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where cg ) is a constant independent of s and £y7p. This factor also shows up in the functional
equation of the doubling zeta integrals. Note that in our choice of f,(s,£o70) in (5.7.3), the product
of gamma factors is exactly the product of gamma factors in ¢3 ,(—s, ({o70) ¢, B).

Next, we construct a p-adic family interpolating these ES8(—; f(s,foTo))‘S_ﬁ with f(s, &)
-2

chosen as above. We will construct p-adic families of automorphic forms as measures on I'x valued
in the space of p-adic forms. The next subsection introduces some notions about p-adic measures.

5.8. p-adic measures and p-adic families of automorphic forms. For a p-adically complete
Or-module M and a compact abelian group Y with totally disconnected topology, denote by
Meas(Y, M) the space of M-valued p-adic measures on Y. Given p € Meas(Y, M) and a contin-
uous function n: Y — R with R a p-adically complete Op, algebra, we write

u(n) = /Yn(y) du(y).

to denote the value of u at n, which is an element in R@@LM.
For each y € Y, we have the delta measure 6, € Meas(Y, M) defined by

(5.8.1) dy(n) = n(y).

Given My, My and u; € Meas(Y, M;), i = 1,2, the convolution p; * uy € Meas(Y, M1<§>M2) is
defined by

(582) G <)) = [ [ awe) dia(v) ),
If x is a continuous character of Y valued in (9;, then

(5.8.3) (11 p2) (x) = p1(x) ® p2(X)-

Let A be a group with a homomorphism A — Y and an action on M. Then the group A acts
on Meas(Y, M) in two ways:
— A acts on Meas(Y, M) via its action on M,
— A acts on Meas(Y, M) via the homomorphism A — Y and the translation of Y on itself.
Define

(5.8.4) Meas(Y, M)t = { p-adic measures in Meas(Y, M) on which }

the two actions of A are compatible

In our applications, Y will be taken to be I'c or Uk, = 1+pOx, A will be taken to be Z; x Z,

which we identify with (’),é » via (0p, 05), and M will be taken to be either @Er or spaces of p-adic
forms on unitary groups. Next, we introduce the spaces of p-adic families of automorphic forms we
will use.

5.8.1. p-adic families on GU(3,1). Let Vgus1) = @@me (defined in §2.6). In (5.8.4), put

Y =Tk, A=2Z; x Z; with the homomorphism

X natural % X natural
8. ~ —para — R T =
(5 8 5) A O’Cyp embedding K \A’C projection Te =Y,

and M = Vgu),e, the component of Viy(s) on which the kernel of (5.8.5), acts through
the character &, ,qic. We make (a1,a2) € Zy x Zy act on Vqu),e by the usual action of

1
Qp_1< 1 o > € Tw(Zp) € U(3,1)(Zp) on Vgys,),e multiplied by the scalar p__;dic,p(ahaQ)-
az
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(Here o, ' is the isomorphism in (5.4.5), and this action factors through the quotient of Z; x Z3
by the kernel of (5.8.5).) Then we get

(5.8.6) Meas (T, VGU(3,1),§)h ;

the &, adic-component of the space of p-adic families on GU(3,1). The compatibility of the two
actions of Z x Z implies that the value at 7, aqic of an element in (5.8.6) is a p-adic form with
p-adic nebentypus

(triv, tI‘iV, (gT)p—adic,pv (57—);;(11@;3) .
* ok ok

a1
(By saying p-adic nebentypus, we refer to the usual action of le < @2k > € U(3,1)(Z,) on

a4
Vaus-)
The space (5.8.6) contains the subspace of semi-ordinary families:

~ ~ o \b
(5.8.7) Meas (FIC,GSOVGU(s,l),5®OEr> )

which is naturally equipped with an @Er [Tk ]-module structure. The Klingen Eisenstein family we
will construct belongs to this space. (It is tautological that an element in (5.8.7) gives rise to an

element in &, agic-component of Mso®zp[[Tso(Zp)]](’jEr[[F,C]] = Hom@gr[[r,c]] (’V:}), @Er[[f‘;c]]), see §8.1.)

5.8.2. p-adic families on GU(3,3). Let Vgy(s3) be the space of p-adic forms on GU(3,3) defined
by considering global sections of the structure sheaf on the Igusa towers for the Shimura variety of
GU(3,3). We will construct a Siegel Eisenstein family in

Meas (Tx, Vaus.s) -

5.8.3. p-adic families on U(2). For constructing the Klingen Eisenstein family, we use an automor-
phic form ¢ in the space (5.6.12), which is spherical at p and does not vary over the weight space. It
is when analyzing the non-degenerate Fourier—Jacobi coefficients of our Klingen Eisenstein family,
we need auxiliary p-adic families on U(2).

Let

Mz) = {ocv@E) a0 = (5 1)}
Nyz) ={aeve@): sl = (5 1)}

We define the following two spaces of p-adic forms on U(2) of tame level K ]12 N U(2)(2p):

Vi(e) = {continuous functions U(Z)(Q)\U(Q)(AQJ)/(KP U ) ) — OL}
V['j(Q) = {continuous functions U(2)(Q)\U(2)(AQJ)/(KP NU(?2 ) ) — OL}
and let Vi) ¢ (resp. VU(Z) -1 1) denote the subspace of Vi) (resp. V ) on which the kernel of

(5.8.5) acts through the character (triv, &y adicp) (resp. ({;_adm?p,
acting on F € Viy(9),¢ (resp. F € V[’J(Q) ¢-1) as

@R = ¥ F (o' (7 7))

z€Z/pZ

triv)). We have the operator U,

with o, ! the isomorphism in (5.4.5). The ordinary projection is defined as eqq = nlinl U;“.

—00
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In (5.84), put Y = I'x, A = Z; x Z; with the homomorphism A — Y as in (5.8.5), and
M = Viy(9),¢ on which we make (a1,a2) € Z; x Z act by the right translation of Qp—l <1 ) >
7 1

multiplied by the scalar £ ;di . p(al). (This action factors through the quotient of Z x Z* by the

kernel of (5.8.5).) Then we get
(5.8.8) Meas (T'k, VU(2)7§)h :
The evaluation at 7, agic of an element in (5.8.8) is a p-adic form on U(2) with p-adic nebentypus

(triv, (§7)p-adic,p) -

The non-degenerate Fourier—Jacobi coefficients of our Klingen Eisenstein family are p-adic measures
on 'k valued in p-adic Jacobi forms on U(2). Pairing them with a fixed Jacobi form on U(2) gives
an element in (5.8.8). (See §7.6.)

We will also need to consider some auxiliary p-adic families which are p-adic measures on Uy, =
1+ pOxp valued in Vyy(g) ¢ and V[’J(Q) g1 We will fix N, a power of p, such that raising to the N-th

power maps Ik into Uk p,. (See §7.7.1 for an explanation why we need to consider Uk, and fix such
an N.)

Put Y =Ukp =1+ pOkp, A=2Z; x Z; with the homomorphism

(5.8.5) N-th power

A=2Z%xZX » T » Ucp =Y,

and M = eorqVy(2),¢ (Tesp. €ordV{;(2) 5—1) in (5.8.4), on which we make (a;,az) € A act through the
-1

right translation by le <1 a1> (resp. 9;1 (al 1)) multiplied by the scalar gpf_;dicyp(al) (resp.

p-adicp(a1)). Then we get

b
(5.8.9) Meas (Un,p,eordVU(z)jg)h (resp. Meas (U;C,p,eordVI'J(Q)7£,1) ) )

For 7 adic € Homeont (F ;C,Q: ), the evaluation at 7, adiclvy, of an element in (5.8.8) is a p-adic

form on U(2) with nebentypus
(triv, (fTN)p_adiqp) <resp. (fTN);_;diC’p,triv>> .
We will construct auxiliary CM families
- ~ b
0,h; € Meas (U;Qp, eordVU(Q)@)u , 03, h € Meas (U;C,p, eordV{J(Q)’é_l) ,

in §7.7 and use them to study the non-degenerate Fourier—Jacobi coefficients of the Klingen Eisen-
stein family (which are elements in (5.8.8) and gives rise to measures on Uk, by the map (7.7.1).)

5.9. The p-adic family of Siegel Eisenstein series on GU(3,3). We normalize the Siegel
Eisenstein series £S5 (. ;f(S,foTo)‘s,@ (with f(s,&o70) chosen as in §5.7) as
- 2

-1
o 276(—27i)3k SU{oop, 6,0} Si
(5.9.1) EoeE = . d PR (s, 10) - X8 (5 (s, €0m0) | _nmss
¢ 3 H?:O I'(k—3j) s = 2
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where

dg,EU{Oo’p’E’Z Hs, &omo) = H d3.0(5,070),
vgXU{p,L,0'}
(5.9.2)

3
(s €om) = [ Lo (25 + 5, 68780 -
j=1
Theorem 5.9.1. There exists a p-adic measure ES'°8 € Meas (FK;, VGU(3’3)) such that
i Si
ESleg(Tp—adiC) — EgTeg

for all algebraic Hecke character T : K*\A¢ — C* such that its p-adic avatar Tp_agic factors through
Tk and &1 has oo-type (0, k) with k > 6 even.

Proof. The measure is constructed by interpolating the g-expansions of the Esieg’s. First, we
record the formulas for the Fourier coefficients in [Wan20, §§6E-6H]. Given g € Her3(K) and
g € GU(3,3)(Ag), let

Wﬁ,v (gfuva(SagOTO)) :/H c )fv(saé-OTO) <<13 _13> (103 1§3> gv) ev(_Trﬁg) ds

(where e, is the additive character in (1.0.5)), and

5% (g: £(s,é0m0)) = /er3(’C\AK) B <<103 1§3> 7 f(s’§070)> Oro( ) e

H
Because the sections at v € X U {{,¢'} are chosen to be supported on the big cell, for g €
Qcu(s3)(Ag), we have

B (g3 f(s,60m0)) = [ [ Wa (90, £(s. o).

For our choice of f,(s,&70) in §5.7, the formulas for Wg, (gv, fu(s, 5070)) are as follows.

— The archimedean place.

W5 00 <<g xt;g—_;) ;foo(&foTo))

276 (—2mi)3k - ot -
ST g (et ) en (Te o +iy')) - (det )2, 6 € Herg(K)=0

8272

0, otherwise.
—v g X U{p, L, 0'}. For det 5 # 0,
_k
Wi (diag(4, D); fuls, €70))|,_t = €o.v7o,(det D) det AD~H o =™ dy o (s, €mo)

x ]lHer?’(OlC,v)*(D_lﬁA) ) hv,D_l,BA (681;7'81}(@111)(];28_3) s

where h, p-154 € Z[X] is a monic polynomial depending only on v and D™1BA, and is the constant
polynomial when when D~!3A belongs to GL3(Ox ).
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—veXu{Ll}.

. _1,—E43
Wi, (diag(A, D); fuls, §070))l sz = |Dcsol2/? - G000, (det D)| det AD7! |2

(D™ 'BA) + (D~ 1514)33)
Qv

X Lery(0x.)- (D' BA) €y (

— The place p. An easy computation shows that
Wiy (16 555,601 9) | oy = FIF ) () = acea(5).

The functional equation for Wg, in [LRO5, (14)] implies that

Wap (95 My (=s,65°75°) £ (=s,6517571)) = eal—s., 6575, B) W (95 £ (s, 5575 )
with 3 ,(—s,&; 1 ¢, B) defined as in (5.7.5). It follows that

Wﬂ,p(L fp(s,gom))‘s:% =Cp- ( 070 ) (det 3)| det 5|Q - aerp(B).

Denote by Egsfg (diag(A, D)) the B-th coefficient in the (p-adic) g-expansion of Eésieg at the (0-
dimensional) cusp indexed by diag(A, D) € GU(3, 3)(A}. 7). From the above formulas for the local
Fourier coefficients at the archimedean place, we see that ESleg (dlag(A D)) is nonzero only for 3
inside

- , x (0p(Ba1)  0p(B22)
Sy = {5 € Hers(Ox)s0 : 0p(Ba1) € Z, <@2(ﬁ§1) JZ(,@?i)) € GLQ(Z,,)} ,

and for 8 € &3 we have

ESleg % (diag(A, D)) = a constant independent of 7

% (€D)paic@et D) TT Ay igpn (€03 aienl@)) -
(5.9.3) vgSU{p,,0'}

X (67) p-adi det (521 522) o (fT)Q (det 3)
p-adic,p 531 632 p-adic,p

(Note that thanks to the condition that {7 has oo-type (0,k), we have (£7)p-adicp = (£7)p and
(gT)p—adlc|O>< = fOTO‘OX p-)

The factors on the right hand side of (5.9.3) are interpolated by d-measures in Meas (I'xc, Op).
The convolution of those d-measures gives an element in Meas (I'x, Or) which interpolates the
Fourier coefficient ESleg (dlag(A D)). (See (5.8.1)(5.8.2)(5.8.3) for the definitions of §-measures
and the convolution of p-adic measures.) We see that there exists a p-adic measure

ES ¢ Meas (F;c, @ OL[[63H)

p-adic cusps

that interpolates the p-adic g-expansions of E§S ieg. By the g-expansion principle and the fact that the

Egsieg’s are automorphic forms on GU(3,3), we deduce that E5®® belongs to Meas (I‘;C, VGU(373)).

(Here we view the space of p-adic measures valued in Vaus,3) as a subspace of the space of p-

adic measures valued in copies of OL[&] via the embedding of Viguys3) into the Op-module of

g-expansions. ) O
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5.10. The semi-ordinary family of Klingen Eisenstein series. Let ESleg’GU (3.1)xCU(2) be the

automorphic form obtained by the composition of the restriction from GU(3,3) to GU(3,1) xg,,
GU(2) via the embedding (5.5.1) and the extension by zero from GU(3,1) xg,, GU(2) to GU(3, 1) x

GU(2). Define the twsist ESleg‘GU(g xQU(@) &

Si Si 1
E eg‘GU (3,1)xGU(2 )(91792) E eg‘GU (3,1)xGU(2 )(91792) fp adic padm(deth)

Then by our choice of the section f,(s,&o70), we see that

S ~
ES[Guisyxaue € Yauan,e ® Maug) (K?Kp,o; OE’“)

with Ko = {g € GU(2)(Zy) : op(9) = (;* :

(5.6.9) for the definition of Mgy ) (K”Kp 0 @gr> )
Therefore, by applying a twist of (£7)

)} (Note that K¢ equals the Kj, , in (4.4.1). See

padic © det to the family ESieg’GU(S 1xGU(2) N the second

factor, we obtain the p-adic family
(5.10.1) ESE| e € Meas (T, Vaugs),6) © Maug) (K20 OF)

interpolating E when 7 varies. (To see that it belongs to the 1_subspace, one just

Sleg‘

GU(3,1)xGU(2)

needs to check the nebentypus.)
Attached to a ¢ in the space (5.6.12) is a linear functional

<. , (p> : MGU(2) (K?Kpp; @Er) — @Er
o — (¢, ) = ¢'(9)¢(g) dg,
GU(2)(Q)\ GU(2)(Aq,f)

where the integral is understood as a sum over the finite set GU(2)(Q)\GU(2)(AQ7f)/K§pr0
Applying the linear functional (-, ¢) to (5.10.1) gives a family

in, i ~ Aur i
(5102) Egl & = <ES eg|aU(371)xGU(2)v §0> € Meas (FKa VGU(3,1)75® Ol[l/ ) :
Proposition 5.10.1. For 7,_.q4ic satisfying the conditions in Theorem 5.9.1, the evaluation of the

family Egling at Tpadic 95 a Klingen Fisenstein series on GU(3,1) inducing §ool - ]% X WGU(2),

more precisely, the automorphic form

(5.10.3) g+— / E5% (1(g, g2); £ (s, £070) ) ¢(92) (€om0) ~* (det g2) dgo
Q\U(2)(AQ)/ U(2)(R)

normalized by the factor in (5.9.1).
) ~ A\
Moreover, Eghng € Meas (F;C, esoVau(s,1),e® Ogr) , i.e. 1s a semi-ordinary family.

Proof. From the construction of the family Eghng, it is easy to see that its evaluation 7, adic
satisfying the conditions in Theorem 5.9.1 equals the form given in (5.10.3) normalized by the
factor in (5.9.1). By the doubling method formula (Theorem 5.5.1), we know that (5.10.3) is a
Klingen Eisenstein series inducing oo - |% X 7GU@),

In order to show that Egling is a semi-ordinary family, for all 7 satisfying the conditions in
Theorem 5.9.1 and ({7), ramified, we look at the action of U,-operators on the form (5.10.3),

which has weight (0,0, 0; k). Given integers m, m’,m” > 0, by the formula for adelic U,-operators
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in (2.8.7) and our choice of the local section at p in §5.7, the action of (U;2)m(U;3)m,(U];1)m on
the form (5.10.3) can be computed by considering

m+m/

P

" ; 3—k —c ’
(5104) p2m+km / I])f)lg'CGH ( 5 , (507_0) > gu pm du7
N(Zp)

where we identify U(3,3)(Q,) with GLg(Qp) via gp : K ®q Qp — Qp. Writing g = (é 15)) in3x3

blocks, we have
(5.10.5)

(5.10.4) =2 ((er), (p)p*) " ((€)p(p)p®) "

« p—4m—3m’—3m” E E

u1,u2 EZ/me Ul,UQEZ/pm+m/+m//
U3€Z/pm/+m//2

_ p—M—m' , 1 —ur _ v1 00 —m/’
o (7 ) e (3)) (7))

A direct computation by using the formula (5.7.2) shows that when ({7), is ramified
(5.10.6)

Y. D Flagy) ((me/ pmm’ pm/> (1) (0—1D+ (é 0 §>> (pm” ) 1))

u1,u2 v1,v2,v3

1
:me(]:—lang) (C_lD ( p—m_m/ l )) .
p—m,—m
Combining (5.10.5) and (5.10.6), we obtain

1

m'

(5104) =™ (€ ()™ ((Ene)pt) " - (Ensoi®) "

% Il;ig-ceu (3—27@7 (507_0)—0> (g (14 pomem 1, )> )

= (e ((€nstonp)” - (€nlslen)y ()2
x fyeee (?)_2]€, (§OTO)C> (9 (14 J— ))

and the corresponding Siegel Eisenstein series paired with ¢ - (§970) ™! o det over U(2) gives

1

(&r)p(p)™ ((fT)ﬁ(p)pk>m - the automorphic form given in (5.10.3).

Here we use the condition that ¢ has trivial central character. Both (£7),(p) and (£7)5(p)pF are

p-adic units, so the form (5.10.3) is an eigenvector for the action of (U;Z)m(U;?))m/(U];l)m” with

eigenvalue a p-adic unit. This shows that the evaluations of the Klingen Eisenstein family Egling

at all 7 satisfying the conditions in Theorem 5.9.1 with ({7), ramified are semi-ordinary. Hence,

Eghng is semi-ordinary. O
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6. THE DEGENERATE FOURIER—JACOBI COEFFICIENTS OF THE KLINGEN FAMILY

This section is devoted to proving Theorem 6.1.1, which states that the degenerate Fourier—Jacobi
coefficients of Eghng are divisible by the p-adic L-function attached to BC(m).

6.1. The divisibility of the degenerate Fourier—Jacobi coefficients by p-adic L-functions.
Given a cusp label g € C(KJIZ), we have the map

~ A\ .
q)g : Meas (ch, esoVGU(371),§® Ollllr) — Meas (F}C, MGU(Z) (K?ng’(); Olll/r)) s

(which corresponds to the map ®, in the fundamental exact sequence in part (4) of Theorem 2.9.1).
Here szzg is an open subgroup of GU(2)(ZP) depending on the cusp label g € C’(K?). Applying it

to our Klingen Eisenstein family Egh“g, we get
(pg (Egling) € Meas <F}C, MGU(Q) (K]}?,QKP,U; @Er>>
Evaluating it at ¢’ € GU(2)(Aq,¢) gives

, (Efp{hng> (¢') € Meas <F;C, @Er) ~ OW[Ik].

By the work of Kubota—Leopoldt on p-adic L-functions for Dirichlet characters, there exists a

(unique) p-adic L-function E?S 6y ¢ @f [T'x] satisfying the interpolation property:

SISIN I'(k—2 - 00,p, .t/

for all algebraic Hecke character 7 : KC X\A,é — C* such that 7, ,qic factors through I'x and 7190 =
sgn®| - k.
By [EW16] (and the archimedean computation in [EL]), there exists a (unique) p-adic L-function

Ef ,Uc{g’el} € @Er [T'x] satisfying the interpolation property: for all algebraic Hecke character 7 :

KC\AE — C* such that 7, .qic factors through T'x and {7 has oo-type (ki, k) with ki, ke € Z,
kl Soa k222_k17

ﬁ?%{é ! }(Tp—adiC)
2(ka—k1)
_osuteey (§ D(ko)U(k2 — 1) 3 — (k1 + ko) 3
=Cr g (Qi) e it G etk R L)

, -1
« [SUloop bt} <k‘11+;€2,BC(7T) X 507'0> )

(6.1.2)

. Su{el .
with Cw,£{ “} 2 nonzero number independent of 7, adic-

Theorem 6.1.1. Suppose that ¢ belongs to the space (5.6.12). Then for all cusp labels g € C(K;’)
and g' € GU(2)(Aq,f), we have

(cbg (Egling) (g’)) c (ﬁig{ﬁ,é’}ﬁzu{ﬁj’})

W,IC,&
in O [Tx].

Proof of Theorem 6.1.1. For T as in Theorem 5.9.1, let E};gﬁg be the classical Klingen Eisenstein

series whose corresponding p-adic form is Eghng(Tp_adic). The theorem is proved by computing
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P, (Eghng) (Tp-adic) With

g=kspr= () Fk, ko € U(3,1)(Zy),
veEX U{L, '}
which is essentially the 0-th Fourier—Jacobi coefficient of the EXling ot

P,ET

1
Tr = g kz r W3
< l/(g/) ) fveae P

with w3, € U(3,1)(Q,) defined by

1
Op (w3,p) = 1

1

Note that ws, € U(3,1)(Q,) is also our fixed element in Pj(Z,) for obtaining the isomorphism
(4.4.7)).

By the description of Egh“g(rp_adic) in (5.10.3) and the doubling method formula (Theorem 5.5.1),
we have

Kling _ normalization factor _ Kling (. ‘
pér ()= 01 the RHS of (5.9.1) " E @ F(f(s:6m).0) | _,

2

with F'(f(s,&070), ) the section in Ipyy, (s, §0To) given by

F(f(s,m0), ) (x) = /U(Q)(A )f(saé*oTo)(Z(x,glt))w(glt)(fom)_l(detglt) dg
Q

= / f(s,&0m0) (2 (ks 00 wsp, 1)) ©(9'91)(E070) " (det 1) dgn
U(2)(Ag)
where ¢ is an element in GU(2)(Aq) with v(¢) = v(x). What we need to compute is
(6.1.3) / EXling (u:L‘; F(f(s,&m0), gp)) du.
UPGU<3,1) (Q)\UPGU(3,1) (AQ)
It follows from [MgW94, I1.1.7] that
(613) = F(f(87 507_0)7 90)(‘%) + MP(;u(g,,l) (87§OTO)F(f(S7 5070)7 90)('7’.)

The archimedean computation in [Wanl15, Corollary 5.11] shows that for our choice of fu(s,&070)
in §5.7 and k > 6,

(6.1.4) MPGU(&I)(SafOTO)F(f(SagoTO)»90)’ g = 0
GU(2)

We reduce to compute F(f(s,&70),¢)(x). Take arbitrary ¢’ € & spherical away from
> U {¢,¢'} and factorizable with respect to an isomorphism 7V ~ & 73V@ | pug

(F(f(5,&070),9)(* ks o0 w3p), &)

F(f(s,&m0),0)(d ks o0 wsp) ' (g')dg'.

/GU(2)(Q)ZGU<2> (AQ)\ GU(2)(Aq)
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Then we have

<F(f(87 ‘507—0)7 QO)( ° kZ,E,Z’ w3,p)a 90/> = H Zv (fv(sv §OTO)> 147 Pus SD;))
vg¥ U{p,0,0'}

X H Zy (fv(fS,gOTO),kvaSDva@;;) : Zp (fp(5>§07-0)7w3,p7§0p’(70;3) s
veEX U{L,0'}

where for g, € GU(3,1)(Qy),
Z’U (fv(sa 507_0)1 Gvy Pus (P;)

(6.1.5) :/ fv(&507_0)(1(91”gl))(foq-o)gl(detgl)<7T§U(2)(91)90v790{u> dgy .-
U(2)(Quv)

The restriction of f,(s,&070)(* ¢(gv,12)) to U(2,2)(Q,) is a section in the degenerate principal
1

series of U(2,2)(Q,) inducing &yo| - ]/S_\ZE. Hence the integral (6.1.5) is essentially a doubling zeta
integral. We have the following formulas.

— The archimedean place.
ZOO (f00(87 507_0)7 147 Poos @go) - <§000a (pgo> )
because foo(8,&070)(¢(14, *), Yoo, @b, are all invariant under U(2)(R).

~véX u{ll, p}.

1 -1
ZU (fv(37§070)7 147 Pu, QO;)) = d2,v (S + 57 507-0) . LU (S + 17 BC(T(') X §0T0)
with

2
da,o (s, 60m0) = [ [ Lo(2s + 1+ 5,655 ).
j=1
This follows from the standard formula for unramified local doubling zeta integrals [LR05, Propo-
sition 3, Remark 3].

—ve X U{(l}. By [Wan20, Lemma 6.20] or an easy direct computation, one can see that for ¢
in the space (5.6.12),

Z’U (fv(37 507-0)7 kva Po, Sp'lu) = 07 if kv §é PU(?),I) (Z’U) 1, PU(3,1) (Zv)a
-1

and for k, such that Z, (fu(s,&070), kv, v, ¥,) # 0,
e

Zy (fo(s, &070), K, o, ¢),) = vol(Ye,) <( ST()Q)v(qv)\qvi+3> (@, 90 5
where )., is an open subgroup of {k], € U(2)(Z,) : k,, = 12 mod ¢S}, and ¢, is the positive integer
in the definition of f,(s,&o7o) in (5.7.1).
— The place p.
Zyp (fp(s, §070)5 W3,ps Pp, ‘P;)
=3 (—25, (687D ™) 3 (=57 % (€070)5) (0:2})

See §6.2 for the computation. Note that we only need the value at w3, € GU(3,1)(Q,) rather than
a general k, € GU(3,1)(Z,). This significantly simplifies the computation. The value at a general
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k, € GU(3,1)(Z,) can be difficult to compute since intertwining operators are not easy to compute
completely.

Combing the local formulas, since ¢ is arbitrary, we see that for 7 as in Theorem 5.9.1,
F(f(s,607m0),9)(* ks o0 wg,p)‘s_@ is either 0 or equals
- 2

dy Do b8 (5, o)L Csugeey ( 25, (E073)” ) L¥otentty (28 18 TO)

X Vp (‘377Tp X (5070),3_1) [Pttt (s +1,BC(m) x &mo)

s_k*B P
- 2

for some Cyyqy ¢y € Of independent of 7. Combining this formula with the normalization (5.9.1),

we see that @, (EKh“g) (¢'), for all ¢ € GU(2)(Aq,¢), is divisible by an element in O [Tx] whose

value equals that of EZU{”}EE A at all 7, .dic as in Theorem 5.9.1. Evaluations at those
Tp-adic’s already unlquely determlne elements in @]‘{r [T'x]. Therefore, it follows that ®, (Eghng) ()

is divisible by 52 u{e,e }ﬁ?r U{f e'}_

0

6.2. The computation of local zeta integrals at p. The ramification conditions in [Wan20,
Definition 6.30] on &g , 79, and the characters from which m, is induced are not satisfied in our case
here because our 7, is unramified. Those conditions are used loc.cit to simplify the computation
involving the intertwining operators. Here, we use the functional equation for doubling zeta integrals
to handle the intertwining operator and compute Z, ( Ip(s,&070), w3 p, ©p, apz’g).

Proof of (6.1.6). Inside the degenerated principal series on GU(2,2)(Q,) inducing the character
(§070), “l - | 7%, we define the section f, ue, 2)( s, (&o10)¢) as

-1
FIED (s, (&)™) (92 = <é g)) = |det C'Cl5~ " (&o70)p (det C) - F gy (8 ¢ 0 D) ’

where the Schwartz function g, is defined in (5.7.2). Then we have
(6.2.1)

. -1 1 —y2 y1
/ FrEeE s (eqm) ) (<1 12 ) ( o ).y(gm L 1)T, ) dyrdys
Yy1€Qp,y2€K2 1 2 1

= 1% (_3 - %, (§0T0)6> (92),

where 5 : U(2,2) — U(3,3) is defined as

A B\ A B
J\ec b))~ 1



To see (6.2.1), writing go = <A B), we have

C D
-1 1—-y2 y1
(o) (2 Yt
0 0 -1 0 1 0 0 -1 0
__ 10 4 0 B 1y _ A 0 0 B
B BV TRV 1 TO oA 1oy B
0 ¢ % D 1y C 0 'y D

and

( —12A 1) Ly —yB > _ < C 1y, CilD
o ¢ 0)\'% D PNy +pAC Vg 'O
It follows that the integrand of the left hand side of (6.2.1) equals
1 . -
(=54 g (om) ) (00 12, () Lop (1207,

SO

LHS of (6:21) = 2 (=s+ . (tom) ) (gn) - et O], = 902 (=5 = 1. tam) ) (52

Put Sy = (_1 2 > and Yo, to be the element in U(2,2)(Q,) such that g,(Yo,) = Sy . Set

(6.2.2) w0 :U(2) x U(2) — U(2,2), wlgr,gh) =Sy <91 g,1> :
By the definition of the intertwining operator M,(—s, &7, (€9m0)¢) (in (5.7.4)) and (6.2.1),

My (s, (€0m0) ) f5 < (s, (€070) ~° Z(w3,p,g1

1—-y2 n1
— big- cell - << > < 1o >
/(z;; " ety 7 “n) 2 1
< > < > (w3 p, 91) T ) dudyy

= M2 <—3 ; (§om0) ™~ )fU22 (( ~ 3 (foTo) c> (10(1,91)Yop),
and
Fols,€070) ((ws.p, 91)) = (=25, (6§79 ™) 3 (=25 = 1, (€87 ™ mcs0) 3 (—25 = 2, (87 ™)

22 (<= 5 (6o ) S2A((=s = 5 (6m) ) GalL o) o).
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By the functional equation of the local doubling zeta integral [LRO5, (19)(25)],
1 1 e
/ MJE?) <—8 ~ 5 (§OTO)C> £ <—8 ~ 5 (&) ) (20(1,91)Y0,p)
U(2)(Qp)
x (€oro)g(det g1) (7S (g1)p, ) gy

=C2p (_S - %a (507—0)707 (12 12 )) Tp (_87 BC(W) X (507—0)70)

1 —C C
X / £ (—8 = 5 (&om0) > (20(1,91)Yo,p) (§070),(det g1) <7T§U(2)(91)80p790;> dgn,
U(2)(Qp)
with the factor
1 » B -1 !
e2p (—s - S (&m) ™ (4, 12)) = (25— L) Mcia) o (~25 - 2.5

as defined in (5.7.5). Therefore,
(6.2.3)

Zy (fp(5,€070), w3, ©p, ©5) = (—237( (?T(?)_l> Yp (—5,BC(7) x (§070)7°)

1 e .
X /U( 1Q )fII’J(2,2) (—s — 5 (§o7o0) > (w0(1,91)Yo,p) (§070)5(det g1) <WEU(2)<91)%7¢;> dor.
2 p

By noting that

1 —c - 0
e <_3 — 5 (&) ) (0(1,91)Top) = Fagryp <0 %1>

and using the formula (5.7.2) for F *10457.@ and that ¢, is spherical, an easy computation shows
that

(6.2.4)  the integral on the RHS of (6.2.3) = p~* g ((¢970); ) (€070)p(0)* - (0ps ) »

where p’, ¢ > 1, is the conductor of (§79)p. Since 7, is unramified, we have

(6.2.5) p 2 ((5070);1)2 (€0m0)p(P)* =2 (s + 1,mp X (£070)p)
Combining (6.2.3), (6.2.4) and (6.2.5), we get

(6.2.3) = Vp (_25> (5(?7(?)_1) Vp (_57 BC(r) x (507'0)_0) Vp (s+ L, mp X (fOTO)p) ) <‘Ppa 90;9>

= (‘257( (?T()Q)il) Tp (—s, Tp X (507-0);3_1) (%p, ) -

7. THE NON-DEGENERATE FOURIER—JACOBI COEFFICIENTS OF THE KLINGEN FAMILY

The map (4.7.3) of taking the S-th Fourier—jacobi coefficient along the boundary stratum indexed
by the cusp label 14 € C(K?K;m)ord induces

FJg : Meas (Tx, Vaus,a)) — Meas (F’C’ Vég@)) :
For u € @, ex,. U(1)(Qy), let

(7.0.1) B~ Fy (1) BS) € Meas (T, V)3 OF)
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(The group GU(3, 1)(A§) acts on the Igusa tower and acts on Vgy(s 1), and <u 1 u) Eghng denotes

the action of (u 1z ) on Eghng.) The goal of this section is to prove Proposition 7.11.3 on the
“ Kling,
©.Bu

In §7.1-§7.2, we briefly recall some basics we will use about Weil representations, theta series,
Jacobi forms and p-adic Petersson inner products. In §7.4 and §7.5, we unfold the Siegel Eisenstein
series on GU(3, 3) to compute the non-degenerate Fourier-Jacobi coefficients of the Klingen Eisen-
stein series on GU(3,1), and sketch our strategy for relating them to certain L-values, for which
we can apply mod p nonvanishing results. Following that strategy, we need to choose an auxiliary
Jacobi form on U(2) and two CM families on U(2). §7.6-§7.10 are about constructing the auxiliary
Jacobi form and CM families and some other technical preparations. The desired nonvanishing
property is proved in §7.11.

nonvanishing properties of the E S.

7.1. The Schriodinger model of Weil representation and the intertwining maps for differ-
ent polarizations. The non-degenerate terms in the Fourier-Jacobi expansion of an automorphic
form on GU(3,1)(A) are Jacobi forms on the Jacobi group associated GU(2).

Let V (resp. V7) be the two dimensional skew-Hermitian space (K2,¢o) (resp. (K2, —(p)).
We write elements in V, V™ as row vectors and fix the basis v; = (1,0),v2 = (0,1) for V' (resp.
v; = (1,0),v5 = (0,1) for V7). With respect to the fixed basis, the unitary groups U(V') and
U(V™) are naturally identified with our U(2) (defined in (5.4.1)).

We fix the basis v1,v2,v; ,v, for V& V™ and identify U(V @ V™) with the unitary group whose

R-points are
ectimenons(® o= )}

Define the unitary group U(2,2) as

vz = {oc Gurez 00y, o= (, )}

We fix the isomorphism

UV e V) — U22), 9*><12 _52;)‘19(12 —%)

which induces the embedding

U2 xU@2) — U2,  (g1,0) — ( 12 ‘222)_1 (91 92) ( 12 ‘?)

—l —% —l —%

For a nonzero 8 € Her(K), denote by W3 the one dimensional Hermitian space (I, 3). Fix a basis
wg = 1 for Wjg, and we can identify U(Wjp) with the group U(1) defined by

U(1)(R) ={g € GL1(R®z Ok) : gg = 1}.

We consider the Weil representations for the dual pairs U(2) x U(1) and U(2,2) x U(1). The
space V ®q Wp is a four dimensional Q-vector space equipped with a non-degenerate symplectic
pairing induced from the skew-Hermitian form on V' and the Hermitian form on Wj3. The group
U(V) x U(Wpg) embeds into Sp(V ®q W3) and forms a reductive dual pair. Let Sp(V ®q Wp)

denote the metaplectic group. Given a pair of Hecke characters Ay, Ay, : IKC*\Ag — C* such that

di 14 di w, . c.
)‘V‘Aé = nlcl%’c and )‘WB|A§ = nlcl;gc f there is a splitting

(7.1.1) U(V) x U(Wg,) < Sp(Vs ®q W)
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for all places v of Q. The Weil representation of §1§(VL ®q Wa,) (with respect to our fixed addi-
tive character ea, : Q\Aq — C* in (1.0.5)) induces the Weil representation of U(V,) x U(Wpg,).

Similarly, with respect to Ady—, Aygy- : KX\AZ — C* satisfying Ay - ]AS = 77,(?/“({?’C Ve AVGBV*‘AS =

n,%i%’c Vadime V2 \re have the Weil representations of U(V,™) x U(Wps,,) and U(V @ V™) x U(Wpg,,).

We choose our Ay, Ady—, A, as
(7.1.2) Av =Ap- =A% A, = A,
where A is the Hecke character fixed in §5.1.
Remark 7.1.1. In some literature, instead of A\y = A\~ = A2, A\yy = A\~ = triv is used.
Put
e; = v ® wg, es = v2 ® wg, e; =v; wg, €y = Vy QWg.

Then Qe; @ Qez is a maximal isotropic subspace of the symplectic space V ®q Wj3. We have the
polarizations

(7.1.3) V @ Wg = (Qe1 ® Qez) & (Qder & Qdea),

(Where 0 is our fixed totally imaginary element in K.) The Schrodinger model of the Weil rep-
resentation of U(V,) x U(Wj,) is an action of U(V,) x U(Wps,) on S(Quer @ Quez), the space of
Schwartz functions on Que; @ Q,eo. We write this action as

waw(g,u) : S(Quer ® Quea) — S(Quer & Quea), g€ U(Vy), ue UWay).
Similarly, we have the polarization
(7.1.4) V™ ®Wg = (Qey ®Qey) @ (Qdey @ Qdey ).
and the Schrodinger model
wau(g,u) : S(Quey ® Quey ) — S(Quey @ Quey ), g€ UV, ), ue UWay).

For a place v = vo split in K, we have K, ~ IC, x K with I, ~ K5 ~ Q,. In addition to the above
polarizations, we also consider the polarizations

V, ® Wﬁw = (ICDel (&) Kneg) D (Kﬁel (&) Kﬁeg),
Vy, @ Wa, = (Koey @ Koey ) @ (Ksep @ Kaey ),

and the intertwining maps

(7.1.5) S(Kver @ Kye2) — 5(Quer + Quea),
(7.1.6) S(Koel @ Koey ) — S(Quep + Quey ).

For V & V~, we have the polarization:
VeV ) eWs= (/C(el +e])dK(e2+ 65)) &) (K(el —e])®K(ex — 65)).
Writing an element in /C,(e1 + €7 ) ® Ky(e2 +e5 ) as X € M 2(K,), for the Schrédinger model

wgw(g,uw) : S(K(er+e7) dK(e2+e3)) — S(K(er+e7) DK(ea+e3)), g€ U(2,2), uec UWsy),
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we have the following formulas:
wpp(1a,u) @(X) = ®(u™X),

W <<A tA) ,1> ®(X) = A, (det A)| det A% - ®(X A),
i Who ((1 f) ,1> B(X) = e, (8- XB'X) - 6(x),

oo (3, ) 1) 000 =1sle. [ #1) e, (Toc, o, (3 Y'5)) av

7.2. The Heisenberg group and Jacobi forms. Jacobi forms on U(2) and U(2,2) show up in
our computation of the non-degenerate Fourier—Jacobi coefficients of the evaluations at classical
points of the Klingen family EX!ng,

First, we introduce Jacobi forms on U(2). Recall that V is the skew Hermitian space (K2, (o).
Denote by H (V') be the Heisenberg group associated to V. For a Q-algebra R

H(V)(R) = (V &q R) x R,

and the multiplication is

214072 + $1C0%2>
: .

(901701)(902,02) = (961 + x2,01 + 02 +

It is easy to see that H(V') is isomorphic to Upgy,,,, via
1 = o+ 326
(7.2.1) (x,0) — u(z,0) = 1, Co'T
1

The Jacobi group associated to V' is the semi-direct product H (V') x U(V), which we identify
with a subgroup of Pqy(s 1) by

(7.2.2) (z,0),91) — u(z,0)m(g1), (x,0)€ HWy), g1 € UV),
where for g; € U(V),

m(g1) = g1
1
A Jacobi form on H(V) x U(V) or a Jacobi form on U(V) of index [ is a smooth function on
H(V)(Q) x U(V)(Q\H (V)(Ag) x U(V)(Aq) such that
— for all o € Ag, the left translation by ((0, o), 12) equals the multiplication by ea,(80),
— the right translation of a maximal compact subgroup and the action of the center of the
universal enveloping Lie algebra at oo satisfy finiteness conditions.
It is easy to see that a Jacobi form of index 5 holomorphic at oo of weight (0,0) corresponds a
section in H® (¢, L(B)) with € a torsor over the Shimura variety of GU(2) of an abelian scheme
isogeneous to the universal abelian scheme, and £(3) the invertible sheaf over € of S-homogeneous
functions.

We will also need Jacobi forms on U(2,2). Denote by V the skew Hermitian space K* equipped
with the skew Hermitian form ( 1 12), and by H (V) its associated Heisenberg group whose
—12

R-points for a Q-algebra R are
H(V)(R) = (V&g R) x R.
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We write an element in H(V)(R) as (z,y,0), 2,y € R®qK?, 0 € R. The multiplication is given by

1'% + T1'y2 — Y12 — Z?lt932>

(z1,91,01)(22,Y2,02) = ($1+x2,y1+y2”01+02+ 5
The Jacobi group associated to V is the semi-direct product H (V) x U(V).

Denote by Pgy(s ) the parabolic subgroup of GU(3,3) consisting of elements whose entries in
the first column are all 0 except the (1,1) entry, and denote by UPGU(3,3> its unipotent subgroup.
We identify H (V) with Upgy 4 by

1 =z a—i-ztggytgE Y

1, 7
1 bl
—z 15

(7,y,0) — u(z,y,0) =

and identify H (V) x U(2,2) with a subgroup of Pqy(s3) by

(7.2.3) (z,y,0),9) — u(z,y,0)m(g), (x,y,0) € HWy), g € U(2,2).
where for g = (é g) e U(2,2),
1
(7.2.4) m(g) = A 1 B
C D

Similarly as above, we define Jacobi forms on U(V) of index 3 to be smooth functions on H(V)(Q) x
U(V)(Q)\H (V)(Aq) xU(V)(Aq) on which the left translation of ((0,0, ¢), 14) equal the multiplication
of ea,(B0) plus finiteness conditions for the right translation of a maximal compact subgroup and
the center of the universal enveloping Lie algebra at oco.

We have the following embedding of skew Hermitian spaces
V —V, x»—><x,—x§0>.

It induces the embedding of unitary groups

-1
1, -9 g1 1, -
uWw UVv)=10(2,2 2
(V) — U(V) = U(2,2), gl_>(_12 42) ( ), &
and induces an embedding of the Jacobi groups

H(V)xUV) — H(V) xU(V),

T (o (2 ) () (29 () (B 9)

From this embedding, we also get the embedding
(7.2.6)
(H(V) X U(V)) x U(V™) — H(V) x U(V),

(<<z,a>,gl>,gz>~>((w’—f‘)?a)(_lf? 9L :§>>
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The embeddings (7.2.2)(7.2.3)(7.2.6) are compatible with the embedding ¢ in (5.5.1) in the sense
that the following diagram commutes:

(H(V) x U(V)) x UV ) T2 qu(3,1) xg,, GU(2)

l(7.2.6) J{z
(7.2.3)

H(V) x U(V)C GU(3,3).

7.3. Theta series. Given a Schwartz function ¢ € ®; S(Quer @ Quea) (with ¢y = 1z,¢,42,e, for
all most all finite places v), we define the theta series 6(¢, «), which is an automorphic form on
U(V)(Aq), as

0,9)= > wsl9)®(x).

x€Qe1PQez

We can also define the Jacobi theta series 67 (¢, «, +), which is a Jacobi form on H (V) x U(2), as

(731) B (6.(0.000) = o (80 + 30610)) 3 wala)b(o )

x€Qe1PQez

Similarly, given ¢ € ®! S(Que; ® Quey ), we can define the theta series 05(¢, «) on U(V~)(Ag).

7.4. The unfolding. Given a holomorphic automorphic form F on GU(3,1)(A) and g € GU(3,1)
and 8 € Her1(K)s¢ = Qs0, the S-th Fourier—Jacobi coefficient of F at g is defined as

1 o

sl ) = [ FI\ 2 Jo)eat=oydo
o€Her (K)\ Her1 (Ax) 1

With g € GU(3, 1) fixed, the function

H(V)(AqQ) x U(V)(Aq) — C
((z,0),91) — ag(u(z, o)m(g1); F)

is a Jacobi form on H(V') x U(V) of index .

The Klingen Eisenstein family Eghng interpolates a normalization of the Klingen Eisenstein series

EXIme (. F(f(s,&m0),¢)), which can be expressed as the integral in (5.10.3). We can compute its
B-th Fourier—Jacobi coefficients by first computing
(7.4.1)

ie ie, 1
E5°8(g; £(5,&m)) :/H ot h )ES 8 * g; f(s,&70) | eaq(—Bo) do,
€erp eriy C 12
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and then pairing its restriction to GU(3,1) xg,, GU(2) with ¢ on GU(2). By unfolding the Siegel
Eisenstein series in the integrand on the right hand side of (7.4.1), it’s not difficult to show that
(7.4.2)

B35 (h; f(s, €070)) = > >
Y€Qu(2,2)(Q\ U(2,2)(Q) z€K?

1

S T
1 1, % 1
Aerl(AK) f(87£07—0) <—13 3) i 1 m <<—]_2 2) 7) h eAQ(_ﬁU) ds,

1,
where m( ) is the embedding of U(2,2) into U(3, 3) as defined in (7.2.4). (cf [Wanl5, Section 3.3.1])

Definition 7.4.1. For g, € GU(3,3)(Q,), =, € K2 and f,(s,&0m0) € IQGU(S’?’)’U(S,&]T()), define
FJ,B,U (gmfru; fv<3a§070))

1 S Ty
13 1, 'z, 1,
= fv Sa§07—0 < > m( )gv €ea _60' do
Ammw (ss60) | (o, S e (—60)
2

For g € GU(3,3)(Aq), = € A% and f(s,&0m0) = ®ufu(s,&om0), let

FJﬁ (97 Z; f(S, &]7_0)) = ®vFJB,v (gv; Ty fv(87 EOTO))-
The unfolding result (7.4.2) gives the following proposition.

Proposition 7.4.2. Let § € Her1(K)>o and f(s,£070) € 1Qqy .4 (8:§070). The B-th Fourier-Jacobi
coefficient of the Siegel Eisenstein series ES8(« ; f(s,&070)) at g € U(3,3)(Aq) equals

Egieg(g;f(sag(ﬂ—())) = Z Z FJ,B(m(’Y)gvx;f(SagOTO)))
YEQU(2,2)(Q\ U(2,2)(Q) zek2

with FJg defined as in Definition 7.4.1 and m(-) the embedding (7.2.4).
One can easily check that FJg, satisfies

F%wwwwmemﬁ@@m»:%(ma+ﬁ%ﬂﬁ

2 )> FJﬂ,v(g,xO+$5fv(87§070)),
A B . _ st 633 £t
Flg, [ m 0 tq-1)9 %0 fo(s,&om0) | = |det A"A|; T Eoo(det A) - | det A"A|i e, (Bx B A'T)

x FJg. (g9, 2o A; fu(s, &om0))-
Comparing them with the formulas in (7.1.7) for the Schrodinger model of Weil representations,

we see that for a fixed g, € U(3,3)(Qy), FJg, (u(mv,yv,av) m(g1,0)9v, Z0; fv(s,forg)) is essentially
(a finite sum of) the product

Jo (3a€07—0)‘_1) (91,0) "W (u<mv7yv7av) m(gl,v))(bv(xo)a

with fa, (s, 507'0)\_1) a section in the degenerate principal series 19y.9). (s, 5070)\_1), ®, a Schwartz

function on K2 and wg,,» the Weil representation of U(2, 2) briefly recalled in §7.1. Both fa, (s, 507'0)\*1)

and @, are determined by f,(s,£070) € IQgy s .3),0(S, §070) and g, € GU(3,3)(Qu). The computation
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at an unramified place v gives
Flg o (u(z,y, 0)m(gre), zo; 52" (s,&0m0))
=Ly (28 + 3, 5(?7(?)71 - 13 (5,60m0A ) (g1,0) - wp (ula, U)m(gl,v))]l@?cw (z0),
Therefore, the Jacobi form on H (V) x U(2,2) given by

((x,,0).9) — E5¥(u(w,y,0)m(g); f(s,&70))

is essentially (a finite sum of) the product
~1 .
L (28 + 3,5(?7'8) -Esleg (8,507'0)\_1) .07,

with Ey"° (s,&m0A ") a Siegel Eisenstein series on U(2,2) and ©7 a Jacobi theta function on the
H(V) x U(2,2). The restriction of ©7 from H (V) x U(2,2) to (H(V) x U(2)) x U(2) via (7.2.3) is
essentially (a finite sum of) 0§ X6y, with 07 (resp. f2) a Jacobi theta function (resp. theta function)
on H(V) x U(2) (resp. U(2)) attached to a Schwartz function ¢3 (resp. ¢2) on Ax. Therefore,
(7.4.3)

. _1 i
B (e s o), 20 3.6875) -0 B0 B oml]

~ L
H(V)»U(2)) xU(2) ( U(2)xU(2)

Here ~ means equal up to normalizations and more precise formulas for local sections are needed
to be an actual identity. We will also use the notation = several times in the next section. All the

identities with = are only for the purpose of illustrating the idea of relating the non-degenerate
Kling

Fourier—Jacobi coeflicients with L-values, and will not be used for our rigorous analysis of Ew B

starting from §7.6.

7.5. Our strategy of analyzing the non-degenerate Fourier—Jacobi coefficients of the
Klingen Eisenstein family. Before we move on to the involved computations, we give a brief
explanation of how we choose the auxiliary data to study the pairing of (7.4.3) with ¢. The
description of this section should also explain why the choices of the auxiliary data in §5.6 are
made for constructing Eghng and guaranteeing that its non-degenerate Fourier—Jacobi coefficients
satisfy the nonvanishing properties needed for applications.

7.5.1. Choosing the auziliary 6{. The first step to analyze (7.4.3) is to pick a suitable Schwartz
function ¢1 on Ax, let 67 be the associated Jacobi theta function on H (V) x U(2) (defined as in
(7.3.1)), and define the linear functional

lgs {Jacobi forms on H(V') x U(2)} — {automorphic forms on U(2)}
by
(7.5.1) le{(soj)(gl):/ 07 ((,0),91)¢” ((x,0), g1) dzdo.
H(V)(Q\H(V)(A)
Applying lys to (7.4.3), we obtain an automorphic form on U(2) x U(2) whose value at (g1,92)
equals

(7.5.2) 0{ (w,0), 1) -Egieg (v(u(z, o)m(g1), 92); f (s, &00)) dado.

/H(V) (Q\H(V)(A)

It is a standard fact that for two Schwartz functions ¢, ¢’ on A,

/ %((m, o), gl)Hi, ((x, o), g1) dxdo = <q§,$> = / o(x)¢ (x) dz,
H(WV)(Q\H(V)(A) K\Ax
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independent of g; € U(2). Thanks to this fact, from (7.5.2) we obtain
oy (B35 15,0,
(7.5.3) L {o1.03)
L (23 + 3,587’8)

Here 1 X 62 denotes the automorphic form on U(2) x U(2) which is the constant function 1 on the
first factor and 69 on the second factor.

For an automorphic form on F on U(2) and a Hecke character x : K*\A¢ — C*, we use the
notation FX to denote the form

(7.5.4) FX(9) =F(g) - x(detg), g€ U(2)(Aq).
Our Klingen Eisenstein series EKling(- s F(f(s,&m0), go)) is obtained by pairing the restriction of

H(V)xU(2)) ><U(2)>

(1K 6,) - EYie8 .
(1X6;) - E; (5,5070)‘U(2)XU(2)

the Siegel Eisenstein series with cp&TTO, so we have
Kli
Loy (5™ (- s F(f(5.€00),9)) )

(755) L (b
L (2543678

I

) ' <92¢EOTO’ B2 (5 omA ™) ‘U(2)XU(2)>1xU(2)
where (-, ->1xU(2) means integration over the second copy of U(2).
The standard doubling method formula [LRO5] implies
B8 (s, 6moA"Y) ’U ~ Z L (s + 5, BC(mn) x &omoA™") h &jﬁmx
(2)xU(2) n L (25 + 1,587'(?) L (23 + 2’5(?T<?771C/Q) <h7 h>

where h runs over a certain orthonormal basis of automorphic forms on U(2) of certain level. By
picking an h, we have

)

<l0‘1] (Eghng(_; F(f(S, 507-0)7 @))) ) h>
L(s+ 3,BC(m,) x &moA™t)

~ Somo p&0ToA
(7.5.6) ~ (o1, 03) ds(5.€070) <92<,0 h >

_ L (8 + %, BC(?Th) X 507'0)\_1) N

- <¢17 ¢3> d3(8, éOTO) <92 ®, h’> )

where ds(s,&70) is as in (5.9.2). The Petersson inner product <92X<p, h> is related to the central
value of a triple product L-function by Ichino’s formula.

7.5.2. Choosing auziliary h and 0 and relating to L-values. We will choose suitable CM forms
h and 6 on U(2) such that we can apply the available mod p nonvanishing results to study

L (s+ 3,BC(m,) x &A1) and <0§g0,h> in (7.5.6).
Let x5, and xg be two unitary Hecke characters of K*\Ag such that x5 x§| AS = triv (as chosen in

§5.6). Let hg be the theta lift of X}:1|U(1) to U(2), and h be the automorphic form on U(2) obtained
from hg by

(7.5.7) h(g) = xnx4(a) - ho(g), g€ U(2), a € A, detg = aa .
Thanks to the condition x5 X§| Ay = triv, the definition of h(g) does not depend on the choice of

X
a e A,C.
59



The form 62 does not generate an irreducible representation of U(2). Let 6 be the projection of
05 to its Xg)\Q\U(l)—eigenspace for the action of the center of U(2). Then 6 is a theta lift of Xg)\Q\U(l).

Since our ¢ is assumed to have the trivial central character and h has the central character Xg_l lu()s
we have
(7.5.8) <9§¢, h> - <9X<p,h>.

By [GI14, Theorem C.5], with the choice of the splitting characters for the theta correspondence
between U(2) and U(1) as in (7.1.2), we have
(759 BC (mh) = BC (mho) ® xax§ = (BC (x;, ' lu) A™" & X) @ xax§
= (X, ' XGATT @A) @ xnxg = XEXEATT B xaXEA,

and
(75.10)  BC(myx) = (BC (xoA*[ua)) A @A) A= (xoxg A’ @A) A2 = xoxg Ad A
Thus, we have

1 1 1
L <8 t35 BC(m) x )\_1507'0) =L (S +3 A_2X2X55070> L (S +3 XhX5§07'0>
(7.5.11)
L <s +

1 1
3 >\2XhX9€STS> L <8 + 27XhX§§OTO) :
By the triple product formula

5 S\ () (h, hs) (6, 03)
(80 ) (B2.10) ™ T0 K8 ety 0 o) e Enos )

1 1
x L (Q,BC(W) X thg)\2> L <2,BC(7T) X XhX§> ,

(7.5.12)

where ¢ (resp. hs, 03) are suitable forms taken from the dual representation of 7Y = Ty (resp.
7h, 7). (In our case here, the triple product L-function for 7P x ﬂéj X ﬂ'}? factorizes as the product

of the two L-functions in (7.5.12). Also, note that Ichino’s triple product formula is for automorphic
forms on D> we actually need to relate the integral on U(2) for <«9>‘g0, h> <9~§\g5, fL3> to an integral
on D*. In §7.10, we discuss extending automorphic forms on U(2) to GU(2). Thanks to (5.4.3),

the integral over GU(2) is the same as the integral over D*.)
Combining (7.5.6)(7.5.8)(7.5.11)(7.5.12), we get

(7.5.13)
ds(s,&o7o) - <lgif (E;;ﬂmg(' s F(f(s,€070), @))) »h> <é§\¢, fls>
~ (p1, ¢3) (. 2) (s ha) (6,63)

L(L,m Ad)  Ge(1) L(L xax, ' A2) Ge(1) L(1, Xaxp “A2)

1 1 1 1
x L <s + 2,)\2th9§87§> L (5 + 2,thg£07'o> - L (2,BC(7T) X thg)\2> L (2,BC(7T) X XhX§> .

The relation between Elﬁqmg(—; F(f(s,&m0), %)) and L-values illustrated in (7.5.13) explains the

nonvanishing conditions on the L-values in (5.6.1)(5.6.2)(5.6.3)(5.6.4) in our choice of the auxiliary
Hecke characters xy and xj in §5.6.

In the following, guided by the strategy described in this section, we carry out the necessary
local computations and the construction of the auxiliary objects to prove the the desired property

of Egl/igni with 8 = 1. The computation is place by place, and we have the following cases:
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— For the archimedean place, we only need to consider the cases for which there are standard
choices of local sections and computations are easy.

— For unramified places, we have the standard formulas for spherical sections.

— For the place p and the places in ¥ U {¢}, we compute precise formulas.

— For the places in Y, U {¢'}, we do not attempt to compute precise formulas. At these
places, the local data actually do not change when 7 varies in a p-adic family, and we only
make sure that local integrals contribute a nonzero scalar.

7.6. The auxiliary Jacobi form 6#{. Given a Schwartz function ¢ on A% such that ¢, is the
standard Gaussian function, let 6/ be the associated Jacobi form on U(2) (as defined in (7.3.1)).
The map attached to this 7 defined in (7.5.1) extends to Vé]g@) and induces

(7.6.1) : Meas (T, Viia ) — Meas (T, Vo))

Apply it to EKhng (defined in (7.0.1)), we get

. ~ o\ B
los (BX7%) € Meas (T Vi) 8 0F )’

Proposition 7.6.1. Let § = 1 € Her1(K). There exists a Schwartz function ¢1 on A% with

®1,00 the standard Gaussian function, elements ui,...,u, € ® U(1)(Qu), and constants
vED L U{l'}
bi,...,b, € Op, (all independent of T), such that

oy (Z biEfEfi) € Meas (T, Voaye) "

the image of Zb EKhng_ under the map (7.6.1) attached to the Jacobi form 9‘1] corresponding to

o1, satisfies the following interpolation properties: for all Tp.aqic as in Theorem 5.9.1,

o (Z " Eg%nlg‘ ) (Tp-adic) =dy P (5,602 7)

. -1 foTo pSieg (. -1
X <9(¢277—) < <1 >> @ ’ E2 € ( af2(57§07-0)\ )) ‘U(?)XU(2)>1XU(2) ’

with ¢o¢r € S(A%) (independent of T except v = p) and fa(s, &A1) € X, IQU(MW(S,&TO)\_I)
described as follows: — v = oco.

(7.6.2)

51/4Nr;1(5)1/4 o~ 2m/Nm(3) (11 yz)go(g;)7

fa00(8, E0m0A) ( ! (é g)) (_PQ(Zi)k-det <C’€; +D>

v éXu{Ll, p}.

2,670 (Y1, Y2) =

—s+1+§
Co D

C

¢2,§T,’U = ]lZv X ]lzv7
1
(o o) = Lo (204 3.6575) A3 (0, om0
—v =10 € X U {/}.

$2.67,0 = Image of (7.1.6) of ((yhyz) — Lo, (Y1) - ]lo)éj(m)XG,B)\ﬁ(yQ))
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fon(s,EomoA ™) <g’ = <(A; g)) =|det C'C|~*"H(&yroA™Y), (det C71)

X ]]-Herg(o;c,v) (C_lD + Q'U_CU . 12)

(7.6.3)

—v e U{l}.
$2,6r0 = @ nonzero Schwartz function on Qg inside the Xg)\z\U(l)(Qv)—eigenspace

for the action of U(1)(Qy), invariant under K,, independent of T,
f2,v(37€OTOA71) = same as (7.6.3).

— The place p.
¢2,¢rp =Image of (7.1.6) of

(7.6.4) ((y1, yo) — p~ g ((5070)’;1) ) ]lZ; (ptyl)(foTO)p(—ptyl) . ]]_Zp(pty2)>u

Fan(s &0moN ™) = (~25, (€57 M mics) (25 — 1, (€87 )

x M}, (—s, (€omoA 1) 7€) S22 (=5, (€omoN) ™) (- 1)),
where

o M} (—s,(m0N) ") : 1Qy .0y (=5, (§0T0A) ™€) — IQU(272>7p(s,§oTo)\*1) is the intertwining op-
erator,

_G\ !
o Y}, is the element in U(2,2)(Qp) with 0,(Y},) = ( 1 > 7
[}

- (A B L )
2 o o) )(c D) =[det C'Cl3 (600X ™ )p(det C) - o, (C7'D).

with oy, , the Schwartz function on Hers(K,) defined as

1 ¢ ¢ T11 T12
aer () = 8 ((G070); ) - Lzg (w11, 221, 222) - Lz (p'212)(Com0)p(P'212),  0p(2) = <$21 :v22> ;
Proof. This proposition is proved in [Wan20, sections 6.E-6.H] by computing FJg , (g, z; fo(s, 507'0))
place by place. The place oo is done in Lemmas 6.9 and 6.11 and the unramified places are done in

Lemma 6.18. (Note that at the unramified places, we have da (s, &mA™!) = %.) The
v{487T9,89 T

places in Xg U {¢} are done in Lemmas 6.22 and 6.24, and the places in X,s U {¢'} are done in
Lemmas 6.22 and 6.26. Note that Lemma 6.26 loc.cit is Proposition 5.6.1 and in §5.6 we choose
xo such that at v € X5 U {¢'} we have nonzero ¢g¢;, described in this proposition. The place p
is done from Lemmas 6.35 to the end of the section 6.H. The Schwartz function ¢z, is the ¢5
given below Definition 6.38. Note that our FJg, (g, x; fo(s, §07'0)) defined in Definition 4.5.1. equals

1

to FJg(fsiegw; 2,2, gn 1, 1) in [Wan20] with z = s and n = , so the results in loc.cit all

i12
contain the extra n but the formulas in this proposition do not.

At the place p, in fact the pairing of ¢1,(z) and Flg,(g, (@,9)p; fo(s,&T0) along = does not
directly equal ¢2.7,(y) - f2,p(s, 0702 1)(g), but equals the average

n 1

(10 ) 1
(7.6.5) /ng,p <@p1< >1> $2,rp(Y) - Fop(s,10AY) | 9T 1 dn.
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Meanwhile, ¢ is spherical at p, in particular invariant under the right translation by (Z 1>,
P

so by replacing (7.6.5) ¢2.r,(y) - fo.p(s,&070A"1)(g) does not change the resulting Petersson inner
product with ¢ over U(V ™) = U(2).

The Schwartz function (7.6.4) is the the (vs, v4)-part of ®p , where ®p 4, is the Schwartz function
on Qg defined and appearing in [Wan20, Lemma 6.37, Definition 6.36]. As mentioned above, our

1

formula in the Proposition corresponds to replacing g by gn~" in the formula in loc.cit, so there is

a translation by <1 _1> in the theta series in (7.6.2). O

7.7. The construction of the auxiliary CM families h,ﬁg,e,ég. Besides 0{, our strategy

described in §7.5 also includes auxiliary CM forms. We want to construct a CM family h on U(V') =
U(2) and pair it with lsy (ZZ biEgléni). The splitting characters for the theta correspondence
between U(2) and U(1) are chosen as in (7.1.2).

7.7.1. The auxiliary group Uk p. First, we note that for 7, 4qic as in Theorem 5.9.1, the nebentypus

Kli . . Y S
of lys (ZZ biE%gf) at p is (tl“lV, (&ﬁomsz) (i.e. op 1 <0 a2) € U(2)(Zp) acts by (£070)p(a2)). In
order to get a CM family h with the correct nebentypus to pair with /ys (Zz biEgthi) we want

Hecke characters of K*\Ag unramified away from poo with restriction <7’0,p\zx,triv) on Of .
D p

However, in general there is no canonical way to extend local characters (7'07p| ot triv) of O¢ p to
global Hecke characters. Hence, we need to consider an auxiliary group Uk, and the non-standard
type of p-adic measures defined in (5.8.9).

Let Uxp =1+ pOxyp and Uk p = 1 4+ pOxp, U = 1 + pOxg. Then the natural map
UIC,p — /CX\A;éf — I'c

is an injection. We can pick N, a non-negative power of p, such that raising to the N-th power maps
'k into Uk p. Define

N-th power natural proj.

Py T U]Qp U]Qp ~1 +pr.
Then given a (local) p-adic character € : Uk, — 6; , the composition € o 7y is a (global) p-adic
character of I'x whose restriction back to Ux, = Uk p X U g is (eN, triv).

In particular, for an algebraic Hecke character 7 : K*\Ag — C* of oo-type (0, k) whose p-adic

avatar 7,..dic factors through I'i, we can define
Tp, By = Tl*adiC|U,g,p o PyN.

Then 7, 5, is a p-adic Hecke character of I'x with

_ N : o N .
TP,%|OE@ = (Tp |z;7tT1V) = (Tojp|zg,tr1v> .

Because 7 has oo-type (0, k), the local character Tp_adic\U,C’p is of finite order, and it follows that

the (global) character 7, 4, : I't — 6; is also of finite order. Hence, it takes values in QX and is

also an algebraic Hecke character of K*\AZ of co-type (0,0). (From the definition in (5.3.1), we
can see that the p-adic avatar of a Hecke character of co-type (0,0) is itself.)
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The map Py induces a map
(7.7.1) Py« : Meas (F;C, VU(Z))u — Meas (U;Qp, VU(Q))u .

(See §5.8.3 for the definition of these spaces of p-adic measures.) We have

Klin, Klin,
5 (lgif (Zz biE%B’i)) (Tp—adic‘U;c,p) lej (Z bi E(pﬁi) Tp- adlc)

for every 7p.adic € Homeont (FK, Q, ) In order to show the nonvanishing property of ng (Z b E

Kling
»,8,u;

Kl
in Proposition 7.11.3, it suffices to show the nonvanishing for % . <l91J (Zl biE@,Ea?ii))-

Next, we construct auxiliary CM families h, flg, 0, 03 on U(2) as p-adic measures on Ug .

7.7.2. The auziliary CM families h and hs.

Proposition 7.7.1. There exist a CM family hy € Meas (U;cﬂp,eordV V@), -1 ®(’) ) and a CM

PR
family h{; € Meas (U;Qp, eordVi(2),¢ ® (’)Er) such that for every Tp_aqic as in Theorem 5.9.1 suffi-
ciently ramified at p,

ho (Tp-adiC|U;c,p) (9) = / 0 (dn,7) (9,1) (XnTp,a) (u) du,
U(1)(Q\U(1)(Ag)

R (rpeaciclve ) (9) = / 0(8).) (9:u) (x; '7ih) () du,
U(1)(Q\U(1)(Ag)

the theta lift of x;, 17’;%‘ ‘U(l)

(resp. QS’h,T) on A2Q described as follows:
~v g X u{Ll, p}h.

U(l)) to U(2)) with respect to the Schwartz function ¢y,

Phirw = Ohrp = P2,r1 4 in Proposition 7.6.1.

o= vb € BUA). We have xtalog . = oy -

Gh,rw = Image of (7.1.6) of ((yl,yz) — 1z, (y1) - Lz (yz)xh,nx;%kt—,‘l(m)),

Ghro = Tmage of (7.1.6) of ((y1,32) — 1z, (1) - Lz (92) X5 S xnsds(v2))-
— v € I U{l'}. We have XnTpmly (1)) = Xkluayu)-

Oh,rw = a Schwartz function on Q?} mwvariant under K,, independent of T,
belonging to the X,;})]U(l)(Qv)—eigenspace for the action of U(1)(Q,),
qﬁ’hm = a Schwartz function on Q% inwvariant under K,,, independent of T,

belonging to the xn.|u(1)(Q,)-€igenspace for the action of U(1)(Qy),
ond [ 6nrul)6hc0 )y 0.
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— v =p. We have (XnTp,n)p = (070 )p- Let t = ord, (cond ((§o79)y))-
Shrp = Im of (7.1.6) of
((yh y2) > p~'g ((€010)p 1)) - Loz (42) (€070)p(—p'92) - 12, (y1)>,
Ghrp = Tmage of (1.1.6) of ((y1,32) — Tz (y0)(Eomd)oln) - 1z, (12) ).

Proof. See [Wan20, §8B]. The idea of constructing hg (resp. h{) is to first use the chosen Schwartz
function to construct a family of theta series on U(2,2) by interpolating the g-expansions, and
then restrict the family to U(V) x U(V ™) and evaluate at a suitable point uqy, € U(V)(Aq) (resp.
Upe € U(VT)(Ag)) to get the desired family on U(V ™) (resp. U(V)). O

Definition 7.7.2. The map (7.5.7) between automorphic forms on U(2) defined in terms of the
tame character xpxg extends to a map from Vi) to V). Applying this twisting map to hg in

b
Proposition 7.7.1 defines the CM family h € Meas (U;gp,eordV['J(z) {_1) .

[

Replacing xnxg by X;:ng_ and applying the corresponding twisting map map to h{, in Proposi-
tion 7.7.1 defines the CM family hs € Meas (U;C’p, eordVU(z),g)h.

7.7.3. The auziliary CM families 8 and 03. We construct a CM family @ whose specializations are
closely related to the theta series 6(¢2 ) in Proposition 7.6.1. (The theta series §(¢2 ) is not an
eigenform and does not belong to the theta lift of one character of U(1). The specialization of @
at Tpadic|uc,, 1S essentially the projection of 6(¢, ) to the theta lift of /\ZXQTPj&IU(l).) We also

construct a CM family 85 dual to 6.

Proposition 7.7.3.
PR -
(1) There exist a CM family @ € Meas (UK,p,eordVU(2)75®(’)f) and also a CM family 63 €

A~ N\
Meas (U;Qp, 6ordV{;(2) 1 @ (’)Er> such that for every Tp.aqic as in Theorem 5.9.1 ramified at p,

_en—1
0 (Tp-adiclui,,) (9) = / 0 (60.r) (g10) (Nxom,) ™ (o) i,
(7.7.2) U@\ U(1)(Ag)

03 (Tp‘adiC|U)C,p) (g) = 0 (quO,T) (g’ ’LL) ()\QXngj;,N)(u) duv

/U(l)(Q)\U(l)(AQ)

the theta lift of \°XoT, 5,

v (resp. A_nglTpc,?N U(l)) to U(2) with respect to the Schwartz function

bo,r (resp. ¢p,) on A% described as follows:
—vé X UL, p}.
G070 = D1 = P2,ern i Proposition 7.6.1.

~v=1vb€e X U{l}. We have Xan_,IC’N|O,§’U = Xe’(?,ém and xg, unramified.

$0,7v = Image of (7.1.6) of ((yh y2) — Loy, (y1) - ]10136(3/2))(9,6)\6(?;2))

= ¢g  yin Proposition 7.0.1,

P+ = Image of (7.1.6) of ((l/17y2) — Log,(y1) - 10276(y2)(><0,6/\ﬁ)_1(92))
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-V E X U {E’} We have X9Tp_,;N’U(1)(Qv) = X¢9|U(1)(Qv)-
®0,r0 = G271 i Proposition 7.6.1,
QSIQ,T’U = a Schwartz function on Qg mmwvariant under K, independent of T,

belonging to the Xg_l)fQ]U(l)(QU)—ez’genspace for the action of U(1)(Q,),

and /Q? ¢9,7’,v (y)¢/a,7,u(y) dy 7& 0

— v =p. We have (Xng_’;N)ﬁ = (&)Tg)p_l. Let t = ord, (cond ((507'(1)“),3)).
¢0,-p = Image of (7.1.6) of
((yl, y2) > p~'g ((€10)y ") - Lymezx (1) (€070 ) (—P'y1) - 1z, (yz))7
1 0
= Z Wa.p <<7’L 1> 51> ¢2,TN,p7
Z/ptZ

Gprp = Tmage of (1.16) of ((1,2) — 1z, (1) Tz (32) €07y (a2) - ),

where ¢o v 4, 18 as in Proposition 7.0.1.

(2) The specialization 0 (Ty-adic|vy,) equals the projection of > 0(¢o ) (g (i ?)) to the
neZ/ptZ

)\QXQT‘;&‘U(l)—eigenspace for the action of the center of U(2). (Note that the projection of a theta

series to the )\QXQTPT;"U(l)—eigenspace for the action of the center is a theta lift of )\QXQT';%JU(D.)

Proof. See [Wan20, §8B]. The idea is the same as the construction of hy and hj), and (2) follows
immediately from (1). O

7.8. p-adic Petersson inner product on U(2). We need p-adic Petersson inner product for
families on U(2). Let Vi), eordVI/J(2) be the space of p-adic forms on U(2) defined in §5.8.3.

Following [Hsil9, p.33], we can define a p-adic Petersson inner product
(7.8.1) (*5 *)padic | V[/J(2),ord x Vuz) — Ot
such that for all ¢ € Vi) (resp. ¢ € eordV[’J(Q)) of with K, o(p")-nebentypus (triv,x) (resp.
(X', triv))

1
> (U9 <90‘1 <_ n )) ¢ (g), xx = triv,
(& D=3 AN
0, xx # triv,

where K, o(p") = {g e U(2)(Zp) : 0p(g) = (8 I) mod p"}, and in the sum, g runs over the

finite set U(2)(Q)\U(2)(Ag’f)/K§ZKp,0(p").
A useful property of this p-adic Petersson inner product is that

(¢ Un®),aaic = Wi p(05 ' (0) 7" (Up: 8, e

if ¢ has central character wg . Here g, 1is the isomorphism from Q) to U(1)(Qp).
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The p-adic Petersson inner product in (7.8.1) induces the p-adic Petersson inner product for
p-adic families on U(2):
(7.8.2)
() *)peadic - Meas(Uk p, €ordV{J(2)y§_1)h x Meas (Ug p, VU(QM)u — Meas(Uk p, O1) ~= Op[Uk p]-

7.9. The Rallis inner product formulas for <9,§3>p_a qic and (h, l~z3>p_a dic+ From the de-
scription of our strategy in §7.5, in particular (7.5.13), we see that we need a formula relating
<9, 92> and <h, h3>pa gic to certain p-adic L-functions.

Let L£3,L£4 € Meas (U;c,p,@f) ®z Q ~ @}f[[U;C,p]] ®z Q be the L-function interpolating the
special value at s =1 of L <s, WS'LQ,Ad), L (s, W,?LQ, Ad), which factorize as

p-adic

L (87 ﬂ-;;LQaAd) =1L S, 771C/Q) L (87 )\QXQXO_CTpvﬂITP_,Qc’N) ’

L (8, W}?LQ,Ad) =

L 1
=L

(
(s.mxc/Q) L (s, )‘_QXEIX(;LTEMT&%)
(5:m1/Q) L (5, XXn X, “To.nTy i)
More precisely, for 7, aqic as in Theorem 5.9.1,
L3 (Tp-adiclvie,) =71 - L= (1, 111c/q)
X <gi>2772 5 (000X o) L (1, A2 X0Xg “Ton o)
La (Tpadiclue,) =77 L (Lk o)

0,0\ ~ o ) )
g <Qp> w0 /\ZXhXhCT%ﬂTP,ﬁEC’N) CLP (1, M0, CTp,ﬁqu,ﬂg«) :
o0

The existence of L3, L4 follows from Katz p-adic L-functions.
Proposition 7.9.1. There exists Cy, C), € L* such that
<937 0> = 09 . [’37 <h’7 f"3>

(See (7.8.2) for the definition of the p-adic Petersson inner product for families.)

=Ch - Ly.

p-adic p-adic

Proof. The proof is the same as [Wan20, Proposition 8.9], which computes the specializations of
the left hand side by using the Rallis inner product formula. g

7.10. Extending CM forms on U(2) to GU(2). Let H = GU(2)(Q)Zgy(2)(Aq) U(2)(Aq). Then
H is a subgroup of GU(Aq) of index 2 consisting of g € GU(2)(A) with v(g) € Q*Nm(Ag). Suppose
that ¢ is an automorphic form on U(2) and generates an irreducible automorphic representation
7y of U(2)(Aq). Let w : K*\AZ — C* be a Hecke character extending the central character of my.
We can first extend ¢ to a function on H by

vagr — w(a)p(g1), 7 € GU2)(Q), a € Zau)(Ag), 91 € U(2)(Ag),
and then extend this function by zero from H to GU(2)(Ag). We denote this extension of ¢ to
GU(2)(Ag) by é. This ¢ is an automorphic form on GU(2)(Ag).

Proposition 7.10.1. Suppose that my is of CM type, i.e. if BC(my) ~ BC(x1)A @ BC(x2)A

for some characters x1,x2 of U(1)(Q)\U(1)(Ag). Then ¢ generates an irreducible automorphic

representation of GU(2)(A) and Tslue) = T @W;ﬁ, where 7T;) is isomorphic to the conjugation of
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7y by an element in GU(2)(Aq) outside H. Moreover, if ¢ € 7y is a pure tensor in g ~ @), Tg.v»
then ¢ is also a pure tensor in Ty o X, T

Proof. Let o be the automorphic representation of GU(2)(Aq) generated by ¢. Then either o is
irreducible and 0 ~ 0 ® Ni/Q oV or o =~ o1 @ 02 with o1 22 09 and 09 ~ 01 ® NK)Q © V- If my is of
CM type and o7 is a direct summand of o, we know that o1 =~ 01 ® 5 /g o v. Hence, o must be
irreducible. (See also [Wan20, Lemma 8.1].) We have my ~ 74. Since ¢ is obtained by extension

by zero, it belongs to the direct summand 7y in 7 3

in 74 implies that gZ is a pure tensor in w 2 O

U@2) = T B Wé). Hence, ¢ being a pure tensor

The above extension from U(2) to GU(2) also works for p-adic automorphic forms. We denote
by h the extension of h whose specialization at 7, aqic is the extension by zero of h(7).adic) to GU(2)
with respect to the character Xe_lrpf %N. Similarly, We denote by hs (resp. é, 93) the extension of

hs whose specialization at 7, aqic is the extension by zero of ilg(Tp_adiC) to GU(2) with respect to
the character x¢7p g (resp. XQTP,PN,XQ_ITPT%“).

7.11. The nonvanishing property of the degenerate Fourier—Jacobi coefficients of the
Klingen Eisenstein family. Let L5, Lg € Meas (U;Qp,@f) ~ @Er[[U;C’p]] be the Katz p-adic
L-functions interpolating special values of L (s, thg&ﬁg), L (s, A2xnxe Tp}l}qﬂf’ﬁq (§ng)c). In par-

ticular, for a Hecke character 7 : K*\Ag — C* unramified away from poo of co-type (0, k) with
k> 6,

Q, \"* Tk — 1) 4 — Nk N
Ls (Tp—adic|Uic,p) = <Q:;> (27m')Nk—1 e ( 9 7(XhX6£OT(I)\I) 1>

Nk — 2
X Lpoo < aXthé-OTg> 5

2

Q, \"" 2 T (Nk — 2) Nk — 2 i .
£6 (Tp_adiC|U;C7p) = ((2011) W . Lp <27 AQXhXQTp'PNTp’?N (507—(1)\1) > 9

Nk — 2 _
x [P < 5 ,)\Zthng%Tp?f,lq({ng)C) :

The product of L5L¢ interpolates the special values of L(s, BC(my,) x £g7oA~!) where 7, is the auto-
morphic representation associated to specializations of the CM family h. Note that the restriction
of )\QthngﬂTgf,N (€07p)¢ to O, is (5071350,!57'3],;17'(1)“,;57 triv), so Lg is essentially of one-variable. In fact
Lg is the so-called “improved” p-adic L-function, for which the local factor at p in the interpolation
formula is a partial local L-factor instead of a partial local ~-factor.

Proposition 7.11.1. For J,, € X Of [GU(2)(QU)] such that sh is still invariant un-
UGEnsU{f’}

der the tame level group KJI? (defined (5.6.8)), ¢ inside the space (5.6.12), and uq,...,u, €

®  U1)(Qu), b1,...,b, € Op as in Proposition 7.6.1,
vESLU{l'}

(7.11.1) <(<7rlsfl) [U@): PN (lef (ZZ blEglgli)) >p_adic =Ci- Lol <(‘%Sﬁ) lue), 0A(p>p—adi(:7

where 6 = 0 - (Aodet) and C; € (@Er[[U;gp] Rz Q) X.
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Proof. The identity is proved by comparing the evaluations of both sides at 7, ,4ic as in Theo-
rem 5.9.1. For such a 7p.agic, put 0; = 0(7padiclve,,) and hr = A(7Tpadic|uc,), which are classical

ordinary CM forms. The description of l"i] (ZZ biEghﬂni) in Proposition 7.6.1 and the definition

of the p-adic Petersson inner product in §7.8 imply that
(7.11.2)

Q. \ ~2Nk+2
(Qp) - LHS of (7.11.1) evaluated at 7 adic

:dQEU{p’Z’el} (5,5073])‘1)/ 0, (gwpl <_1 1)) ‘PEOTg(m)/
U(2)(Q\ U(2)(Aq) U(2)(Q\ U(2)(Aq)

ie — N —m Y 1
B3 (10(g1, 92); f2(s, €0md A1) & o MM (det g1) - (U, ™ Tnshy) (91 <_pm ) ) dg1dg>
p

S Nk=3
2
- | 02 (92) (g2 bt (92) dgs
U(2)(Q\U(2)(Ag)
with 19 defined in (6.2.2) and
Wy (g2) = dy Y5 (s, goriA )
1 o 1
X f2,v (37507-(1)\])‘_1) <ZO (( ) g, 1>> : (U_m%ShT) (929( m ) > dg 9
/U(2)(AQ) -1 p 8 P P s=tk=3

where m is any sufficiently large integer. The integral over g is essentially doubling local zeta
integral.

By using the same computation results in the proof of Theorem 6.1.1 for all v # p, we obtain

(7.11.3)
h;(g2) = C1(Tp-adic) * F(Nk(;wggv(kNé_ 2)

. 1 mo 1
g /U(2)(Qp) Foa (5, 607637) (ZO <<_1 >pg, 1)) ) (gw (—Pm ),,) dg

where Cp is the product of

Nk — 2
P> ( 5 ,BC(mp,. ) x gOTg‘A1>

_ Nk—3
S="2

e the local doubling zeta integrals at v € ¥ U {¢, ¢}, which is a nonzero constant in L by our

choice, and
. A . . _ —1 L .
e the element in OV [Uk ] interpolating L, (NkTQ, thgfov'g) , which is a unit by our as-
sumption.

Our choice of x5, x¢ implies that L, (3, BC(my,,) X 5070/\*1) =1forve X U{{ ¢}. The computa-
tion at p is slightly different from that in the construction of p-adic L-functions because the section
fap(s,&T0A71) is slightly different from the one for p-adic L-functions. The Schwartz function
a’&p in the description of fa,(s,&ToA™!) in Proposition 7.6.1 only requires z15 to be supported

on p~tZ*. Unlike the section for constructing p-adic L-functions, g, , does not require the whole
p P gp s GéTp q

T21 22
as the section in [LR20, Table 2 on p.210] for constructing the “improved” p-adic L-function.) The
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computation at p is done in [Wan20, 61], and plugging it into (7.11.3), we get

T'(Nk — 1)T(Nk — 2)
(27‘(‘2')21\”“73

Nk — 2
h/T(QZ) :Cl(Tp—adiC) : - LPe ( 5 , BC(mh,) x 507'0)\1>

2 2
—mo 1
X (Up %ShT) (.92 <_pm > ) .
p

Plugging this into (7.11.2), we see that the evaluations at 7,.,qic of the two sides of (7.11.1) are
equal.

4 — Nk _ Nk — 2 .
X V5 ( (xnx5€070) 1) Ly ( ’AZXhX@TM’NTp:%«(gOTg)C)

O

We introduce some more p-adic L-functions. Let £; € Meas (U;C,p, @Er> ®zQ ~ @j‘{r Uk pl ®zQ

be the p-adic L-function interpolating the central values of L (s, BC(7) x )\QthgT’;éITg,%), i.e. for
Tp-adic as in Theorem 5.9.1,

Q,\* _ 1 _ -1
L1 (Tp-adic’U;Qp) = (Qp ) 3. Tp (2,7Tf,p X ()‘QXhXGTp,%Tp,;}q)E)
(o]

1 _
x LP>® (2,BC(7r) X )\thngp,%Tmfh) .

The existence of such a p-adic L-function £; follows from [Hsil4b]. Let
o= 1
Lo=1"2(ff) Lo <2,BC(7T) X th§> e L™

The product of £1Lo interpolates the central values of L (s, T X W}?L2 X W‘g\L2> with h, 0 special-

izations of the CM families h, 6.

Note that because 7 has trivial central character and xp,x§|yx = triv, when cond (&7 p) =,
Q k)

1 oo
Vp (2,7Tp X ()\2XhX0Tp7{PNTp7ﬂl)ﬁ>
—2t
(7.11.4) =5 (&))" (Wonpxostoy 0p'2)
—t
—p™ g (€@)") (Bwosxapmia®) o (€m)y") (Bnsxinmor®)

=27 (0 A%0x “TonTon) - (000, B Tom)
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Combining (7.11.4), the above interpolation formulas for £;, Lo, and the interpolation formulas
for L3, L4 in §7.9, we see that when cond (€o,pTé“,,,) =,
(7.11.5)

(22?) (Tp—adiC|U)C,p) =T 'p_tLp <;,BC(7T) X XhX§>
y Lp>® (%,BC(?T) X )\QthngﬁqufN) . [P (%,BC(T{') X thg)
Lo (1,mic,)? - L (1, A2X0Xg “Toum Ty ) - L (1 A2X0 X5, “To.tn Ty i)
:WLOO (1,7, Ad) _— L, (%,BC(W) X thg)

wn "L, (1,m0)” - Ly (1,7, Ad)

poo (1 GLo GLo
L (2,7r X T X TS

Lp (1,7, Ad) - [P (1,w§L2,Ad) Lo (1,7rij2,Ad) '

X

Proposition 7.11.2. There exist operators Jns, s €~ Q@  Or [GU(2)(Qu)], and ¢ inside the
vEDLU{l'}

space (5.6.12), ¢ inside the space (5.6.11) such that Fysh is invariant under the tame level group

K% (defined in (5.6.8)) and

(7.11.6)
. < g A ~ ~ L1Lo
< (%sh) |U(2)a 0>\SO>p-adic < (‘711/517‘3> |U(2)’ 03 ¢,>p-adic = 02 ’ <0’ 03>p—adic<h’ h3>p—adic ) £3£4
with Cy € L*.
Proof. For s, 7€ @  Op [GU(2)(Qy)] and ¢, ¢’ in (5.6.12) corresponding to pure tensors
vESLU{l'}

in ), m(,; U(z), we consider evaluations at 7, agic as in Theorem 5.9.1 with cond(ry) = p'. Put
0 = 0(Tp-adic) and hy = h(Tpadic)-

LHS of (7.11.6) / 5 . < . )
- 0 sl _ d
valued at 7). adic U(2)(Q\ U@)(Ag) 7(9)»(9) ( ) g < pt )P g

X 02(9)¢'(9) (Th- <g L1 )dg_
/U(2)(Q)\U(2)(AQ) < ) (p )p

We can replace 0} (resp. 62) in the integrand by 6 (resp. 02), its extension by zero to GU(2)

with respect the character xo7p n, (resp. X;lT;; TlN) (as described at the beginning of §7.10), and

replace the domain of integration by GU(2)(Q)Zcu(2)(Ag)\ GU(2)(Aq). Thanks to (5.4.3), we can

further replace GU(2)(Q)Zgu(2)(Aq)\ GU(2)(Aq) by D*(Q)Zp(Aqg)\D*(Aq). Then for Fs, Ty €
® OL[D*Qy)]C & 0Or[GU(2)(Qy)], we can rewrite (7.11.7)

vEX s U{'} veXU{l'}

LHS of (7.11.6) 3 . .
valued at 7 aqic _//-\S\DX(AQ) 07(9) ¢(9) (Fashs) (g (_pz )p) dg

></ 02(9) &' (9) (Tshe) (g (") ) dg.
AZ\D* (Aq) »

(7.11.7)

(7.11.8)

This is the triple product integral.
Let

F, = (éf.\ R p& %sillfr) ’DX(A), F;. = (é?i\,r & 90/ & %55377) ‘DX(A).
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Then F- generates I, = 7T9% ®7r,?7 @n P, where 7T0>\ (resp. W}LL)T , P ) is the automorphic representation

of D*(Aq) generated by the restriction of Hi‘ (resp. hy, ¢) to D*, and F! generates II,, the
contragredient representation of II.. By the isomorphism (5.4.3) and Proposition 7.10.1, we know

that 7T9%, W,’Z are irreducible, and 0?‘, h, are pure tensors. By the definition of ¢, we know that
775 . Hence, II, (resp. II,) is irreducible, and the image of F; (resp. F)) under II; ~ ), I,

(1L, ® I, ,) is a pure tensor @, Fy., (resp. @, F. 7). By Ichino’s triple product formula [Ich08],
(7. 11 8) becomes
(7.11.9)

LHS of (7.11.6)
valued at Tp-adic H/A \DX(AQ g’U)FT’U;F > dgv

B B B CE U{oo,p,f,f’}(Q)Z . LE U{o0,p,t,¢'} (l’ H)
= (2170005 e s e 0o (TR
I1 Jox\px (@) Mo(9) Fro, Fru), dg
vEX U{oo,l,0'} <f’UD7f’l)D> <0T,v793,7,v> <h7—,vah3,7,v>v

S0 0y (To(9)Frp FL) do

<fp 7fp > < T,p> (_pt ) 03,T,v>p<h7',pa (_pt 1) ?7/3,7,10>p
We have the following results for the local integrals at v € ¥ U {oo, p, ¢, ¢'}:
— v € XU {00, }.
fQ \D*(Q <H ) o, ¢v> dg
< fD> < T’U793 T’U> <h’T,U7h/3,T,’U>,U

For v = oo, the integral is 1 because Il is the trivial representation. For v = ¥ U{¢}, this
is [Wan20, Lemmas 8.13-8.17]. Note that the twist at v € s U {¢} in (5.6.10) guarantees
that the local integrals are nonzero constants.

X

= a nonzero constant independent of 7

— v € Sps U{l'}. There exist .7, 7, € O [D*(Qy)] C O, [GU(2)(Q,)] and @y, ¢, € my 0@

such that ¢, and 7, h are invariant under the level group K, (defined in (5.6.7)) and

fQ \DXQ)<H()FT’07F/ > dg
< > < T, 93,T,v>v<h7,va h3,T,v>v
This is proved in the following §7.12.

= a nonzgero constant independent of 7

- v =p.
Jox\px(@u) (Mp(9) Frps 1), dg LG22 Ly (5, BC(m) % xax§)

— - p .
< ;?7 f;?>p<07',pa <7pt 1) 03,T,v>p<h~r,pa (7pt 1) h3,‘r,p>p LP (1777/C/Q)2 ’ Lp (17 7T7Ad)

This is a direct consequence of [Hsil9, Proposition 6.3]. We also use the formulas for local
norms of the chosen vectors in the proof of Lemma 6.4 of loc.cit..

Plug these results on local integrals into (7.11.9) and compare with (7.11.5), we see that

- ~ LL
LHS of (7.11.6) valued at 7pagic = Cs - <97, 9377>p_adic<h7, h3,7>p_adic : (ﬁ;ﬁi) (Tp'adiC‘U)C,p)

with Cy € L* the product of
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e the local triple product integrals divided by the norms at v € ¥ U{¢, ¢'}, which are nonzero

constants,
¢u(2)?Lo (3 1 . .
° II ( O, A d ) , which, by our choice of the Hecke characters xg, xn, equals
vex U{L,'}
( ,BC(7) x thg) ! I ¢&@2)2L, (1, n,C/Q)Q L, (1,7,Ad), a nonzero constant,

vex u{e,0}

° <ﬂ_L°°(17rAd) <fD fD>> EQX.

Given g € U(2)(Aq,f), evaluating a p-adic form at g induces a map
~ N\ R .
Meas (F)C, VU(Q)(X)OEr) — Meas (F;C, OEr> ~ OEr[[FK]].

Denote by lgs (Eglgﬁ) (9) € O¥[Tx] the image of log (Ef:lgli) under this map.

Proposition 7.11.3. Let 3 =1 € Her1(K), 6{ be the Fourier-Jacobi form on U(2) as in Proposi-
tion 7.6.1, and ¢ be an automorphic form on U(2) as in Proposition 7.11.2. Let J C O [I'x] ®zQ
be the ideal generated by

oy (EE5S) (0) geUR)(Agy), ue @ UMQ).
vEX s U{'}
Then J = OW[Tx] ®z Q.

Proof. Suppose that J # (’)ur [Tx]®zQ. Then J is contained in a maximal ideal of O "[Tk]®zQ, so

is contained in the maximal ideal associated to a p-adic character « : I'ix — Qp . Let & : T — Qp
be a p-adic character whose N-th power is k. Then

Klin Klin
Py« (lelJ (E¢,575>> (“/’U;c,p) = le{ <E¢,5,§) (k) =0
for all u € @,ex,.ugey U(1)(Qu). Then it follows from Propositions 7.11.1 and 7.11.2 that

~ ~ L1LoL5Ls
<<0’ 93>p-adic<h’ h3>p-adic ’ £3£4 > ( /|U7C p)

which, combining with Proposition 7.9.1, implies that
(L1L2L5L6) (K'uy,,) = 0.

However, the condition (3) in our choice of xp,xp in §5.6 implies that £1L9L5L¢ is a unit in

=0,

@Er[[F;C]] ®z Q, so is nonzero at all characters in Homeqnt (U;Qp,@: ) We get a contradiction.
Therefore, J = O¥[I'k] ®z Q. O
7.12. The local triple product integrals at non-split places.

Proposition 7.12.1. For v € X5 U {{'}, there exist T, 7, € Or [D*(Q,)] C O [GU(2)(Q,)] and
Vo, ¢l € TP such that ¢, and Tyh are invariant under the level group K, (defined in (5.6.7)), and

(7.12.1) / <H (9)Fry, FL > dg = a nonzero constant independent of T,
Qs \D*(Qu)

where Frp = @w ® Py ® %Bm> Ipx (@) F: (3 00 ® 0, @ %”ﬁsmv> IDx(@Qu)
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Proof. Let v be a place in ¥ns U {¢'}. Then U(1)(Q,) C O, and 7y s |u(1)(q,) is trivial. From the

construction of h, ild in §7.7.2 and @, 93 in §7.7.3, we see that m,_,, mg, » and hry, ;Lgﬂ-,v, 070, 5377,1,
do not change when 7 varies. It follows that the left hand side of (7.12.1) is independent of 7.

Next we show the non-vanishing. By our choice of xp,xs, we have Hompxq,) (IL,,C) # 0.

By [Pra90, Theorem 1.4], we can pick 7, € Or[D*(Q,)] and ¢} € 72 such that the linear
functional

(7.12.2) Ly M, —C. L ()= / (T, (g)Fo, FL,). dg
: Q\D*(Qu)

is nonzero and spans the one-dimensional space Hompx g, (Il;, C). What we need to show is that
there exists %Bﬂv € 7r,?T , and ¢, € 7P invariant under the level group K, defined in (5.6.7) such

that 2 (92\1, R Yy @ %71771,) Z# 0. Since 92\1; is invariant under K, it suffices to show that there

exists %FLT,U S w,ﬁ , invariant under K, such that the linear functional
(7.12.3) L (9“5,1] ®® ,z,hm) L7y — C

is nonzero. There are two cases.

Case 1: v # q, D*(Q,) = GL2(Q,). Let ¢, denote the prime number corresponding to v. Recall
that at the beginning of §5.4, we have fixed the positive integer s and totally imaginary element § in

KC, and U(2) is the unitary group for the skew-Hermitian form (o = ¢ s . By our assumption

1
on s, there exists v € O, such that Nmy, s, (v) = —s. We fix the following isomorphism

i: GU2)(Qu) — CU(L1)(Qu), gH(é kK )g(i 6)

T —T

where GU(1,1) denotes the unitary group attached to the skew-Hermitian form <_1 1) . Let
K§'2 = {(K,) N GLy(Z,). By our assumptions in §5.2, v # 2. One can check that

KGL2 _ <1 + wgvzv wgv-‘rEvZU
v =

@z, 1 +w5”Zv> C GLa(Zy).

0, v inert
where €, = . .
1, v ramified

0 d
Xo(ad™1), and ImdgL2 (xv) the (normalized) induction of x,. By our assumption on =, 7, is either

(2)(

Given a character x, : Q;f — C*, we denote also by x, the character B(Q,) — C*, <a b) >

Xv) for an unramified character x, # | - %Ul/ ? or is isomorphic to the irre-
ducible sub-representation of IndgL(Q) (xv) with x, = |- ]53/ % Let 11 = ey, the additive character
of Q, defined in (1.0.5), ¥ = €,, and W; (resp. Wa) be the Kirillov model of 71'9%70 (resp. ﬂ,ll)ﬁv)

with respect to 11 (resp. 12). We have

isomorphic to IndgL

. Homg,(q,) (W1 ® Wa,#) = Homgr,,(q,) <W1 ® W, Indng(X;1)>
12, N 1y 1/2
= HOHIB(QU) (Wl & W2aX'u 1‘ ’ ’Q{, ) ’
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where the second isomorphism is deduced from the Frobenius reciprocity, and when x, = | - ]63/ 2,

the first isomorphism is because by our choice of xg, xn, Wi % Wa. Our choice of xg, x5 also implies
that Wy, Wy are supercuspidal, so they consist of Schwartz functions on Q. on which the action
B(Q,) € GL2(Q,) has the formula

(7.12.5) <g Z) cwj(7) = wn, (d) Vi (bd ™ z) w;(ad '), w; € Wj,

where wr; is the central character of m;. By the way we extend h and 6 in §7.10, we know that
Wy Wy, = triv. It is easy to see that the map

(7.12.6) 2L (wy, ws) :/ wi(2)wa(z) - xo(@)|zlg P d¥z,  wi € Wi, wy € W,
Q °

is a nonzero element in (7.12.4), which is one dimensional, so it equals the image of %5 (5;% X )

in (7.12.4) up to a nonzero scalar. Hence, showing the existence of luzm, € W}’Z » invariant under K,
such that (7.12.3) is nonzero reduces to showing the existence of 1o € W3 invariant under K GL2 such
that Z (i1, 1) # 0, where y € W is the vector invariant under K2 corresponding to 6

D
) € 7-[-975_\’7}

For a character ¥ : Z5 — C*, put

o = / 9~ (@) (az) do,
zy

the projection of y to the ¥-eigenspace for the action of diag(Z),1). Let ¥* be the extension of ¥
to Q) taking value 1 at w,. For each integer m, put define w;% eW;,j=12 as

wiy(w) = L mzx () 9" (x).

Then we have y19 = >, cmw(’y With ¢, € C finitely many nonzero, and .2 (yl,wg?ﬂ,l) =
L (9, w)y-1). We can take a ¥ of conductor < wy® such that 9 # 0. This 4y is still in-
variant under KS™2. By the formula (7.12.5) and (1) of Lemma 7.12.2 proved below, we deduce
that
cu—n(w?’ﬁ)
Ny — Z cmw??ﬁu Cm € Cu

m=—(cy+ey)

with n(w?ﬂg defined as in (7.12.8). Take —(c, + €,) < mg < ¢, — n(w%ﬁ) such that ¢;,, # 0. Then

g(yl; wg},g—l) == Cmog(wﬁgaw;3—1> 7& 07

and by the formula (7.12.5), we know that w)'J_, is invariant under (

1+ @iz, wﬁ”““ Zy
991 , and

0 14+ sy
by (2) of Lemma 7.12.2, we know that

n(w;rfg,l) =mg +c(m9*1) <c, — n(w(l]ﬁ) +e(m @) = ¢, — c(m @) + c(mp @97,

By our choice of g, xn and the formula (7.12.7), we have c(m; ® 9*) > c(me ® 9*~1). Hence,

1 0
wrly 1
vector in Wy invariant under K2 such that 2 (i, 1) # 0.

mo

n(wy'9 1) > ¢y, and wy'y_, is invariant under ( > Therefore, 1o = wy'y_, is the desired

Case 2: v = ¢, D*(Qq) modulo its center is compact and 7T11)) is one-dimensional isomorphic to
Xq © Nmp, where x, is the unramified quadratic character in condition (5) in the choice of xg, xp
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at the beginning of §5.6, and Nmp denotes the norm of D. By our choice of xg, xr, we have

D
02,9

D

T hr.q

®xgoNmp =7

It follows that there exists .7, € O [D*(Q,)] such that (7.12.3) is nonzero. Since K, is a normal
subgroup of D*(Q,), Z,ﬁm is still invariant under K. O

Lemma 7.12.2. Let v be a place of Q non-split in K and o : K — Q) be a character nontrivial
on the ker Nmy, 1q,. Let my be the dihedral supercuspidal representation of GL2(Qy) obtained by
the theta lift of o. (See [Sch02, §1.2] for the precise definition.) Then the conductor of , equals

2cond (o), v inert,

(7.12.7) c(my) = { cond(o) +1, v ramified.

by [Sch02, Theorem in §2.8.2]. Let W be the Kirillov model of w, with respect to the additive
character efl of Qu. Forw € W, define

. . 1 0
(7.12.8) n(w) = min {n €Z:w is fived by (w;‘Zv 1)}
Let ¥ be a character of Z) and ¥* be its extension to Q) taking value 1 at w,. For each integer
m, define wy' € W as

wy'(z) = 1 mzx () 0" ().

Suppose that ordy(cond(c)) > ord,(cond(c|gx))-

la
(1) Let w =3 cpwy with ¢, # 0. Then n(w) = n(w?) = n(wY) + ls.
m=ly

(2) We have

m + 2cond(o - 9*~! o Nmg, g, ), v inert,

my\ __ x—1\ _
n(wy') =m+c(n, @9*7) = { m + cond(o - 9* L o Nmy, /q,) +1, v ramified.

!
Proof. (1) It is easy to see that <wv 1> ‘wpt = w:g”_l. Thus, n(w}") = n(wy) +m. It follows that

n(wy') < n(wff) for all m <y, so n(w) < n(wfgz). On the other hand, if n(w) < n(w?) — 1, then
la—1
n(wff) = n(cl_;(w - > cmwgn)) < n(wf;) — 1. This is a contradiction. Hence, n(w) = n(wfﬁ).
l1

(2) Let W’ the representation of GL2(Q,) whose underlying C-vector space equals that of W
with the action of GL3(Q,) defined as the action of GL2(Q,) on W twisted by o o det, i.e. for
g € GLy(Q,) and w € W', the action of g on w gives ¥~!(det g)(g - w), where g - w denotes the
action of g on w viewed as an element in W. Then W’ = 7, ® ¥*~!. Suppose that w’ € W’ is the

0 d
with ¢;, # 0 for some I; > 0. Then

zy Z . 2
new vector, then < v ”), d € Z}, acts on it by the scalar 09 ~%(d), and we have w’ = Y~ cpw]

m=lq

(7.12.9) n(w)) > c(r, @ 971 = n(w') = n(wd) + I,

where the first inequality and the middle equality follows from the definition of new vectors and

conductors of GL2(Q,)-representations, and the right equality follows from (1). (7.12.9) implies

that [; = lo = 0, wY is the new vector in W’ and n(w9) = (7, ® 9*~1). Since n(w}') = n(wy) +m,

we see that n(w}') = m + c(m, ® 9*71). O
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8. PROOF OF GREENBERG—IWASAWA MAIN CONJECTURE
8.1. The Klingen Eisenstein ideal. Let My, = Homy_, (7, Aso) be the O [Ts(Zp)]-module

SO

of semi-ordinary families on GU(3,1) of tame level Kjli (defined in (5.6.8)) as in Theorem 2.9.1.
Identifying Ty (Z,) with Zf x Z% ~ O,ép, we have the map

(811) Tso(zp) — O;é,p — F/Ca

with kernel p, x p1p,. Denote by ¥ ¢ (resp. Mg, ¢) the sub-Or[Tyo(Zp)]-module of es, ¥ (resp.
M) on which p, X p, acts through &, adgic. We make Ty, (Z,) act on ¥, ¢ and My, ¢ through

its usual action multiplied by the character ;di .- Then this action factors through the image of

Tso(Zp) in I'c under the map (8.1.1). Let ‘VS?),g C Vio, ¢ ./\/12075 C Mgo,¢ be the cuspidal part. We
consider the Of[I'kx]-modules

Mo e = Meo,¢ @0, 12021 OF [Tk M8y e = ML ¢ ®0, 10(2,)1 OF [Tk].

The Klingen Eisenstein family Egling constructed in §5.10 belongs to Meas (FK;, esoVau(3,1), 5@@?) .

By the natural pairing between Vquy (s 1),so and the space 7 in Theorem 2.9.1, we see that there is
a natural map

Meas <F;¢, eSOVGU(3,1)75®@Er) X (Vo )" —> Meas (F;C, (’A)f> ~ O¥ k],
and it induces a @E‘" [Tk ]-linear Hecke-equivariant map
Meas (F/c, 6soVGU(3,1),g®@Er> — Homo, [12,(z,)] (((Vst),f? @,‘{T[F;d]) = Mo, 6.1 -

Therefore, we can view Eg“ng as an element in Mg, ¢1,.. Let T be the abstract algebra generated
by the unramified Hecke algebras away from X U {p, ¢, ¢’} and U,-operators at p. Then Eghng is
an eigen-family for the action of T, and we denote by Apisr¢ : T — O} [I'x] the corresponding
eigen-system.

Let T(s)o,g,l“,c be the reduced Hecke algebra generated by T acting on Mgo,g,l‘,g' Let Tgisre C
TSO’&FK be the ideal generated by the images of T'— Agis ¢(T) in Tgo,f,l“zc’ T € T. We define the
Klingen Eisenstein ideal as

r = ker (OP[D] 0% 0\ /T e).

map

It measures the congruences between the Hecke eigen-systems in Tgo,é,l";g and the Hecke eigen-
system Agjs r ¢ attached to Eghng.

Theorem 8.1.1. Let ¢ be as in Proposition 7.11.2. Let P be a height one prime ideal of @Er[[F;C]]
such that P N O = (0). Then

N4 L0
ordp (Ef,uc{g }Eig{ ’ }> <ordp(Erg),
(where E?S{Ml}, E? %{g’gl} € @I‘ir [Tx] are the p-adic L-function satisfying the interpolation property
in (6.1.1)(6.1.2) ).
Proof. By Theorem 2.9.1, we have the fundamental exact sequence
00— Mbere — Moere — @B Mave) (K3, Ko, OF) @2, Z,INk] — 0.

geC(K%)
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Combining it with Theorem 6.1.1 on the degenerate Fourier—Jacobi coefficients of Eghng, we deduce
that there exists E' € Mo, ¢ 1, such that

SULLEY ASULEY o 0
eQ  Lraxe E € Mg ere

Let P be a height one prime ideal of O [['x] such that

_ rKlin
F=EX" ¢
PNOE =(0), ordp (552 =m= 1.

By Proposition 7.11.3, for 3 = 1, there exists g € U(2)(Ac) and v € @),ex, gy U(1)(Qu) such
that lys (EKling> (9) € P. Then lys (Fg.)(g) ¢ P, and we have the O[] p-linear map

©,B,u
(8.1.2) (T%.ere) p — Okl p/ PO [Tk p,
which sends the image of 7' € T in (qu S,cm>p to
log (T F)gu) (9)  loy (T-E™)5.) (9) N AT qpm
oy Foa)(9) King = Avisrg(T) mod P
o1 Bu lGIJ (Egoﬁ,u) (g)

We see that (8.1.2) factors through (TS0 ¢ F;c) - [ ZLkis r ¢ (TSO ¢ cm) o It follows that the composition

A T T 8.1.2 ~ ~
813 OpIcle e (10, ) O O/ PrORIrK

factors through @’%r[[rlc]]p/é’ﬁ,g@;g[[r‘]cﬂp. By the definition of (8.1.2), we also know that the

composition (8.1.3) is the natural projection. Hence, we deduce that &, (O [Tx]p € PO [Tk ]p,
and

ordp (Er¢) < m = ordp (L’Z {6} 2 U{U’}> _

£.Q K€

8.2. The main theorem. We prove the following partial results towards Conjecture 1.0.3.
Theorem 8.2.1. Let K be an imaginary quadratic extension of Q and p > 3 be a prime split in K.
Let m and & be as in §5.2.

(1) Let FE C ' be the rank one Z,-module on which the complex conjugation acts by +1. As
fractional ideals of R = O} [I'k] ®o,Irt] Frac (OL[T'f]),

(8.2.1) (Lrxe) D charg (Xr e @, i) R)-

See §1 for the definition of the p-adic L-function Ly ¢ € Frac (O} [Ik]), the Or[I'k]-
module X k¢, and the characteristic ideals.
(2) If € satisfies & # & modulo the mazximal ideal of Oy, then

£7FJC7§ € O7'[Tk]
and if it further satisfies:
- §|AS = w? with w : Q*\Ag — C* the Teichmiiller character, and ko =0 mod 2(p—1),

— for every finite place of Q non-split in IC, €, (%, BC(7) x fo) =1,
— the conductor of £ is only divisible by primes split in K/Q,
then

(Lrjce) D charowr,je,o(Xr ke ®z Q)
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Proof. (1) First, relaxing the conditions at v € ¥ U{¢, '} in the definition of Sel; x ¢ in (1.0.1) and
X e in (1.0.1), we define the ¥ U {/, ¢'}-primitive Selmer group:

Su{ee .
Selw,%fg ) = ker HY (K, Tr k¢ @0, OL[k]) — H HY(Iy, Tr o ¢ ®0, OL[Tk]*)

0F#p
v{ places in X U {¢(,¢'}

and

(N N
X = Homg, (ser ¢, Q,/2,).

We can assume that the module X x ¢ is O [I'kc]-torsion (since otherwise its characteristic ideal
is defined to be (0) and the inclusion (8.2.1) automatically holds). By the same argument as in the
proof of [JSW17, Theorem 6.1.6], which uses the fact that the sizes of the unramified cohomology
groups at primes outside p are controlled by the local Euler factors of the p-adic L-functions
( [GV00, Proposition 2.4]), it suffices to prove the inclusion

(ﬁf,,%fé’gl}) D charg (Xizg’el} ®0L[[F?€]] i’{)

as fractional ideals of ® = O} [I'k] ®o,Irt] Frac (OL[T'f]).

We reduce to show that given a height one prime ideal P C Oy [I'x] such that PNOY[T'L] = (0),
we have the inequality

SU{L,0'} SU{£,0}
(8.2.2) ordp (En,lc,g ) < lengthozr[[rdp ((XTI‘,’C,£ )P) ,
which, by Theorem 8.1.1, is implied by
su{e,e
(8.2.3) ordp (Exr¢) < lengthourr, |, ((Xn,lcfg }>P) .

We have the following setup.
o Ay=O¥[Tx] and A = Ag p.
o Ro=TY% . . aprime ideal Q C R such that QN Ag = P, and R = Ry .
e G =Gal(Q/Q) and H = Gal(Q/K).
The following data gives us the setup (1)-(5) on [Wan20, page 478].

(1) Let v : H — A be the trivial character.
(2) x =8Pk : G — Aj, with x # x~¢ modulo the maximal ideal of Ay by the choice of &,
(3) p: G — Aut4(V), a Galois representation obtained from the two-dimensional Galois rep-
resentation p, : H — GL(V;) with V =T, ®0, A and T C V; a G-stable lattice.
(4) 0 : G — Autpg,r(M), a Galois representation on M = (R ®4 Frac(A))* obtained as the
pseudo-representation associated to Ry as in [SU14, Proposition 7.2.1]
(6) I = &r¢Ap and J = ker(R — A/I) where the map R — A is defined as the map (8.1.2)
and is surjective, and A/I = R/J.
Moreover, the data satisfies the properties (6)-(9) on [Wan20, page 478]. Properties (6)-(8) are
checked in the same way as loc.cit.

Property (9) is about the irreducibility of o. It requires that for each Frac(A)-algebra homomor-
phism A : R® 4 Frac(A) — K, K a finite extension of Frac(A), the representation oy : G — GL4(K)
obtained from o via A is either absolutely irreducible or contains an absolutely irreducible two-
dimensional sub-representation whose trace is congruent to xy + x~¢ mod I. It can be checked as
follows. Let T : G — A be the pseudo representation giving rise to . Suppose that o does
not satisfy (9). Then T = 01 + d2 + 03 with 01,02 one-dimensional pseudo-character and 43
a two-dimensional pseudo-representation with irreducible residual representation is Trp,. Take
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an arithmetic point x : Tgogr — Q, corresponding to an automorphic representation II of
HSEN p

U(3,1)(Aq) generated by a classical semi-ordinary cuspidal automorphic form fixed by K;?,l of

weight (0,0,¢T;¢7), 0> tT > —t~. We can associate a 2-dimensional (irreducible) Galois repre-

sentation p3 . : G — GL2(Q,) to the specialization of d3 at x. As in [SU14, Theorem 7.5}, a twist
of p3 . descends to Gal(Q/Q), which we denote by pj , : Gal(Q/Q) — GL2(Q,,).

If 7 is ordinary at p, then II is ordinary at p. By the argument in [SU14, Theorem 7.5], we know
that Pé,x is modular and IT is CAP, but the condition on the weights (0,0,¢";¢7) excludes this
possibility ( [Har84, Theorem 2.5.6]).

If 7 is not ordinary at p, then prlg., = prlGg, i irreducible by [Edi92]. Since pn = prlg @
two characters, we deduce that the semi-simplification of pH|G,<,p is not a direct sum of four char-
acters. Identify U(3,1)(Q,) with GL4(Q,) and let @ C GL4 be a parabolic subgroup with its Levi

subgroup isomorphic to GLs x GL; x GL;. As in the proof of Proposition 3.0.5, it follows from the

theory of Jacquet modules that I, is isomorphic to a subquotient of Indg%égp ) o x X" with y, x/

characters of Q; and o an irreducible admissible representation of GL2(Q,) containing a nonzero
vector fixed by the Iwahori subgroup. Since the semi-simplification of PH\GM, is not a direct sum

of four characters, o is not Steinberg or a twist of Steinberg, and must be unramified. Hence, II, is
L4(Qp)
(Qp)
of Q. Let aj = x;(p), 1 < j < 4. We can assume that val,(a1) < valy(az) < valy(as) < valy(ay).
The semi-ordinarity of II at p implies that

isomorphic to a subquotient of Indg x1 X xa X y3 Xy with x1, x2, X3, x4 unramified characters

(8.2.4) val,(a1) + valy(ag) =0, val,(ag) = —tT + g, valp(aq) =t~ — g,

and the integrality of the operator U; 1 (defined in (3.0.7)) implies that

(8.2.5) valp (o), valy(ag) > —%.

Thanks to the condition 0 > t* > —t~, (8.2.4) and (8.2.5) imply that ozia;l # pT! unless
{i,j} = {1,2} and val,(a1) = —3, val,(ag) = 1. However, val,(a1) = —1, val,(az) = & imply that

I is ordinary at p and this contradicts that PH‘G,QP is not a direct sum of four characters. Therefore,

we have aiaj_l £ pt! for all 4, j, so Indg%&()?” ) o X x ® x’ is irreducible and II, is unramified. It

follows that pri|G,, is crystalline, so pj ,|G,, is crystalline. Also, ps ., = pr is not induced from a
Galois character for Q (\ /(—1)=1)/ 2p> , because its restriction to I, has semi-simplification wj @b’

with wo the fundamental character of level 2 and i =1 mod (p — 1) (since pr|q,, is crystalline of

weight (0,1)), and if 7 was induced from a Galois character for Q ( (—1)(1"—1)/2p), i must be a

multiple of %, which is impossible when p is odd. Thus, we can apply [Kis09], we deduce that

P, is modular. Then II is CAP, i.e. it has the same system of Hecke eigenvalues as a Klingen-
type Eisenstein series). This is impossible thanks to the condition on the weights (0,0,¢%;¢7)
by [Har84, Theorem 2.5.6]. Property (9) is verified.

Let

S u{e r
Xonitd = Homg, (ker {H (Q, OF[Tk], €Tk o Nm) — H' (G, €Uk o Nm)}, Qp/Z,) .
With the input (1)-(5) satisfying the properties (6)-(9), applying the lattice construction [Wan20,
Proposition 9.2], one proves that if P C O}'[I'k] is a height one prime such that ordp (E;¢) > 0
and (X¢onm ®z Q))p = 0, then the inequality (8.2.3) holds. It follows that for all height one prime
ideals P C OV [I'x] with PN OW[TE] = (0), the desired inequality (8.2.2) holds.
80



3 U{E E’}EE u{¢,e'}

(The congruence ideal ;¢ is bounded by the product E , and is expected to

give a bound for the product of the characteristic ideals of XEZ Iﬁfi“ nd X> ,%{; Y Although,

2u{€ oy . is known to be generated by [,E V6 by the Iwasawa Main

Conjecture proved in [MW84] the lattice construction argument in [SU14 Wan20] only proves the

desired bound for ordp (charour[[pd (Xf,%{;z }>) when (X¢onm ®z Q))p = 0. In [Wan20], height

one primes in OV [I'{ ] ®z Q do not need to be excluded thanks to Lemma 9.3 loc.cit and the fact
that L i ¢ is not contained in any height one prime ideal in O}"[I'x] by [Hsil4b]. However, in our
case with 7 fixed instead of moving in a family, we cannot prove an analogue of Lemma 9.3 loc. cit.)

the characteristic ideals of X

(2) Let o¢ be the irreducible cuspidal automorphic representation of GLa(Aqg) generated by a
CM form associated to £, and pg, : Gal(Q/Q) — GL2(Q,) be the Galois representation associated

to o¢. Then py, = Ind,% prc,e- The condition &, # & modulo the maximal ideal of O, implies that

(irred) po, is residually absolutely irreducible,
(dist) the characters of py,|G,, on the diagonal are distinct.

Let g be the ordinary O} [I'k]-adic CM family passing through the CM form associated to . As in
[Wan20, §7E], one can construct a p-adic L-function EHlda by taking the product of Hida’s Rankin—
Selberg p-adic L-functions for the family g and the newform f € m and Katz’s p-adic L-function
restricted to the line of interpolating special values at 1. Note that although Hida’s construction
assumes that g and 7 are both ordinary, only the ordinarity of g is used. By using [HT93, Theorem
7.1, (8.8b)] and [Hid91, Lemma 5.3(vi)] (which relates the Petersson norm with the adjoint L-value
at 1) one can check that EH‘,CCIag € OV[I'x] and the specializations of EHII% ¢ and our Ly k¢ agree
at a Zariski dense subsets of the weight space. Hence, EE",%Z = L k.- Then under the conditions
(dist) and (dist), by using the Iwasawa Main conjecture proved in [HT93, HT94, Hid06], one can
check that L’,Hl,%a5 € OF[I'k]. Hence, Ly e € OF[I'k].

With further conditions that ¢| A= w? and kg =0 mod 2(p — 1) and conditions on the epsilon

factors and the conductors of £, one can use the vanishing of the anticyclotomic u-invariant proved
n [Hsildb] to deduce that the L i ¢ is not divisible by any height one prime ideal in OW[T'{ ]]
Thus, the inclusion in (1) implies the inclusion in (2).
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