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Abstract. Let E/Q be a CM elliptic curve and p a prime of good ordinary reduction for E.
We show that if Selp∞(E/Q) has Zp-corank one, then E(Q) has a point of infinite order. The
non-torsion point arises from a Heegner point, and thus ords=1 L(E, s) = 1, yielding a p-converse
to a theorem of Gross–Zagier, Kolyvagin, and Rubin in the spirit of [Ski20], [Zha14].

For p > 3, this gives a new proof of the main result of [BT20], which our approach extends to
small primes. The approach generalizes to CM elliptic curves over totally real fields [BCST21].

Soit E/Q une courbe elliptique à multiplication complexe et p un nombre premier de bonne
réduction ordinaire pour E. Nous montrons que si corankZpSelp∞(E/Q) = 1, alors E a un point
d’ordre infini. Le point de non-torsion provient d’un point de Heegner, et donc ords=1L(E, s) =
1, ce qui donne un p-converse à un théorème de Gross–Zagier, Kolyvagin, et Rubin dans l’esprit
de [Ski20], [Zha14].

Pour p > 3, cela donne une nouvelle preuve du résultat principal de [BT20], que notre
approche étend aux tous les nombres premiers. L’approche se généralise aux courbes elliptiques
à multiplication complexe sur les corps totalement réels [BCST21].
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Introduction

Starting with [Ski20], [Zha14], several works have been devoted to p-converses to a celebrated
theorem of Gross–Zagier, Kolyvagin, and Rubin: If the p∞-Selmer group Selp∞(E/Q) has Zp-
corank 1 for an elliptic curve E/Q, then ords=1L(E, s) = 1. Besides being an evidence for the
Birch and Swinnerton-Dyer conjecture, an important impetus for the p-converse theorems has
come from recent developments in arithmetic statistics. For instance, such p-converse theorems
have led to the proof [BSZ15] that a large proportion of elliptic curves over Q—and conditionally,
100% of them—satisfy the Birch and Swinnerton-Dyer conjecture.

The p-converse theorems of [Ski20], [Zha14] are obtained by exhibiting a certain Heegner point
on E with infinite order, and hold for primes p > 3 of good ordinary reduction of E, and under
certain hypotheses that excluded the CM elliptic curves.

Our main result is the following CM p-converse theorem. For primes p > 3, the result was
first proved in [BT20].

Theorem A. Let E/Q be an elliptic curve with complex multiplication by an order of an imagi-
nary quadratic field K of discriminant −DK < 0. Assume that the Hecke character associated to
E has conductor exactly divisible by dK := (

√
−DK). Let p be a prime of good ordinary reduction

for E. Then
corankZpSelp∞(E/Q) = 1 =⇒ ords=1L(E, s) = 1.

In particular, if corankZpSelp∞(E/Q) = 1 then rankZE(Q) = 1 and #W(E/Q) <∞.

Note that the ‘in particular’ clause in Theorem A follows from combining its conclusion with
the fundamental work of Gross–Zagier, Kolyvagin, and Rubin. In turn, this consequence yields
the following mod p criterion for analytic rank one.

Corollary B. Let (E,K) be as in Theorem A, and let p be a prime of good ordinary reduction
for E such that:

(i) E(Q)[p] = 0;
(ii) Selp(E/Q) ' Z/pZ, where Selp(E/Q) ⊂ H1(Q, E[p]) is the p-Selmer group of E.

Then ords=1L(E, s) = 1 and W(E/Q)[p∞] = 0.

More generally, we prove a p-converse for CM abelian varieties Bλ/K associated with Hecke
characters λ over K of infinity type (−1, 0) (see Theorem 7.0.2).

Our approach to the CM p-converse differs from [BT20]. A salient feature is that the approach
generalizes to CM elliptic curves over totally real fields: It sidesteps the inherence of elliptic units
in [BT20], and leads to the first p-converse theorems over general totally real fields. This note
might thus be viewed as a prelude to [BCST21].

The conductor hypothesis in Theorem A arises from an appeal to [CH18] which supposes a
classical Heegner hypothesis. This hypothesis may be removed (cf. [BCK21], [BCST21]) via the
p-adic Waldspurger formula of Liu–Zhang–Zhang [LZZ18], whose habitat is the general Yuan–
Zhang–Zhang framework [YZZ13]. (The hypothesis is not present in [BT20], thanks to Disegni’s
p-adic Gross–Zagier formula [Dis17], also in the framework of [YZZ13].)

Remark C. The p-converse as in Theorem A is independently due to Ressler and Yu [RY21], [Yu21].
Complementing the present note, their approach builds on [BT20] and does not require the con-
ductor hypothesis. A key new element in their work is a counterpart of the main results of
Agboola–Howard [AH06] for small primes.

Remark D. A spectacular result of Smith [Smi17] reduces Goldfeld’s conjecture [Gol79] for CM
elliptic curves E/Q with E(Q)[2] ' (Z/2Z)2 and admitting no rational cyclic 4-isogeny to the
CM p-converse and its rank zero analogue for the prime p = 2. The unconditional rank zero CM
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p-converse is in fact proved in [BT19], [BT22]. Unfortunately, Theorem A falls short of providing
the desired rank one CM p-converse: First, E should be allowed to have just potentially good
ordinary reduction at p (this might be approachable by our strategy); the second—and the
main—hindrance is that Q(

√
−7) is the only imaginary quadratic field of class number 1 with

2 split, and incidentally E(Q)[2] ' Z/2Z for all elliptic curves E/Q with CM by Q(
√
−7) (see

e.g. the table in [Ols74, p. 2]).

The approach. Assuming #W(E/Q)[p∞] <∞ and p - #O×K , the p-converse as in Theorem A
goes back to Rubin [Rub94, Thm. 4]. Around the same time, Rubin proved a striking formula
[Rub92] which expresses the p-adic formal group logarithm of a point P ∈ E(Q) ⊗Z Zp in
terms of the value of a Katz p-adic L-function outside its range of interpolation. Our approach
to Theorem A is inspired by the p-adic Waldspurger formula of Bertolini–Darmon–Prasanna
[BDP13], which is a remarkable generalization of Rubin’s formula, and sheds new light on
[Rub92] (cf. [BDP12]).

Let E/Q be an elliptic curve with CM by an imaginary quadratic field K, and p a prime of
good ordinary reduction. Let λ be the Hecke character over K associated with E so that

L(E, s) = L(λ, s).

In view of a non-vanishing result of Rohrlich [Roh84], we pick a pair (ψ, χ) of Hecke characters
over K with χ of finite order such that

ψχ = λ, L(ψ∗χ, 1) 6= 0, (0.1)

where ψ∗ := ψ ◦ c is the composition of ψ with the non-trivial automorphism of K/Q. For
f = θψ the theta series associated to ψ, the main result of [BDP13] relates the p-adic formal
group logarithm of a Heegner point Pψ,χ ∈ Bψ,χ(K) to a value (outside the range of interpolation)
of a p-adic Rankin L-series Lv(f, χ). Here Bψ,χ is a CM abelian variety over K endowed with
a K-rational map iλ : Bψ,χ → E. By the Gross–Zagier formula [YZZ13], Pψ,χ is non-torsion if
and only if L′(f, χ, 1) 6= 0. Setting

PK := iλ(Pψ,χ) ∈ E(K),

one thus obtains a point on E which, in light of (0.1) and the factorization

L(f, χ, s) = L(λ, s) · L(ψ∗χ, s), (0.2)

is non-torsion if and only if ords=1L(E, s) = 1.
Now, Theorem A is equivalent to: If Selp∞(E/Q) has Zp-corank 1, then PK is non-torsion.

In [BT20] the non-triviality is shown via the following.

(1) The anticyclotomic Iwasawa main conjecture (IMC) for (Hecke characters over) K in the
root number +1 case [Rub91];

(2) The anticyclotomic IMC for K in the root number −1 case [AH06], [Arn07];
(3) The non-vanishing of the Λ-adic regulator appearing in (2) [Bur15];
(4) The Λ-adic Gross–Zagier formula [Dis17].

Here Λ denotes the anticyclotomic Iwasawa algebra over K (with certain coefficients).
Bypassing (2), (3), and (4), our approach builds on the explicit reciprocity law [CH18], which

realizes Lv(f, χ) as the image of a Λ-adic Heegner class zf,χ under a Perrin-Riou big logarithm
map. Similarly as in [BDP12], we establish a factorization

Lv(θψ, χ)2 .
= Lv(ψ

∗χ∗) ·Lv(ψχ
∗)

in §3 relating Lv(θψ, χ)2 to the product of two Katz p-adic L-functions, mirroring (0.2). In
particular, this leads to an expression relating the formal group logarithm of PK to a value of a
Katz p-adic L-function, as in Rubin’s formula.
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Along with an analogous decomposition for Selmer groups shown in §2, the Iwasawa–Greenberg
main conjecture for Lv(θψ, χ)2 is readily seen to be a consequence of the main results of [Rub91],
[JLK11]. Building on the Λ-adic explicit reciprocity law, in §4 we prove the equivalence between
the main conjecture for the p-adic L-function Lv(θψ, χ)2 and a different main conjecture formu-
lated in terms of the zeta element zf,χ. Finally, the latter yields the implication

corankZpSelp∞(E/Q) = 1 =⇒ PK 6= 0 ∈ E(K)⊗Z Q
via a variant of Mazur’s control theorem.

Dedication. The p-converse for CM elliptic curves E/Q is due to Rubin if #W(E/Q)[p∞] <∞.
The essence of our removal of this hypothesis is Iwasawa theory of Heegner points, as pioneered
by Perrin-Riou [PR87]. The theory of big logarithm maps [PR94], another major contribution
of Perrin-Riou, is also elemental to our approach. It is a great pleasure to dedicate this note to
Bernadette Perrin-Riou as a humble gift on the occasion of her 65th birthday.
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the NSF grant DMS-2001409; F.C. was partially supported by the NSF grants DMS-1946136 and
DMS-2101458; C.S. was partially supported by the Simons Investigator Grant #376203 from
the Simons Foundation and by the NSF Grant DMS-1901985; Y.T. was partially supported by
the NSFC grants #11688101 and #11531008.

1. Preliminaries

Fix throughout a prime p, an algebraic closure Q of Q, and embeddings C ı∞←↩ Q
ıp
↪→ Cp. Fix

also an imaginary quadratic field K of discriminant −DK < 0 and ring of integers OK.

1.1. CM abelian varieties. We say that a Hecke character ψ : K×\A×K → C× has infinity type
(a, b) ∈ Z2 if, writing ψ = (ψv)v with v running over the places of K, the component ψ∞ satisfies
ψ∞(z) = zaz̄b for all z ∈ (K ⊗Q R)× ' C×, where the identification is made via ı∞. Hence in
particular the norm character NK, given by q 7→ #(OK/q) on ideals of OK, has infinity type
(−1,−1). The central character of such ψ is the character ωψ on A× defined by

ψ|A× = ωψ ·N−(a+b),

where N is the norm on A×.
Our fixed embedding ıp defines a natural map σ : K⊗QQp → Cp, and we let σ : K⊗QQp → Cp

be the composition of σ with the non-trivial automorphism of K. The p-adic avatar of a Hecke
character ψ of infinity type (a, b) is the character ψ̂ : K×\A×K,f → C×p given by

ψ̂(x) = ıp ◦ ı−1
∞ (ψ(x))σ(xp)

aσ(xp)
b

for all x ∈ A×K,f , where xp ∈ (K ⊗Qp)
× is the p-component of x.

Thoughout the following, we shall often omit the notational distinction between an algebraic
Hecke character and its p-adic avatar, as it will be clear from the context which one is meant.

Let ψ be an algebraic Hecke character of K infinity type (−1, 0) with values in a number field
Fψ ⊂ Q with ring of integer Oψ. Let P be the prime of Fψ above p induced by ıp, and denote by
Φψ the completion of Fψ at P and by Oψ the ring of integers of Φψ. By a well-known theorem
of Casselman’s (see [BDP12, Thm. 2.5] and the reference [Shi71, Thm. 6] therein), attached to
ψ there is a CM abelian variety Bψ/K, unique up to isogeny over K, with the property that

VPBψ ' ψ̂−1

as one-dimensional Φψ-representations of GK, where VPBψ =
(
lim←−Bψ[Pj ]

)
⊗OψΦψ is the rational

P-adic Tate module of Bψ.
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1.2. Heegner points. Let f ∈ S2(Γ1(N)) be a normalized eigenform of weight 2, level N prime
to p, and nebentypus εf . We assume that K satisfies the Heegner hypothesis relative to N :

there is an ideal N ⊂ OK with OK/N ' Z/NZ, (Heeg)

and fix once and for all an ideal N as above. We assume also that

pOK = vv splits in K, (spl)

with v the prime of K above p induced by our fixed embedding ıp. Let F ⊂ Q be the number
field generated by the Fourier coefficients of f . Denote by P the prime of F above p induced by
ıp, and assume that f is P-ordinary, i.e. vP(ap(f)) = 0, where vP is the P-adic valuation on F .

Let Af/Q be the abelian variety of GL2-type associated to f , determined up to isogeny over
Q by the equality of L-functions

L(Af , s) =
∏

τ :F ↪→C
L(f τ , s),

where f τ runs over all the conjugates of f . Denote by Φ the completion of F at P, and let O
be the ring of integers of Φ. Let TPAf := lim←−Af [Pj ] be the P-adic Tate module of Af , which
is free of rank two over O.

For every positive integer c, let Kc be the ring class field of K of conductor c, so Gal(Kc/K) '
Pic(Oc) by class field theory, where Oc = Z + cOK is the order of K of conductor c. For every

c > 0 prime to N and every ideal a of Oc, we consider the CM point xa ∈ X1(N)(K̃c) constructed

in [CH18, §2.3], where K̃c is the compositum of Kc and the ray class field of K of conductor N.
Let ∆a be the class of the degree 0 divisor (xa) − (∞) in J1(N) = Jac(X1(N)), and denote by
za = δ(∆a) its image under the Kummer map

δ : J1(N)(K̃c)→ H1(K̃c, TpJ1(N)).

Fix a parametrization π : J1(N)→ Af , and let yf,a ∈ H1(K̃c, TPAf ) be the image of ya under
the natural projection

H1(K̃c, TpJ1(N))
π∗−→ H1(K̃c, TpAf )→ H1(K̃c, TPAf ).

For the ease of notation, we set yf,c = yf,a for a = Oc. A standard calculation shows that if
p - c, then for every n > 0 we have

CorK̃cpn/K̃cpn−1
(yf,cpn) =

{
ap(f) · yf,cpn−1 − εf (p) · yf,cpn−2 if n > 1,

u−1
c

(
ap(f)− σv − σv

)
· yf,c if n = 1,

(1.1)

where uc := [O×c : O×cp] and σv, σv ∈ Gal(K̃c/K) are Frobenius elements at the primes of K above
p (see [CH18, Prop. 4.4]).

Let α be the P-adic unit root of x2− ap(f)x+ εf (p)p, and for any positive integer c prime to
N define the α-stabilized Heegner class yf,c,α by

yf,c,α :=

{
yf,c − εf (p)α−1 · yf,c/p if p | c,
u−1
c

(
1− σvα−1 − σvα−1

)
· yf,c if p - c.

This definition is motivated by the following result.

Lemma 1.2.1. For all positive integers c prime to N , we have

CorK̃cp/K̃c(yf,cp,α) = α · yf,c,α.

Proof. This follows immediately from (1.1).
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1.3. Heegner point main conjecture. Fix a positive integer c prime to Np, and put K̃cp∞ =⋃
m≥0 K̃cpm . The Galois group Gc = Gal(K̃cp∞/K) decomposes as

Gc ' ∆c × Γ,

where Γ is the maximal torsion-free quotient of Gc, giving the Galois group of the anticyclotomic
Zp-extension K∞/K, and ∆c is a finite abelian group.

Let χ be a finite order Hecke character of K with χ|A× = ε−1
f and of conductor dividing cN.

Upon enlarging F is necessary, assume that Φ contains the values of χ. For each n, take m� 0
so that K̃cpm ⊃ Kn, and set

zf,χ,n := α−m
∑

σ∈Gal(K̃cpm/Kn)

χ(σ) · yσf,cpm,α. (1.2)

In view of Lemma 1.2.1, the definition of zf,χ,n does not depend on the choice of m. Moreover,
letting Af,χ be the Serre tensor Af ⊗ χ, we see that zf,χ,n defines a class

zf,χ,n ∈ H1(Kn, TPAf,χ).

Let
Λ0 = OJΓK, Λ = Λ0 ⊗O Φ (1.3)

be the anticyclotomic Iwasawa algebras. From their construction, the classes zf,χ,n are contained
in the pro-P Selmer group SP(Af,χ/Kn) ⊂ H1(Kn, TPAf,χ), and by Lemma 1.2.1 they are norm-
compatible, hence defining a class zf,χ = {zf,χ,n}n in the compact Λ0-adic Selmer group

S (Af,χ/K∞) := lim←−
n

SP(Af,χ/Kn).

On the other hand, let Af,χ be the Serre tensor Af ⊗ χ, and set

X (Af,χ/K∞) := HomZp

(
lim−→
n

SelP∞(Af,χ/Kn),Φ/O

)
,

where SelP∞(Af,χ/Kn) ⊂ H1(Kn, Af,χ[P∞]) is the P∞-Selmer groups of Af,χ. Set also

S(Af,χ/K∞) = S (Af,χ/K∞)⊗O Φ, X (Af,χ/K∞) = X (Af,χ/K∞)⊗O Φ,

which are finitely generated Λ-modules.
The following conjecture in a natural extension of Perrin-Riou’s Heegner point main conjec-

ture, [PR87, Conj. B].

Conjecture 1.3.1. The modules S(Af,χ/K∞) and X (Af,χ/K∞) have both Λ-rank one, and

charΛ(X (Af,χ/K∞)Λ-tors) = charΛ

(
S(Af,χ/K∞)/Λ · zf,χ

)2
,

where the subscript Λ-tors denotes the maximal Λ-torsion submodule.

In [BT20] a conjecture similar to Conjecture 1.3.1 is formulated in terms of a Λ-adic Heegner
class deduced from work of Disegni [Dis17] (see [BT20, Conj. 2.2]). Similarly as in [BT20]1, our
proof of Theorem A is based on a study of Conjecture 1.3.1. The novelty in our approach is in
the proof of cases of this conjecture.

2. Selmer groups

In this section we introduce the different Selmer groups entering in our arguments. In partic-
ular, the decomposition in Proposition 2.3.1 will play a key role.

1As well as in other results on the p-converse theorem in rank 1 without a finiteness condition on the Tate–
Shafarevich group that appeared after [Ski20]: [Wan21], [CW16], [CGLS22], etc.
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2.1. Selmer groups of certain Rankin–Selberg convolutions. As in §1.2, let f ∈ S2(Γ1(N))
be a P-ordinary newform with nebentypus εf , and let K be an imaginary quadratic field satis-
fying (Heeg) and (spl).

Let c > 0 be a positive integer prime to N . Similarly as in [BDP12, Def. 3.10], we say that a
Hecke character ξ of infinity type (2 + j,−j), with j ∈ Z, has finite type (c,N, εf ) if it satisfies:

(a) ωξ · εf = 1, where ωξ is the central character of ξ;
(b) fξ = c ·N′, where N′ is the unique divisor of N with norm equal to the conductor of εf ;
(c) the local sign εq(f, ξ) is +1 for all finite primes q.

Condition (a) implies that the Rankin–Selberg L-function L(f, ξ, s) is self-dual, with s = 0 as
the central critical point, and by (c) the sign in the functional equation is +1 (resp. −1) when
j > 0 (resp. j < 0). Denote by Σcc(c,N, εf ) the set of such characters ξ, and put

Σ(1)
cc (c,N, εf ) = {ξ ∈ Σcc(c,N, εf ) | j < 0} , Σ(2)

cc (c,N, εf ) = {ξ ∈ Σcc(c,N, εf ) | j > 0} .

Denote by ρf : GQ → AutΦ(Vf ) the P-adic Galois representation associated to f , so that

Vf (1) ' Φ⊗O TPAf .

Let χ be a finite order character of K such that χN−1
K ∈ Σ

(1)
cc (c,N, εf ), and consider the conjugate

self-dual GK-representation

Vf,χ := Vf (1)|GK ⊗ χ. (2.1)

For any Λ0-module M , let M∨ = Homcts(M,Qp/Zp) be the Pontryagin dual. Fix a GK-stable
lattice Tf,χ ⊂ Vf,χ, and define the GK-module

Wf,χ := Tf,χ ⊗O Λ∨0 , (2.2)

where the tensor product is endowed with the diagonal Galois action, with GK acting on Λ∨0 via
the the inverse of the tautological character Ψ : GK � Gal(K∞/K) ↪→ Λ×0 .

Definition 2.1.1. Fix a finite set Σ of places of K containing∞ and the primes dividing Np, and
denote by KΣ the maximal extension of K unramified outside Σ. The Selmer group Sv(Wf,χ)
is defined by

Sv(Wf,χ) := ker

{
H1(KΣ/K,Wf,χ)→ H1(Kv,Wf,χ)×

∏
w∈Σ,w-p

H1(Kw,Wf,χ)

}
.

We also set

Xv(f, χ) := Homcts(Sv(Wf,χ),Qp/Zp)⊗O Φ,

which is independent of the lattice Tf,χ.

Note that Xv(f, χ) and the Selmer group X (Af,χ/K∞) defined in §1.3 differ only in their
defining local conditions at the primes above p. More precisely, by P-ordinarity, for every prime
w of K above p there is a GKw -module exact sequence

0→ F+
w Tf,χ → Tf,χ → F−w Tf,χ → 0 (2.3)

with F±w Tf,χ free of rank one over O, and the quotient F−w Tf,χ affording an unramified action
of GKw . Put

F±w Wf,χ = F±w Tf,χ ⊗O Λ∨0 .

Then the Selmer group Sord(Wf,χ) defined by

Sord(Wf,χ) := ker

{
H1(KΣ/K,Wf,χ)→

∏
w|p

H1(Kw,F−w Wf,χ)×
∏

w∈Σ,w-p

H1(Kw,Wf,χ)

}
(2.4)
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satisfies

Sord(Wf,χ)⊗O Φ '
(

lim−→
n

SelP∞(Af,χ∗/Kn)

)
⊗O Φ,

and so

Xord(f, χ) := Homcts(Sord(Wf,χ),Qp/Zp)⊗O Φ ' X (Af,χ/K∞). (2.5)

Letting Tf,χ := Tf,χ⊗OΛ0 withGK-action via ρf⊗Ψ, and defining Šord(Tf,χ) ⊂ H1(KΣ/K,Tf,χ)
in the same manner as in (2.4), we similarly have

Sord(f, χ) := Šord(Tf,χ)⊗O Φ ' S(Af,χ/K∞) (2.6)

(see e.g. [CG96, §4]).

2.2. Selmer groups of characters. We keep the hypothesis that the imaginary quadratic field
K satisfies (spl), and let ξ be a Hecke character of K of conductor fξ. Let F be a number field
containing the values of ξ. Let Φ be the completion of F at the prime P of F above p induced
by ıp, and let O be the ring of integers of Φ. Denote by Tξ the free O-module of rank one on

which GK acts via ξ̂−1, and consider the GK-module

Wξ := Tξ ⊗O Λ∨0 ,

where as before the Galois action on Λ∨0 is given by the character Ψ−1.

Definition 2.2.1. Let Σ be a finite set of places of K containing ∞ and the primes dividing p
or fξ. The Selmer group Sv(Wξ) is defined by

Xv(Wξ) := ker

{
H1(KΣ/K,Wξ)→ H1(Kv,Wξ)×

∏
w∈Σ,w-p

H1(Kw,Wξ)

}
.

We also set Xv(ξ) = Xv(Wξ)⊗O Φ.

Remark 2.2.2. Suppose ξ has infinity type (−1, 0), and denote by ξ∗ the composition of ξ with
the non-trivial automorphism of K/Q, so ξ∗ has infinity type (0,−1). Then from e.g. [AH06, §1.1]
we see that Xv(ξ) corresponds to the Bloch–Kato Selmer group of ξ over K∞/K, whereas Xv(ξ∗)
corresponds to the Selmer group obtained by reversing the local conditions at the primes above
p in the corresponding Bloch–Kato Selmer group of ξ∗.

2.3. Decomposition. We now specialize the set-up in §2.1 to the case where f = θψ is the theta
series of a Hecke character ψ of K of infinity type (−1, 0). Then f has level N = DK ·N(fψ) and
nebentypus εf = ηK · ωψ, where ηK is the quadratic character associated to K/Q.

One easily checks (see [BDP12, Lem. 3.14]) that if fψ is a cyclic ideal of norm N(fψ) prime to
DK, then K satisfies the Heegner hypothesis (Heeg) relative to N , and one may take

N = dK · fψ, where dK := (
√
−DK). (2.7)

In the following, we assume that fψ satisfies the above condition, and take N as in (2.7). Fix an

integer c > 0 prime to Np, and let χ be a finite order character such that χN−1
K ∈ Σ

(1)
cc (c,N, εf ).

The following decomposition will play an important role later.

Proposition 2.3.1. Let ψ and χ be as above. There is a Λ-module isomorphism

Xv(θψ, χ) ' Xv(ψ∗χ∗)⊕Xv(ψχ∗).

Proof. Put f = θψ, and note that there is a GK-module decomposition

Vf,χ ' Vψ∗χ∗ ⊕ Vψχ∗ . (2.8)
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Since the module Xv(f, χ) ⊂ H1(KΣ/K,Wf,χ)⊗O Φ does not depend on the lattice Tf,χ ⊂ Vf,χ
chosen to define Wf,χ, by (2.8) we may assume that Tf,χ ' Tψ∗χ∗ ⊕ Tψχ∗ as GK-modules, and
so

Wf,χ 'Wψ∗χ∗ ⊕Wψχ∗

as GK-modules. The result thus follows immediately by comparing the defining local conditions
of the three Selmer groups involved at all places.

3. p-adic L-functions

In this section we introduce the two p-adic L-functions needed for our arguments, and prove
Proposition 3.3.1 relating the two.

3.1. The BDP p-adic L-function. Let f =
∑∞

n=1 an(f)qn ∈ S2(Γ1(N)) be an eigenform with
p - N and nebentypus εf , let K be an imaginary quadratic field satisfying (Heeg) and (spl), and
fix an ideal N ⊂ OK with cyclic quotient of order N . Let c be a positive integer prime to Np,

and let χ be a finite order Hecke character of K such that χN−1
K ∈ Σ

(1)
cc (c,N, εf ).

Let F be a number field containing K, the Fourier coefficients of f , and the values of χ, and
let Φ be the completion of F at the prime of F above p induced by ıp, with ring of integers O.
Let Λ0 and Λ be the anticyclotomic Iwasawa algebras as in (1.3), and set

Λur
0 := Λ0⊗̂ZpZur

p ' OurJΓK, Λur := Λur
0 ⊗O Φ,

where Zur
p is the completion of the ring of integers of the maximal unramified extension of Qp.

The p-adic L-function in the next theorem was first constructed in [BDP13] as a continuous
function on characters of Γ. Its realization as a measure in Λur

0 was given in [CH18] following an
approach introduced in [Bra11]. As it will suffice for our purposes, we describe below a multiple
of that p-adic L-function by an element in Φ×.

As in [CH18, §2.3], define ϑ ∈ K by

ϑ :=
D′ +

√
−DK

2
, where D′ =

{
DK if 2 - DK,

DK/2 else,

and let Ωp and ΩK be CM periods attached to K as in [op. cit., §2.5].

Theorem 3.1.1. There exists an element Lv(f, χ) ∈ Λur such that for every character ξ of Γ
crystalline at both v and v̄ and corresponding to a Hecke character of K of infinity type (n,−n)
with n ∈ Z>1, we have

Lv(f, χ)2(ξ) =
Ω4n
p

Ω4n
K
· Γ(n)Γ(n+ 1)ξ(N−1)

4(2π)2n+1(Im ϑ)2n−1
·
(
1− ap(f)χξ(v)p−1 + εf (p)χξ(v)2p−1

)2 ·L(f, χξ, 1).

Proof. Let η be an anticyclotomic Hecke character of K of infinity type (1,−1) and conductor
dividing cOK, and define Lv,η(f, χ) ∈ Λur

0 by

Lv,η(f, χ)(φ) =
∑

[a]∈Pic(Oc)

ηχ(a)N(a)−1

∫
Z×p
ηv(φ|[a]) dµf[a

for all continuous characters φ : Γ→ Q×p , where:

• f [ =
∑

p-n an(f)qn is the p-depletion of f ,

• µf[a is the measure on Z×p corresponding (under the Amice transform) to the power series

f [(t
N(a)c

√
−DK

−1

a ) ∈ OurJta − 1K
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with ta the Serre–Tate coordinate of the reduction of the point xa on the Igusa tower of
tame level N constructed in [CH18, (2.5)],
• ηv(x) := η(recv(x)) with recv : Q×p = K×v → Gab

K � Γ the local reciprocity map at v,

• φ|[a] : Z×p → Q×p is defined by (φ|[a])(x) = φ(recv(x)σ−1
a ) with σa the Artin symbol of a.

The same calculation as in [CH18, Prop. 3.8] then shows that the element Lv(f, χ) ∈ Λur defined
by

Lv(f, χ)(ξ) := Lv,η(f, χ)(η−1ξ)

has, in view of the explicit Waldspurger formula in [Hsi14b, Thm. 3.14], the stated interpolation
property up to fixed element in Φ×. The result follows.

Remark 3.1.2. We our later use, we note that the complex period ΩK ∈ C× in Theorem 3.1.1
(which also agrees with that in [BDP13, (5.1.16)]) is different from the complex period Ω∞ ∈ C×
defined in [dS87, p. 66] and [HT93, (4.4b)]. In fact, one has

Ω∞ = 2πi · ΩK.

In terms of Ω∞, the interpolation formula in Theorem 6.0.1 reads

Lv(f, χ)2(ξ) =
Ω4n
p

Ω4n
∞
· Γ(n)Γ(n+ 1)ξ(N−1)

4(2π)1−2n(Im ϑ)2n−1
·
(
1− ap(f)χξ(v)p−1 + εf (p)χξ(v)2p−1

)2 ·L(f, χξ, 1).

Specialized to the range of critical values for the representation Vf,χ, the Iwasawa–Greenberg
main conjecture [Gre94] predicts the following.

Conjecture 3.1.3. The module Xv(f, χ) is Λ-torsion, and

charΛ(Xv(f, χ)) = (Lv(f, χ)2).

In Theorem 4.0.2, we will explain the close link between Conjectures 1.3.1 and 3.1.3.

3.2. Katz p-adic L-functions. We continue to assume that K satisfies (spl). Let c ⊂ OK be
an ideal prime to p, and let K(cp∞) be the ray class field of K of conductor cp∞.

We say that a Hecke character φ of K is self-dual if it satisfies

φφ∗ = NK.

Note that the infinity type of such φ is necessarily of the form (−1 + j,−j) for some j ∈ Z.
The p-adic L-function in the next theorem follows from the work of Katz [Kat78], as extended

by Hida–Tilouine [HT93] (see also [dS87]). Here we shall use the construction in [Hsi14a], and
similarly as in Theorem 3.1.1, it will suffice for our purposes to describe a fixed Φ×-multiple of
the integral measure constructed in op. cit..

For any Hecke character ξ of K, we denote by Lc(ξ, s) the Hecke L-function L(ξ, s) with the
Euler factors at the primes l|c removed.

Theorem 3.2.1. Let φ be a character of Gal(K(cp∞)/K) corresponding to a self-dual Hecke
character of infinity type (−1 + j,−j), with j ∈ Z>0. Then there exists an element Lv(φ) ∈ Λur

such that for every character ξ of Γ crystalline at both v and v̄ and corresponding to a Hecke
character of infinity type (n,−n) with n > j, we have

Lv(φ)(ξ) =
Ω2n−2j+1
p

Ω2n−2j+1
∞

· Γ(n+ 1− j) · (2π)n−j

(Imϑ)n−j
· (1− φ−1ξ(v))2 · Lc(φ

−1ξ, 0).
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Proof. Let Lv be the integral p-adic measure on Gal(K(cp∞)/K) constructed in [Hsi14a, §4.8],
so for every character χ of Gal(K(cp∞)/K) corresponding to a Hecke character of K of infinity
type (k + `,−`) with k > ` > 0 we have

Lv(χ) =
Ωk+2`
p

Ωk+2`
∞

· Γ(k + `) · (2π)`

(Imϑ)`
· (1− χ−1(v)p−1)(1− χ(v)) · Lc(χ, 0).

Setting
Lv(φ)(ξ) := Lv(φ

−1 · π∗ξ)
for all characters ξ of Γ, where π∗ξ is the pullback of ξ under the projection π : Gal(K(cp∞)/K)→
Γ, the result follows immediately from [Hsi14a, Prop. 4.9], noting that the condition n > j assures
that the infinity type of φ−1ξ, namely (1 + n − j, j − n), is of the form (1 + `,−`) with ` > 0,
and the p-adic multiplier that appears is

(1− φξ−1(v)p−1)(1− φ−1ξ(v)) = (1− φ−1ξ(v))2,

since φ is self-dual and ξ is anticyclotomic.

3.3. Factorization. As in §2.3, we now specialize to the case where f = θψ for a Hecke character
ψ of K of infinity type (−1, 0) and conductor fψ with cyclic quotient of norm prime to DK, so
that K satisfies hypothesis (Heeg) relative to N = DK ·N(fψ).

Fix an integer c > 0 prime to Np, and let χ be a finite order Hecke character of K such that

χN−1
K ∈ Σ

(1)
cc (c,N, εf ). Then we have a GK-module decomposition

Vf,χ ' Vψ∗χ∗ ⊕ Vψχ∗ , (3.1)

where Vf,χ is as in (2.1). Note that each of the characters ψχ and ψ∗χ are self-dual (see [BDP12,
Rem. 3.7]).

For the rest of this paper, we shall write Lv(φ) for the p-adic L-function in Theorem 3.2.1
constructed with the auxiliary tame conductor c = cN used in the proof.

The following result is a manifestation of the Artin formalism arising from the decomposition
(3.1). A similar result in shown in [BDP12, Thm. 3.17]. As we shall see in §6, this is a counterpart
on the analytic side of the Selmer group decomposition in Proposition 2.3.1.

Proposition 3.3.1. Suppose that f = θψ and χ are as above. Then

Lv(f, χ)2 = u ·Lv(ψ
∗χ∗) ·Lv(ψχ

∗),

where u is a unit in (Λur)×.

Proof. This will follow by comparing the values interpolated by each side of the desired equality,
using that an element in Λur is uniquely determined by its values at infinitely many characters.

Let ξ be a character of Γ of infinity type (n,−n) with n ∈ Z>1 as in the statement of
Theorem 3.1.1. The decomposition (3.1) yields

L(f, χξ, 1) = L(ψχξN−1
K , 0) · L(ψ∗χξN−1

K , 0) = L((ψ∗χ∗)−1ξ, 0) · L((ψχ∗)−1ξ, 0), (3.2)

using that ψχ and ψ∗χ are self-dual. The factors in (3.2) are interpolated by Lv(ψ
∗χ∗)(ξ) and

Lv(ψχ
∗)(ξ), respectively. Noting that(

1− (ψ∗χ∗)−1ξ(v)
)
·
(
1− (ψχ∗)−1ξ(v)

)
=
(
1− ap(f)χξ(v)p−1 + εf (p)χξ(v)2p−1

)
,

in light of Theorem 3.2.1 for Lv(ψ
∗χ∗) and Lv(ψχ

∗) (with j = 1 and j = 0, respectively), we
thus find

Lv(ψχ)(ξ) ·Lv(ψ
∗χ)(ξ) =

Ω2n−1
p

Ω2n−1
∞

·
Ω2n+1
p

Ω2n+1
∞

· Γ(n)Γ(n+ 1) · (2π)n−1

(Im ϑ)n−1
· (2π)n

(Im ϑ)n

×
(
1− ap(f)χξ(v)p−1 + εf (p)χξ(v)2p−1

)2 · L(f, χξ, 1).
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The result now follows from Theorem 3.1.1 and Remark 3.1.2.

Remark 3.3.2. Note that the trivial character is in the range of interpolation for Lv(ψχ
∗), but

lies outside the range of interpolation for both Lv(ψ
∗χ∗) and Lv(f, χ).

4. Explicit reciprocity law

In this section we explain a variant of the explicit reciprocity law proved in [CH18] relating
the Λ-adic Heegner class zf,χ to the p-adic L-function Lv(f, χ) via a Perrin-Riou big logarithm
map, and record a key consequence. We let f = θψ and χ be as in §2.3.

For every w|p, the natural map H1(Kw,F+
w Tf,χ)→ H1(Kw,Tf,χ) induced by (2.3) is injective,

since its kernel is H0(Kw,F−w Tf,χ) = 0. Therefore, in view of (2.6) the image of zf,χ under the
restriction map

locw : H1(K,Tf,χ)→ H1(Kw,Tf,χ)

is naturally contained in H1(Kw,F+
w Tf,χ). Let Φur the compositum of Φ and Qur

p .

Theorem 4.0.1. There is a Λur-linear isomorphism Logv : H1(Kv,F+
v Tf,χ)⊗ Λur → Λur such

that

Logv
(
locv(zf,χ)

)
= c ·Lv(f, χ)

for some c ∈ (Φur)×.

Proof. The existence of the map Logv (with coefficients in Λur
0 , rather than Λur) follows from the

two-variable extension by Loeffler–Zerbes [LZ14] of Perrin-Riou’s big logarithm map [PR94], and
the proof of the explicit reciprocity law (integrally) is given in [CH18, §5.3]. That the Λur-linear
map Logv is injective follows from [LZ14, Prop. 4.11], and so it becomes an isomorphism after
extending scalars to Λur = Λur

0 ⊗O Φ.

Similarly as observed in [Cas13] and [Wan21], the equivalence between Conjectures 1.3.1 and
3.1.3 can be deduced from Theorem 4.0.1 using Poitou–Tate global duality.

Theorem 4.0.2. Assume that the class zf,χ is not Λ-torsion. Then the following are equivalent:

(a) rankΛSord(f, χ) = rankΛXord(f, χ) = 1,
(a’) Xv(f, χ) is Λ-torsion;

and the following are equivalent:

(b) charΛ

(
Xord(f, χ)Λ-tors

)
⊂ charΛ

(
Sord(f, χ)/Λ · zf,χ

)2
,

(b’) charΛ

(
Xv(f, χ)

)
⊂
(
Lv(f, χ)2

)
,

and similarly for the opposite divisibilities. In particular, Conjectures 1.3.1 and 3.1.3 are equiv-
alent.

Remark 4.0.3. Note that for the last claim in the theorem we are using the isomorphisms (2.5)
and (2.6).

Proof of Theorem 4.0.2. This can be extracted from the arguments in [Cas17, App. A], but since
our setting is slightly different (in particular, E(K)[p] is reducible) we provide the necessary
details for the convenience of the reader. We explain the implications (a)⇒ (a′) and (b′)⇒ (b)
(the only implication we will need later), and note that the other implication follows from the
same ideas.

Following [Cas17, §2.1], below we denote by Sstr,rel(f, χ) (resp. Sord,rel(f, χ), etc.) the Selmer
group defined as in §2.1 but with the strict at v and relaxed at v (resp. ordinary at v and relaxed
at v, etc.) local conditions, so in particular Sord,ord(f, χ) = Sord(f, χ) by definition.
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Assume (a), and consider the exact sequence from global duality

0→ Sstr,ord(f, χ)→ Sord(f, χ)
locv−−→ H1(Kv,F+

v Tf,χ)→ Xrel,ord(f, χ)→ Xord(f, χ)→ 0. (4.1)

Since zf,χ is not Λ-torsion by hypothesis, by Theorem 4.0.1 it follows from (4.4) that Xrel,ord(f, χ)
has Λ-rank one and Sstr,ord(f, χ) is Λ-torsion. Since

rankΛXrel,ord(f, χ) = 1 + rankΛXord,str(f, χ)

(cf. [Cas17, Lem. 2.3]), we conclude that Xord,str(f, χ) is Λ-torsion, and from the exact sequence

0→ Sstr,rel(f, χ)→ Sord,rel(f, χ)
locv−−→ H1(Kv,F+

v Tf,χ)→ Xrel,str(f, χ)→ Xord,str(f, χ)→ 0
(4.2)

we conclude that Xrel,str(f, χ) = Xv(f, χ) is Λ-torsion, i.e., (a’) holds.
Now, in addition to (a), assume (b’). Then Sstr,rel(f, χ) is Λ-torsion (since so is Xv(f, χ), as we

just showed), and since H1(KΣ/K,Tf,χ) is Λ-torsion free as a consequence of (2.8) and [AH06,
Prop. 1.1.6], it follows that in fact

Sstr,rel(f, χ) = 0. (4.3)

Thus (4.2) reduces to the exact sequence

0→ Sord,rel(f, χ)
locv−−→ H1(Kv,F+

v Tf,χ)→ Xv(f, χ)→ Xord,str(f, χ)→ 0. (4.4)

Since H1(Kv,F+
v Tf,χ) has Λ-rank one, the assumption that zf,χ is not Λ-torsion together with

Theorem 4.0.1 implies that Sord,rel(f, χ) has Λ-rank one. Since zf,χ ∈ Sord(f, χ) ⊂ Sord,rel(f, χ),
it follows that Sord(f, χ) also has Λ-rank one, and by [Cas17, Lem. 2.3(1)] so does Xord(f, χ).

Hence the quotient Sord,rel(f, χ)/Sord(f, χ) is Λ-torsion, and since it injects in H1(Kv,F−v Tf,χ)
which is Λ-torsion-free, this shows the equality Sord(f, χ) = Sord,rel(f, χ). Therefore the first two
terms in the exact sequence (4.4) agree with the first two terms in the exact sequence

0→ Sord(f, χ)
locv−−→ H1(Kv,F+

v Tf,χ)→ Xrel,ord(f, χ)→ Xord(f, χ)→ 0 (4.5)

(note that Sstr,ord(f, χ) as a consequence of (4.3)), and this yields

0→ Sord(f, χ)

Λ · zf,χ
locv−−→

H1(Kv,F+
v Tf,χ)

Λ · locv(zf,χ)
→ coker(locv)→ 0.

In view of Theorem 4.0.1, it follows that

charΛ

(
Sord(f, χ)

Λ · zf,χ

)
· charΛ

(
coker(locv)

)
Λur = (Lv(f, χ)). (4.6)

Next, from (4.4) and (4.5) we can extract the short exact sequences

0→ coker(locv)→ Xv(f, χ)→ Xord,str(f, χ)→ 0,

0→ coker(locv)→ Xrel,ord(f, χ)→ Xord(f, χ)→ 0,

from which we readily obtain (taking Λ-torsion in the first exact sequence and using a straight-
forward variant of [Cas17, Lem. 2.3]) the relations

charΛ

(
Xv(f, χ)

)
= charΛ

(
Xord,str(f, χ)

)
· charΛ

(
coker(locv)

)
= charΛ

(
Xrel,ord(f, χ)Λ-tors

)
· charΛ

(
coker(locv)

)
= charΛ

(
Xord(f, χ)Λ-tors

)
· charΛ(coker(locv))

2.

Combined with (4.6), we thus obtain

charΛ

(
Xv(f, χ)

)
· charΛ

(
Sord(f, χ)

Λ · zf,χ

)2

Λur = charΛ

(
Xord(f, χ)Λ-tors

)
·
(
Lv(f, χ)2

)
.
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The result follows.

5. Twisted anticyclotomic main conjectures for K

Let K be an imaginary quadratic field satisfying (spl). The Iwasawa main conjecture for K was
proved by Rubin [Rub91] under some restrictions on p (including p - O×K) that were removed in
subsequent work by Johnson-Leung–Kings [JLK11] and Oukhaba–Viguié [OV16]. In this section
we record a consequence of these results for the anticyclotomic Zp-extension.

Note that if ξ is a self-dual Hecke character in the sense of §3.2, then the Hecke L-function
L(ξ−1, s) is self-dual, with a functional equation relating its values at s and −s. In the following,
by the sign of ξ we refer to the sign appearing in the functional equation for L(ξ−1, s).

Theorem 5.0.1. Let ψ be a Hecke character of K of infinity type (−1, 0), and let χ be a finite
order of character of such that the product ψχ is self-dual. Assume that ψχ∗ has sign +1. Then:

(i) Xv(ψχ∗) is Λ-torsion and the following equality holds:

charΛ

(
Xv(ψχ∗)

)
=
(
Lv(ψχ

∗)
)
.

(ii) The following divisibility holds:

charΛ

(
Xv(ψ∗χ∗)

)
⊂
(
Lv(ψ

∗χ∗)
)
.

Proof. As noted in Remark 2.2.2, the Iwasawa module Xv(ψχ∗) recovers the Bloch–Kato Selmer
group for ψχ∗ over the anticyclotomic Zp-extension K∞/K, and so the result of part (i) follows
from [AH06, Thm. 2.4.17], as extended in [Arn07, Thm. 3.9]. (In these references, the hypothesis
p > 3 arises from their appearance in [Rub91], but as already mentioned this restriction can be
removed thanks to [JLK11,OV16].)

For (ii), put Λ̃0 = OJGal(K(cp∞)/K)K, Λ̃ = Λ̃0⊗O Φ, and define X̃v(ψ∗χ∗), X̃v(ψχ∗) similarly

as Xv(ψ∗χ∗),Xv(ψχ∗) in §2.2 but with Λ̃0 in place of Λ0. By the Iwasawa main conjecture for

K, the module Xv(ψχ∗) is Λ̃0-torsion, with

char
Λ̃

(
X̃v(ψχ∗)

)
=
(
Lv(ψχ

∗)
)
, (5.1)

where Lv is the integral p-adic measure appearing in the proof of Theorem 3.2.1, and Lv(ψχ
∗)

denotes its twist by ψ−1χ∗−1. Noting that X̃v(ψ∗χ∗) is the twist (in the sense of [Rub00, §6.1])

of X̃v(ψχ∗) by ψψ∗−1, from Corollary 6.2.2 and Lemma 6.1.2 in loc. cit. we deduce from (5.1)

that the module X̃v(ψ∗χ∗) is Λ̃0-torsion, with

char
Λ̃

(
X̃v(ψ∗χ∗)

)
=
(
Lv(ψ

∗χ∗)
)
. (5.2)

The divisibility in (ii) now follows from (5.2) after descent.

6. The main results

Recall that K is an imaginary quadratic field of discriminant −DK < 0 satisfying (spl), with
v the prime of K above p induced by our fixed embedding ıp.

Theorem 6.0.1. Let ψ be a Hecke character of K of infinity type (−1, 0) and conductor fψ with
cyclic quotient of norm prime to DK, and set

f = θψ, N = DK ·N(fψ), N = dK · fψ.

Let c be a positive integer prime to Np, and let χ be a finite order character such that χN−1
K ∈

Σ
(1)
cc (c,N, εf ). Assume that ψχ has sign −1. Then:

(i) The class zf,χ is not Λ-torsion.
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(ii) The module Xv(f, χ) is Λ-torsion, and

charΛ

(
Xv(f, χ)

)
Λur ⊂

(
Lv(f, χ)2

)
.

Proof. Part (i) follows from [BD20, Thm. 1.1], so we focus on (ii). By the Gross–Zagier formula,
the non-triviality of zf,χ implies that for all but finitely many finite order characters ξ : Γ→ µp∞
we have

ords=1L(f, χξ, s) = 1. (6.1)

Fix any such ξ, and note that L(f, χξ, s) factors as

L(f, χξ, s) = L(ψχξ, s) · L(ψ∗χξ, s) (6.2)

and has sign −1, since (Heeg) holds in our setting (see §3.3). By our sign assumption on ψχ, it
follows that L(ψ∗χ, s) has sign +1 and from (6.1) and (6.2) we conclude

ords=1L(ψχξ, s) = 1, L(ψ∗χξ, 1) 6= 0.

By an application of the Gross-Zagier formula [YZZ13] and [Nek07, Thm. 3.2] we have

ords=1L(ψχξ, s) = 1 =⇒ corankOH1
f (K,Wψ∗χ∗ξ∗) = 1,

and by [Nek12, Thm. B] we have

L(ψ∗χξ, 1) 6= 0 =⇒ corankOH1
f (K,Wψχ∗ξ∗) = 0,

where H1
f (K,Wψ∗χ∗ξ∗) and H1

f (K,Wψχ∗ξ∗) are the Bloch–Kato Selmer groups for ψ∗χ∗ξ∗ and
ψχ∗ξ∗, respectively, whose definition is recalled in §7 below.

By the analogue of the decomposition (7.1) below, it follows that H1
f (K,Wf,χξ) has O-corank

one, and therefore so does SelP∞(Af,χξ/K). Varying ξ, by a variant of Mazur’s control theorem
it follows that X (Af,χ/K∞) (or equivalently, Sord(f, χ) and Xord(f, χ)) has Λ-rank one, and so
by Theorem 4.0.2 we conclude that Xv(f, χ) is Λ-torsion.

Finally, by the decomposition in Proposition 2.3.1 and the factorization in Proposition 3.3.1,
the divisibility in part (ii) of the theorem follows from Theorem 5.0.1.

Corollary 6.0.2. Let f = θψ and χ be an in Theorem 6.0.1, and assume that ψχ has sign −1.
Then the modules S(Af,χ/K∞) and X (Af,χ/K∞) have both Λ-rank one, and

charΛ(X (Af,χ/K∞)Λ-tors) ⊂ charΛ

(
S(Af,χ/K∞)/Λ · zf,χ

)2
.

Proof. That S(Af,χ/K∞) and X (Af,χ/K∞) have both Λ-rank one has been shown in the course
of the proof of Theorem 6.0.1, and the divisibility in the statement of Corollary 6.0.2 follows
from Theorem 4.0.2 and the divisibility in part (ii) of Theorem 6.0.1.

7. The p-converse

In this section we deduce from our main results the proof of Theorem A in the Introduction.
Let λ be a self-dual Hecke character of infinity type (−1, 0) and conductor fψ, and suppose that:

(a) λ has sign −1;
(b) λ has central character ωλ = ηK;
(c) dK‖fλ.

Note that fλ is divisible by dK = (
√
−DK) by condition (b). Since λ is self-dual, fλ is invariant

under complex conjugation, so by condition (c) we can write fλ = (c)dK for a unique c > 0.
We shall apply Corollary 6.0.2 for a pair (ψ, χ) which is good for λ in the following sense:

(G1) ψ has infinity type (−1, 0) and conductor fψ with cyclic quotient of norm prime to pDK;

(G2) χ is a finite order character such that χN−1
K ∈ Σ

(1)
cc (c,N, εf ), where f = θψ and N = fψdK;

(G3) ψχ = λ;
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(G4) L(ψ∗−1χ−1, 0) 6= 0.

The existence of good pairs for λ is shown in [BDP12, Lem. 3.29] building on the non-vanishing
results of Greenberg [Gre85] and Rohrlich [Roh84].

Fix a good pair (ψ, χ) for λ, and let F be a number field of containing the values of ψ and χ.
Let P be the prime of F above p induced by our fixed embedding ıp, let Φ be the completion of
F at P, and let O be the ring of integers of Φ. Similarly as in (2.2), for any Hecke character ξ
put

Wξ := Tξ ⊗O D ,

where D = Φ/O. Let Σ a finite set of places of K containing∞, p, and the primes of K dividing
the conductor of λ. Denote by H1

f (K,Wψ∗χ∗) the Bloch–Kato Selmer group for ψ∗χ∗:

H1
f (K,Wψ∗χ∗) = ker

{
H1(KΣ/K,Wψ∗χ∗)→

H1(Kv,Wψ∗χ∗)

H1(Kv,Wψ∗χ∗)div
×H1(Kv,Wψ∗χ∗)×

∏
w∈Σ,w-p

H1(Kur
w ,Wψ∗χ∗)

}
,

where H1(Kv,Wψ∗χ∗)div ⊂ H1(Kv,Wψ∗χ∗) is the maximal divisible submodule and Kur
w denotes

the maximal unramified extension of Kw. Similarly, let

H1
f (K,Wψχ∗) = ker

{
H1(KΣ/K,Wψχ∗)→ H1(Kv,Wψχ∗)×

H1(Kv,Wψχ∗)

H1(Kv,Wψχ∗)div
×

∏
w∈Σ,w-p

H1(Kur
w ,Wψχ∗)

}
be the Bloch–Kato Selmer group for ψχ∗ (see also [AH06, §1.1]). Finally, let Vf,χ be as in (2.1).

Lemma 7.0.1. In the above setting, we have

corankOSelP∞(Af,χ/K) = corankOH1
f (K,Wψ∗χ∗) + corankOH1

f (K,Wψχ∗).

Proof. It is a standard fact (see e.g. [BK90]), SelP∞(Af,χ/K) agrees with the Bloch–Kato Selmer
group

H1
f (K,Wf,χ) ⊂ H1(K,Wf,χ),

where Wf,χ := Tf,χ ⊗O D for the GK-stable O-lattice Tf,χ ⊂ Vf,χ coming from TPAf . In turn
(see e.g. [Gre99, Prop. 2.2]), the local conditions defining H1

f (K,Wf,χ) at the primes w of K
above p can be described in terms of the filtration (2.3), namely:

H1
f (K,Wf,χ) = ker

{
H1(KΣ/K,Wf,χ)→

∏
w|p

H1(Kw,Wf,χ)

H1(Kw,F+
wWf,χ)div

×
∏

w∈Σ,w-p

H1(Kur
w ,Wf,χ),

}
where F±wWf,χ := F±w Tf,χ ⊗O D . Note that since f = θψ we have

H1(Kv,F+
v Wf,χ) = H1(Kv,Wψχ∗), H1(Kv,F+

v Wf,χ) = H1(Kv,Wψ∗χ∗).

Since different lattices Tf,χ give rise to Selmer groups H1
f (K,Wf,χ) having the same O-corank,

taking Tf,χ so that Wf,χ 'Wψ∗χ∗ ⊕Wψχ∗ , comparing the local conditions we thus find

H1
f (K,Wf,χ) ' H1

f (K,Wψ∗χ∗)⊕H1
f (K,Wψχ∗) (7.1)

and the result follows.

The following recovers Theorem A in the introduction as a special case.

Theorem 7.0.2. Let λ be a self-dual Hecke character of K of infinity type (−1, 0) with central
character ωλ = ηK and whose conductor fλ satisfies dK‖fλ. Then

corankOSelP∞(Bλ/K) = 1 =⇒ ords=1L(λ, s) = 1.
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Proof. By the p-parity conjecture [Nek01], if corankOSelP∞(Bλ/K) = 1 then λ has sign −1. Let
(ψ, χ) be a good pair for λ, i.e., satisfying conditions (G1)–(G4) above, so in particular

L(ψ∗−1χ−1, 0) 6= 0. (7.2)

By Theorem 3.2.1, the nonvanishing (7.2) implies that the p-adic L-function Lv(ψχ
∗) does not

vanish at trivial character, so by Theorem 3.2.1 it follows that

#
(
Xv(ψχ

∗)/(γ − 1)Xv(ψχ
∗)
)
<∞,

where γ ∈ Γ is any topological generator. Since Xv(ψχ
∗) corresponds to the Bloch–Kato Selmer

group for ψχ∗ over K∞/K (see Remark 2.2.2), it follows that corankOH1
f (K,Wψχ∗) = 0. Since

SelP∞(Bλ/K) ' H1
f (K,Wψ∗χ∗), from Lemma 7.0.1 we thus obtain

corankOSelP∞(Bλ/K) = 1 =⇒ corankOSelP∞(Af,χ/K) = 1. (7.3)

Now, Corollary 6.0.2 together with a variant of Mazur’s control theorem immediately yields
the implication

corankOSelP∞(Af,χ/K) = 1 =⇒ zf,χ,0 6= 0 ∈ SP(Af,χ/K)⊗O Φ. (7.4)

where zf,χ,0 is the image of zf,χ under the specialization map S(Af,χ/K∞)→ H1(K, Vf,χ) at the
trivial character. By definition, the class zf,χ,0 is a nonzero multiple of∑

σ∈Gal(K̃c)/K

χ(σ) · yσf,c,

where yf,c is the Heegner class introduced in §1.2, and so

zf,χ,0 6= 0 ⇐⇒ ords=1L(f, χ, s) = 1 (7.5)

by virtue of the general Gross–Zagier formula, [YZZ13,CST14]. Finally, we note once more that
(2.8) yields the factorization

L(f, χ, s) = L(ψχ, s) · L(ψ∗χ, s).

Combining (7.3), (7.4), and (7.5) we thus obtain

corankOSelP∞(Bλ/K) = 1 =⇒ ords=1L(f, χ, s) = 1

=⇒ ords=1L(ψχ, s) = 1,

using (7.2) and the above factorization for the last implication. Since ψχ = λ, this concludes
the proof.
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