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Abstract. Let E/Q be an elliptic curve with complex multiplication by an imaginary quadratic
field in which p splits. In this note we prove that if Selp∞(E/Q) has Zp-corank one, then E(Q)
has a point of infinite order. The non-torsion point arises from a Heegner point construction, and
as a result we obtain a converse to a theorem of Gross–Zagier, Kolyvagin, and Rubin in the spirit
of Skinner [Ski20]. For p > 3, this gives a new proof of a theorem by Burungale–Tian [BT20],
which our method extends to small primes.
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Introduction

Following a result by the third author [Ski20], in recent years several works have been devoted
to the proof, under varying sets of hypotheses, of a so-called “p-converse” to a celebrated theorem
of Gross–Zagier, Kolyvagin, and Rubin; namely, the deduction that ords=1L(E, s) = 1 for elliptic
curves E/Q provided the p∞-Selmer group Selp∞(E/Q) has Zp-corank 1. An important impetus
for the development of these results has arisen from related advances in arithmetic statistics,
whereby such p-converse theorems have lead in particular to the proof [BSZ15] (when combined
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with an analogous result in rank 0 deduced from the cyclotomic Iwasawa main conjecture for
modular forms [Kat04, SU14, Wan20]) that a sizeable proportion of elliptic curves E/Q (and
conditionally, 100% of them) satisfy the Birch–Swinnerton-Dyer conjecture.

Skinner’s original result, whose proof is obtained by showing that a certain Heegner point on
E has infinite order assuming corankZpSelp∞(E/Q) = 1, was for primes p > 3 of good ordinary
reduction of E, and under certain technical hypotheses that excluded the CM case.

Our main result in this note is the proof of a p-converse theorem in the spirit of [Ski20] in the
CM case. For primes p > 3, the result was first obtained by Burungale–Tian [BT20].

Theorem A. Let E/Q be an elliptic curve with complex multiplication by the ring of integers of
an imaginary quadratic field K of discriminant −DK < 0, and assume that the Hecke character
of K associated to E has conductor exactly divisible by dK := (

√
−DK). Let p be a prime of good

ordinary reduction for E. Then

corankZpSelp∞(E/Q) = 1 =⇒ ords=1L(E, s) = 1.

In particular1, if corankZpSelp∞(E/Q) = 1 then rankZE(Q) = 1 and #W(E/Q) <∞.

More generally, our main result establishes an analogue of Theorem A for CM abelian varieties
Bλ/K associated with Hecke characters of K of infinity type (−1, 0) (see Theorem 7.0.2). We
also note that the assumption on the conductor of the Hecke character associated to E is not
an intrinsic limitation of our methods. Rather, it arises from our appeal to results from [CH18]
which are only proved under a classical Heegner hypothesis, and it may be removed2 building
on the p-adic Waldspurger formula of Liu–Zhang–Zhang [YZZ13]. (The same hypothesis is not
present in [BT20], thanks to the p-adic Gross–Zagier proved by Disegni [Dis17] in the generality
of Yuan–Zhang–Zhang [YZZ13].)

Remark B. A recent spectacular result by A. Smith [Smi17] has reduced the proof of Goldfeld’s
conjecture [Gol79] for elliptic curves E/Q with E(Q)[2] ' (Z/2Z)2 and admitting no rational
cyclic 4-isogeny to the proof of the implication in Theorem A (and its analogue in rank 0, which
should follow from a refinement of Rubin’s result [Rub91]) for p = 2. Unfortunately, Theorem A
falls short of providing the desired implication for two reasons. First, E should of be allowed to
just have potentially good ordinary reduction at p (likely this can be achieved with some more
work); the second—and more serious—reason is that Q(

√
−7) is the only imaginary quadratic

field of class number 1 where 2 splits, and unfortunately all elliptic curves E/Q with complex
multiplication by Q(

√
−7) have E(Q)[2] ' Z/2Z (see e.g. the table in [Ols74, p. 2]).

Assuming that #W(E/Q)[p∞] <∞ and that p is odd, a p-converse theorem as in Theorem A
was first proved by Rubin, [Rub94, Thm. 4], motivated in part by his striking formula [Rub92]
expressing the p-adic formal group logarithm of a point P ∈ E(Q)⊗ZZp in terms of the value of a
Katz p-adic L-function at a point outside the range of interpolation. Our proof of Theorem A is
inspired by the new proof of Rubin’s formula discovered Bertolini–Darmon–Prasanna [BDP12].

More precisely, let E/Q be an elliptic curve with CM by an imaginary quadratic field K, and
assume that p is a prime of good reduction for E which splits in K. Let λ be the Hecke character
of K associated with E, so that

L(E, s) = L(λ, s).

Building on certain nonvanishing results, in [BDP12] it is shown that there exist pairs (ψ, χ) of
Hecke characters of K, with χ having finite order, satisfying in particular the conditions

(0.1) ψχ = λ, L(ψ∗χ, 1) 6= 0.

1When combined with the work of Gross–Zagier, Kolyvagin, and Rubin.
2See [BCK20, §4] for partial progress in this direction.



p∞-SELMER GROUPS AND RATIONAL POINTS ON ELLIPTIC CURVES WITH CM 3

Letting f = θψ be the theta series of ψ, the main result of [BDP13] relates the p-adic formal
group logarithm of a Heegner point Pψ,χ ∈ Bψ,χ(K) to a value (outside the range of interpolation)
of a p-adic Rankin L-series Lv(f, χ), where Bψ,χ is a CM abelian variety over K admitting a
K-rational isogeny iλ : Bψ,χ → E. By the Gross–Zagier formula (in the generality of [YZZ13]),
the point Pψ,χ is non-torsion if and only if L′(f, χ, 1) 6= 0. Setting PK := iλ(Pψ,χ) ∈ E(K), one
thus obtains a point on E which, in light of (0.1) and the factorization

(0.2) L(f, χ, s) = L(λ, s) · L(ψ∗χ, s),

is non-torsion if and only if ords=1L(E, s) = 1, and whose formal group logarithm is related to
a value of a Katz p-adic L-function as in Rubin’s formula by virtue of a factorization for p-adic
L-functions mirroring (0.2).

Our approach to Theorem A consists in showing that PK is non-torsion assuming Selp∞(E/Q)
has Zp-corank 1. From this perspective, in [BT20] this implication is shown by combining:

(1) Rubin’s proof of the (anticyclotomic) Iwasawa main conjecture for K in the root number
+1 case;

(2) The proof by Agboola–Howard [AH06] and Arnold [Arn07] of the anticyclotomic Iwasawa
main conjecture for K in the root number −1 case;

(3) Burungale’s proof [Bur15] that the Λ-adic regulator appearing in the works of Agboola–
Howard and Arnold is nonzero;

(4) Disegni’s Λ-adic Gross–Zagier formula [Dis17].

Here, instead of (2), (3) and (4) above, we build on the “explicit reciprocity law” established
in [CH18], which realizes Lv(f, χ) as the image of a Λ-adic Heegner class zf,χ under a Perrin-Riou
big logarithm map. Similarly as in [BDP12], in §3 we establish a factorization

Lv(θψ, χ)2 .
= Lv(ψχ) ·Lv(ψ

∗χ)

relating Lv(θψ, χ)2 to the product of two Katz p-adic L-functions. Combined with an analogous
decomposition for Selmer groups shown in §2, we thus deduce from Rubin’s work a proof of the
Iwasawa–Greenberg main conjecture for Lv(θψ, χ)2. Building on the Λ-adic explicit reciprocity
law of [CH18], in §4 we show that this main conjecture is equivalent to another Iwasawa main
conjecture formulated in terms of zf,χ, from where the implication

corankZpSelp∞(E/Q) = 1 =⇒ PK 6= 0 ∈ E(K)⊗Z Q,

finally follows from a variant of Mazur’s control theorem.
Finally, we conclude this Introduction by recording some standard applications of Theorem A

to the Birch–Swinneron-Dyer conjecture. For p > 3, these correspond to Corollaries 1.2 and 1.3
in [BT20], respectively, and their proof of the latter (using Theorem A) applies without change.

Corollary C. Let E/Q be an elliptic curve with complex multiplication by the imaginary qua-
dratic field K, and assume that the Hecke character associated to E has conductor exactly di-
visible by dK. Let p be a prime of good ordinary reduction for E. If corankZpSelp∞(E/Q) = 1,
then the p-part of the Birch–Swinnerton-Dyer formula holds for E.

Proof. By Theorem A, if corankZpSelp∞(E/Q) = 1 then

ords=1L(E, s) = rankZE(Q) = 1, #W(E/Q) <∞.

As in the proof of [Kob13, Cor. 1.4], the result thus follows from the Iwasawa main conjecture
for K [Rub91, JLK11, OV16], the non-triviality of the cyclotomic p-adic height pairing [Ber84],
and the p-adic Gross–Zagier formula [PR87b,Dis17].
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Corollary D. Let E/Q be an elliptic curve with complex multiplication by imaginary quadratic
field K, and assume that the Hecke character associated to E has conductor exactly divisible by
dK. Let p be a prime of good ordinary reduction for E, and assume that:

(i) E(Q)[p] = 0;
(ii) Selp(E/Q) ' Z/pZ, where Selp(E/Q) ⊂ H1(Q, E[p]) is the p-Selmer group of E.

Then ords=1L(E, s) = 1 and W(E/Q)[p∞] = 0.

Remark E. In forthcoming work, the strategy introduced here will be used to extend the main
result of [BT20] to totally real fields (sidestepping the use of elliptic units in op.cit.).

As already noted, Theorem A was first proved by Rubin in cases where #W(E/Q)[p∞] <∞.
That the approach in this note can dispense with this hypothesis can be attributed to the study
of Iwasawa theory of Heegner points3, a study systematically initiated by Perrin-Riou [PR87a].
The theory of p-adic logarithm maps [PR94], another major contribution of Perrin-Riou’s work,
also plays a key role in our strategy. It is a great pleasure to dedicate this note to Perrin-Riou
as a humble gift on the occasion of her 65th birthday.
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C.S. was partially supported by the Simons Investigator Grant #376203 from the Simons Foun-
dation and by the NSF Grant DMS-1901985; Y.T. was partially supported by the NSFC grants
#11688101 and #11531008.

1. Preliminaries

Fix throughout a prime p, an algebraic closure Q of Q, and embeddings C ı∞←↩ Q
ıp
↪→ Cp. Fix

also an imaginary quadratic field K of discriminant −DK < 0 and ring of integers OK.

1.1. CM abelian varieties. We say that a Hecke character ψ : K×\A×K → C× has infinity type
(a, b) ∈ Z2 if, writing ψ = (ψv)v with v running over the places of K, the component ψ∞ satisfies
ψ∞(z) = zaz̄b for all z ∈ (K ⊗Q R)× ' C×, where the identification is made via ı∞. Hence in
particular the norm character NK, given by q 7→ #(OK/q) on ideals of OK, has infinity type
(−1,−1). The central character of such ψ is the character ωψ on A× defined by

ψ|A× = ωψ ·N−(a+b),

where N is the norm on A×.
Our fixed embedding ıp defines a natural map σ : K⊗QQp → Cp, and we let σ : K⊗QQp → Cp

be composition of σ with the non-trivial automorphism of K. The p-adic avatar of a Hecke
character ψ of infinity type (a, b) is the character ψ̂ : K×\A×K,f → C×p given by

ψ̂(x) = ıp ◦ ı−1
∞ (ψ(x))σ(xp)

aσ(xp)
b

for all x ∈ A×K,f , where xp ∈ (K ⊗Qp)
× is the p-component of x.

Thoughout the following, we shall often omit the notational distinction between an algebraic
Hecke character and its p-adic avatar, as it will be clear from the context which one is meant.

Let ψ be an algebraic Hecke character of K infinity type (−1, 0) with values in a number field
Fψ ⊂ Q with ring of integer Oψ. Let P be the prime of Fψ above p induced by ıp, and denote by
Φψ the completion of Fψ at P and by Oψ the ring of integers of Φψ. By a well-known theorem

3More precisely, the proof of the “Heegner point main conjecture” formulated in §1.3; one of the divisibilities
suffices for the application.
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of Casselman’s (see [BDP12, Thm. 2.5] and the reference [Shi71, Thm. 6] therein), attached to
ψ there is a CM abelian variety Bψ/K, unique up to isogeny over K, with the property that

VPBψ ' ψ̂
as one-dimensional Φψ-representations of GK, where VPBψ =

(
lim←−Bψ[Pj ]

)
⊗OψΦψ is the rational

P-adic Tate module of Bψ.

1.2. Heegner points. Let f ∈ S2(Γ1(N)) be a normalized eigenform of weight 2, level N prime
to p, and nebentypus εf . We assume that K satisfies the Heegner hypothesis relative to N :

(Heeg) there is an ideal N ⊂ OK with OK/N ' Z/NZ,

and fix once and for all an ideal N as above. We assume also that

(spl) pOK = vv splits in K,
with v the prime of K above p induced by our fixed embedding ıp. Let F ⊂ Q be the number
field generated by the Fourier coefficients of f . Denote by P the prime of F above p induced by
ıp, and assume that f is P-ordinary, i.e. vP(ap(f)) = 0, where vP is the P-adic valuation on F .

Let Af/Q be the abelian variety of GL2-type associated to f , determined up to isogeny over
Q by the equality of L-functions

L(Af , s) =
∏

τ :F ↪→C
L(f τ , s),

where f τ runs over all the conjugates of f . Denote by Φ the completion of F at P, and let O
be the ring of integers of Φ. Let TPAf := lim←−Af [Pj ] be the P-adic Tate module of Af , which
is free of rank two over O.

For every positive integer c, let Kc be the ring class field of K of conductor c, so Gal(Kc/K) '
Pic(Oc) by class field theory, where Oc = Z + cOK is the order of K of conductor c. For every

c > 0 prime to N and every ideal a of Oc, we consider the CM point xa ∈ X1(N)(K̃c) constructed

in [CH18, §2.3], where K̃c is the compositum of Kc and the ray class field of K of conductor N.
Let ∆a be the class of the degree 0 divisor (xa) − (∞) in J1(N) = Jac(X1(N)), and denote by
za = δ(∆a) its image under the Kummer map

δ : J1(N)(K̃c)→ H1(K̃c, TpJ1(N)).

Fix a parametrization π : J1(N)→ Af , and let yf,a ∈ H1(K̃c, TPAf ) be the image of ya under
the natural projection

H1(K̃c, TpJ1(N))
π∗−→ H1(K̃c, TpAf )→ H1(K̃c, TPAf ).

For the ease of notation, we set yf,c = yf,a for a = Oc. A standard calculation shows that if
p - c, then for every n > 0 we have

(1.1) CorK̃cpn/K̃cpn−1
(yf,cpn) =

{
ap(f) · yf,cpn−1 − εf (p) · yf,cpn−2 if n > 1,

u−1
c

(
ap(f)− σv − σv

)
· yf,c if n = 1,

where uc := [O×c : O×cp] and σv, σv ∈ Gal(K̃c/K) are Frobenius elements at the primes of K above
p (cf. [CH18, Prop. 4.4]).

Let α be the P-adic unit root of x2− ap(f)x+ εf (p)p, and for any positive integer c prime to
N define the α-stabilized Heegner class yf,c,α by

yf,c,α :=

{
yf,c − εf (p)α−1 · yf,c/p if p | c,
u−1
c

(
1− σvα−1 − σvα−1

)
· yf,c if p - c.

This definition is motivated by the following result.
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Lemma 1.2.1. For all positive integers c prime to N , we have

CorK′cp/K′c(yf,cp,α) = α · yf,c,α.

Proof. This follows immediately from (1.1).

1.3. Heegner point main conjecture. Let K∞ be the anticyclotomic Zp-extension of K, with
Galois group

Γ = Gal(K∞/K) ' Zp,
and for every n denote by Kn the subextension of K∞ with [Kn : K] = pn. Let χ be a finite order
Hecke character of K with χ|A× = ε−1

f . Upon enlarging F is necessary, assume that Φ contains

the values of χ. For each n, take m� 0 so that K̃cpm ⊃ Kn, and set

(1.2) zf,χ,n := α−m · CorK̃cpm/Kn

( ∑
σ∈Gal(K̃cpm/K)

χ(σ) · yf,cpm,α

)
.

In view of Lemma 1.2.1, the definition of zf,χ,n does not depend on the choice of m. Moreover,
letting Af,χ be the Serre tensor Af⊗χ, we see that zf,χ,n defines a class zf,χ,n ∈ H1(Kn, TPAf,χ).

Let

(1.3) Λ0 = OJΓK, Λ = Λ0 ⊗O Φ

be the anticyclotomic Iwasawa algebras. From their construction, the classes zf,χ,n are contained
in the pro-P Selmer group SP(Af,χ/Kn) ⊂ H1(Kn, TPAf,χ), and by Lemma 1.2.1 they are norm-
compatible, hence defining a class zf,χ = {zf,χ,n}n in the compact Λ0-adic Selmer group

S (Af,χ/K∞) := lim←−
n

SP(Af,χ/Kn).

Denote by SelP∞(Af,χ/Kn) ⊂ H1(Kn, Af,χ[P∞]) the P∞-Selmer groups of Af,χ, and set

X (Af,χ/K∞) := HomZp

(
lim−→
n

SelP∞(Af,χ/Kn),Φ/O

)
.

Set also

S(Af,χ/K∞) = S (Af,χ/K∞)⊗O Φ, X (Af,χ/K∞) = X (Af,χ/K∞)⊗O Φ,

which are finitely generated Λ-modules.
The following conjecture in a natural extension of Perrin-Riou’s Heegner point main conjec-

ture, [PR87a, Conj. B].

Conjecture 1.3.1. The modules S(Af,χ/K∞) and X (Af,χ/K∞) have both Λ-rank one, and

charΛ(X (Af,χ/K∞)Λ-tors) = charΛ

(
S(Af,χ/K∞)/Λ · zf,χ

)2
,

where the subscript Λ-tors denotes the maximal Λ-torsion submodule.

In [BT20, Conj. 2.2] a conjecture similar to Conjecture 1.3.1 is formulated in terms of a Λ-adic
Heegner class deduced from work of Disegni [Dis17]. As in [BT20]4, our proof of Theorem A is
based on establishing a corresponding result towards Conjecture 1.3.1. The only novelty in our
approach is in the proof of cases of this conjecture when f has CM.

4Also in other results on the p-converse theorem in rank 1 without a finiteness condition on the Tate–Shafarevich
group that appeared after [Ski20]: [Wan14], [CW16], etc.
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2. Selmer groups

In this section we introduce the different Selmer groups entering in our arguments. In partic-
ular, the decomposition in Proposition 2.3.1 will play a key role.

2.1. Selmer groups of certain Rankin–Selberg convolutions. As in §1.2, let f ∈ S2(Γ1(N))
be a P-ordinary newform with nebentypus εf , and let K be an imaginary quadratic field satis-
fying (Heeg) and (spl).

Let c > 0 be a positive integer prime to N . Similarly as in [BDP12, Def. 3.10], we say that a
Hecke character ξ of infinity type (2 + j,−j), with j ∈ Z, has finite type (c,N, εf ) if it satisfies:

(a) ξ|A× = ε−1
f ·N

−2, i.e., ωξ · εf = 1;

(b) fξ = c ·N′, where N′ is the unique divisor of N with norm equal to the conductor of εf ;
(c) the local sign εq(f, χ) = +1 for all finite prime q.

These conditions imply that the Rankin–Selberg L-function L(f, χ, s) is self-dual, with s = 0
as the central critical point. The sign in the functional equation is +1 (resp. −1) when j > 0
(resp. j < 0). Denote by Σcc(c,N, εf ) the set of such characters ξ, and put

Σ(1)
cc (c,N, εf ) = {ξ ∈ Σcc(c,N, εf ) | j < 0} , Σ(2)

cc (c,N, εf ) = {ξ ∈ Σcc(c,N, εf ) | j > 0} .

Let χ be a finite order character of K such that χN−1
K ∈ Σ

(1)
cc (c,N, εf ). Denote by ρf : GQ →

AutΦ(Vf ) the P-adic Galois representation associated to f , where Vf = Φ⊗OTPAf , and consider
the conjugate self-dual GK-representation

(2.1) Vf,χ := Vf |GK ⊗ χ.
For any Λ0-module M , let M∨ = Homcts(M,Qp/Zp) be the Pontryagin dual. Fix a GK-stable

lattice Tf,χ ⊂ Vf,χ, and define the GK-modules

Wf,χ := Tf,χ ⊗O Λ∨0 , Tf,χ := W∨
f,χ(1) ' Tf,χ ⊗O Λ0,

where the tensor products are endowed with the diagonal Galois actions, with GK acting on Λ0

(resp. Λ∨0 ) via the tautological character Ψ : GK � Gal(K∞/K) ↪→ Λ×0 (resp. Ψ−1).

Definition 2.1.1. Fix a finite set Σ of places of K containing ∞ and the primes dividing Np,
and denote by KΣ ⊂ Q the maximal extension of K unramified outside Σ. The BDP Selmer
group of Tf,χ over K∞ is defined by

Xv(Tf,χ/K∞) := ker

{
H1(KΣ/K,Wf,χ)→ H1(Kv,Wf,χ)×

∏
w∈Σ,w-p

H1(Kw,Wf,χ)

}
.

We also set
Xv(f, χ) = Xv(Tf,χ/K∞)⊗O Φ,

which is independent of the lattice Tf,χ. We define the compact version Sv(f, χ) ⊂ H1(KΣ/K,Tf,χ)
in the same manner, replacing Wf,χ by Tf,χ.

The BDP Selmer groups of Definition 2.1.1 differs from the Selmer group X (Af,χ/K∞) and
S(Af,χ/K∞) in §1.3 in their defining local conditions at the primes above p. More precisely, by
P-ordinarity, for every w|p there is a GKw -module exact sequence

(2.2) 0→ F+
w Tf,χ → Tf,χ → F−w Tf,χ → 0

with F±w Tf,χ free of rank one over O, and the GKw -action on F−w Tf,χ being unramified. Then
the Selmer group defined by

Xord(Tf,χ/K∞) := ker

{
H1(KΣ/K,Wf,χ)→

∏
w|p

H1(Kw,Wf,χ)

H1(Kw,F−w Wf,χ)
×

∏
w∈Σ,w-p

H1(Kw,Wf,χ)

}
,
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where F−w Wf,χ = (F−w Tf,χ)⊗O′ Λ
∨
0 , satisfies

(2.3) Xord(f, χ) := Xord(Tf,χ/K∞)⊗O′ Φ
′ ' X (Af,χ/K∞)

Defining Sord(f, χ) ⊂ H1(KΣ/K,Tf,χ) in the same manner, we similarly have

(2.4) Sord(f, χ) ' S(Af,χ/K∞)

(see e.g. [CG96, §4]).

2.2. Selmer groups of characters. We keep the hypothesis that the imaginary quadratic field
K satisfies (spl), and let ξ be a Hecke character of K of conductor fξ. Let F be a number field
containing the values of ξ. Let Φ be the completion of F at the prime P of F above p induced
by ıp, and let O be the ring of integers of Φ. Denote by Tξ the free O-module of rank one on
which GK acts via ξ, and consider the GK-module

Wξ := Tξ ⊗O Λ∨0 ,

where as before the Galois action on Λ∨0 is given by the character Ψ−1.

Definition 2.2.1. Let Σ be a finite set of places of K containing ∞ and the primes dividing p
or fψ. The v-Selmer group of ψ over K∞ is defined by

Xv(Tξ/K∞) := ker

{
H1(KΣ/K,Wξ)→ H1(Kv,Wξ)×

∏
w∈Σ,w-p

H1(Kw,Wξ)

}
.

We also set Xv(ξ) = Xv(Tξ/K∞)⊗O Φ.

Remark 2.2.2. Suppose ξ has infinity type (−1, 0), and denote by ξ∗ the composition of ξ with the
non-trivial automorphism of K, so ξ∗ has infinity type (0,−1). Then from e.g. [AH06, §1.1] we
see that Xv(ξ∗) corresponds to the Bloch–Kato Selmer group of ξ∗ over the tower K∞/K, whereas
Xv(ξ) corresponds to the Bloch–Kato Selmer group for ξ with the reversed local conditions at
the primes above p.

2.3. Decomposition. We now specialize the set-up in §2.1 to the case where f = θψ is the theta
series of a Hecke character ψ of K of infinity type (−1, 0). Then f has level N = DK ·NK(fψ)
and nebentypus εf = ηK · ωψ, where ηK is the quadratic character associated to K.

One easily checks (see [BDP12, Lem. 3.14]) that if fψ is a cyclic ideal of norm NK(fψ) prime
to DK, then K satisfies the Heegner hypothesis (Heeg) relative to N , and one may take

(2.5) N = dK · fψ, where dK := (
√
−DK).

In the following, we assume that fψ satisfies the above condition, and take N as in (2.5). On
the other hand, since we assume (spl), the CM form f is P-ordinary. FInally, fix a positive

integer c prime to Np, and let χ be a finite order character such that χN−1
K ∈ Σ

(1)
cc (c,N, εf ).

The following decomposition will play an important role later.

Proposition 2.3.1. Let ψ and χ be as above. There is a Λ-module isomorphism

Xv(θψ, χ) ' Xv(ψχ)⊕Xv(ψ∗χ).

Proof. Put f = θψ, and note that there is a GK-module decomposition

(2.6) Vf,χ ' Vψχ ⊕ Vψ∗χ.

Since the module Xv(f, χ) ⊂ H1(KΣ/K,Wf,χ)⊗O Φ does not depend on the lattice Tf,χ ⊂ Vf,χ
chosen to define Wf,χ, by (2.6) we may assume that Tf,χ ' Tψχ ⊕ Tψ∗χ as GK-modules, and so

Wf,χ 'Wψχ ⊕Wψ∗χ
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as GK-modules. The result thus follows immediately by comparing the defining local conditions
of the three Selmer groups involved at all places.

3. p-adic L-functions

In this section we introduce the two p-adic L-functions needed for our arguments, and prove
Proposition 3.3.1 relating the two.

3.1. The BDP p-adic L-function. As in §2.1, let f ∈ S2(Γ1(N)) be an eigenform with p - N
and nebentypus εf , let K be an imaginary quadratic field satisfying (Heeg) and (spl), and fix an
ideal N ⊂ OK with cyclic quotient of order N . Let c be a positive integer prime to Np, and let

χ be a finite order Hecke character of K such that χN−1
K ∈ Σ

(1)
cc (c,N, εf ).

Let F ⊂ Q be a number field containing K, the Fourier coefficients of f , and the values of χ,
and let Φ be the completion of F at the prime of F above p induced by ıp, with ring of integers
O ⊂ Φ. Let Λ0 = OJΓK, and Λ = Λ0 ⊗O Φ be the anticyclotomic Iwasawa algebras as in (1.3),
and set

Λur
0 := Λ0⊗̂ZpZur

p ' OurJΓK, Λur := Λur
0 ⊗O Φ,

where Zur
p is the completion of the ring of integers of the maximal unramified extension of Qp.

The p-adic L-function in the next theorem was first constructed in [BDP13] as a continuous
function on characters of Γ. Its realization as a measure in Λur

0 was first given in [CH18] following
an approach introduced in [Bra11]. As it will suffice for our purposes, we describe below a Φ×-
multiple of that p-adic L-function.

As in [CH18, §2.3], define ϑ ∈ K by

ϑ :=
D′ +

√
−DK

2
, where D′ =

{
DK if 2 - DK,

DK/2 else,

and let Ωp and ΩK be CM periods attached to K as in [op.cit., §2.5].

Theorem 3.1.1. There exists an element Lv(f, χ) ∈ Λur such that for every character ξ of Γ
crystalline at both v and v̄ and corresponding to a Hecke character of K of infinity type (n,−n)
with5 n > 1, we have

Lv(f, χ)2(ξ) =
Ω4n
p

Ω4n
K
·Γ(n)Γ(n+ 1)ξ(N−1)

(4π)2n+1(Im ϑ)2n
·
(
1−ap(f)(χξ)(v)p−1+εf (p)(χξ)2(v)p−1

)2 ·L(f, χξ, 1).

Proof. Let η be an anticyclotomic Hecke character of K of infinity type (1,−1) and conductor
dividing cOK, and define Lv,η(f, χ) ∈ Λur

0 by

Lv,η(f, χ)(φ) =
∑

[a]∈Pic(Oc)

(ηχN−1
K )(a)

∫
Z×p
ηv(φ|[a]) dµf[a ,

for all continuous characters φ : Γ→ Q×p , where:

• f [ =
∑

p-n an(f)qn is the p-depletion of f ,

• µf[a is the measure on Z×p corresponding (under the Amice transform) to the power series

f [(t
NK(a)c

√
−DK

−1

a ) ∈ O ′urJta − 1K

with ta the Serre–Tate coordinate of the reduction of the point xa on the Igusa tower of
tame level N constructed in [CH18, (2.5)],
• ηv(x) := η(recv(x)) with recv : Q×p = K×v → Gab

K � Γ the local reciprocity map at v,

5Therefore, χξN−1
K ∈ Σ

(2)
cc (c,N, εf ).



10 ASHAY BURUNGALE, FRANCESC CASTELLA, CHRISTOPHER SKINNER, AND YE TIAN

• φ|[a] : Z×p → Q×p is defined by (φ|[a])(x) = φ(recv(x)σ−1
a ) with σa the Artin symbol of a.

The same calculation as in [CH18, Prop. 3.8] then shows that the element Lv(f, χ) ∈ Λur defined
by

Lv(f, χ)(ξ) := Lv,η(f, χ)(η−1ξ)

has, in view of the explicit Waldspurger formula in [Hsi14b, Thm. 3.14], the stated interpolation
property up to a fixed element in Φ×. The result follows.

Remark 3.1.2. We our later use, we note that the complex period ΩK ∈ C× in Theorem 6.0.1
(which also agrees with that in [BDP13, (5.1.16)]) is different from the complex period Ω∞ ∈ C×
defined in [dS87, p. 66] and [HT93, (4.4b)]. In fact, one has

ΩK = 2πi · Ω∞.
In terms of Ω∞, the interpolation formula in Theorem 6.0.1 reads

Lv(f, χ)2(ξ) =
Ω4n
p

Ω4n
∞
· Γ(n)Γ(n+ 1)ξ(N−1)

4π1−2n(Im ϑ)2n
·
(
1− ap(f)χξ(v)p−1 + εf (p)χξ(v)2p−1

)2 ·L(f, χξ, 1).

Specialized to the range of critical values for the representation Vf,χ, the Iwasawa–Greenberg
main conjecture [Gre94] predicts the following.

Conjecture 3.1.3. The module Xv(f, χ) is Λ-torsion, and

charΛ(Xv(f, χ)) = (Lv(f, χ)2).

In Theorem 4.0.2, we will explain the relation between Conjectures 1.3.1 and 3.1.3.

3.2. Katz p-adic L-functions. Let K be an imaginary quadratic field satisfying (spl). Let
c ⊂ OK be an ideal prime to p, and let K(cp∞) be the ray class field of K of conductor cp∞.

The p-adic L-function in the next theorem follows from the work of Katz [Kat78], as extended
by Hida–Tilouine [HT93] (see also [dS87]). Here we shall use the construction in [Hsi14a], and
similarly as in Theorem 3.1.1, it will suffice for our purposes to describe a fixed Φ×-multiple of
the integral measure constructed in op.cit..

For any Hecke character ξ of K, we denote by Lc(ξ, s) the Hecke L-function L(ξ, s) with the
Euler factors at the primes l|c removed.

Theorem 3.2.1. Let φ be a character of Gal(K(cp∞)/K) corresponding to a Hecke character of
K of infinity type (−1− j, j), with j ∈ Z>0 and conductor prime to p. There exists an element
Lv(φ) ∈ Λur such that for every character ξ of Γ crystalline at both v and v̄ and corresponding
to a Hecke character of K of infinity type (−n, n) with n+ j ∈ Z>0, we have

Lv(φ)(ξ) =
Ω2n+2j+1
p

Ω2n+2j+1
∞

· Γ(n+ j + 1) · (2π)n+j

(Im ϑ)n+j
·
(
1− φ−1ξ−1(v)

)2 · Lc(φ
−1ξ−1, 0),

where Ωp, Ω∞ = (2πi)−1ΩK, and ϑ are as in Theorem 6.0.1. Similarly, if φ as above has infinity
type (j,−1− j), with j ∈ Z>0, there exists an element Lv(φ) ∈ Λur such that for every character
ξ of Γ crystalline at both v and v̄ and corresponding to a Hecke character of K of infinity type
(n,−n) with n+ j ∈ Z>0, we have

Lv(φ)(ξ) =
Ω2n+2j+1
p

Ω2n+2j+1
∞

· Γ(n+ j + 1) · (2π)n+j

(Im ϑ)n+j
·
(
1− φ−1ξ−1(v)

)2 · Lc(φ
−1ξ−1, 0).

Proof. Let Lv be the integral p-adic measure on Gal(K(cp∞)/K) constructed in [Hsi14a, §4.8],
associated to the p-adic CM type corresponding to our fixed embedding ı∞, ıp. Setting

Lv(φ)(ξ) := Lv(φ
−1 · π∗ξ−1)
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for all characters ξ of Γ, where π∗ξ is the pullback under the projection π : Gal(K(cp∞)/K)→ Γ,
that Lv(φ) satisfies the claimed interpolation property follows from [Hsi14a, Prop. 4.9]. Taking
the conjugate CM type, the result for Lv(φ) also follows.

3.3. Factorization. As in §2.3, we now specialize to the case where f = θψ for a Hecke character
ψ of K of infinity type (−1, 0) and conductor fψ with cyclic quotient of norm prime to DK, so
that K satisfies hypothesis (Heeg) relative to N = DK ·NK(fψ).

Fix an integer c > 0 prime to Np, and let χ be a finite order Hecke character of K such that

χN−1
K ∈ Σ

(1)
cc (c,N, εf ). Then we have a GK-module decomposition

(3.1) Vf,χ ' Vψχ ⊕ Vψ∗χ,

where Vf,χ is as in (2.1). Note that each of the characters appearing in the right-hand side are
self-dual, in the sense that

ψχψ∗χ∗ = NK

(see e.g. [BDP12, Rem. 3.7]).
The following result is a manifestation of the Artin formalism arising from the decomposition

(3.1). A similar result in shown in [BDP12, Thm. 3.17]. As we shall see in §6, this is a counterpart
on the analytic side of the Selmer group decomposition in Proposition 2.3.1.

Proposition 3.3.1. Suppose that f = θψ and χ are as above. Then

Lv(f, χ)2 = u ·Lv(ψχ) ·Lv(ψ
∗χ),

where u is a unit in (Λur)×.

Proof. This will follow by comparing the values interpolated by each side of the desired equality,
using that an element in Λur is uniquely determined by its values at infinitely many characters.
Denote by ι : Λur → Λur the involution given by γ 7→ γ−1 for γ ∈ Γ. We first claim that

(3.2) Lv(f, χ)2 = u ·Lv(ψ
−1χ−1NK)ι ·Lv((ψ

∗)−1χ−1NK)ι

for some unit u ∈ (Λur)×. Indeed, let ξ be a character of Γ as in the statement of Theorem 3.1.1,
of infinity type (n,−n) with n > 1. The decomposition (2.6) yields

(3.3) L(f, χξ, 1) = L(f, χξN−1
K , 0) = L(ψχξN−1

K , 0) · L(ψ∗χξN−1
K , 0).

The factors in the right-hand side of (3.3) are interpolated by the values at ξ−1 of Lv(ψ
−1χ−1NK)

and Lv((ψ
∗)−1χ−1NK), respectively. Noting that(

1− ψχξ(v)p−1
)
·
(
1− ψ∗χξ(v)p−1

)
=
(
1− ap(f)χξ(v)p−1 + εf (p)χξ(v)2p−1

)
,

from Theorem 3.2.1 with j = −1 and j = 0 we find

Lv(ψ
−1χ−1NK)(ξ−1) ·Lv((ψ

∗)−1χ−1NK)(ξ−1) =
Ω2n−1
p

Ω2n−1
∞

·
Ω2n
p

Ω2n
∞
· Γ(n)Γ(n+ 1) · (2π)n−1

(Im ϑ)n−1

(2π)n

(Im ϑ)n

×
(
1− ap(f)χξ(v)p−1 + εf (p)χξ(v)2p−1

)
· L(f, χξ, 1).

The proof of (3.2) thus follows from Theorem 3.1.1 and Remark 3.1.2.
Now, noting that the characters ψχ and ψ∗χ are both self-dual and ξ is anticyclotomic, we

find

Lv(ψ
−1χ−1NK)(ξ−1) = Lv(ψ

∗χ∗)(ξ∗) = Lv(ψχ)(ξ),

where the last equality follows from another direct comparison of interpolation properties (see
e.g. [BCG+19, Lem. 3.3.2(a)]). Similarly, we find Lv((ψ

∗)−1χ−1NK)(ξ−1) = Lv(ψ
∗χ)(ξ), so the

result follows from (3.2).
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4. Explicit reciprocity law

In this section we explain a variant of the explicit reciprocity law [CH18] relating the Λ-adic
Heegner class zf,χ to the p-adic L-function Lv(f, χ) via a Perrin-Riou big logarithm map, and
record a key consequence.

Let (f, χ) be as in §2.1. For every w|p, the natural map H1(Kw,F+
w Tf,χ) → H1(Kw,Tf,χ)

induced by (2.2) is injective, since its kernel is H0(Kw,F−w Tf,χ) = 0. Therefore, in view of (2.4)
the image of zf,χ under the restriction map

locw : H1(K,Tf,χ)→ H1(Kw,Tf,χ)

is naturally contained in H1(Kw,F+
w Tf,χ). Let Φur the compositum of Φ and Qur

p .
Recall that K is assumed to satisfy (spl), and v denotes the prime of K above p induced by

our fixed embedding ıp.

Theorem 4.0.1. There is a Λur-linear isomorphism Logv : H1(Kv,F+
v Tf,χ)⊗ Λur → Λur such

that

Logv
(
locv(zf,χ)

)
= c ·Lv(f, χ)

for some c ∈ (Φur)×.

Proof. The existence of the map Logv (with coefficients in Λur
0 , rather than Λur) follows from the

two-variable extension by Loeffler–Zerbes [LZ14] of Perrin-Riou’s big logarithm map [PR94], and
the proof of the explicit reciprocity law (integrally) is given in [CH18, §5.3]. That the Λur-linear
map Logv is injective follows from [LZ14, Prop. 4.11], and so it becomes an isomorphism after
extending scalars to Λur = Λur

0 ⊗O Φ.

Similarly as observed in [Cas13] and [Wan14], the equivalence between Conjectures 1.3.1 and
3.1.3 can be deduced from Theorem 4.0.1 using Poitou–Tate global duality.

Theorem 4.0.2. Assume that the class zf,χ is not Λ-torsion. Then Conjectures 1.3.1 and 3.1.3
are equivalent.

Proof. This can be shown in the same way as [CW16, Thm. 5.16], but since here we are working
in a different setting, we provide the details. We explain the implication from Conjecture 3.1.3
to Conjecture 1.3.1 (the only implication we will need later), and note that the converse follows
from the same ideas.

Following [Cas17, §2.1], below we denote by Sstr,rel(f, χ) (resp. Sord,rel(f, χ), etc.) the Selmer
group defined as in §2.1 but with the strict at v and relaxed at v (resp. ordinary at v and relaxed
at v, etc.) local conditions. We also use implicitly use the isomorphisms (2.3) and (2.4).

Now assume Conjecture 3.1.3, so in particular Xv(f, χ) is Λ-torsion. Then Sstr,rel(f, χ) is also
Λ-torsion, and global duality yields the following exact sequence

(4.1) 0→ Sstr,rel(f, χ)→ Sord,rel(f, χ)
locv−−→ H1(Kv,F+

v Tf,χ)→ Xv(f, χ)→ Xstr,ord(f, χ)→ 0.

Since H1(Kv,F+
v Tf,χ) has Λ-rank one, the assumption that zf,χ is non-torsion together with

Theorem 4.0.1 implies that Sord,rel(f, χ) has Λ-rank one. Since zf,χ ∈ Sord(f, χ) ⊂ Sord,rel(f, χ),
it follows that Sord(f, χ) also has Λ-rank one, and by [Cas17, Lem. 2.3(1)] so does Xord(f, χ).

Hence the quotient Sord,rel(f, χ)/Sord(f, χ) is Λ-torsion, and since it injects in H1(Kv,F+
v Tf,χ)

which is Λ-torsion-free, this shows the equality Sord(f, χ) = Sord,rel(f, χ). Thus we see that (4.1)
reduces to the exact sequence

(4.2) 0→ Sstr,ord(f, χ)→ Sord(f, χ)
locv−−→ H1(Kv,F+

v Tf,χ)→ Xord,rel(f, χ)→ Xord(f, χ)→ 0.
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Since Sstr,ord(f, χ) is Λ-torsion and H1(K,Tf,χ) trivial Λ-torsion-free, Sstr,ord(f, χ) vanishes,
and therefore (4.2) yields

0→ Sord(f, χ)

Λ · zf,χ
locv−−→

H1(Kv,Tf,χ)

Λ · locv(zf,χ)
→ coker(locv)→ 0.

In view of Theorem 4.0.1, it follows that

(4.3) charΛ

(
Sord(f, χ)

Λ · zf,χ

)
· charΛ

(
coker(locv)

)
Λur = (Lv(f, χ)).

Next, from (4.1) and (4.2) we can extract the short exact sequences

0→ coker(locv)→ Xv(f, χ)→ Xstr,ord(f, χ)→ 0,

0→ coker(locv)→ Xord,rel(f, χ)→ Xord(f, χ)→ 0,

from which we readily obtain (taking Λ-torsion in the first exact sequence and using a straight-
forward variant of [Cas17, Lem. 2.3] or [BL18, Prop. 3.14]) the relations

charΛ

(
Xv(f, χ)

)
= charΛ

(
Xstr,ord(f, χ)

)
· charΛ

(
coker(locv)

)
= charΛ

(
Xord,rel(f, χ)Λ-tors

)
· charΛ

(
coker(locv)

)
= charΛ

(
Xord(f, χ)Λ-tors

)
· charΛ(coker(locv))

2.

Combined with (4.3), we thus obtain

charΛ

(
Xv(f, χ)

)
· charΛ

(
Sord(f, χ)

Λ · zf,χ

)2

Λur = charΛ

(
Xord(f, χ)Λ-tors

)
·
(
Lv(f, χ)2

)
.

The result follows.

5. Twisted anticyclotomic main conjectures for K

Let K be an imaginary quadratic field satisfying (spl). The Iwasawa main conjecture for K was
proved by Rubin [Rub91] under some restrictions on p (including p - O×K) that were removed in
subsequent work by Johnson-Leung–Kings [JLK11] and Oukhaba–Viguié [OV16]. In this section
we record a consequence of these results for the anticyclotomic Zp-extension.

Note that if ξ is a self-dual Hecke character, i.e.,

ξξ∗ = NK

(so ξ is necessarily of infinity type (−1−j, j), for some j ∈ Z), then the Hecke L-function L(ξ−1, s)
is self-dual, with a functional equation relating its values at s and −s. In the following, by the
sign of ξ we refer to the sign appearing in this functional equation.

Theorem 5.0.1. Let ψ be a Hecke character of K of infinity type (−1, 0), and let χ be a finite
order of character of such that the product ψχ is self-dual. Assume that ψ∗χ has sign +1. Then
the modules Xv(ψχ) and Xv(ψ∗χ) are both Λ-torsion, and we have

charΛ

(
Xv(ψχ)

)
=
(
Lv(ψχ)

)
, charΛ

(
Xv(ψ∗χ)

)
=
(
Lv(ψ

∗χ)
)
.

Proof. Consider first the result for ψ∗χ. The Iwasawa module Xv(ψ∗χ) recovers the Bloch–Kato
Selmer group for ψ∗χ over the anticyclotomic Zp-extension (see Remark 2.2.2), and so the result
follows from [AH06, Thm. 2.4.17], as extended in [Arn07, Thm. 3.9]. (In these references, the
hypothesis p > 3 arises from their appearance in [Rub91], but as already noted this restriction
can be removed thanks to [JLK11,OV16].)

On the other hand, similarly as in [Agb07, Cor. 3.3] (an adaptation of the argument in [Coa83,
Thm. 12]), we see that Xv(ψχ) is isomorphic as a Λ-module to the twist of Xv(ψ∗χ) by ψ(ψ∗)−1,
and therefore is also Λ-torsion if ψ∗χ has sign +1. Since by definition Lv(ψχ) is similarly the



14 ASHAY BURUNGALE, FRANCESC CASTELLA, CHRISTOPHER SKINNER, AND YE TIAN

twist of Lv(ψ
∗χ) by the character ψ(ψ∗)−1, the first equality of characteristic ideals follows from

the second.

6. The main results

Recall that K is an imaginary quadratic field of discriminant −DK < 0 satisfying (spl), with
v the prime of K above p induced by our fixed embedding ıp.

Theorem 6.0.1. Let ψ be a Hecke character of K of infinity type (−1, 0) and conductor fψ with
cyclic quotient of norm prime to DK, and set

f = θψ, N = DK ·NK(fψ), N = dK · fψ.

Let c be a positive integer prime to Np, and let χ be a finite order character such that χN−1
K ∈

Σ
(1)
cc (c,N, εf ). Assume that ψχ has sign −1. Then:

(i) The class zf,χ is not Λ-torsion.
(ii) The the module Xv(f, χ) is Λ-torsion, and

charΛ

(
Xv(f, χ)

)
Λur =

(
Lv(f, χ)2

)
.

In other words, Conjecture 3.1.3 holds.

Proof. We begin by showing that the class zf,χ is not Λ-torsion. As noted in §3.3, our assumption
on fψ implies that K satisfies hypothesis (Heeg) relative to the level of f . In particular, the
Rankin–Selberg L-function L(f, χ, s) has a functional equation relating its values at s and 2− s
with sign −1. The GK-module decomposition (2.6) yields

L(f, χ, s) = L(ψχ, s) · L(ψ∗χ, s),

and each of the factors in the right-hand side has a functional equation relating its values at s
and 2 − s. Since we assume that ψχ has sign −1, the self-dual character ψ∗χ has sign +1. By
Rohrlich’s theorem [Roh84], for all but finitely characters ξ of Γ, we have

L(ψ∗χξ, 1) 6= 0.

Hence in view of the interpolation property in Theorem 3.2.1, the p-adic L-function Lv(ψ
∗χ)

is nonzero, and therefore so is its twist Lv(ψχ). By the factorization in Proposition 3.3.1, we
conclude that Lv(f, χ) is also nonzero, and the claim that zf,χ is not Λ-torsion now follows from
the explicit reciprocity law of Theorem 4.0.1.

For part (ii), by Theorem 5.0.1 the modules Xv(ψχ) and Xv(ψ∗χ) are both Λ-torsion, with
characteristic ideals generated by Lv(ψχ) and Lv(ψ

∗χ) over Λur, respectively. Thus from Propo-
sitions 2.3.1 and 3.3.1 we obtain that Xv(f, χ) is Λ-torsion, with characteristic ideal generated
by Lv(f, χ)2 over Λur.

Corollary 6.0.2. Let f = θψ and χ be an in Theorem 6.0.1, and assume that ψχ has sign −1.
Then the modules S(Af,χ/K∞) and X (Af,χ/K∞) have both Λ-rank one, and

charΛ(X (Af,χ/K∞)Λ-tors) = charΛ

(
S(Af,χ/K∞)/Λ · zf,χ

)2
.

In other words, Conjecture 1.3.1 holds.

Proof. This is the combination of Theorem 4.0.2 and Theorem 6.0.1.
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7. Application to p-converse

In this section we deduce from our main results the proof of Theorem A in the Introduction.
Let λ be a self-dual Hecke character of infinity type (−1, 0) and conductor fψ, and suppose that:

(a) λ has sign −1;
(b) λ has central character ωλ = ηK;
(c) dK‖fλ.

Note that fλ is divisible by dK = (
√
−DK) by condition (b). Since λ is self-dual, fλ is invariant

under complex conjucation, so by condition (c) we can write fλ = (c)dK for a unique c > 0.
We shall apply Corollary 6.0.2 for a pair (ψ, χ) which is good for λ in the sense of [BDP12,

Def. 3.19]:

(G1) ψ has infinity type (−1, 0) and conductor fψ with cyclic quotient of norm prime to pDK;

(G2) χ is a finite order character such that χN−1
K ∈ Σ

(1)
cc (c,N, εf ), where f = θψ and N = fψdK;

(G3) ψχ = λ;
(G4) L(ψ∗χ, 1) 6= 0.

The existence of good pairs for λ is shown in [BDP12, Lem. 3.29] building on the non-vanishing
results of Greenberg [Gre85] and Rohrlich [Roh84].

Fix a good pair (ψ, χ) for λ, and let F ⊂ Q be a number field of containing the values of
ψ and χ. Let P be the prime of F above p induced by our fixed embedding ıp, let Φ be the
completion of F at P, and let O be the ring of integers of Φ. Let Wψχ be the module Φ/O
equipped with the GK-action via ψχ, and define Wψ∗χ similarly.

Let Σ a finite set of places of K containing ∞, p, and the primes of K dividing the conductor
of λ. Denote by H1

f (K,Wψχ) the Bloch–Kato Selmer group for ψχ:

H1
f (K,Wψχ) = ker

{
H1(KΣ/K,Wψχ)→

H1(Kv,Wψχ)

H1(Kv,Wψχ)div
×H1(Kv,Wψχ)×

∏
w∈Σ,w-p

H1(Kur
w ,Wψχ)

}
,

where H1(Kv,Wψχ)div ⊂ H1(Kv,Wψχ) is the maximal divisible submodule and Kur
w denote the

maximal unramified extension of Kw. Similarly, let

H1
f (K,Wψ∗χ) = ker

{
H1(KΣ/K,Wψ∗χ)→ H1(Kv,Wψ∗χ)×

H1(Kv,Wψ∗χ)

H1(Kv,Wψ∗χ)div
×

∏
w∈Σ,w-p

H1(Kur
w ,Wψ∗χ)

}
be the Bloch–Kato Selmer group for ψ∗χ (see also [AH06, §1.1]). Finally, let Vf,χ be as in (2.1).

Lemma 7.0.1. In the above setting, we have

corankOSelP∞(Af,χ/K) = corankOH1
f (K,Wψχ) + corankOH1

f (K,Wψ∗χ).

Proof. As is well-known (see e.g. [BK90]), SelP∞(Af,χ/K) agrees with the Bloch–Kato Selmer
group

H1
f (K,Wf,χ) ⊂ H1(K,Wf,χ),

where Wf,χ := Vf,χ/Tf,χ for any GK-stable O-lattice Tf,χ ⊂ Vf,χ. In turn (see [Gre99, Prop. 2.2]),
the local conditions defining H1

f (K,Wf,χ) at the primes w|p can be described in terms of the
filtration (2.2). Since different lattices Tf,χ give rise to Selmer groups H1

f (K,Wf,χ) with the same
O-corank, taking Tf,χ so that Wf,χ 'Wψχ⊕Wψ∗χ, similarly as in the proof of Proposition 2.3.1
the result follows by comparing the local conditions defining the Bloch–Kato Selmer groups for
Wf,χ, Wψχ and Wψ∗χ.

The following recovers Theorem A in the introduction as a special case.
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Theorem 7.0.2. Let λ be a self-dual Hecke character of K of infinity type (−1, 0) with central
character ωλ = ηK and whose conductor fλ satisfies dK‖fλ. Then

corankOSelP∞(Bλ/K) = 1 =⇒ ords=1L(λ, s) = 1.

Proof. Note that by the p-parity conjecture [Nek01], if SelP∞(Bλ/K) has O-corank 1, then λ
has sign −1. Let (ψ, χ) be a good pair for λ, i.e., satisfying conditions (G1)–(G4) above, so in
particular

(7.1) L(ψ∗χN−1
K , 0) = L(ψ∗χ, 1) 6= 0.

Since by Theorem 3.2.1 the value L(ψχ∗N−1
K , 0) is a nonzero multiple of the value of Lv(ψ

∗χ)
at the trivial character 1 of Γ, by Theorem 3.2.1 it follows that

#
(
Xv(ψ

∗χ)/(γ − 1)Xv(ψ
∗χ)
)
<∞,

where γ ∈ Γ is any topological generator. Since Xv(ψ
∗χ) corresponds to the Bloch–Kato Selmer

group for ψ∗χ over K∞/K (see Remark 2.2.2), it follows that corankOH1
f (K,Wψ∗χ) = 0. Since

SelP∞(Bλ/K) ' H1
f (K,Wψχ), from Lemma 7.0.1 we thus obtain

(7.2) corankOSelP∞(Bλ/K) = 1 =⇒ corankOSelP∞(Af,χ/K) = 1.

Now, Corollary 6.0.2 together with a variant of Mazur’s control theorem immediately yields
the implication

(7.3) corankOSelP∞(Af,χ/K) = 1 =⇒ zf,χ,0 6= 0 ∈ SP(Af,χ/K)⊗O Φ.

Here zf,χ,0 is the image of zf,χ under the specialization map S(Af,χ/K∞)→ H1(K, Vf,χ) at the
trivial character, which agrees with the Heegner class zf,χ,0 (see e.g. [CH18, Lem. 5.4]).

Finally, we note once more that (2.6) yields the factorization

L(f, χ, s) = L(ψχ, s) · L(ψ∗χ, s).

Since zf,χ,0 6= 0⇐⇒ ords=1L(f, χ, s) = 1 by the general Gross–Zagier formula [YZZ13,CST14],
together with (7.2) and (7.3), we conclude that

corankOSelP∞(Bλ/K) = 1 =⇒ ords=1L(f, χ, s) = 1

=⇒ ords=1L(ψχ, s) = 1,

where the second equality follows from (7.1). Since ψχ = λ, this concludes the proof.
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