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Abstract. We prove a conjecture of Kundu–Ray predicting an expression for the leading term (up
to a p-adic unit) of a characteristic power series of Kobayashi’s signed Selmer groups for elliptic curves
E/Q with supersingular reduction at a prime p > 2 with ap = 0 in the style of a p-adic variant of the
Birch–Swinnerton-Dyer conjecture. The proof is deduced from a similar formula due to Perrin-Riou
for a generator of her module of p-adic L-functions with values in the Dieudonné module of E.
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1. Introduction

Let E/Q be an elliptic curve and p an odd prime of good reduction for E. Let X (E/Q∞) denote
the Pontryagin dual of the Selmer group Selp∞(E/Q∞) over the cyclotomic Zp-extension of Q∞/Q.
Let Λ = Zp[[Gal(Q∞/Q)]] be the cyclotomic Iwasawa algebra, which we identify with the one-variable
power series ring Zp[[X]] upon the choice of a topological generator γ ∈ Gal(Q∞/Q).

When p is ordinary for E, the Selmer group X (E/Q∞) is known to be Λ-torsion by work of Kato
[Kat04], and letting ξp ∈ Λ = Zp[[X]] denote a characteristic power series for X (E/Q∞), the work
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of Schneider [Sch85] and Perrin-Riou [PR93b] (see also [PR84] for the case where E has complex
multiplication) yields an analogue of the Birch–Swinnerton-Dyer conjecture for ξp, relating its order
of vanishing at X = 0 to the Mordell–Weil rank of E, and expressing its leading coefficient in terms
of arithmetic invariants of E.

The goal of this note is to prove an analogous result in the case where p is a prime of supersingular
reduction for E with ap = 0. Our main result is in terms of a characteristic power series of Kobayashi’s
signed Selmer groups; in the rank zero case, a result along these lines was first proved by B.-D. Kim
[Kim13] by an adaptation of Greenberg’s methods [Gre99], so we focus on the case of Mordell–Weil
rank r ≥ 1, where the result we obtain was conjectured by Kundu–Ray (see [KR21, Conjecture 3.15]),
following Sprung’s reformulation [Spr15] of the p-adic Birch–Swinnerton-Dyer conjecture of Bernardi
and Perrin-Riou [BPR93] (see also Remark 1.1.2 below).

1.1. Main result. From now on, assume that p > 2 is a supersingular prime for E satisfying ap = 0
(a condition that holds automatically unless p = 3). In [Kob03], Kobayashi introduced signed Selmer
groups Sel±p∞(E/Q∞) whose Pontryagin dual

X±(E/Q∞) = HomZp(Sel
±
p∞(E/Q∞),Qp/Zp)

he showed to be Λ-torsion as a consequence of Kato’s work.
As explained in the work of Bernardi–Perrin-Riou [BPR93], one can naturally attach a quadratic

form hν on E(Q) to every vector ν in the Dieudonné module Dp(E) = Qp ⊗Q H1
dR(E/Q), and we let

Regν ∈ Qp be the discriminant of the associated bilinear (p-adic height) pairing

⟨·, ·⟩ν : E(Q)× E(Q) → Qp.

By linearity, these can be extended to E(Q)⊗Zp. In the terminology of [Wut07], consider the strict
Mordell–Weil group,

(E(Q)⊗ Zp)0 := ker
{
E(Q)⊗ Zp → E(Qp)⊗̂Zp

}
where E(Qp)⊗̂Zp is the p-adic completion of E(Qp).

In Section 4, similarly as in the work of Sprung [Spr15] we shall introduce certain vectors N± ∈
Dp(E) in the complement to the Hodge filtration Fil0Dp(E) = QpωE , where ωE is a Néron differential
on E. Write Reg±p (resp. Regstrp ) for the above regulator on E(Q) (resp. E(Q)⊗Zp)0) associated to

hN±/[ωE ,N±]dR = hN±/[ωE , N
±]dR,

where [·, ·]dR denotes the de Rham pairing on Dp(E).
Let κ : Gal(Q∞/Q) ≃ 1+pZp be the isomorphism defined by the p-adic cyclotomic character. The

main result of this note is the following p-adic analogue of the Birch–Swinnerton-Dyer conjecture for
supersingular primes.

Theorem A. Let E/Q be an elliptic curve with good supersingular reduction at an odd prime p with
ap = 0. Put

r = rankZE(Q)

and suppose r ≥ 1. Let ξ±p ∈ Λ ≃ Zp[[X]] be a characteristic power series for X±(E/Q∞). Then:

(i) ξ±p vanishes to order at least r at X = 0.

(ii) If W(E/Q)[p∞] is finite and Regstrp ̸= 0, then equality in (i) holds, and the leading coefficient

ξ±,⋇
p ∈ Qp of ξ±p is given up to a p-adic unit by

ξ±,⋇
p ∼p (logp κ(γ))

−r · Reg±p · #W(E/Q)[p∞] · Tam(E/Q)

(#E(Q)tors)2
,

where logp is Iwasawa’s branch of the p-adic logarithm and Tam(E/Q) =
∏

ℓ cℓ is the product
of the local Tamagawa numbers of E.

Hence [KR21, Conjecture 3.15] holds true.
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Remark 1.1.1. In [RS23], for any two elliptic curves E1, E2 overQ with good supersingular reduction
at a prime p > 2 with ap = 0 and E1[p] ≃ E2[p] as GQ-modules, Ray and Sujatha establish relations
mod p between the (Σ-imprimitive) truncated Γ-Euler characteristics of their respective signed Selmer
groups Sel±p∞(Ei/Q∞), defined as

χ±
t (Γ, Ei) :=

#ker(ϕEi)

#coker(ϕEi)
,

where ϕEi : Sel
±
p∞(Ei/Q∞)Γ → Sel±p∞(Ei/Q∞)Γ, sending s 7→ smod (γ − 1), is the natural map from

the Γ-invariants to the Γ-coinvariants. Using the structure theorem for finitely generated Λ-modules,
one easily checks that χ±

t (Γ, Ei) is defined, in the sense that both ker(ϕEi) and coker(ϕEi) are finite,
whenever γ acts semi-simply on Sel±p∞(Ei/Q∞) (a condition expected to always hold in the cyclotomic

setting; see [CHK+23, Lem. 6.1] for a more general result), in which case one has

χ±
t (Γ, Ei) = |ξ±,⋇

p (Ei)|−1
p

(see [Zer09, Lem. 2.11]) in the notations of Theorem A, where | · |p denotes the p-adic absolute value
on Qp with the normalization |p|p = 1/p. Thus in particular [RS23, Thm. 5.5] becomes a congruence
relation mod p between the arithmetic invariants appearing in Theorem A.

In a similar vein, as a consequence of Theorem A, [KR21, Thm. 3.16] now holds unconditionally.

Remark 1.1.2. The conclusion of Theorem A is predicted by the combination of the p-adic Birch–
Swinnerton-Dyer conjecture for supersingular primes p formulated by Bernardi–Perrin-Riou [BPR93]
(see also [PR03, Conj. 2.5]) and Kato’s Main Conjecture (see [PR93a, §3.4]). We note however, that
the proof of Theorem A does not assume the Main Conjecture.

1.2. Outline of the proof. In [PR93a], Perrin-Riou proved a p-adic Birch–Swinnerton-Dyer formula
for a certain arithmetic p-adic L-function

FPR
p ∈ Dp(E)⊗Qp H,

where H ⊂ Qp[[X]] is the ring of power series convergent in the p-adic open unit disk. A term in her
leading coefficient formula is a p-adic regulator

(1.1) (1− φ)2RegPRp ∈ Dp(E)

where φ is the Frobenius operator. Building on a result of Lei [Lei11] expressing Kobayashi’s signed
Coleman maps in terms of Perrin-Riou’s work [PR94], we extract from FPR

p two signed power series

F±
p ∈ Zp[[X]]. By direct computation of the coordinates of (1.1) relative to a certain basis (ν−, ν+)

of Dp(E) on the one hand, and of the same coordinates of the leading coefficient FPR,⋇
p ∈ Dp(E) of

FPR
p on the other hand, from Perrin-Riou’s formula we arrive at expressions for the order of vanishing

and the leading coefficient of F±
p at X = 0 agreeing with those in Theorem A for the characteristic

power series ξ±p . Similar computations (that in fact served as the original motivation for this note)
were performed by Sprung [Spr15] in his study of p-adic analogues of the Birch–Swinnerton-Dyer
conjecture for the signed (or rather, ♯/♭-) p-adic L-functions constructed in [Spr12]. Finally, from
an application of global duality we show that F±

p generates the characteristic ideal of X±(E/Q∞),
thereby yielding Theorem A.

1.3. Acknowledgements. We would like to dedicate this note to the memory of Prof. John Coates.
It is a pleasure to thank Professors Ye Tian, Yichao Tian, and Xin Wan for the opportunity to make
this small contribution to a special issue honoring such a great mathematician. We also thank Anwesh
Ray and Debanjana Kundu for their comments on the topic of this note, and Antonio Lei for bringing
[RS23] to our attention.
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2. A formula of Perrin-Riou

In this section we recall a p-adic Birch–Swinnerton-Dyer formula for arithmetic p-adic L-functions
established in [PR93a].

2.1. Dieudonné modules. Let E/Q be an elliptic curve, and p an odd prime of good reduction for
E. Let

Dp(E) := Qp ⊗Q H1
dR(E/Q)

denote the Dieudonné module of E. This is a 2-dimensional Qp-vector space equipped with a Frobe-

nius operator φ, a Hodge filtration Dp(E) ⊃ Fil0Dp(E) ⊃ 0, with Fil0Dp(E) spanned by the class of
a Néron differential ωE ∈ ΩE/Z, and a non-degenerate alternating pairing

[·, ·]dR : Dp(E)×Dp(E) → Qp.

The operator φ has characteristic polynomial x2 − ap
p x+ 1

p , where ap := p+ 1−#E(Fp).

2.2. Arithmetic p-adic L-function. Let T be the p-adic Tate module of E, and put V = Qp⊗Zp T .
As in the Introduction, let Γ be the Galois group of the cyclotomic Zp-extension Q∞/Q, which we
shall often identify with the Galois group of the cyclotomic Zp-extension Qp,∞/Qp, and let Λ = Zp[[Γ]]
be the cyclotomic Iwasawa algebra, often identified with the 1-variable power series ring Zp[[X]] via
γ = 1 + X upon the choice of a fixed topological generator γ ∈ Γ. For each n ≥ 0, let Qn (resp.
Qp,n) be the unique subextension of Q∞ (resp. Qp,∞) of degree pn over Q (resp. Qp).

For h ≥ 0, let

Hh =

{∑
n≥0

cnX
n ∈ Qp[[X]]

∣∣∣ lim
n→∞

|cn|p
nh

= 0

}
,

where | · |p denotes the p-adic absolute value on Qp with the standard normalization |p|p = 1/p, and
put H =

⋃
h≥0Hh and H(Γ) = {f(γ − 1) | f ∈ H}. Write

H1
Iw(Qp,∞, T ) := lim←−−

n
H1(Qp,n, T )

for the Iwasawa cohomology of T , and put H1
Iw(Qp,∞, V ) = Qp ⊗Zp H

1
Iw(Qp,∞, T ).

We begin by recalling Perrin-Riou’s big exponential map, which we state below in a rather rough
form (see e.g. [PR93a, §1] for a more precise statement). The Weil pairing gives a natural identifica-

tion V ≃ V ∗(1) := HomQp(V,Qp(1)) (so in particular, DdR(V
∗(1)) := (V ∗(1)⊗Qp BdR)

GQp ≃ Dp(E)
by the comparison isomorphism), but in the following we shall nonetheless keep the distinction be-
tween the two.

Theorem 2.2.1. There exists an injective Λ-module homomorphism

ΩV ∗(1) : Λ⊗Zp DdR(V
∗(1)) → H1

Iw(Qp,∞, V ∗(1))⊗Qp H(Γ)

interpolating expQp,n,V ∗(1) for all n ≥ 0.

Proof. This follows by taking h = 1 and j = 0 in [PR94, §3.2.3] (see also [PR93a, Thm. 1.3]. □

For any η ∈ DdR(V
∗(1)), the map ΩV ∗(1) may be evaluated at η⊗(1+X). Given z ∈ H1

Iw(Qp,∞, V ),
we thus define

Lz : DdR(V
∗(1)) → H(Γ), η 7→

〈
ΩV ∗(1)(η ⊗ (1 +X)), z

〉
Qp,∞

,

where ⟨·, ·⟩Qp,∞ : H1
Iw(Qp,∞, V ∗(1))×H1

Iw(Qp,∞, V ) → Λ is Perrin-Riou’s Λ-adic Tate pairing (see e.g.
[PR93a, §2.1.2]), given by

⟨x,y⟩Qp,∞ :=

(∑
σ∈Γn

⟨xσ−1

n , yn⟩Qp,n · σ

)
n
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for x = (xn)n, y = (yn)n and Γn = Gal(Qp,n/Qp).
In the following, we shall view Lz as an element

Lz ∈ Dp(E)⊗Qp H(Γ)

using the canonical isomorphism HomQp(DdR(V
∗(1)),H(Γ)) ≃ DdR(V )⊗Qp H(Γ) induced by [·, ·]dR

and the identification DdR(V ) ≃ Dp(E) arising from the comparison isomorphsm.
Let Selstrp∞(E/Qn) be the strict Selmer group defined by

Selstrp∞(E/Qn) := ker
{
Selp∞(E/Qn)

resp−−→ E(Qp,n)⊗Qp/Zp

}
,

and put Selstrp∞(E/Q∞) = lim−−→n Sel
str
p∞(E/Qn). For any finite set of primes S containing p and ∞, let

QS denote the maximal extension of Q unramified outside S, and put

H1(T ) := lim←−−
n

H1(Gal(QS/Qn), T ).

(This is easily checked to be independent of S; see e.g [PR93a, p. 983].)
By Kato’s work [Kat04], Selstrp∞(E/Q∞) is Λ-cotorsion and H1(T ) is torsion-free of Λ-rank 1.

Definition 2.2.2. Let z ∈ H1(T ) be a nonzero element, and put

FPR
p := Lzp ·

gstr
hz

∈ Dp(E)[[X]],

where zp = resp(z) denotes the image of z under the restriction map H1(T ) → H1
Iw(Qp,∞, T ) and gstr

(resp. hz) is a characteristic power series for Selstrp∞(E/Q∞)∨ (resp. H1(T )/(z)).

We note that FPR
p gives a generator of the Λ-module of arithmetic p-adic L-functions as introduced

in Perrin-Riou’s work (see e.g. [PR93a, §3.4.3] and [PR03, §3.1]).

2.3. p-adic regulators. Let

y2 − a1xy + a3y = x3 + a2x
2 + a4x+ a6

be a minimal Weierstrass model for E. Take ωE = dx
2y+a1x+a3

and put η = xωE ; then the pair (ωE , η)

forms a basis for Dp(E).
For each ν ∈ Dp(E), we let hν be the quadratic form on E(Q) defined as in [BPR93]. In particular,

hν(P ) = − logωE
(P )2, where logωE

is the logarithm on E(Q) associated to ωE , hη is Bernardi’s p-adic
height using p-adic σ-functions [Ber81], and hν for an arbitrary ν = aωE + bη ∈ Dp(E) is defined by
linearity as ahωE + bhη.

Definition 2.3.1. Let r = rankZE(Q), and let Regν denote the discriminant of the quadratic form
⟨P,Q⟩ν := hν(P +Q)− hν(P )− hν(Q) on E(Q), i.e.

(2.1) Regν =
det(⟨Pi, Pj⟩ν)

[E(Q) :
∑r

i=1 ZPi]2
,

where P1, . . . , Pr is any system of r points in E(Q) giving a basis of E(Q)⊗Z Q.

Lemma 2.3.2. Suppose r = rankZE(Q) ≥ 1. Then there exists a unique RegPRp ∈ Dp(E) such that[
RegPRp , ν

]
dR

= R̃egν , where R̃egν :=
Regν

[ωE , ν]
r−1
dR

for all ν ̸∈ Fil0Dp(E).

Proof. This is shown in [PR03, Lem. 2.6] (whose statement is missing the factor [ωE , ν]
r−1 as noted

in [SW13, Lem. 4.2]). □

As in the Introduction, let (E(Q)⊗ Zp)0 ⊂ E(Q)⊗ Zp be the strict Mordell–Weil group.
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Definition 2.3.3. Write Regstrp for the discriminant of the bilinear (p-adic height) pairing associated
to the restriction to (E(Q)⊗ Zp)0 of the normalized quadratic form

hν/[ωE ,ν]dR = hν/[ωE , ν]dR

for any ν ̸∈ Fil0Dp(E) (this is independent of ν).

2.4. Perrin-Riou’s formula. The following key result is a p-adic analogue of the Birch–Swinnerton-
Dyer conjecture for the arithmetic p-adic L-function FPR

p .

Theorem 2.4.1. Let E/Q be an elliptic curve with good supersingular reduction at an odd prime p,
and put r = rankZE(Q). Then:

(i) FPR
p vanishes to order at least r at X = 0.

(ii) If W(E/Q)[p∞] is finite and Regstrp ̸= 0 then equality holds in (i), and writing

FPR
p = FPR,⋇

p ·Xr

with FPR,⋇
p ∈ Dp(E) we have the equality up to a p-adic unit

FPR,⋇
p ∼p (logp κ(γ))

−r · (1− φ)2RegPRp · #W(E/Q)[p∞] · Tam(E/Q)

(#E(Q)tors)2
.

Proof. This is shown in Propositions 3.4.5 and 3.4.6 in [PR93a] (see also [PR03, Thm. 3.1]). □

Remark 2.4.2. A result similar to Theorem 2.4.1 is obtained in [PR00] for much more general p-adic
representations V .

3. Perrin-Riou’s big exponential and signed Coleman maps

By Kobayashi’s definition in [Kob03], the local conditions at p defining the signed Selmer groups
Sel±p∞(E/Qn) are given by E±(Qp,n) ⊗ Qp/Zp = ker(Col±n )

⊥, where the superscript ⊥ denotes the
orthogonal complement under the local Tate duality

H1(Qp,n, E[p∞])×H1(Qp,n, T ) → Qp/Zp

and Col±n : H1(Qp,n, T ) → Zp[Gal(Qp,n/Qp)] are signed Coleman maps constructed in [Kob03] using
Honda’s theory of formal groups. In this section, we recall a result of Lei [Lei11] giving an independent
construction of Kobayashi’s

Col± := lim←−−
n

H1
Iw(Qp,∞, T ) → Λ

in terms of the map ΩV ∗(1) of Theorem 2.2.1.

3.1. Logarithm matrix. Put

log+p =
1

p

∞∏
m=1

Φ2m(1 +X)

p
, log−p =

1

p

∞∏
m=1

Φ2m−1(1 +X)

p
,

where Φn(X) =
∑p−1

i=1 Xpn−1i is the pn-th cyclotomic polynomial.

Definition 3.1.1. Let α, β ∈ {±
√
−p} be the roots of x2 − apx+ p (recall that we assume ap = 0),

and define the logarithm matrix Mlog ∈ M2×2(H) by

Mlog :=

(
log+p log+p
αlog−p βlog−p

)
.
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3.2. A result of Lei. Given η ∈ DdR(V
∗(1)), we define the Coleman map

(3.1) Colη : H1
Iw(Qp,∞, V ) → H(Γ)

by z 7→
〈
ΩV ∗(1)(η ⊗ (1 +X)), z

〉
Qp,∞

. Thus, note that Colη(z) = Lz(η) by definition.

Theorem 3.2.1. Let ηα, ηβ ∈ DdR(V
∗(1)) ≃ Dp(E) be the unique vectors satisfying

φ(ηα) = α−1ηα, φ(ηβ) = β−1ηβ, [ηα, ωE ]dR = [ηβ, ωE ]dR = 1.

Then for any z ∈ H1
Iw(Qp,∞, T ) we have the decomposition

(3.2) (Colηβ (z),Colηα(z)) = (Col−(z),Col+(z))Mlog,

where Mlog ∈ M2×2(H(Γ)) is the logarithm matrix of Definition 3.1.1 with X = γ − 1.

Proof. The existence of unique ηα, ηβ satisfying the conditions in the statement is shown in [Kat04,
Thm. 16.6], while the proof of the decomposition (3.2) is given in [Lei11, §3.4.2]. More precisely, the

Coleman maps Colη± of (3.1) associated to the vectors η− :=
βηα−αηβ

β−α , η+ :=
ηβ−ηα
β−α are shown to be

divisible by log±p , respectively
1, upon evaluation at any z ∈ H1

Iw(Qp,∞, T ). That the maps

Col± : z 7→ Colη±(z)/log
±
p

satisfy the relation in the statement is then clear; and that they agree with the signed Coleman maps
Col± in [Kob03] follows from a relation between both constructions and the pairings Pn introduced
by Kurihara [Kur02] (see also [Lei11, Rem. 3.16]). □

Remark 3.2.2. Letting f ∈ S2(Γ0(N)) be the newform associated to E by modularity, note that our
vector ηα ∈ DdR(V

∗(1)) corresponds to ηβ ∈ DdR(Vf ) ≃ DdR(V
∗) (with Frobenius eigenvalue β) in

Lei’s notation; and likewise our ηβ corresponds to ηα in [Lei11]. In particular, by Kato’s reciprocity

law (as recalled in [op. cit., Thm. 3.10]), Kato’s zeta element zKato satisfies

Colηβ (z
Kato) = Lp,α,

where Lp,α denotes the p-adic L-function of [MTT86] associated to f and the allowable root α; and
likewise Colηα(z

Kato) = Lp,β.

4. Coordinate computations

The main result of this section is the computation of the coordinates of the modified Perrin-Riou’s
p-adic regulator appearing in Theorem 2.4.1 relative to an ordered basis (ν−, ν+) of Dp(E) motivated
by the decomposition in Theorem 3.2.1.

4.1. Dual bases. Recall that ωE ∈ Dp(E) denotes the class of a fixed Néron differential.

Lemma 4.1.1. Put

να :=
−α

β − α
(ωE − βφ(ωE)), νβ :=

β

β − α
(ωE − αφ(ωE)).

Let ηα, ηβ ∈ DdR(V
∗(1)) ≃ Dp(E) be as in Theorem 3.2.1. Then (να, νβ) and (ηβ, ηα) are dual bases

of Dp(E) under [·, ·]dR, in the sense that

[ηα, να]dR = [ηβ, νβ]dR = 0, [ηα, νβ]dR = [ηβ, να]dR = 1.

1Note that for consistency with [Kob03] our signs are opposite to [Lei11].
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Proof. From the relations φ2 = 1/p, α+ β = 0, and αβ = p we readily see that φ(να) = α−1να and
φ(νβ) = β−1νβ, which implies the first two equalities in the statement by the alternating property of
[·, ·]dR. On the other hand, noting that the classes ηα and ηβ are necessarily multiples of να and νβ,
respectively, from the defining relations [ηα, ωE ]dR = [ηβ, ωE ]dR = 1 in Theorem 3.2.1 we find

ηα =
−1

[βφ(ωE), ωE ]dR
(ωE − βφ(ωE)), ηβ =

−1

[αφ(ωE), ωE ]dR
(ωE − αφ(ωE)),

and this yields the equalities [ηα, νβ]dR = [ηβ, να]dR = 1. □

Lemma 4.1.2. In terms of the basis (να, νβ) of Dp(E) in Lemma 4.1.1, we have

RegPRp =
Regνβ

[ωE , νβ]
r
dR

να +
Regνα

[ωE , να]rdR
νβ.

Proof. Writing RegPRp = aνα+ bνβ, using the defining property of RegPRp , the relation να+ νβ = ωE ,
and the fact that [·, ·]dR is alternating, we find

R̃egνα =
[
RegPRp , να

]
dR

= [bνβ, να]dR = b[ωE , να]dR,

and so b = R̃egνα/[ωE , να]dR as claimed. Similarly, we find a = R̃egνβ/[ωE , νβ]dR = Regνβ/[ωE , νβ]
r
dR,

whence the result. □

4.2. The modified regulator (1 − φ)2RegPRp in coordinates. The main result of this section is
Proposition 4.2.4. In the context of the analytic p-adic L-functions of [Spr12], similar computations
were performed by Sprung [Spr15], whose notations we largely follow.

Definition 4.2.1. Put Zlog := Mlog|X=0 =
1
p

(
1 1
α β

)
, and let N±, ν± ∈ Dp(E) be the vectors given by

(N−, N+) = (νβ,−να)

(
(1− α−1)2

(1− β−1)2

)
Z−1
log · det(Zlog),

(
ν−
ν+

)
= Zlog

(
να
νβ

)
.

Note that the pair (ν−, ν+) is a basis of Dp(E). We also note that the introduction of N± (resp.
ν±) is motivated by the result of the computation in Proposition 4.2.4 (resp. the computation leading
to (5.2)) below.

Lemma 4.2.2. We have N± ̸∈ Fil0Dp(E).

Proof. It suffices to show [ωE , N±]dR ̸= 0. Directly from the definition we have

(N−, N+) =
(
(1− α−1)2βνβ + (1− β−1)2ανα,−(1− α−1)2νβ − (1− β−1)2να

)
.

Thus from the relation ωE = να + νβ we obtain

(4.1) [ωE , N−]dR =
(
(1− α−1)2β − (1− β−1)2α

)
[ωE , νβ]dR =

2α(p− 1)

−p
· [ωE , νβ]dR;

and similarly,

(4.2) [ωE , N+]dR =
(
(1− β−1)2 − (1− α−1)2

)
[ωE , νβ]dR =

4

α
· [ωE , νβ]dR.

Since [ωE , νβ]dR ̸= 0 by weak-admissibility of Dp(E) (see e.g. [GM09, §3.2]) and the non-degeneracy
of [·, ·]dR, the result follows. □

Remark 4.2.3. From the definitions, we directly find (N+, N−) = (1p − 1)ωE − 2φ(ωE), 2ωE + (1−
p)φ(ωE)) consistently with Lemma 4.2.2, but the above computations will be useful later.

Proposition 4.2.4. Suppose r = rankZE(Q) ≥ 1. Then the coordinates (c+, c−) of (1−φ)2RegPRp ∈
Dp(E) with respect to the ordered basis (ν+, ν−) are given by

(c+, c−) =
(
2

RegN+

[ωE , N+]rdR
, (p− 1)

RegN−
[ωE , N−]rdR

)
.
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Proof. We begin by noting that the association ν 7→ R̃egν = Regν/[ωE , ν]
r−1
dR is linear in ν ∈ Dp(E)∖

Fil0Dp(E) (whenever defined), and by Lemma 4.2.2 and its proof the quantities R̃egνα , R̃egνβ , R̃egN+
,

R̃egN− are all defined. Thus from the expression for RegPRp in Lemma 4.1.2 we obtain

(1− φ)2RegPRp =
( Regνβ
[ωE , νβ]

r
dR

,
Regνα

[ωE , να]rdR

)(
(1− α−1)2

(1− β−1)2

)(
να
νβ

)

=
( R̃egνβ
[ωE , νβ]dR

,
R̃egνα

[ωE , να]dR

)(
(1− α−1)2

(1− β−1)2

)
Z−1
log

(
ν−
ν+

)
=
( R̃egN−
[ωE , νβ]dR

,
R̃egN+

[ωE , νβ]dR

)(
ν−
ν+

)
p

β − α
,

using the relations R̃eg−να = −R̃egνα and [ωE , νβ]dR = −[ωE , να]dR for the last equality. In light of
(4.1) and (4.2), this yields the result. □

5. Proof of the main result

As in the Introduction, we denote by Reg±p ∈ Qp the p-adic regulator of Definition 2.3.1 associated
to hN±/[ωE ,N±]dR , so

Reg±p := RegN±/[ωE ,N±]dR =
RegN±

[ωE , N±]rdR
,

where r = rankZE(Q) is the Mordell–Weil rank of E, and from the definitions we have the implication
Regstrp ̸= 0 =⇒ Reg±p ̸= 0 for both choices of sign ±.

5.1. Signed arithmetic p-adic L-functions. For z ∈ H1(T ) any non-torsion element, we put

F±
p := Col±(zp) ·

gstr
hz

∈ Zp[[X]],

where gstr and hz are as in Definition 2.2.2.
The following is the main result of this note.

Theorem 5.1.1. Let E/Q be an elliptic curve with good supersingular reduction at an odd prime p
with ap = 0. Put r = rankZE(Q) and suppose r ≥ 1. Then:

(i) F±
p vanishes to order at least r at X = 0.

(ii) If W(E/Q)[p∞] is finite and Regstrp ̸= 0, then equality holds in (i) and the leading coefficient

F±,⋇
p ∈ Qp of F±

p at X = 0 is given up to a p-adic unit by

F±,⋇
p ∼p (logp κ(γ))

−r · Reg±p · #W(E/Q)[p∞] · Tam(E/Q)

(#E(Q)tors)2
.

Proof. We begin by noting that by Theorem 3.2.1 and Lemma 4.1.1, we can rewrite the arithmetic
p-adic L-function FPR

p ∈ Dp(E)[[X]] of Definition 2.2.2 in matrix form as

(5.1) FPR
p = (F−

p ,F+
p )Mlog

(
να
νβ

)
.

Thus, since Mlog does not vanish at X = 0, letting

ϱ := min{ordXF+
p , ordXF−

p }

we see that Theorem 2.4.1(i) amounts to the inequality ϱ ≥ r, giving part (i). For the proof of part (ii),

suppose W(E/Q)[p∞] is finite and Regstrp ̸= 0, and define FPR,(ϱ)
p ∈ Dp(E)[[X]] and F±,(ϱ)

p ∈ Zp[[X]]
by the equalities

FPR
p = FPR,(ϱ)

p ·Xϱ, F±
p = F±,(ϱ)

p ·Xϱ.
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From (5.1) and the product rule, we readily find

(5.2) FPR,⋇
p = FPR,(ϱ)

p (0) = (F+,(ϱ)
p (0),F−,(ϱ)

p (0))

(
ν−
ν+

)
.

On the other hand, by Theorem 2.4.1(ii) and Proposition 4.2.4 we have that the coordinates (d+, d−)

of FPR,⋇
p with respect to (ν+, ν−) are given up to a p-adic unit by

(5.3) (d+, d−) ∼p (logp κ(γ))
−r · (Reg+p ,Reg−p ) ·

#W(E/Q)[p∞] · Tam(E/Q)

(#E(Q)tors)2
.

Since the nonvanishing of Regstrp implies that of Reg±p , from (5.2) and (5.3) we see that F±,(ϱ)
p (0) ̸= 0,

and so
ordXF+

p = ordXF−
p = ordXFPR

p = ϱ.

In particular, it follows that (5.2) can be rewritten as (d+, d−) = (F+,⋇
p ,F−,⋇

p ), which together with
(5.3) yields the proof of part (ii). □

5.2. Proof of Theorem A. As a consequence, we can confirm the algebraic p-adic Birch–Swinnerton-
Dyer conjecture as stated in [KR21, Conjecture 3.15].

Proof of Theorem A. In view of Theorem 5.1.1, it suffices to show that the power series F±
p ∈ Zp[[X]]

introduced in (5.1) give a generator of charΛ(X
±(E/Q∞)). As explained in [Lei11, §6.4], Poitou–Tate

duality gives rise to the four-term exact sequence

0 → H1(T ) → Im(Col±) → X±(E/Q∞) → Selstrp∞(E/Q∞)∨ → 0.

This induces

(5.4) 0 → H1(T )

(z)
→ Im(Col±)

(Col±(zp)
→ X±(E/Q∞) → Selstrp∞(E/Q∞)∨ → 0.

Since the Λ-linear maps Col± have pseudo-null cokernel by [Kob03, Thm. 6.2], we see that the second
term in (5.4) has characteristic ideal generated by Col±(zp), and so the fact that F±

p has the desired
property follows by multiplicativity. □
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