
ON THE EXCEPTIONAL SPECIALIZATIONS OF BIG HEEGNER POINTS

FRANCESC CASTELLA

Abstract. We extend the p-adic Gross–Zagier formula of Bertolini, Darmon, and Prasanna [BDP13]

to the semistable non-crystalline setting, and combine it with our previous work [Cas14] to obtain
a derivative formula for the specializations of Howard’s big Heegner points [How07b] at exceptional

primes in the Hida family.
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Introduction

Fix a prime p ≥ 5, an integer N > 0 prime to p, and let f ∈ S2(Γ0(Np)) be a newform. Throughout
this paper, we shall assume that f is split multiplicative at p, meaning that

f(q) = q +

∞∑
n=2

an(f)qn with ap(f) = 1.

Fix embeddings C
ı∞←↩ Q

ıp
↪→ Cp, let L be a finite extension of Qp containing ıpı

−1
∞ (an(f)) for all n, and

let OL be the ring of integers of L. Since the Up-eigenvalue of f is ap(f) = 1 by hypothesis, the form
f is ordinary at p, and hence there is a Hida family

f =

∞∑
n=1

anq
n ∈ I[[q]]

Date: July 23, 2015.

Research supported in part by Grant MTM2012-34611 and by Prof. Hida’s NSF Grant DMS-0753991.

1



2 F. CASTELLA

passing through f . Here I is a finite flat extension of the power series ring OL[[T ]], which for simplicity
in this introduction it will be assumed to be OL[[T ]] itself. Embed Z in the space XOL(I) of continuous
OL-algebra homomorphisms ν : I −→ Qp by identifying k ∈ Z with the homomorphism νk : I −→ Qp

defined by 1 + T 7→ (1 + p)k−2. The Hida family f is then uniquely caracterized by the property that
for every k ∈ Z≥2 its weight k specialization

fk :=

∞∑
n=1

νk(an)qn

gives the q-expansion of a p-ordinary p-stabilized newform fk ∈ Sk(Γ0(Np)) with f2 = f .

LetK be an imaginary quadratic field equipped with an integral ideal N ⊂ OK withOK/N ' Z/NZ,
assume that p splits in K, and write pOK = pp with p the prime above p induced by ıp. If A is an
elliptic curve with CM by OK , then the pair (A,A[Np]) defines a Heegner point PA on X0(Np) defined
over the Hilbert class field H of K. Taking the image of the degree zero divisor (PA)− (∞) under the
composite map

(0.1) J0(Np)
Kum−−−→ H1(H,Tap(J0(Np))) −→ H1(H,Vf )

CorH/K−−−−−→ H1(K,Vf )

yields a class κf ∈ Sel(K,Vf ) in the Selmer group for the p-adic Galois representation

ρf : GQ := Gal(Q/Q) −→ AutL(Vf ) ' GL2(L)

associated to f . On the other hand, by working over a p-tower of modular curves, Howard [How07b]
constructed a so-called big Heegner point Z0 ∈ SelGr(K,T

†) in the Selmer group for a self-dual twist
of the big Galois representation

ρf : GQ −→ AutI(T) ' GL2(I)

associated to f . The image of Z0 under the specialization map ν2 : SelGr(K,T
†) −→ Sel(K,Vf ) induced

by ν2 : I −→ Qp yields a second class of “Heegner type” in Sel(K,Vf ); the question of comparing κf
with ν2(Z0) thus naturally arises.

For k > 2, the question of relating the specializations νk(Z0) to higher dimensional Heegner cycles
was considered in [Cas13]. In that case, one could show (see [loc.cit., (5.31)]) that

(0.2) locp(νk(Z0)) = u−1

(
1− pk/2−1

νk(ap)

)2

· locp(κfk),

where u := |O×K |/2, locp : H1(K,Vfk) −→ H1(Kp, Vfk) is the localization map, and κfk is a class given
by the p-adic étale Abel–Jacobi images of certain Heegner cycles on a Kuga–Sato variety of dimension
k − 1. However, for the above newform f , the main result of [Cas13] does not immediately yield a
similar relation between ν2(Z0) and κf2 = κf , since in loc.cit. a crucial use is made of the fact that
the p-adic Galois representations associated with the eigenforms under consideration are (potentially)
crystalline at p, whereas Vf is well-known to be semistable but non-crystalline at p. Moreover, it is easy
to see that the expected relation between these two classes may not be given by the naive extension of
(0.2) with k = 2: indeed, granted the injectivity of locp, by the Gross–Zagier formula the class locp(κf )
is nonzero as long as L′(f/K, 1) 6= 0, whilst (0.2) for k = 2 would imply the vanishing of locp(ν2(Z0))
is all cases, since

(0.3)

(
1− pk/2−1

νk(ap)

)∣∣
k=2

=

(
1− 1

ap(f)

)
= 0.

As shown in [How07b], the class Z0 fits in compatible system of similar classes Z∞ = {Zn}n≥0 over
the anticyclotomic Zp-extension of K; thus Z0 might be seen as the value of Z∞ at the trivial character.
As suggested by the above discussion, in this paper we will show that the class locp(ν2(Z0)) vanishes,
and prove an “exceptional zero formula” relating its derivative at the trivial character (in a precise
sense to be defined) to the geometric class κf . To state the main result, let h be the class number of
K, write ph = πpOK , and define

(0.4) Lp(f,K) := Lp(f)−
logp($p)

ordp($p)
,
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where Lp(f) is the L -invariant of f (see [MTT86, §II.14] for example), $p := πp/πp ∈ Kp ' Qp, and
logp : Q×p −→ Zp is Iwasawa’s branch of the p-adic logarithm.

Theorem. Let f ∈ S2(Γ0(Np)) be a newform split multiplicative at p, and define Zp,f,∞ = {Zp,f,n}n≥0

by Zp,f,n := locp(ν2(Zn)). Then Zp,f,0 = 0 and

Z ′p,f,0 = Lp(f,K) · locp(κf ).

In Lemma 3.10 below, we define the “derivative” Z ′∞ for any compatible system of classes Z∞ =
{Zn}n≥0 with Z0 = 0. The above result, which corresponds to Theorem 3.11 in the body of the paper,
may thus be seen as an exceptional zero formula relating the derivative of locp(ν2(Z∞)) at the trivial
character to classical Heegner points.

Remark 1. As suggested in [LLZ14, §8], one might view p-adic L-functions (as described in [PR00] and
[Rub00, Ch. 8]) as “rank 0” Euler–Iwasawa systems. In this view, it is natural to expect higher rank
Euler–Iwasawa systems to exhibit exceptional zero phenomena similar to their rank 0 counterparts.
We would like to see the main result of this paper as an instance of this phenomenon in “rank 1”.

Remark 2. It would be interesting to study the formulation of our main result in the framework
afforded by Nekovář’s theory of Selmer complexes [Nek06], similarly as the exceptional zero conjecture
of Mazur–Tate–Teitelbaum [MTT86] has recently been proved by Venerucci [Ven15] in the rank 1 case.

Remark 3. The second term in the definition (0.4) is precisely the L -invariant Lp(χK) appearing in
the exceptional zero formula of Ferrero–Greenberg [FG79] and Gross–Koblitz [GK79] for the Kubota–
Leopoldt p-adic L-function associated to the quadratic Dirichlet character χK corresponding to K. It
would be interesting to find a conceptual explanation for the rather surprising appearance of Lp(χK)
in our derivative formula; we expect this to be related to a comparison of p-adic periods (cf. [Cas15]).

The proof of the above theorem is obtained by computing in two different ways the value of a certain
anticyclotomic p-adic L-function Lp(f) at the norm character NK . The p-adic L-function Lp(f) is
defined by the interpolation of the central critical values for the Rankin–Selberg convolution of f with
the theta series attached to Hecke characters of K of infinity type (2+j,−j) with j ≥ 0. The character
NK thus lies outside the range of interpolation of Lp(f), and via a suitable extension of the methods
of Bertolini–Darmon–Prasanna [BDP13] to our setting, in Theorem 2.11 we show that

(0.5) Lp(f)(NK) = (1− ap(f)p−1) · 〈logVf (locp(κf )), ωf 〉.

On the other hand, in [Cas14] we constructed a two-variable p-adic L-function Lp,ξ(f) of the variables
(ν, φ) interpolating (a shift of) the p-adic L-functions Lp(fk) for all k ≥ 2, and established the equality

(0.6) Lp,ξ(f) = LωF+T(locp(Zξ
−1

∞ )),

where LωF+T is a two-variable Coleman power series map whose restriction to a certain “line” interpo-
lates (

1− pk/2−1

νk(ap)

)−1(
1− νk(ap)

pk/2

)
· logVfk

for all k > 2. A second evaluation of Lp(f)(NK) should thus follow by specializing (0.6) at (ν2,1).
However, because of the vanishing (0.3), we may not directly specialize LωF+T at (ν2,1), and we are led
to utilize a different argument reminiscent of Greenberg–Stevens’ [GS93]. In fact, from the form of the
p-adic multipliers appearing in the interpolation property defining LωF+T, we deduce a factorization

Ep(f) · Lp,ξ(f) = L̃ωF+T(locp(Zξ
−1

0 ))

upon restricting (0.6) to an appropriate “line” (different from the above) passing through (ν2,1), where

L̃ωF+T is a modification of LωF+T and Ep(f) is a p-adic analytic function vanishing at that point. The
vanishing of Zp,f,0 thus follows, and exploiting the “functional equation” satisfied by Z∞, we arrive at
the equality

(0.7) Lp(f,K) · Lp(f)(NK) = (1− ap(f)p−1) · 〈logVf (Z ′p,f,0), ωf 〉

using a well-known formula for the L -invariant as a logarithmic derivative of νk(ap) at k = 2. The
proof of our exceptional zero formula then follows by combining (0.5) and (0.7).
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1. Preliminaries

For a more complete and detailed discussion of the topics that we touch upon in this section, we
refer the reader to [Col94] and [BDP13].

1.1. Modular curves. Keep N and p - N as in the Introduction, and let

Γ := Γ1(N) ∩ Γ0(p) ⊂ SL2(Z).

An elliptic curve with Γ-level structure over a Z[1/N ]-scheme S is a triple (E, t, α) consisting of

• an elliptic curve E over S;
• a section t : S −→ E of the structure morphism of E/S of exact order N ; and
• a p-isogeny α : E −→ E′.

The functor on Z[1/N ]-schemes assigning to S the set of isomorphism classes of elliptic curves
with Γ-level structure over S is representable, and we let Y/Z[1/N ] be the corresponding fine moduli
scheme. The same moduli problem for generalized elliptic curves with Γ-level structure defines a
smooth geometrically connected curve X/Z[1/N ] containing Y as a open subscheme, and we refer to
ZX := XrY as the cuspidal subscheme of X. Removing the data of α from the above moduli problem,
we obtain the modular curve X1(N) of level Γ1(N).

For our later use (see esp. Theorem 2.4), recall that if a is any integer coprime to N , the rule

〈a〉(E, t, α) = (E, a · t, α)

defines an action of (Z/NZ)× on X defined over Z[1/N ], and we let X0(Np) = X/(Z/NZ)× be the
quotient of X by this action.

The special fiber XFp := X ×Z[1/N ] Fp is non-smooth. In fact, it consists of two irreducible compo-
nents, denoted C0 and C∞, meeting transversally at the singular points SS. Let Frob be the absolute
Frobenius of an elliptic curve over Fp, and Ver = Frob∨ be the Verschiebung. The maps

γV : X1(N)Fp := X1(N)×Z[1/N ] Fp −→ XFp γF : X1(N)Fp −→ XFp

defined by sending a pair (E, t)/Fp to (E, t, ker(Ver)) and (E, t, ker(Frob)) respectively, are closed
immersions sending X1(N)Fp isomorphically onto C0 and C∞, and mapping the supersingular points
in X1(N)Fp bijectively onto SS. The non-singular geometric points of C0 (resp. C∞) thus correspond
to the moduli of triples (E, t, α) in characteristic p with ker(α) étale (resp. connected).

Corresponding to the preceding description of XFp there is a covering of X as rigid analytic space
over Qp. Consider the reduction map

(1.1) redp : X(Cp) −→ XFp(Fp),

let W0 and W∞ be the inverse image of C0 and C∞, respectively, and let Z0 ⊂ W0 and Z∞ ⊂ W∞
be the inverse image of their non-singular points. In the terminology of [Col89], W0 (resp. W∞) is a
basic wide open with underlying affinoid Z0 (resp. Z∞). If x ∈ SS, then Ax := red−1

p (x) is conformal
to an open annulus in Cp, and by definition we have

X(Cp) =W0 ∪W∞ = Z0 ∪ Z∞ ∪W,

where W =W0 ∩W∞ =
⋃
x∈SS Ax is the union of the supersingular annuli.

1.2. Modular forms and cohomology. In this section, we regard the modular curve X as a scheme

over a fixed base field F . Let E π−−→ X be the universal generalized elliptic curve with Γ-level structure,
set Z̃X = π−1(ZX), and consider the invertible sheaf on X given by

ω := π∗Ω
1
E/X(log Z̃X).

The space of algebraic modular forms (resp. cusp forms) of weight k and level Γ defined over F is

Mk(X;F ) := H0(X,ω⊗kF ) (resp. Sk(X;F ) := H0(X,ω⊗kF ⊗ I)),
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where ωF is the pullback of ω to X ×Q F , and I is the ideal sheaf of ZX ⊂ X. If there is no risk
of confusion, F will be often suppressed from the notation. Alternatively, on the open modular curve
Y a form f ∈ Sk(X;F ) ⊂ Mk(X;F ) is a rule on quadruples (E, t, α, ω)/A, consisting of an A-valued

point (E, t, α) ∈ Y (A) and a differential ω ∈ Ω1
E/A over arbitrary F -algebras A, assigning to any such

quadruple a value f(E, t, α, ω) ∈ A subject to the weight k condition

f(E, t, α, λω) = λ−k · f(E, t, α, ω) for all λ ∈ A×,

depending only on the isomorphism class of the quadruple, and compatible with base change of F -
algebras. The two descriptions are related by

f(E, t, α) = f(E, t, α, ω)ωk,

for any chosen generator ω ∈ Ω1
E/A.

There is a third way of thinking about modular forms that will be useful in the following. Consider
the relative de Rham cohomology of E/X:

L := R1π∗(0 −→ OE −→ Ω1
E/X(log Z̃X) −→ 0),

which fits in a short exact sequence

(1.2) 0 −→ ω −→ L −→ ω−1 −→ 0

of sheaves on X and is equipped with a non-degenerate pairing

(1.3) 〈, 〉 : L × L −→ OX

coming from the Hodge filtration and the Poincaré pairing on the de Rham cohomology of the fibers.
By the Kodaira–Spencer isomorphism

σ : ω⊗2 ∼= Ω1
X(logZX)

given by σ(ω ⊗ η) = 〈ω,∇η〉, where

∇ : L −→ L⊗ Ω1
X(logZX)

is the Gauss–Manin connection, a modular form f of weight r + 2 and level Γ defines a section ωf of
the sheaf ω⊗r ⊗ Ω1

X(logZX) by the rule

ωf (E, t, α) := f(E, t, α, ω)ωr ⊗ σ(ω2).

If f is a cusp form, then the above rule defines a section ωf of ω⊗r⊗Ω1
X , thus yielding an identification

Sr+2(X) ' H0(X,ω⊗r ⊗ Ω1
X).

For each r ≥ 0, let Lr := SymrL (with L0 := OX), and define the de Rham cohomology of X (attached
to Lr) as the hypercohomology group

(1.4) H1
dR(X,Lr,∇) := H1(L•r : Lr

∇−−→ Lr ⊗ Ω1
X(logZX)).

Twisting by the ideal sheaf I gives rise to the subcomplex L•r⊗I −→ L•r , and the weight r+2 parabolic
cohomology of X is defined by

(1.5) H1
par(X,Lr,∇) := image(H1(L•r ⊗ I) −→ H1

dR(X,Lr,∇)).

The exact sequence (1.2) induces the short exact sequence

(1.6) 0 −→ H0(X,ω⊗r ⊗ Ω1
X) −→ H1

par(X,Lr,∇) −→ H1(X,ω⊗−r) −→ 0,

and hence the above assignment f 7→ ωf identifies Sr+2(X) with a subspace of H1
par(X,Lr,∇). In

addition, the pairing (1.3) induces a non-degenerate pairing

(1.7) 〈, 〉 : H1
par(X,Lr,∇)×H1

par(X,Lr,∇) −→ F

with respect to which (1.6) is self-dual.
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1.3. p-new forms. Consider the two degeneracy maps

π1, π2 : X −→ X1(N)

defined by sending, under the moduli interpretation, a triple (E, t, α) to the pairs (E, t) and (α(E), α(t)),
respectively. These morphisms induce maps

π∗1 , π
∗
2 : H1

par(X1(N),Lr,∇) −→ H1
par(X,Lr,∇),

where H1
par(X1(N),Lr,∇) is defined as in (1.5) using the analogous objects over X1(N).

Lemma 1.1. The map π∗1 ⊕ π∗2 is injective.

Proof. This is [Col94, Prop. 4.1]. �

Define the p-old subspace H1
par(X,Lr,∇)p−old of H1

par(X,Lr,∇) to be the image of π∗1 ⊕ π∗2 , and

the p-new subspace H1
par(X,Lr,∇)p−new to be the orthogonal complement of the p-old subspace under

the Poincaré pairing (1.7). The space of p-new cusp forms of weight k and level Γ is defined by

Sr+2(X)p−new := Sr+2(X) ∩H1
par(X,Lr,∇)p−new,

viewing Sr+2(X) as subspace of H1
par(X,Lr,∇) in the form described above.

1.4. p-adic modular forms. Recall that the Hasse invariant is a modular form H over Fp of level
1 and weight p− 1 with the property that an elliptic curve E over an Fp-algebra B is ordinary if and
only if H(E,ω) is a unit in B for some (or equivalently, any) generator ω ∈ Ω1

E/B .

Let R be a p-adic ring, i.e., a ring which is isomorphic to its pro-p completion. A p-adic modular
form of tame level N and weight k defined over R is a rule assigning to every triple (E, t, ω)/A, over
an arbitrary p-adic R-algebra A, consisting of:

• an elliptic curve E/A such that the reduction E ×A A/pA is ordinary;
• a section t : Spec(A) −→ E of the structure morphism of E/A of exact order N ; and
• a differential ω ∈ Ω1

E/A,

an element f(E, t, ω) ∈ A depending only on the isomorphism class of (E, t, ω)/A, homogeneous of
degree −k in the third entry, and compatible with base change of p-adic R-algebras. Let Mk(N ;R)
be the R-module of p-adic modular forms of weight k and level N defined over R; as before, if there is
no risk of confusion R will be often suppressed from the notation.

Similarly as for classical modular forms, it will be convenient to think of p-adic modular forms of
weight k as sections of the sheaf ω⊗k over a certain subset of the rigid analytic space X(Cp). Let Ep−1

be the normalized Eisenstein series of weight p − 1 (recall that p ≥ 5), and define the ordinary locus
of X1(N) by

X1(N)ord := {x ∈ X1(N)(Cp) : |Ep−1(Ex, ωx)|p ≥ 1},
where Ex/Cp is a generalized elliptic curve corresponding to x under the moduli interpretation, ωx ∈
Ω1
Ex/Cp

is a regular differential on Ex, chosen so that it extends to a regular differential over OCp if Ex
has good reduction at p, or corresponds to the canonical differential on the Tate curve if x lies in the
residue disc of a cusp, and | · |p is the absolute value on Cp normalized so that |p|p = p−1. Since Ep−1

reduces to the Hasse invariant H modulo p, it follows that the points x ∈ X1(N)ord correspond to pairs
(Ex, tx) with Ex having ordinary reduction modulo p. Thus the assignment f 7→ (x 7→ f(Ex, tx, ωx)ωkx),
for any chosen generator ωx ∈ Ω1

Ex/Cp
, defines an identification

Mk(N) ' H0(X1(N)ord, ω⊗k).

Let I := {v ∈ Q : 0 < v ≤ p
p+1}, and for any v ∈ I define

X1(N)(v) := {x ∈ X1(N)(Cp) : |Ep−1(Ex, ωx)|p > p−v}.
The space of overconvergent p-adic modular forms of weight k and tame level N is given by

M†k(N) = lim−→
v

H0(X1(N)(v), ω⊗k),

where the transition maps H0(X1(N)(v), ω⊗k) −→ H0(X1(N)(v′), ω⊗k), for v′ < v in I, are given by

restriction; since these maps are injective, M†k(N) is naturally a subspace of Mk(N).
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By the theory of the canonical subgroup (see [Kat73, Thm. 3.1]), if (Ex, tx) corresponds to a point
x in X1(N)( p

p+1 ), the elliptic curve Ex admits a distinguished subgroup can(Ex) ⊂ Ex[p] of order p

reducing to the kernel of Frobenius in characteristic p. The rule

(Ex, tx) 7→ (Ex, tx, αcan),

where αcan : Ex 7→ Ex/can(Ex) is the projection, defines rigid morphism X1(N)( p
p+1 ) −→ W∞, and

hence if f is a modular form of weight k and level Γ, then the restriction f |W∞ gives an overconvergent
p-adic modular form of weight k and tame level N .

1.5. Ordinary CM points. Let K be an imaginary quadratic field with ring of integers OK equipped
with a cyclic ideal N ⊂ OK such that

OK/N ' Z/NZ.

Fix an elliptic curve A defined over the Hilbert class field H of K with EndH(A) ' OK having good
reduction at the primes above p, and choose a Γ1(N)-level structure tA ∈ A[N] and a regular differential
ωA ∈ Ω1

A/H . The identification EndH(A) = OK is normalized so that λ ∈ OK acts as

λ∗ω = λω for all ω ∈ Ω1
A/H .

For every integer c ≥ 1 prime to Np, let Oc = Z + cOK be the order of K of conductor c, and
denote by IsogN

c (A) the set of elliptic curves A′ with CM by Oc equipped with an isogeny ϕ : A −→ A′

satisfying ker(ϕ) ∩A[N] = {0}.

The semigroup of projective rank one Oc-modules a ⊂ Oc prime to N∩Oc acts on IsogN
c (A) by the

rule

a ∗ (ϕ : A −→ A′) = ϕaϕ : A −→ A′ −→ A′a,

where A′a := A′/A′[a] and ϕa : A′ −→ A′a is the natural projection. It is easily seen that this induces

an action of Pic(Oc) on IsogN
c (A).

Throughout this paper, we shall assume that p = pp splits in K, and let p be the prime of K above p

induced by our fixed embedding Qp

ıp
↪→ Cp. Thus if A′ is an elliptic curve with CM by Oc defined over

the ring class field Hc of K of conductor c, then A′ has ordinary reduction at p, and A′[p] ⊂ A′[p] is
the canonical subgroup. In the following, we will let α′p = αcan : A′ −→ A′/A′[p] denote the projection.

1.6. Generalized Heegner cycles. For any r > 0, let Wr be the Kuga–Sato variety over

X0 := X1(Np)

obtained as the canonical desingularization of the r-fold self-product of the universal generalized elliptic
curve over X0, and define

(1.8) Xr := Wr ×Ar,

where A/H is the elliptic curve with CM by OK fixed in the preceding section.

The variety Xr is fibered over X0, and the fiber over a non-cuspidal point x associated with a pair
(Ex, tx) is identified with Erx ×Ar. Thus for every isogeny ϕ : A −→ A′ in IsogN

c (A), we may consider
the cycle

Υϕ := (Γt
ϕ)r ⊂ (A′ ×A)r ⊂ Xr,

where Γt
ϕ is the transpose of the graph of ϕ, and following [BDP13, §2.3] define the generalized Heegner

cycle associated with ϕ by

(1.9) ∆ϕ := εXΥϕ,

where εX is the idempotent defined in [loc.cit., (2.1.1)] (with X0 in place of their curve C = X1(N)).
By [BDP13, Prop. 2.7], the cycles ∆ϕ are homologically trivial; by abuse of notation, we shall still

denote by ∆ϕ the classes they define in the Chow group CHr+1(Xr)0 with rational coefficients. For
r = 0, set

∆ϕ := (A′, tA′)− (∞),

where tA′ ∈ A′[Np] is a Γ1(Np)-level structure contained in A′[Np], and ∞ is the cusp (Tate(q), ζNp).
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2. A semistable non-crystalline setting

This section is aimed at proving Theorem 2.11 below, which extends the p-adic Gross–Zagier formula
due Bertolini–Darmon–Prasanna [BDP13] in the good reduction case to the semistable non-crystalline
setting.

2.1. p-adic Abel–Jacobi maps. Let F be a finite unramified extension of Qp, denote by OF the
ring of integers of F , and let κ be the residue field. The generalized Kuga–Sato variety Xr, which was
defined in (1.8) as a scheme over Z[1/Np], has semistable reduction at p. In other words, there exits
a proper scheme Xr over OF with generic fiber Xr ×Z[1/Np] F and with special fiber Xr ×OF κ whose
only singularities are divisors with normal crossings.

By the work of Hyodo–Kato [HK94], attached to Xr there are log-crystalline cohomology groups

Hj
log-cris(Xr ×OF κ), which are OF -modules of finite rank equipped with a semilinear Frobenius auto-

morphism Φ and a linear nilpotent monodromy operator N satisfying

NΦ = pΦN.

Moreover, for each choice of a uniformizer of OF there is a comparison isomorphism

Hj
log-cris(Xr ×OF κ)⊗OF F ' H

j
dR(Xr/F )

endowing the algebraic de Rham cohomology groups Hj
dR(Xr/F ) with the structure of filtered (Φ, N)-

modules. In the following, we shall restrict our attention to the middle degree cohomology, i.e., we set
j = 2r + 1.

Let GF := Gal(F/F ) be the absolute Galois group of F , and consider the p-adic GF -representation
given by

Vr := H2r+1
ét (Xr ×F F ,Qp).

Applying Fontaine’s functor Dst to Vr yields another filtered (Φ, N)-module associated to Xr.

Theorem 2.1 (Tsuji). The p-adic GF -representation Vr is semistable, and there is a natural isomor-
phism

Dst(Vr) ' H2r+1
dR (Xr/F )

compatible with all structures. In particular, the assignment V 7→ Dst(V ) induces an isomorphism
Extst(Qp, Vr) ' ExtModF (Φ,N)(F,H

2r+1
dR (Xr/F )).

Here, Extst(Qp, Vr) ' H1
st(F, Vr) := ker(H1(F, Vr) −→ H1(F, Vr⊗Qp

Bst)) is the group of extensions
of the trivial representation Qp by Vr in the category of semistable p-adic GF -representations.

The idempotent εX used in the definition (1.9) of the generalized Heegner cycles ∆ϕ acts as a
projector on the various cohomology groups associated to the variety Xr. Let Vr(r+ 1) be the (r+ 1)-
st Tate twist of Vr, and consider the étale Abel–Jacobi map

AJét
F : CHr+1(Xr)0(F ) −→ ExtRepGF

(Qp, εXVr(r + 1)) = H1(F, εXVr(r + 1))

constructed in [Nek00]. By [loc.cit., Thm. 3.1(ii)], the image of AJét
F lands in H1

st(F, εXVr(r+ 1)), and
hence via the comparison isomorphism (2.1) it can be seen as taking values in the group

ExtModF (Φ,N)(F, εXH
2r+1
dR (Xr/F )(r + 1))

of extensions of F by the twist εXH
2r+1
dR (Xr/F )(r+ 1) in the category of filtered (Φ, N)-modules over

F . This group admits the following explicit description.

Lemma 2.2. Set Hr := H2r+1
dR (Xr/F ) and let n = [F : Qp]. The assignment

{0 −→ εXHr(r + 1) −→ E
ρ−→ F −→ 0}  ηE = ηhol

E (1)− ηfrob
E (1),

where ηhol
E : F −→ Fil0E (resp. ηfrob

E : F −→ EΦn=1,N=0) is a section of ρ compatible with filtrations
(resp. with Frobenius and monodromy) yields an isomorphism

ExtModF (Φ,N)(F, εXHr(r + 1)) ' εXHr(r + 1)/Fil0εXHr(r + 1).

Proof. See [IS03, Lemma 2.1], for example. �
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Define the p-adic Abel–Jacobi map

(2.1) AJF : CHr+1(Xr)0(F ) −→ εXH
2r+1
dR (Xr/F )(r + 1)/Fil0εXH

2r+1
dR (Xr/F )(r + 1)

to be the composite of AJét
F with the isomorphisms of Theorem 2.1 and Lemma 2.1. Since the filtered

pieces Fil1εXH
2r+1
dR (Xr/F )(r) and Fil0εXH

2r+1
dR (Xr/F )(r+1) are exact annihilators under the Poincaré

duality

εXH
2r+1
dR (Xr/F )(r)× εXH2r+1

dR (Xr/F )(r + 1) −→ F,

the target of AJF may be identified with the linear dual (Filr+1εXH
2r+1
dR (Xr/F ))∨.

Recall the coherent sheaf of OX -modules Lr = SymrL on X introduced in Section 1.2, and set

Lr,r := Lr ⊗ SymrH1
dR(A).

With the trivial extension of the Gauss–Manin connection ∇ on Lr to Lr,r, consider the complex

L•r,r : Lr,r
∇−−→ Lr,r ⊗ Ω1

X(logZX),

and define H1
par(X,Lr,r,∇) as in (1.5). By [BDP13, Prop. 2.4], we then have

εXH
2r+1
dR (Xr/F ) ' H1

par(X,Lr,r,∇) = H1
par(X,Lr,∇)⊗ SymrH1

dR(A/F )

and

Filr+1εXH
2r+1
dR (Xr/F ) ' H0(X,ω⊗r ⊗ Ω1

X)⊗ SymrH1
dR(A/F ).

As a result of these identifications, we shall view the p-adic Abel–Jacobi map (2.1) as a map

(2.2) AJF : CHr+1(Xr)0(F ) −→ (H0(X,ω⊗r ⊗ Ω1
X)⊗ SymrH1

dR(A/F ))∨.

Moreover, if ∆ = εX∆ ∈ CHr+1(Xr)0(F ) is the class of a cycle in the image of the idempotent εX
supported on the fiber of Xr −→ X over a point P ∈ X(F ), we see that AJF (∆) may be computed
using the following recipe. Consider the commutative diagram with Cartesian squares:

0 // H1
par(X,Lr,r,∇)(r + 1) // D∆

//

��

F

cl∆

��

// 0

0 // H1
par(X,Lr,r,∇)(r + 1) // H1

par(X r P,Lr,r,∇)(r + 1) // Lr,r(P )(r) // 0,

where the rightmost vertical map is defined by sending 1 ∈ F to the cycle class clP (∆). Then AJF (∆)
is given by the linear functional

AJF (∆) = 〈−, η∆〉,
where η∆ = ηhol

∆ − ηfrob
∆ := ηhol

D∆
(1)− ηfrob

D∆
(1) is the “tangent vector” associated as in Lemma 2.2 to the

extension D∆ as filtered (Φ, N)-modules, and

(2.3) 〈, 〉 : H1
par(X,Lr,r,∇)(r)×H1

par(X,Lr,r,∇)(r + 1) −→ F

is the Poincaré duality.

2.2. Rigid cohomology. Recall the rigid spaces Z∞ ⊂ W∞, Z0 ⊂ W0 introduced in Section 1.1. Fix
a collection of points {P1, . . . , Pt} of X(F ) contained in Z∞, containing all the cusps of Z∞, and such
that redp(Pi) 6= redp(Pj) for i 6= j. Let wp be the automorphism of X defined in terms of moduli by

(2.4) wp(E, t, α) = (α(E), α(t), α∨),

where α∨ is the isogeny dual to α, and set P ∗j := wpPj . Then the points P ∗j factor through Z0, and
the set

S := {P1, . . . , Pt, P
∗
1 , . . . , P

∗
t }

contains all the cusps of X. Since the points Q ∈ S reduce to smooth points Q̄ in the special fiber,
the spaces D(Q) := red−1

p (Q̄) are conformal to the open disc in D(0; 1) in Cp. Fix isomorphisms
hQ : D(Q) −→ D(0; 1) mapping the point Q to 0, and for a collection of real numbers rQ < 1 consider
the annuli

(2.5) VQ := {x ∈ D(Q) : rQ < |hQ(x)|p < 1}.
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Denote by Lrig
r,r the sheaf for the rigid analytic topology on X(Cp) defined by the algebraic vector

bundle Lr,r. If V ⊂ X(Cp) is a connected wide open contained in Y (Cp), the Gauss–Manin connection
yields a connection

∇ : Lrig
r,r|V −→ Lrig

r,r|V ⊗ Ω1
V ,

and similarly as in (1.4) we define the i-th de Rham cohomology of V attached to Lrig
r,r by

Hi(L•r,r|V) = Hi
dR(V,Lrig

r,r,∇) := Hi(Lrig
r,r|V

∇−−→ Lrig
r,r|V ⊗ Ω1

V).

In particular, if V is a basic wide open, then

H1(L•r,r|V) '
Lrig
r,r(V)⊗ Ω1

V

∇Lrig
r,r(V)

,

and H0(L•r,r|V) ' Lrig
r,r(V)∇=0 is the space of horizontal sections of Lrig

r,r over V. For r = 0, we set

H1(L•r,r|V) = H1(V) := Ω1
V/dOV , H0(L•r,r|V) = H0(V) := Od=0

V ,

where d : OV −→ Ω1
V is the differentiation map.

In terms of the admissible cover of X(Cp) by basic wide opens described in Section 1.1, the classes
in H1

dR(X(Cp),Lrig
r,r,∇) may be represented by hypercocycles (ω0, ω∞; fW), where ω0 and ω∞ are Lrig

r,r-

valued differentials onW0 andW∞, respectively, and fW ∈ Lrig
r,r(W) is such that (ω∞−ω0)|W = ∇fW ;

and two hypercocycles represent the same class if their difference is of the form (∇f0,∇f∞; (f∞−f0)|W)
for some f0 ∈ Lrig

r,r(W0) and f∞ ∈ Lrig
r,r(W∞).

If V is a wide open annulus, associated with an orientation of V there is a p-adic annular residue

(2.6) resV : Ω1
V −→ Cp

defined by expanding ω =
∑
n anT

n dT
T ∈ Ω1

V with respect to a fixed uniformizing parameter T of
compatible with the orientation, and setting resV(ω) := a0 (see [Col89, Lemma 2.1]). Combined with
the natural pairing

〈, 〉 : Lrig
r,r(V)× Lrig

r,r(V)⊗ Ω1
V −→ Ω1

V

induced by the Poincaré duality (1.3) on Lr (extended to Lr,r in the obvious manner), we obtain a
higher p-adic annular residue map

(2.7) ResV : Lrig
r,r(V)⊗ Ω1

V −→ Lrig
r,r(V)∨

by setting

ResV(ω)(α) = resV〈α, ω〉
for every Lrig

r,r-valued differential ω on V and every section α ∈ Lrig
r,r(V). Since resV clearly descends to

a map H1(V) = Ω1
V/dOV −→ Cp, by composing ResV with the projection Lrig

r,r(V)∨ −→ H0(L•r,r|V)∨

it is easily seen from the Leibniz rule that we obtain a well-defined map

(2.8) ResV : H1(L•r,r|V) −→ H0(L•r,r|V)∨.

If VQ ⊂ D(Q) is the annulus attached to a non-cuspidal point Q ∈ S, it will be convenient, following
the discussion after [BDP13, Cor. 3.7], to view ResVQ as taking values on the fiber Lr,r(Q), using the
sequence of identifications

(2.9) H0(L•r,r|VQ)∨ = (H0(D(Q),Lr,r)∇=0)∨ = Lr,r(Q)∨ = Lr,r(Q)

arising from “analytic continuation”, the choice of an “initial condition”, and the self-duality of Lr,r(Q),
respectively. (See loc.cit. for the case of a cusp Q ∈ S.)

For a supersingular annulus Ax, the vector space H0(L•r,r|Ax) is equipped with a pairing 〈, 〉Ax ,
arising from an identification (similar to (2.9)) with the de Rham cohomology of a supersingular
elliptic curve in characteristic p corresponding to x ∈ SS. Moreover, since H0(Ax) ' Cp, the residue
map (2.6) yields an isomorphism resAx : H1(Ax) −→ H0(Ax), and using a trivialization of Lrig

r,r|Ax it
may be extended to an isomorphism

(2.10) ResAx : H1(L•r,r|Ax) ' H0(L•r,r|Ax)
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(see [Col94, Prop. 7.1]). It is then easily checked that (2.8) and (2.10) correspond to each other under
the identification H0(L•r,r|Ax)∨ = H0(L•r,r|Ax) defined by 〈, 〉Ax .

Let S be a set of points as introduced above, and define

W]
∞ := Z∞ r

⋃
Q∈S∩Z∞

D(Q) r VQ, U :=W]
∞ ∪W

]
0,

where W]
0 := wpW]

∞, and U := X r S. The restriction of an Lr,r-valued differential on X which is
regular on U defines a section of Lrig

r,r ⊗ Ω1
X over U . As argued in the proof of [Col94, Prop. 7.2], this

yields an isomorphism

H1
dR(U,Lr,r,∇) ' H1(L•r,r|U )

between algebraic and rigid de Rham cohomology.

Proposition 2.3. Let the notations be as before.

(1) A class κ ∈ H1(L•r,r|U ) belongs to the image of H1
par(X,Lr,r,∇) under restriction

H1
par(X,Lr,r,∇) −→ H1

dR(U,Lr,r,∇) ' H1(L•r,r|U )

if and only if ResVQ(κ) = 0 for all Q ∈ S.

(2) Let V be such that {U, V } is an admissible covering of X. If κω, κη ∈ H1
par(X,Lr,r,∇) are

represented by the hypercocycles (ωU , ωV ;ωU∩V ), (ηU , ηV ; ηU∩V ) respectively, with respect to
this covering, then the value 〈κω, κη〉 under the Poincaré duality (2.3) is given by

〈κω, κη〉 =
∑
Q∈S

resVQ〈Fω,Q, ηU 〉,

where Fω,Q is any local primitive of ωU on VQ, i.e., such that ∇Fω,Q = ωU |VQ .

Proof. The first assertion follows from the same argument as in [BDP13, Prop. 3.8], and the second
is [Col94, Lemma 7.1]. �

2.3. Coleman’s p-adic integration. In this section, we give an explicit description of the filtered
(Φ, N)-module structure on H1

par(X,Lr,r,∇), following the work of Coleman–Iovita [CI10]. We state

the results for Lr, leaving their trivial extension to Lr,r = Lr ⊗ SymrH1
dR(A) to the reader.

As recalled in Section 1.4, for every pair (Ex, tx) corresponding to a point x ∈ X1(N)( p
p+1 ) there

is a canonical p-isogeny αcan : Ex 7→ Ex/can(Ex), where can(Ex) ⊂ Ex[p] is the canonical subgroup.
The map V : X1(N)( 1

p+1 ) −→ X1(N)( p
p+1 ) defined in terms of moduli by

(2.11) V (Ex, tx) = (αcan(Ex), αcan(tx))

is then a lift of the absolute Frobenius on X1(N)Fp . Letting s1 : X1(N)( p
p+1 ) −→ W∞ be defined by

(Ex, tx) 7→ (Ex, tx, can(Ex)), and letting W ′∞ ⊂ W∞ be the image of X1(N)( 1
p+1 ) under s1, the map

φ∞ defined by the commutativity of the diagram

W ′∞
φ∞ //

π1

��

W∞

X1(N)( 1
p+1 )

V // X1(N)( p
p+1 ),

s1

OO

is therefore a lift of the absolute Frobenius on XFp .

As explained in [Col94, p.41] (see also the more detailed discussion in [Col96, p.218]), the canonical
subgroup yields a horizontal morphism Fr∞ : φ∗∞Lr −→ Lr|W′∞ . Define the Frobenius endomorphism

Φ∞ on H1(L•r |W∞) by the composite map

H1(L•r |W∞) '
Lrig
r ⊗ Ω1

W∞(W∞)

∇Lrig
r (W∞)

(Fr∞⊗id)φ∗∞−−−−−−−−→
Lrig
r ⊗ Ω1

W∞(W ′∞)

∇Lrig
r (W ′∞)

' H1(L•r |W∞),
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where the last isomorphism is given by restriction (see [Col94, Prop. 10.3]). Setting W ′0 := wpW ′∞ ⊂
W0 = wpW∞ and φ0 := w−1

p φ∞wp, where wp is the automorphism of X given by (2.4), we similarly

define a Frobenius endomorphism Φ0 of H1(L•r |W0).

Theorem 2.4 (Coleman). Let f = q+
∑∞
n=2 an(f)qn ∈ Sr+2(Γ0(Np)) be a p-new eigenform of weight

r+ 2 ≥ 2, and let ωf ∈ H0(X,ωr⊗Ω1
X) ⊂ H1

par(X,Lr,∇) be the associated differential. Then for each
? ∈ {∞, 0} there exists a locally analytic section Ff,? of Lr on W? such that

(i) ∇Ff,? = ωf |W?
; and

(ii) Ff,? − ap(f)
pr+1 φ

∗
?Ff,? is rigid analytic on W ′?.

Moreover, Ff,? is unique modulo H0(L•r |W?
).

Proof. This follows from the discussion in [Col94, §11]. By [loc.cit, Lemma 11.1] we have Φ∞ = pUp
on the image of Sr+2(X)p−new in H1(L•r |W∞). Since U2

p = pr〈p〉 on the former space and we have the
relations Upωf = ap(f)ωf and 〈p〉ωf = ωf by hypothesis, it follows that the polynomial

P (T ) = 1− ap(f)

pr+1
T

is such that P (Φ∞)([ωf |W∞ ]) = 0, and hence also P (Φ0)([ωf |W0
]) = 0. The result thus follows from

[Col94, Thm. 10.1]. �

A locally analytic section Ff,? as in Theorem 2.4 is called a Coleman primitive of f on W?.

Remark 2.5. For r > 0, the spaces H0(L•r |W?
) are trivial, and so the Coleman primitives Ff,? are

unique. On the other hand, for r = 0 we have H0(L•r |W?
) ' Cp, and so the Ff,? are unique modulo a

global constant on W?.

2.4. Frobenius and monodromy. Denote by ι the inclusion of any rigid subspace of X into X.
Associated with the exact sequence of complexes of sheaves on X

0 −→ L•r −→ ι∗(L•r |W0
)⊕ ι∗(L•r |W∞)

ρ∞−ρ0−−−−→ ι∗(L•r |W) −→ 0,

there is a Mayer–Vietoris long exact sequence

· · · −→ H0
par(L•r |W0tW∞)

β0

−−−→ H0
par(L•r |W)

δ−−→ H1
par(X,Lrig

r ,∇) −→

−→ H1
par(L•r |W0tW∞)

β1

−−−→ H1
par(L•r |W) −→ · · ·

in hypercohomology. By [Col94, §10] and the discussion in the preceding section, each of the non-central
spaces in the resulting short exact sequence

(2.12) 0 −→
H0

par(L•r |W)

β0(H0
par(L•r |W0tW∞))

δ−−−→ H1
par(X,Lr,∇) −→ H1

par(L•r |W0tW∞)β
1=0 −→ 0

is equipped with a Frobenius endomorphism. Therefore, to define a Frobenius action on H1
par(X,Lr,∇)

it suffices to construct a splitting of (2.12).

As shown in [Col94, §A.5], this may be obtained as follows. Assume that κ ∈ H1
par(X,Lr,∇) is

represented by the hypercocycle (ω0, ω∞; fW) with respect to the covering {W0,W∞} of X. Since
W =

⋃
x∈SS Ax is the union of the supersingular annuli, we may write fW = {fx}x∈SS with fx ∈

Lrig
r (Ax). The assignment

(2.13) Ax 7−→ Fω∞ |Ax − Fω0
|Ax − fx,

where Fω? is a Coleman primitive of ω? onW?, defines a horizontal section of Lrig
r onW, and its image

modulo β0(H0
par(L•r |W0tW∞)) is independent of the chosen Fω? (see Remark 2.5). It is easily checked

that sδ = id, and hence we may define a Frobenius operator Φ on H1
par(X,Lr,∇) by requiring that its

action be compatible with the resulting splitting of (2.12).

On the other hand, define the monodromy operator N on H1
par(X,Lr,∇) by the composite map

H1
par(X,Lr,∇) −→ H1(L•r |W)

⊕
x∈SS ResAx−−−−−−−−−→ H0(L•r |W)

δ−−→ H1
par(X,Lr,∇),

where ResAx are the p-adic residue maps (2.10).
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Lemma 2.6. Let κ ∈ H1
par(X,Lr,∇). Then:

(i) For r > 0, N(κ) = 0 ⇐⇒ ResAx(κ) = 0 for all x ∈ SS;
(ii) For r = 0, N(κ) = 0 ⇐⇒ there is C ∈ Cp such that resAx(κ) = C for all x ∈ SS.

Proof. This follows immediately from the exact sequence (2.12) and the determination of the spaces
H0(L•r |W?) recalled in Remark 2.5. �

By the main result of [CI10], the operators Φ and N on H1
par(X,Lr,∇) defined above agree with

the corresponding structures deduced from the comparison isomorphism of Theorem 2.1.

2.5. p-adic Gross–Zagier formula. Fix a finite extension F/Qp containing the image of the Hilbert

class field H of K under our fixed embedding Q
ıp
↪→ Cp, and let c ≥ 1 be an integer prime to Np.

Proposition 2.7. Let f = q+
∑∞
n=2 an(f)qn ∈ Sr+2(Γ0(Np)) be a p-new eigenform of weight r+2 ≥ 2.

Let ϕ : A −→ A′ be an isogeny in IsogN
c (A), let PA′ ∈ X(F ) be the point defined by (A′, tA′), and let

∆ϕ be generalized Heegner cycle associated to ϕ. Then for all α ∈ SymrH1
dR(A/F ), we have

AJF (∆ϕ)(ωf ∧ α) = 〈Ff,∞(PA′) ∧ α, clPA′ (∆ϕ)〉,

where Ff,∞ is the Coleman primitive of ωf ∈ H0(X,ω⊗r ⊗ Ω1
X) on W∞ (vanishing at ∞ if r = 0),

and the pairing on the right-hand side is the natural one on Lr,r(PA′).

Proof. Following the recipe described at the end of Section 2.1, we have

(2.14) AJF (∆ϕ)(ωf ∧ α) = 〈ωf ∧ α, ηhol
∆ − ηfrob

∆ 〉,

where:

• ηhol
∆ is a cohomology class represented by a section (still denoted ηhol

∆ ) of Lr,r ⊗ Ω1
X(logZX)

over U having residue 0 at the cusps, and with a simple pole at PA′ with residue clPA′ (∆ϕ);

• ηfrob
∆ is section of Lrig

r,r⊗Ω1
X over U having the same residues as ηhol

∆ , and satisfying N(ηfrob
∆ ) = 0

and

(2.15) Φηfrob
∆ = ηfrob

∆ +∇G,

for some rigid section G of Lrig
r,r on a strict neighborhood of (Z0 ∩W]

0) ∪ (Z∞ ∩W]
∞) in U .

By the formula for the Poincaré pairing in Proposition 2.3, equation (2.14) may be rewritten as

AJF (∆ϕ)(ωf ∧ α) =
∑
Q∈S

resVQ〈Ff ,Q ∧ α, ηhol
∆ − ηfrob

∆ 〉,(2.16)

where Ff ,Q ∈ Lr(VQ) is an arbitrary local primitive of ωf on the annulus VQ. (Note that here we are
using the fact that the connection ∇ on Lr,r = Lr⊗SymrH1

dR(A/F ) is defined from the Gauss–Manin
connection on Lr by extending it trivially on the second factor.)

If Ff,∞ is a Coleman primitive of ωf on W∞, then F
[p]
f,∞ := Ff,∞ − ap(f)

pr+1 φ
∗
∞Ff,∞ is rigid analytic

on W ′∞ ⊂ W∞ by Theorem 2.4, and hence

(2.17)
∑

Q∈S∩W∞

resVQ〈F
[p]
f,∞ ∧ α, η

frob
∆ 〉+

∑
x∈SS

resAx〈F
[p]
f,∞ ∧ α, η

frob
∆ 〉 = 0

by the Residue Theorem (see [BDP13, Thm. 3.8]). Since N(ηfrob
∆ ) = 0, Lemma 2.6 implies that we can

write ηfrob
∆ = ∇Gx for some rigid section Gx ∈ Lrig

r,r(Ax) on each supersingular annulus Ax, and hence

d〈F [p]
f,∞ ∧ α,Gx〉 = 〈∇F [p]

f,∞ ∧ α,Gx〉+ 〈F [p]
f,∞ ∧ α, η

frob
∆ 〉.

In particular, the right-hand side in the last equality has residue 0, and hence

(2.18) resAx〈F
[p]
f,∞ ∧ α, η

frob
∆ 〉 = −resAx〈∇F

[p]
f,∞ ∧ α,Gx〉,

Plugging (2.18) into (2.17), we arrive at

(2.19)
∑

Q∈S∩W∞

resVQ〈F
[p]
f,∞ ∧ α, η

frob
∆ 〉 −

∑
x∈SS

resAx〈∇F
[p]
f,∞ ∧ α, η

frob
∆ 〉 = 0.
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An entirely parallel reasoning with W0 in place of W∞ yields a proof of the equality

(2.20)
∑

Q∈S∩W0

resVQ〈F
[p]
f,0 ∧ α, η

frob
∆ 〉+

∑
x∈SS

resAx〈∇F
[p]
f,∞ ∧ α, η

frob
∆ 〉 = 0,

where Ff,0 is a Coleman primitive of ωf on W0, and where we used the fact that the supersingular
annuli acquire opposite orientations with respect toW∞ andW0. Combining (2.19) and (2.20), we get

(2.21) 0 =
∑
Q∈S

resVQ〈F
[p]
f,Q ∧ α, η

frob
∆ 〉 =

(
1− ap(f)

pr+1

)∑
Q∈S

resVQ〈Ff,Q ∧ α, ηfrob
∆ 〉,

where F
[p]
f,Q denotes F

[p]
f,∞ or F

[p]
f,0 depending on whether Q ∈ W∞ or W0, respectively, using (2.15) for

the second equality (see the argument [BDP13, p.1079]).
Since ap(f)2 = pr, this shows that there is no contribution from ηfrob

∆ in (2.16). On the other hand,
since by the choice of ηhol

∆ we easily have∑
Q∈S

resVQ〈Ff,Q ∧ α, ηhol
∆ 〉 = 〈Ff,∞(PA′) ∧ α, clPA′ (∆ϕ)〉

(see [BDP13, Lemma 3.19]), the result follows. �

Let (A, tA, ωA) be the CM triple introduced in Section 1.5, and let ηA ∈ H1
dR(A/F ) be the class

determined by the conditions

λ∗ηA = λρηA for all λ ∈ OK , and 〈ωA, ηA〉A = 1,

where λ 7→ λρ denotes the action of the non-trivial automorphism of K, and 〈, 〉A is the cup product
pairing on H1

dR(A/F ). If (A′, tA′ , ωA′) is the CM triple induced from (A, tA, ωA) by an isogeny ϕ ∈
IsogN

c (A), we define ηA′ ∈ H1
dR(A′/F ) by the analogous recipe. For the integers j with 0 ≤ j ≤ r, the

classes ωjA′η
r−j
A′ defined in [BDP13, (1.4.6)] then form a basis of SymrH1

dR(A′/F ).

Lemma 2.8. Let the notations be as in Proposition 2.7. Then, for each 0 ≤ j ≤ r, we have

AJF (∆ϕ)(ωf ∧ ωjAη
r−j
A ) = deg(ϕ)j · 〈Ff,∞(PA′), ω

j
A′η

r−j
A′ 〉A′ ,

where Ff,∞ is the Coleman primitive of ωf ∈ H0(X,ω⊗r ⊗ Ω1
X) on W∞ (vanishing at ∞ if r = 0),

and the pairing 〈, 〉A′ on the right-hand side is the natural one on SymrH1
dR(A′/F ).

Proof. This follows from Proposition 2.7 as in [BDP13, Lemma 3.22]. �

Recall that if f ∈ Sk(X) is a cusp form of weight k and level Γ, then f |W∞ defines a p-adic modular
form fp ∈Mk(N) of weight k and tame level N . Evaluated on a CM triple (A′, tA′ , ωA′) of conductor
c prime to p, we then have

fp(A
′, tA′ , ωA′) = f(A′, tA′ , α

′
p, ωA′),

where α′p : A′ −→ A′/A′[p] is the p-isogeny defined by the canonical subgroup of A′ (see Section 1.5).
By abuse of notation, in the following we will denote fp also by f . The map V defined in (2.11) yields
an operator V : Mk(N) −→ Mk(N) on p-adic modular forms whose effect on q-expansions is given
by q 7→ qp. Let ap(f) be the Up-eigenvalue of f , and define the p-depletion of f by

f [p] := f − ap(f)V f

Letting d = q ddq :Mk(N) −→Mk+2(N) be the Atkin–Serre operator, for any integer j the limit

d−1−jf [p] := lim
t→−1−j

dtf [p]

is a p-adic modular form of weight k − 2− j and tame level N (see [Ser73, Thm. 5]).

Lemma 2.9. Let the notation be as in Proposition 2.7. Then for each 0 ≤ j ≤ r there exists a locally
analytic p-adic modular form Gj of weight r − j and tame level N such that

(2.22) 〈Ff,∞(PA′), ω
j
A′η

r−j
A′ 〉A′ = Gj(A

′, tA′ , ωA′),

where Ff,∞ is the Coleman primitive of ωf on W∞ (vanishing at ∞ if r = 0), and

(2.23) Gj(A
′, tA′ , ωA′)−

ap(f)

pr−j+1
Gj(p ∗ (A′, tA′ , ωA′)) = j!d−1−jf [p](A′, tA′ , ωA′).
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Proof. The construction of Gj as the “j-th component” of Ff,∞ is given in [BDP13, p.1083], and (2.22)
then follows from the definition. On the the other hand, (2.23) follows from the same calculations as
in [loc.cit, Lemma 3.23 and Prop. 3.24]. �

We now relate the expression appearing in the right-hand side of Proposition 2.7 to the value of a
certain p-adic L-function associated to f .

Recall that (A, tA, ωA) denotes the CM triple introduced in Section 1.5, and fix an elliptic curve

A0/Hc with EndHc(Ac) ' Oc. The curve A0 is related to A by an isogeny ϕ0 : A −→ A0 in IsogN
c (A),

and we let (A0, t0, ω0) be the induced triple. Since we assume that p = pp splits in K, we may fix an
isomorphism µp∞ ' A0[p∞] of p-divisible groups, where A0/OCp is a good integral model of A0. This

amounts to the choice of an isomorphism ı : Â0 −→ Ĝm of formal groups, and we let Ωp ∈ C×p be the
p-adic period defined by the rule

ω0 = Ωp · ωcan,

where ωcan := ı∗ dtt for the standard coordinate t on Ĝm.

Finally, consider the set Σ+
k,c of algebraic Hecke characters χ : K×\A×K −→ C× of conductor c,

infinity type (k + j,−j) with j ≥ 0 (with the convention in [BDP13, p.1089]), and such that

χ|A×Q = Nk,

where N is the norm character on A×Q, and for every χ ∈ Σ+
k,c set

(2.24) Lp(f)(χ) :=
∑

[a]∈Pic(Oc)

χ−1(a)N(a)−j · djf [p](a ∗ (A0, t0, ωcan)),

and define

Lalg(f, χ−1) := w(f, χ)−1C(f, χ, c) · L(f, χ−1, 0)

Ω2(k+2j)
,

where w(f, χ) and C(f, χ, c) are the constants defined in [BDP13, (5.1.11)] and [loc.cit., Thm. 4.6],
respectively, Ω is the complex period in [loc.cit., (5.1.16)], and L(f, χ−1, 0) is the central critical value
of the Rankin–Selberg L-function L(f × θχ−1 , s) of f and the theta series of χ−1.

As explained in [BDP13, p.1134], the set Σ+
k,c may be endowed with a natural p-adic topology, and

we let Σ̂k,c denote its completion.

Theorem 2.10. The assignment χ 7→ Lp(f)(χ) extends to a continuous function on Σ̂k,c and satisfies
the following interpolation property. If χ ∈ Σ+

k,c has infinity type (k + j,−j), with j ≥ 0, then

Lp(f)(χ)2

Ω
2(k+2j)
p

= (1− ap(f)χ−1(p̄))2 · Lalg(f, χ−1, 0).

Proof. See Theorem 5.9, Proposition 5.10, and equation (5.2.4) of [BDP13], noting that βp = 0 here,
since f has level divisible by p. �

Let Σ−k,c be the set of algebraic Hecke characters of K of conductor c and infinity type (k−1−j, 1+j),

with j ≥ 0. Even though Σ+
k,c ∩Σ−k,c = ∅, any character in Σ−k,c can be written as a limit of characters

in Σ+
k,c (see [BDP13, p.1137]). Thus for any χ ∈ Σ−k,c, the value Lp(f)(χ) is defined by continuity.

The next result extends the p-adic Gross–Zagier formula of [BDP13, Thm. 5.13] to the semistable
non-crystalline setting.

Theorem 2.11. Let f = q+
∑∞
n=2 an(f)qn ∈ Sk(Γ0(Np)) be a p-new eigenform of weight k = r+2 ≥ 2,

and suppose that χ ∈ Σ−k,c has infinity type (r + 1− j, 1 + j), with 0 ≤ j ≤ r. Then

Lp(f)(χ)

Ωr−2j
p

= (1− ap(f)χ−1(p̄)) ·
(
c−j

j!

∑
[a]∈Pic(Oc)

χ−1(a)N(a) ·AJF (∆ϕaϕ0)(ωf ∧ ωjAη
r−j
A )

)
.
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Proof. The proof of [BDP13, Prop. 5.10] shows that the expression (2.24) extends in the obvious way
to a character χ as in the statement, yielding

(2.25)
Lp(f)(χ)

Ωr−2j
p

=
∑

[a]∈Pic(Oc)

χ−1(a)N(a)1+j · d−1−jf [p](a ∗ (A0, t0, ω0)).

On the other hand, by Lemma 2.9 we have

(2.26) j!d−1−jf [p](a ∗ (A0, t0, ω0)) = Gj(a ∗ (A0, t0, ω0))− ap(f)

pr−j+1
Gj(pa ∗ (A0, t0, ω0)).

Substituting (2.26) into (2.25), summing over [a] ∈ Pic(Oc), and noting that

χ(p)p−1−j = χ−1(p)pr+1−j ,

we see that

(2.27)
Lp(f)(χ)

Ωr−2j
p

=
(
1− ap(f)χ−1(p)

)
·
(

1

j!

∑
[a]∈Pic(Oc)

χ−1(a)N(a)1+j ·Gj(a ∗ (A0, t0, ω0))

)
.

Finally, since the isogeny ϕaϕ0 : (A, tA, ωA) −→ a∗(A0, t0, ω0) has degree cN(a), combining Lemma 2.8
and Lemma 2.9 we have

(2.28) Gj(a ∗ (A0, t0, ω0)) = c−jN(a)−j ·AJF (∆ϕaϕ0)(ωf ∧ ωjAη
r−j
A ),

and substituting (2.28) into (2.27), the result follows. �

3. Main result

In this section we prove the main result of this paper, giving an “exceptional zero formula” for the
specializations of Howard’s big Heegner points at exceptional primes in the Hida family.

3.1. Heegner points in Hida families. We begin by briefly reviewing the constructions of [How07b],
which we adapt to our situation, referring the reader to [loc.cit., §2] for further details.

Recall that p - N . Let f =
∑∞
n=1 an(f)qn ∈ Sk(Γ0(Np)) be a newform, fix a finite extension L of

Qp with ring of integers OL containing the Fourier coefficients of f , and let

ρf : GQ := Gal(Q/Q) −→ AutL(Vf ) ' GL2(L)

be the Galois representation associated to f . Also, let K = Q(
√
−DK) be an imaginary quadratic

field as in §1.5. For the rest of this paper, these will be subject to the following further hypotheses.

Assumptions 3.1. (1) f is ordinary at p, i.e., ıp(ap(f)) is a p-adic unit;
(2) ρf is absolutely irreducible;
(3) ρf is ramified at every prime q dividing (DK , N);
(4) p - hK := |Pic(OK)|, the class number of K.

Note that by [How07b, Lemma 2.15], the first assumption forces the weight of f to be k = 2, which
will thus be assumed for the rest of this paper.

Definition 3.2. Set ΛOL := OL[[1+pZp]]. For any ΛOL -algebra A, let X aOL(A) be the set of continuous

OL-algebra homomorphisms ν : A −→ Qp such that the composition

1 + pZp −→ Λ×OL −→ A×
ν−−→ Q

×
p

is given by γ 7→ γkν−2, for some integer kν ≥ 2 with kν ≡ 2 (mod 2(p− 1)) called the weight of ν.

Since f is ordinary at p, by [Hid86, Cor. 1.3]) there exists a local reduced finite integral extension
I of ΛOL , and a formal q-expansion f =

∑∞
n=1 anq

n ∈ I[[q]] uniquely characterized by the following
property. For every ν ∈ X aOL(I) of weight kν > 2, there exists a newform fν ∈ Skν (Γ0(N)) such that

(3.1) ν(f) = fν(q)− pkν−1

ν(ap)
fν(qp),

and we there exists a unique νf ∈ X aOL(I) of weight 2 such that νf (f) = f(q).
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By [Hid86, Thm. 1.2], there is a free I-module T of rank 2 equipped with a continuous action

ρf : GQ −→ AutI(T) ∼= GL2(I)

such that for every ν ∈ X aOL , ν(ρf ) is isomorphic to the Galois representation ρfν : GQ −→ GL2(Qp)
associated to fν . Moreover, by [Wil88, Thm. 2.2.2], if Dp ⊂ GQ is the decomposition group of any

place P of Q above p, there exists an exact sequence of I[Dp]-modules

(3.2) 0 −→ F+T −→ T −→ F−T −→ 0

with F±T free of rank 1 over I, and with the Dp-action on F−T given by the unramified character

sending an arithmetic Frobenius Fr−1
p to ap ∈ I×.

Following [How07b, Def. 2.1.3], define the critical character Θ : GQ −→ I× by the composite

(3.3) Θ : GQ
εcyc−−→ Z×p

〈·〉−−→ 1 + pZp
γ 7→γ1/2

−−−−−→ 1 + pZp −→ Λ×O −→ I×,

where εcyc is the p-adic cyclotomic character, 〈·〉 denotes the projection to the 1-units in Zp. Let I† be
the free I-module of rank 1 where GQ acts via Θ−1, and set

T† := T⊗I I†

equipped with the diagonal Galois action. Then, if for every ν ∈ X aOL(I) we let Vfν be a representation

space for ρfν , then ν(T†) := T†⊗I,ν ν(I) is isomorphic to a lattice in the self-dual Tate twist Vfν (kν/2)
of Vfν (see [Oht95, Thm. 1.4.3] and [NP00, (3.2.4)]).

Let K∞ be the anticyclotomic Zp-extension of K, and for each n ≥ 0, let Kn be the subfield of K∞
with Gal(Kn/K) ' Z/pnZ.

Theorem 3.3 (Howard). There is a system of “big Heegner points”

Z∞ = {Zn}n≥0 ∈ H1
Iw(K∞,T

†) := lim←−
n

H1(Kn,T
†)

with the following properties.

(1) For each n, Zn belongs to the Greenberg Selmer group SelGr(Kn,T
†) of [How07b, Def. 2.4.2].

In particular, for every prime q of K above p, we have

locq(Z∞) ∈ ker
(
H1

Iw(K∞,q,T
†) −→ H1

Iw(K∞,q,F
−T†)

)
for the natural map induced by (3.2).

(2) If Z∗∞ denotes the image of Z∞ under the action of complex conjugation, then

Z∗∞ = w · Z∞
for some w ∈ {±1}.

Proof. In the following, all the references are to [How07b]. The construction of Z∞ is given in §§2.2, 3.3
and the proof of (1) is given in Prop. 2.4.5. For the proof of (2), we need to briefly recall the definition
of Zn. Let Hpn+1 be the ring class field of K of conduction pn+1, and note that it contains Kn. By

Prop. 2.3.1, the “big Heegner points” Xpn+1 ∈ H1(Hpn+1 ,T†) safisfy CorHpn+1/Hpn (Xpn+1) = Up ·Xpn ,

and hence the classes

(3.4) Zn := U−np · CorHpn+1/Kn(Xpn+1)

are compatible under corestriction. Denoting by τ the image of a class under the action of complex
conjugation and using Prop. 2.3.5, we find that

CorHpn+1/Kn(Xpn+1)τ =
∑

σ∈Gal(Hpn+1/Kn)

Xτσpn+1(3.5)

=
∑

σ∈Gal(Hpn+1/Kn)

Xσ
−1τ
pn+1

= w · CorHpn+1/Kn(Xpn+1)

for some w ∈ {±1}. Combining (3.4) and (3.5), the result follows. �
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3.2. Two-variable p-adic L-functions. As in the preceding section, let f ∈ S2(Γ0(Np)) be a new-
form split multiplicative at p, and let f ∈ I[[q]] be the Hida family passing through f . Recall the spaces

of characters Σ±k,c and Σ̂k,c introduced in Section 2.5. In the following, we only consider the case c = 1,
which will henceforth be suppressed from the notation.

By [BDP13, Prop. 5.10] (see also Theorem 2.10), for every ν ∈ X aOL(I) the assignment

χ 7−→ Lp(fν)(χ) :=
∑

[a]∈Pic(OK)

χ−1(a)N(a)−j · djf [p]
ν (a ∗ (A0, t0, ωcan))

extends to a continuous function on Σ̂kν . Using the explicit expression for these values, it is easy
to show the existence of a two-variable p-adic L-function interpolating Lp(fν) for varying ν. For the
precise statement, denote by h = hK the class number of K (which we assume is prime to p), and let
φo be the unramified Hecke character defined on fractional ideals by the rule

(3.6) φo(a) = α/α, where (α) = ah.

Assume that OL contains the values of φo, and denote by 〈φo〉 the composition of φo with the projection
onto the Zp-free quotient of O×L , which then is valued in 1 + pZp, and define ξ : K×\A×K −→ I× by

(3.7) ξ : K×\A×K
φo−−−→ O×L

〈·〉−−→ 1 + pZp
γ 7→γ1/2h

−−−−−−→ 1 + pZp −→ Λ×OL −→ I×.

Similarly, recall the critical character Θ : GQ −→ I× from (3.3), and define χ : K×\A×K −→ I× by

χ(x) = Θ(recQ(NK/Q(x))),

where recQ : A×Q −→ Gal(Qab/Q) is the geometrically normalized global reciprocity map. Let Γ∞ :=

Gal(K∞/K) be the Galois group of the anticyclotomic Zp-extension of K, and denote by X aOL(Γ∞)

the set of continuous OL-algebra homomorphisms OL[[Γ∞]] −→ Q×p induced by a character φ of the

form φ = φ
`φ/h
o for some integer `φ ≥ 0 with `φ ≡ 0 (mod p− 1). Finally, let

NK : K×\A×K
NK/Q−−−−→ Q×\A×Q

N−−−→ C×

be the norm character of K, and for every ν ∈ X aOL(I), let ξν and χν be the composition of ξ and χ
with ν, respectively.

Theorem 3.4. The exists a continuous function Lp,ξ(f) on X aOL(I) × X aOL(Γ∞) such that for every
ν ∈ X aOL(I) we have

Lp,ξ(f)(ν, φ) = Lp(fν)(φξνχνNK)

as functions of φ ∈ X aOL(Γ∞).

Proof. See [Cas14, Thm. 1.4]. (Note that if (ν, φ) ∈ X aOL(I)×X aOL(Γ∞), then φξνχνNK is an unram-
ified Hecke character of infinity type (kν + `φ − 1, 1− `φ), thus lying in the domain of Lp(fν).) �

3.3. Ochiai’s big logarithm maps. By our assumption that p - h = hK , the extension K∞/K is
totally ramified at every prime q above p; let K∞,q be the completion of K∞ at the unique prime above
q, and set Γq,∞ = Gal(K∞,q/Kq). Even though Γq,∞ may be identified with Γ∞, in the following it will
be convenient to maintain the distinction between them. Write qh = πqOK , and set $q = πq/πq ∈ K×q ;

in particular, note that $p = $−1
p .

Recall the I-adic Hecke character introduced in (3.7), and let ξ : GK −→ I× also denote the Galois
character defined by

ξ(σ) := [〈φ̂o(σ)〉1/2h],

where φ̂o : GK −→ O×L is the p-adic avatar of the Hecke character φo in (3.6). Finally, set

Tp := T†|GK ⊗ ξ−1, Tp := T†|GK ⊗ ξ,

and for every ν ∈ X aOL(I) denote by Vν the specialization of Tq at ν (it will be clear from the context
which prime q above p is meant).
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Theorem 3.5. Let λ = ap − 1 and set Ĩ := I[λ−1] ⊗Zp Ẑnr
p . For each q ∈ {p, p}, there exists an

I[[Γq,∞]]-linear map

LωF+Tq
: H1

Iw(K∞,q,F
+Tq) −→ Ĩ[[Γq,∞]]

such for every Y∞ ∈ H1
Iw(K∞,q,F+Tq) and every (ν, φ) ∈ X aOL(Ĩ)×X aOL(Γq,∞) we have(

1−
(p$

1/h
q )kν/2−1

ν(ap)$
`φ/h
q

)
LωF+Tq

(Y∞)(ν, φ) = `φ!−1

(
1−

ν(ap)$
`φ/h
q

p(p$
1/h
q )kν/2−1

)
〈log(ν(Y∞)φ), ω̆ν〉,

where log = logF+Vν⊗φ : H1(Kq,F+Vν ⊗ φ) −→ DdR(F+Vν ⊗ φ) is the Bloch–Kato logarithm map,

and ν(Y∞)φ ∈ H1(Kq,F+Vν ⊗ φ) is the φ-specialization of ν(Y∞).

Proof. See [Cas14, Prop. 4.3]. �

Remark 3.6. Fix a compatible system ζ∞ = {ζr}r≥0 of p-power roots of unity, and let ζ∞t
−1 be the

associated basis element of DdR(Qp(1)). In Theorem 3.5 above, ω denotes a generator of the module

D := (F+Tq(−1)⊗̂ZpẐ
nr
p )GKq ,

which by [Och03, Lemma 3.3] is free of rank one over I. (Note that F+Tq(−1) is unramified.) As
explained in loc.cit., for each ν ∈ X aOL(I) there is a specialization map

ν∗ : D −→ Dν ⊗Zp Qp ' DdR(F+Vν(−1)).

Then, letting ων denote the image of ν∗(ω)⊗ζ∞t−1 in DdR(F+Vν(−1))⊗DdR(Qp(1)) ' DdR(F+Vν),
the class ω̆ν ∈ DdR(F−V ∗ν (1)) in the above interpolation formulae is defined by requiring that

〈ων , ω̆ν〉 = 1

under the de Rham pairing 〈, 〉 : DdR(F+Vν)×DdR(F−V ∗ν (1)) −→ Fν .

The big logarithm map LωF+Tq
of Theorem 3.5 may not be specialized at any pair (ν,1) with

ν ∈ X aOL(I) such that ν(λ) = 0, i.e., ν(ap) = 1. Since such arithmetic primes are in fact the main
concern in this paper, the following construction of an “improved” big logarithm will be useful.

Proposition 3.7. There exists an I-linear map

L̃ωF+Tp
: H1(Kp,F

+Tp) −→ I⊗Zp Qp

such that for every Y0 ∈ H1(Kp,F+Tp) and every ν ∈ X aOL(I), we have

ν
(
L̃ωF+Tp

(Y0)
)

=

(
1− ν(ap)p

−1

(p$
1/h
p

)kν/2−1

)
〈logF+Vν (ν(Y0)), ω̆ν〉.

Proof. This can be shown by adapting the methods of Ochiai [Och03, §5]. Indeed, let

LF+Tp
: H1(Kp,F

+Tp)⊗Qp −→ D⊗Zp Qp

be the inverse of the map expT constructed in [Ven15, Prop. 3.8] (see Remark 3.6 for the definition of
D), and define

LωF+Tp
: H1(Kp,F

+Tp) −→ I⊗Zp Qp

by the relation LF+Tp
(−) = LωF+Tp

(−) · ω. Setting

L̃ωF+Tp
=

(
1− app

−1

Θ−1ξ(Frp)

)
LωF+Tp

: H1(Kp,F
+Tp) −→ I⊗Zp Qp,

the result follows. �

Corollary 3.8. For any Y∞ = {Yn}n≥0 ∈ H1
Iw(K∞,p,F+Tp) we have the factorization in Ĩ:(

1− Θ−1ξ(Frp)

ap

)
· ε
(
LωF+Tp

(Y∞)
)

= L̃ωF+Tp
(Y0),

where ε : Ĩ[[Γ∞]] −→ Ĩ is the augmentation map.
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Proof. Comparing the interpolation formulas in Theorem 3.5 and Proposition 3.7, we see that(
1− Θ−1

ν ξν(Frp)

ν(ap)

)
LωF+Tp

(Y∞)(ν,1) = ν
(
L̃ωF+Tp

(Y0)
)

for every ν ∈ X aOL(Ĩ); since these primes are dense in Ĩ, the corollary follows. �

The proof of our main result will rely crucially on the relation found in [Cas14, §4] between the
p-adic L-function Lp,ξ(f) of Theorem 3.4 and Howard’s system of big Heegner points Z∞. We conclude
this section by briefly recalling that relation.

By [How07b, Lemma 2.4.4], for every prime q of K above p the natural map

H1
Iw(K∞,q,F

+T†) −→ H1
Iw(K∞,q,T

†)

induced by (3.2) is injective. In light of Theorem 3.3, in the following we will thus view locq(Z∞) as
sitting inside H1

Iw(K∞,q,F+T†).

Theorem 3.9. There is a generator ω = ωf of the module D such that

LωF+Tp
(locp(Zξ

−1

∞ )) = Lp,ξ(f)

as functions on X aOL(Ĩ)×X aOL(Γ∞).

Proof. The construction of the basis element ω = ωf of D is deduced in [KLZ15, Prop. 10.1.2] from
Ohta’s work [Oht00], and it has the property that 〈ων , ωfν 〉 = 1, for all ν ∈ X aOL(I), where ωfν is the

class in Fil1DdR(V ∗ν ) ' DdR(F−V ∗ν (1)) associated to the p-stabilized newform (3.1); in particular,

ω̆νf = ωf

in the notations of Remark 3.6. The result is then the content of [Cas14, Thm. 4.4]. �

3.4. Exceptional zero formula. Let f =
∑∞
n=1 an(f)qn ∈ S2(Γ0(Np)) be an ordinary newform as

in Section 3.1, and assume in addition that f is split multiplicative at p, meaning that ap(f) = 1.
Recall the CM triple (A, tA, αp) ∈ X(H) introduced in Section 1.5, which maps to the point PA =
(A,A[Np]) ∈ X0(Np) under the forgetful map X −→ X0(Np). Let ∞ be any cusp of X0(Np) rational
over Q, and let κf ∈ H1(K,Vf ) be the image of (PA)− (∞) under the composite map

(3.8) J0(Np)(H)
Kum−−−→ H1(H,Tap(J0(Np))⊗Zp Qp) −→ H1(H,Vf )

CorH/K−−−−−→ H1(K,Vf ).

If f ∈ I[[q]] is the Hida family passing through f , and νf ∈ X aOL(I) is the arithmetic prime of I such
that νf (f) = f , it would be natural to expect a relation between the class κf and the specialization at
νf of Howard’s big Heegner point Z0. As done in [How07a, §3], one can trace through the construction
of Z0 to deduce a relation between the generic (in the sense of [loc.cit., Def. 2]) weight 2 specializations
of Z0 and the Kummer images of certain CM points. However, the arithmetic prime νf is not generic
in that sense, and in fact one does not expect a similar direct relation between νf (Z0) and κf (see the
discussion in [loc.cit., p.813]).

In Theorem 3.11 below we will show that in fact the localization at p of νf (Z0) vanishes, but that
nonetheless it can be related to κf upon taking a certain “derivative” in the following sense, where we
let logp : Q×p −→ Zp be Iwasawa’s branch of the p-adic logarithm, i.e., such that logp(p) = 0.

Lemma 3.10. Let T be a free OL-module of finite rank equipped with a linear action of GQp , let k∞/Qp

be a Zp-extension, and let γ ∈ Gal(k∞/Qp) be a topological generator. Assume that TGk∞ = {0}, and
let Z∞ = {Zn}n≥0 ∈ H1

Iw(k∞, T ) be such that Z0 = 0. Then there exists a unique Z ′γ,∞ = {Z ′γ,n}n≥0 ∈
H1

Iw(k∞, T ) such that

Z∞ = (γ − 1) · Z ′γ,∞.
Moreover, if η : Gal(k∞/Qp) ' Zp is any group isomorphism, then

Z ′0 :=
Z ′γ,0

logp(η(γ))
∈ H1(Qp, T [1/p])

is independent of the choice of γ.
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Proof. Consider the module T∞ := T ⊗̂OLOL[[Gal(k∞/Qp)]] equipped with the diagonal Galois action,
where GQp acts on the second factor via the projection GQp −→ Gal(k∞/Qp). By Shapiro’s Lemma,
we then have

H1(Qp, T∞) ' H1
Iw(k∞, T ),

and the assumption that TGk∞ = {0} implies that H1(Qp, T∞) is torsion-free. Therefore, the exact
sequence of OL[[Gal(k∞/Qp)]]-modules

0 −→ T∞
γ−1−−−→ T∞ −→ T −→ 0

induces the cohomology exact sequence

0 −→ H1(Qp, T∞)
γ−1−−−→ H1(Qp, T∞) −→ H1(Qp, T ),

giving the proof of the first claim, and the second follows from an immediate calculation. �

Recall the uniformizer $p = πp/πp ∈ K×p ' Q×p introduced in Section 3.3, and define

(3.9) Lp(f,K) := Lp(f)−Lp(χK),

where Lp(f) is the L -invariant of f (as defined in [MTT86, §II.14], for example), and

Lp(χK) :=
logp($p)

ordp($p)
= −

2 logp(πp)

h

is the L -invariant of the quadratic character χK associated to K (see [Gre94, §1], for example), with
ordp the p-adic valuation on Qp with the normalization ordp(p) = 1.

The following derivative formula is the main result of this paper.

Theorem 3.11. Let f ∈ S2(Γ0(Np)) be a newform split multiplicative at p, let f ∈ I[[q]] be the Hida
family passing through f , let Z∞ ∈ H1

Iw(K∞,T
†) be Howard’s system of big Heegner points, and define

Zp,f,∞ := {Zp,f,n}n≥0 ∈ H1
Iw(K∞,p,F+Vf ) by

Zp,f,n := locp(νf (Zn)),

where νf ∈ X aOL(I) is such that f = νf (f). Then Zp,f,0 = 0 and

(3.10) Z ′p,f,0 = Lp(f,K) · locp(κf ),

where Lp(f,K) is the L -invariant (0.4), and κf ∈ H1(K,Vf ) is the image of the degree zero divisor
(A,A[Np])− (∞) under the Kummer map (3.8).

Proof. By Proposition 3.7, Corollary 3.8, Theorem 3.9, and Theorem 3.4, respectively, we see that(
1− ap(f)p−1

)
· 〈log(Zp,f,0), ωf 〉 = lim

ν→νf
ν
(
L̃ωF+T(locp(Zξ

−1

0 ))
)

= lim
ν→νf

(
1− Θ−1

ν ξν(Frq)

ν(ap)

)
LωF+T(locp(Zξ

−1

∞ ))(ν,1)

= lim
ν→νf

(
1− Θ−1

ν ξν(Frq)

ν(ap)

)
Lp,ξ(f)(ν,1)

=
(
1− ap(f)−1

)
· Lp(f,NK).

Since ap(f) = 1 by hypothesis, this shows that 〈log(Zp,f,0), ωf 〉 = 0, and the vanishing of Zp,f,0

follows. Now to the proof of the derivative formula (3.10).

Denote by Lp,ξ(f)ι the image of Lp,ξ(f) under the involution of Ĩ[[Γ∞]] induced by complex conju-
gation, so that Lp,ξ(f)ι(χ) = Lp,ξ(f)(χ−1) for every character χ of Γ∞. One immediately checks the
commutativity of the diagram

H1
Iw(K∞,F+Tp)

locp //

∗
��

H1
Iw(K∞,p,F+Tp)

Lω
F+Tp //

∗
��

Ĩ[[Γp,∞]]

ι

��
H1

Iw(K∞,F+Tp)
locp // H1

Iw(K∞,p,F
+Tp)

Lω
F+Tp // Ĩ[[Γp,∞]],

where the left and middle vertical arrows denote the action of complex conjugation.



22 F. CASTELLA

By the discussion in [GS93, §2.6], we may find a disc U ⊂ Z/2(p−1)Z×Zp contained in the residue
class of 2, and a unique morphism of ΛOL -modules

M = Mf : I −→ AU

such that M (r)|k=2 = νf (r) for every r ∈ I, where AU ⊂ L[[k− 2]] denotes the subring of power series
convergent for k ∈ U endowed with the ΛOL-algebra structure induced by the character 1+pZp −→ A ×U
which sends γ ∈ 1 + pZp to the power series γk−2 := exp((k − 2) logp(γ)).

For every k ∈ U ∩ Z≥2 the composition of M with the evaluation map at k defines an element

νk ∈ X aOL(I). Set ap(k) := M (ap), and for (k, φ
t/h
o ) ∈ (U ∩ Z≥2)×X aOL(Γ∞), define the functions

Lp(k, t) :=

(
1−

(p$
1/h
p

)k/2−1

ap(k)$
t/h
p

)
Lp,ξ(f)(νk, φ

t/h
o ), Lp(k, t) :=

(
1−

(p$
1/h
p )k/2−1

ap(k)$
t/h
p

)
Lp,ξ(f)(νk, φ

−t/h
o ).

By the combination of Theorem 3.5 and Theorem 3.9, we then have

Lp(k, t) =
1

t!

(
1−

ap(k)$
t/h
p

p(p$
1/h
p

)k/2−1

)
〈log(locp(νk(Z∞)φ

(1−k/2+t)/h
o )), ω̆νk〉,

and by the above diagram we also have

Lp(k, t) =
1

t!

(
1−

ap(k)$
t/h
p

p(p$
1/h
p )k/2−1

)
〈log(locp(νk(Z∗∞)φ

(k/2−1−t)/h
o )), ω̆νk〉.

By the “functional equation” satisfied by Z∞ (see Theorem 3.3), it follows that the function

Lp(k, t) := Lp(k, t)− wLp(k, k − 2− t)

vanishes identically along the “line” t = k/2−1. By [How07b, Prop. 2.3.6], the sign w is the opposite of
the sign in the functional equation for the p-adic L-function Lp(f, s) associated to f in [MTT86]. Thus,
if w = 1, then ords=1Lp(f, s) > 2, and by [Ven15, Lemma 6.1] the right-hand side of (3.10) vanishes;
since the vanishing of the left-hand side follows easily from the construction of Z ′γ,∞ in Lemma 3.10,
we conclude that (3.10) reduces to the identify “0 = 0” when w = 1. As a consequence, in the following
we shall assume that w = −1.

Using the formula for the L -invariant of f as the logarithmic derivative of ap(k) at k = 2 (see

[GS93, Thm. 3.18], for example) and noting that (p$
1/h
p

)k/2−1 = π
(k−2)/h
p

by definition, we find

∂

∂k
Lp(k, t)

∣∣
(2,0)

=

[
d

dk
ap(k)

∣∣
k=2
−

logp(πp)

h
− w

(
d

dk
ap(k)

∣∣
k=2
−

logp(πp)

h

)]
Lp(f)(NK)(3.11)

= −
[

(1− w)

2
(Lp(f)−Lp(χK))

]
Lp(f)(NK)

= −Lp(f,K) · Lp(f)(NK).

Using the aforementioned vanishing of Lp(k, k/2− 1) for the first equality, we also find

∂

∂k
Lp(k, t)

∣∣
(2,0)

= −1

2

∂

∂t
Lp(k, t)

∣∣
(2,0)

= − (1− w)

2

(
1− ap(f)p−1

)
〈log(Z ′p,f,0), ωf 〉(3.12)

= −(1− p−1) · 〈log(Z ′p,f,0), ωf 〉,

and comparing (3.11) and (3.12), we arrive at the equality

(3.13) (1− p−1) · 〈log(Z ′p,f,0), ωf 〉 = Lp(f,K) · Lp(f)(NK).

On the other hand, letting ϕ0 : A −→ A be the identity isogeny, by Theorem 2.11 we have

Lp(f)(NK) = (1− ap(f)p−1)
∑

[a]∈Pic(OK)

〈AJF (∆ϕaϕ0), ωf 〉

= (1− p−1) · 〈log(locp(κf )), ωf 〉,

which combined with (3.13) concludes the proof of Theorem 3.11. �
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