
NONVANISHING OF GENERALISED KATO CLASSES AND

IWASAWA MAIN CONJECTURES

FRANCESC CASTELLA

Abstract. A construction due to Darmon–Rotger gives rise to generalised Kato classes κp(E) in
the p-adic Selmer group Sel(Q, VpE) of elliptic curves E/Q of positive even analytic rank, where
p > 3 is any prime of good ordinary reduction for E. In [DR16], they conjectured that κp(E) 6= 0
precisely when Sel(Q, VpE) is two-dimensional. The first cases of this conjecture were obtained
by the author with M.-L. Hsieh [CH22]. In this note we give a new proof of the implication

κp(E) 6= 0 =⇒ dimQpSel(Q, VpE) = 2

established in op. cit., and show that the converse implication holds if and only if the restriction
map locp : Sel(Q, VpE)→ E(Qp)⊗̂Qp is nonzero. The present approach is an adaptation to the
non-CM case of the method introduced by the author [Cas22] in the case of CM elliptic curves.

1. Introduction

After the grounbreaking works of Gross–Zagier and Kolyvagin in the 1980s, the construction
of non-torsion rational points (or more generally, Selmer classes) on elliptic curves of E/Q with
ords=1L(E, s) ≥ 2, akin to the construction of Heegner points in the cases of analytic rank 0 or
1, is widely regarded as one of the central open problems in number theory.

In a recent series of spectacular works [DR14, DR17, DR22, BSV20, BSV22b] (culminating
in the collective volume [BDR+22] with applications to the theory of Stark–Heegner points),
Darmon–Rotger and Bertolini–Seveso–Venerucci revisited the construction of diagonal cycle classes
due to Gross–Kudla [GK92] and Gross–Schoen [GS95], obtaining in particular an interpolation
of these classes in p-adic families. Directly from their geometric construction, one obtains classes
attached to triples (f, g, h) of cuspidal eigenforms of “balanced” weights (k, l,m) (meaning that
none of k, l, or m is larger than the sum of the other two), but after p-adic interpolation one also
gets classes for weights beyond this range, such as the “unbalanced” weight (2, 1, 1).

Of special relevance to the Birch–Swinnerton-Dyer conjecture and its equivariant refinements is
the case where f is the newform of weight 2 associated to an elliptic curve E/Q, and g and h are
the weight 1 cuspidal eigenforms associated (as a consequence of the proof of Serre’s conjecture
[KW09]) to degree 2 odd irreducible Artin representations %1 and %2, respectively. In this case,
one of the main results of [DR17] and [BSV22b] relates the resulting generalised Kato classes

κp(f, g, h) ∈ H1(Q, VpE ⊗ %), % := %1 ⊗ %2,

obtained from a specialisation in weights (2, 1, 1) of a p-adic family of diagonal cycles classes, to
the value at s = 1 of the twisted Hasse–Weil L-funcion L(E⊗ %, s). Together with global duality,
this relation leads to a proof of the implication

L(E ⊗ %, 1) 6= 0 =⇒ HomGQ
(V ∨% , E(H)⊗ L) = 0,
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where L is any number field over which % is defined (assumed to admit an embedding into Qp for
simplicity), V ∨% is the linear dual of an L-vector space affording %, and H is the fixed field of ker(%).
More precisely, by virtue of the explicit reciprocity law obtained in loc. cit., the nonvanishing of
L(E⊗ %, 1) implies that the class κp(f, g, h) is non-crystalline at p, from where the bound on the
%-isotypical component of E(H) follows by global duality.

Interestingly, the same explicit reciprocity law shows that the generalised Kato classes κp(f, g, h)
are Selmer whenever L(E⊗ %, 1) = 0. Moreover, the representations % for which the construction
applies necessarily have real traces, and in many cases the sign in the functional of the self-dual
L-function L(E ⊗ %, s) is +1. Thus the results of [DR17] and [BSV22b] provide a construction of
(possibly zero a priori !) Selmer classes in situations where ords=1L(E ⊗ %, s) ≥ 2.

In [DR16], Darmon–Rotger carried out a systematic study of their construction in relation
with the Birch–Swinnerton-Dyer conjecture and the elliptic Stark conjecture of [DLR15]. (More
recently, a similar study was carried out by Bertolini–Seveso–Venerucci [BSV22a], which in partic-
ular allows one to interpret and refine some of the rationality conjectures in [DR16] in terms of a
p-adic Birch–Swinnerton-Dyer conjecture for p-adic Garrett–Rankin L-functions.) In particular,
when L(E ⊗ %, 1) = 0 with sign +1 they conjectured the equivalence

(1.1) κp(f, g, h) 6= 0
?⇐⇒ dimQpSel(Q, VpE ⊗ %) = 2.

This leads to the expectation, when combined with the equivariant Birch–Swinnerton-Dyer con-
jecture, that κp(f, g, h) is a nonzero class in Sel(Q, VpE⊗V%) if and only if ords=1L(E⊗%, s) = 2.

Of special interest to the Birch–Swinnerton-Dyer conjecture is the case in which % contains the
trivial representation. This occurs precisely when %2 ' %∨1 , so that

V% ' L⊕ ad0(V%1),

where ad0(V%1) is the 3-dimensional representation of GQ acting on the trace zero endomorphisms
of V%1 . By the Artin formalism, we then have

L(E ⊗ %, s) = L(E, s) · L(E ⊗ ad0(%1)).

In particular, if L(E⊗ad0(%1)) 6= 0, denoting by κp(E) the image of κp(f, g, h) under the resulting
natural projection H1(Q, VpE ⊗ %)→ H1(Q, VpE), by the Bloch–Kato conjecture [BK90] (which
in this case predicts that the dimensions of the Selmer groups for VpE and VpE⊗% are the same)
the equivalence (1.1) amounts to the conjectural equivalence

(1.2) κp(E) 6= 0
?⇐⇒ dimQpSel(Q, VpE) = 2.

In [CH22], the author and M.-L. Hsieh proved the first cases of conjecture (1.2), in situations
where %1 is induced from a finite order character of an imaginary quadratic field in which p
splits. The key ingredient in the proof was a leading coefficient formula for the p-adic L-function
introduced in [BD96] in terms of Howard’s derived p-adic heights. [How04].

The main result of this note (see Theorem 5.2.3) includes a new proof of [CH22, Thm. A]. The
approach is an adaptation of the method introduced by the author in [Cas22], where the case of
CM elliptic curves E/Q is treated, and clarifies the role played by the restriction map at p

locp : Sel(Q, VpE)→ E(Qp)⊗̂Qp.

Indeed, in loc. cit. it was shown that (under mild hypotheses) the nonvanishing of κp(E) implies
that Sel(Q, VpE) is 2-dimensional, while for the proof of the converse implication it was necessary
to assume that

(Locp) Sel(Q, VpE) 6= ker(locp).
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A novel insight of the approach in this paper is that, assuming dimQpSel(Q, VpE) = 2, condition
(Locp) is in fact necessary for the nonvanishing of κp(E).

Similarly as in [Cas22], our approach is based on a study of the relation between two different
formulations of the Iwasawa–Greenberg main conjecture for triple products studied in [ACR23]:

(IMC-1) one in terms of Hsieh’s triple product p-adic L-functions [Hsi21];
(IMC-2) another without reference to p-adic L-functions, phrased in terms of the p-adic family of

diagonal cycles used in the construction of κp(f, g, h) and κp(E).

In the case where %1 = %∨2 is dual to %2, and is induced from a finite order Hecke character of an
imaginary quadratic field K, conjecture (IMC-1) can be related to the Iwasawa main conjecture
for E/K in the anticyclotomic setting, and using global duality and the explicit reciprocity laws
of [DR22] and [BSV22b], one can easily show that (in general) conjectures (IMC-1) and (IMC-2)
are equivalent. Thus, from the results on the anticyclotomic main conjecture stemming from the
works of Bertolini–Darmon [BD05] and Skinner–Urban [SU14], we deduce under mild hypotheses
a proof of conjecture (IMC-2), from where the proof of our main result follow easily from a variant
of Mazur’s control theorem and global duality.

We conclude this introduction by noting that even though throughout the paper p is assumed to
be a prime of good ordinary reduction, it seems possible to extend our results to the multiplicative
case; it would then be interesting to compare the resulting κp(E) with the p-adic limits of Heegner
points studied in [DF23, FG23] (see also [Cas18] for a related construction).

1.1. Acknowledgements. I heartily thank Matteo Longo, Marco Adamo Seveso, Rodolfo Venerucci,
and Stefano Vigni for the opportunity to contribute this note to the proceedings in celebration
of Massimo Bertolini’s 60th birthday. The chief insight exploited in this paper is that the nonva-
nishing of κp(E) can be related to an Iwasawa main conjecture in the spirit of the Heegner point
main conjecture studied by Massimo about 30 years ago [Ber95]. Some of Massimo’s results since
then also play a key role in this paper, and it is a pleasure to dedicate it to him as an attestation
of his lasting and growing impact on the subject. During the preparation of this note, the author
was partially supported by the NSF grants DMS-1946136 and DMS-2101458.

2. p-adic L-functions

Fix a prime p > 3. Let K be an imaginary quadratic field of discriminant DK and assume that

(p) = pp splits in K,

with p the prime of K above p induced by a fixed embedding ιp : Q ↪→ Qp. In this section we
recall from [Hsi21] the construction of the triple product p-adic L-function for Hida families, and
its relation with the anticyclotomic p-adic L-functions of Bertolini–Darmon [BD96] in the case
where two of the Hida families are CM Hida families attached to dual ray class characters of K.

2.1. Triple product p-adic L-function. Let I be a normal domain finite flat over

Λ := OJ1 + pZpK,

where O is the ring of integers of a finite extension of Qp. For a positive integer N prime p and
a Dirichlet character χ : (Z/NpZ)× → O×, we denote by So(N,χ, I) ⊂ IJqK the space of ordinary
I-adic cusp forms of tame level N and branch character χ as defined in [Hsi21, §3.1].

Denote by X+
I ⊂ Spec I(Qp) the set of arithmetic points of I, consisting of the ring homomor-

phisms Q : I → Qp such that Q|1+pZp is given by z 7→ zkQεQ(z) for some kQ ∈ Z≥2 called the
weight of Q and εQ(z) ∈ µp∞ . As in [Hsi21, §3.1], we say that f =

∑∞
n=1 an(f)qn ∈ So(N,χ, I)
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is a primitive Hida family if for every Q ∈ X+
I the specialization fQ gives the q-expansion of

an ordinary p-stabilised newform of weight kQ and tame conductor N . Attached to such f we

let Xcls
I ⊂ X+

I be the set of ring homomorphisms Q as above with kQ ∈ Z such that fQ is the
q-expansion of a classical modular form.

For f a primitive Hida family of tame level N , we let

ρf : GQ → GL2(Frac I)

denote the associated Galois representation, where Frac I is the field of fractions of I. It will be
convenient for us to take ρf to be the dual of that in [Hsi21, §3.2]; in particular, det ρf = χI ·εcyc

in the notations of loc. cit., where εcyc is the p-adic cyclotomic character. We assume that the
associated the residual representation ρ̄f is absolutely irreducible, and also denote by

ρf : GQ → AutI(Vf ) ' GL2(I)

the realisation of ρf on a module Vf ' I⊕2. By [Wil88, Thm. 2.2.2], restricted to GQp the Galois
representation Vf fits into a short exact sequence

0→ V +
f → Vf → V −f → 0,

where V −f is free of rank 1 over I, with the GQp-action given by the unramified character sending

an arithmetic Frobenius Frp to ap(f).
Associated with f there is a I-algebra homomorphism

λf : T(N, I)→ I

where T(N, I) is the Hecke algebra acting on ⊕χSo(N,χ, I), where χ runs over the characters of
(Z/pNZ)×. Let Tm be the local component of T(N, I) through which λf factors, and following
[Hid88] define the congruence ideal C(f) of f by

C(f) := λf (AnnTm(kerλf )) ⊂ I.

When, in addition to absolutely irreducible, ρ̄f is also p-distinguished (i.e., the semi-simplification
of ρ̄f |GQp

is non-scalar), it follows from the results of [Wil95] and [Hid88] that C(f) is generated

by a nonzero element ηf ∈ I.

2.1.1. Triple products of Hida families. Let

(f , g,h) ∈ So(Nf , χf , If )× So(Ng, χg, Ig)× So(Nh, χh, Ih)

be a triple of primitive Hida families with

(2.1) χfχgχh = ω2a for some a ∈ Z,

where ω is the Teichmüller character. Put

R = If ⊗̂OIg⊗̂OIh,

which is a finite extension of the three-variable Iwasawa algebra Λ⊗̂OΛ⊗̂OΛ, and let

XfR :=
{

(Q1, Q2, Q3) ∈ X+
Iϕ × Xcls

Ig × Xcls
Ih : kQ1 ≥ kQ2 + kQ3 and kQ1 ≡ kQ2 + kQ3 (mod 2)

}
be the weight space for R in the so-called f -unbalanced range.

Let V = Vf ⊗̂OVg⊗̂OVh be the triple tensor product Galois representation attached to (f , g,h),
and writing det V = X 2εcyc (as is possible by (2.1)) define

(2.2) V† := V ⊗X−1,
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which is a self-dual twist of V. Define the rank four GQp-invariant subspace F f
p (V†) ⊂ V† by

(2.3) F f
p (V†) := V +

f ⊗̂OVg⊗̂OVh ⊗X
−1.

For every Q = (Q1, Q2, Q3) ∈ XfR we denote by F f
p (V†Q) ⊂ V†Q the corresponding specialisations.

Finally, for every rational prime ` denote by ε`(V
†
Q) the epsilon factor attached to the restriction

of V†Q to GQ`
as in [Tat79, p. 21], and assume that

(2.4) for some Q ∈ XfR, we have ε`(V
†
Q) = +1 for all prime factors ` of NfNgNh.

As explained in [Hsi21, §1.2], condition (2.4) is independent of Q, and it implies that the sign in
the functional equation for the triple product L-function

L(V†Q, s)

(with center at s = 0) is +1 for all Q ∈ XfR.

Theorem 2.1.1. Let (f , g,h) be a triple of primitive Hida families as above satisfying conditions
(2.1) and (2.4). Assume in addition that:

• gcd(Nf , Ng, Nh) is square-free,
• the residual representation ρ̄f is absolutely irreducible and p-distinguished,

and fix a generator ηf of the congruence ideal of f . Then there exists a unique element

L f
p (f , g,h) ∈ R

such that for all Q = (Q0, Q1, Q2) ∈ XfR of weight (k0, k1, k2) with εQ0 = 1 we have

(L f
p (f , g,h)(Q))2 = Γ

V†Q
(0) ·

L(V†Q, 0)

(
√
−1)2k0 · Ω2

fQ0

· Ep(F f
p (V†Q)) ·

∏
`∈Σexc

(1 + `−1)2,

where:

• Γ
V†Q

(0) = ΓC(cQ)ΓC(cQ + 2− k1 − k2)ΓC(cQ + 1− k1)ΓC(cQ + 1− k2), with

cQ = (k0 + k1 + k2 − 2)/2

and ΓC(s) = 2(2π)−sΓ(s);
• ΩfQ0

is the canonical period

ΩfQ0
:= (−2

√
−1)k0+1 ·

‖f◦Q0
‖2Γ0(Nf )

ιp(ηfQ0
)
·
(

1−
χ′f (p)pk0−1

α2
Q0

)(
1−

χ′f (p)pk0−2

α2
Q0

)
,

with f◦Q0
∈ Sk0(Nf ) the newform of conductor Nf associated with fQ0

, χ′f the prime-to-p

part of χf , and αQ0 the specialization of ap(f) ∈ I×f at Q0;

• Ep(F f
p (V†Q)) is the modified p-Euler factor

Ep(F f
p (V†Q)) :=

Lp(F
f
p (V†Q), 0)

εp(F
f
p (V†Q)) · Lp(V†Q/F

f
p (V†Q), 0)

· 1

Lp(V
†
Q, 0)

,

and Σexc is an explicitly defined subset of the prime factors of NfNgNh, [Hsi21, p. 416].
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Proof. This is [Hsi21, Thm. A], which also includes an interpolations formula in the cases where
εQ0 is not necessarily trivial. �

2.2. CM Hida families. Let K∞ be the unique Z2
p-extension of K, and let Kp∞ be the maximal

subfield of K∞ unramified outside p. Put

Γ∞ := Gal(K∞/K) ' Z2
p, Γp∞ := Gal(Kp∞/K) ' Zp.

For every ideal C ⊂ OK we let K(C) be the ray class field of K of conductor C (so in particular
Kp∞ is the maximal Zp-extension of K inside K(p∞)). Let Artp be the restriction of the global

Artin map to K×p , with geometric normalisation. Identifying Z×p and O×Kp
via ιp : Q ↪→ Qp, the

map Artp induces an embedding 1 + pZp → Γp∞ . Write Iw
p = Artp(1 + pZp)|Kp∞ and let b ≥ 0

be such that [Γp∞ : Iw
p ] = pb. (Note that b = 0 if the class number of K is coprime to p.)

Fix a topological generator γp ∈ Γp∞ with γp
b

p = Artp(1 + p)|Kp∞ , and for each variable S let

ΨS : Γ∞ → OJSK× be the universal character given by

ΨS(σ) = (1 + S)l(σ),

where l(σ) ∈ Zp is such that σ|Kp∞ = γ
l(σ)
p . Let v ∈ O be such that vp

b
= 1 + p (after enlarging

O if necessary). For any finite order character ψ : GK → O× of conductor C put

θψ(S)(q) =
∑

(a,pC)=1

ψ(σa)Ψ
−1
v−1(1+S)−1

(σa)q
N(a) ∈ OJSKJqK,

where σa ∈ Gal(K(Cp∞)/K) is the Artin symbol of a. Then θψ(S) is a primitive Hida family
defined over OJSK of tame level DKN(C) and tame character (ψ ◦ V )ηK/Qω

−1, where

V : Gab
Q → Gab

K

is the transfer map and ηK/Q is the quadratic character associated to K/Q.

2.3. Anticyclotomic p-adic L-functions. Let f ∈ S2(Γ0(pNf )), with p - Nf , be a p-ordinary p-
stabilised newform of tame level Nf defined over O. Assume that f is the ordinary p-stabilisation
of the newform f◦ ∈ S2(Γ0(Nf )), and let αp ∈ O× be the Up-eigenvalue of f . Write

(2.5) Nf = N+N−

with N+ (resp. N−) divisible only by primes which are split (resp. inert) in K, and fix an ideal
N+ ⊂ OK with OK/N+ ' Z/N+Z.

Let Γ− be the Galois group of the anticyclotomic Zp-extension K−∞/K. By definition, the map
σ 7→ l(σ1−c|Kp∞ ) factor through Γ−, and we let γ− be the topological generator of Γ− mapping

to 1 under the resulting isomorphism Γ− ' Zp. We then identity OJΓ−K with the power series
ring OJT K via γ− 7→ 1 + T .

Theorem 2.3.1. Let χ be a ring class character of K of conductor cOK with values in O, and
assume that:

(i) (pNf , cDK) = 1,
(ii) N− is the squarefree product of an odd number of primes,
(iii) if q | N− is a prime with q ≡ 1 (mod p), then ρ̄f is ramified at q.
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Then there exists a unique Θf/K,χ(T ) ∈ OJT K such that for every p-power root of unity ζ:

Θf/K,χ(ζ − 1)2 =
pn

α2n
p

· Ep(f, χ, ζ)2 ·
L(f◦/K ⊗ χεζ , 1)

(2π)2 · Ωf◦,N−
· u2

K

√
DKχεζ(σN+) · εp,

where:

• n ≥ 0 is such that ζ has exact order pn,
• εζ : Γ−∞ → µp∞ be the character defined by εζ(γ

−) = ζ,

• Ep(f, χ, ζ) =

{
(1− α−1

p χ(p))(1− αpχ(p)) if n = 0,

1 if n > 0,

• Ωf◦,N− = 4‖f◦‖2Γ0(Nf ) · η
−1
f,N− is the Gross period of f◦ (see [Hsi21, p. 524]),

• uK = |O×K |/2,
• εp ∈ {±1} is the local root number of f◦ at p.

Proof. See [BD96] for the original construction, and [CH18, Thm. A] for the stated interpolation
property. �

When χ is the trivial character, we write Θf/K,χ(T ) simply as Θf/K(T ).

2.4. Factorisation of triple product p-adic L-functions. Let f ∈ S2(pNf ) be a p-stabilised
newform as in the preceding section. By Hida theory, f is the specialisation of a unique primitive
Hida family f ∈ So(Nf , I) at an arithmetic point Q0 ∈ X+

I of weight 2. Let ` - pNf be a prime
split in K, and let χ be a ring class character of K of conductor `mOK for some m > 0. Denoting
by c the non-trivial automorphism of K/Q, write χ = ψ/ψc with ψ a ray class character modulo
`mOK with ψc(σ) = ψ(cσc−1). Let

(2.6) g = θψ(S1) ∈ OJS1KJqK, g∗ = θψ−1(S2) ∈ OJS2KJqK

be the primitive CM Hida families (of tame level C = DK`
2m) attached to ψ and ψ−1, respectively.

The triple (f , g, g∗) satisfies conditions (2.1) and (2.4) and the associated triple product p-adic

L-function L f
p (f , g, g∗) of Theorem 2.1.1 is an element in R = I⊗̂OOJS1K⊗̂OOJS2K ' IJS1, S2K.

Put S = S1. In the following, we let

(2.7) L f
p (f, gg∗) ∈ OJSK

be the image of L f
p (f , g, g∗) under the map IJS1, S2K → OJS1, S2K given by the specialisation

Q0 : I→ O composed with the quotient OJS1, S2K→ OJS1, S2K/(S1 − S2).
Let K(χ) be the field obtained by adjoining to K the values of χ, and put K(χ, αp) = K(χ)(αp).

Proposition 2.4.1. Assume that:

(i) N− is the squarefree product of an odd number of primes,
(ii) if q | N− is a prime with q ≡ 1 (mod p), then ρ̄f is ramified at q.

Set T = v−1(1 + S)− 1. Then

L f
p (f, gg∗)(S) = ±w−1 ·Θf/K(T ) · Cf,χ ·

√
Lalg(f/K ⊗ χ, 1) ·

ηf◦

ηf◦,N−
,

where w is a unit in OJT K, Cf,χ ∈ K(χ, αp)
×, and

Lalg(f/K ⊗ χ, 1) :=
L(f/K ⊗ χ, 1)

4π2‖f◦‖2Γ0(Nf )

∈ K(χ).

Proof. This is immediate from [Hsi21, Prop. 8.1] and the interpolation property of Θf/K,χ(0). �
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3. Selmer group decompositions

In this section we introduce two different Selmer groups associated to triple products of modular
forms, and relate them to anticyclotomic Selmer groups attached to a single modular form.

3.1. Selmer groups for triple products of modular form. Let (f , g,h) be a triple of prim-
itive Hida families as in §2.1.1 satisfying (2.1), and let V† = V ⊗ X−1 be the self-dual twist of
the associated big Galois representation.

Definition 3.1.1. Put

F bal
p (V†) = F 2

p (V†) :=
(
V +
f ⊗ V

+
g ⊗ Vh + V +

f ⊗ Vg ⊗ V
+
h + Vf ⊗ V +

g ⊗ V +
h

)
⊗X−1,

and define the balanced local condition H1
bal(Qp,V

†) by

H1
bal(Qp,V

†) := im
{

H1(Qp,F
bal
p (V†))→ H1(Qp,V

†)
}
.

Similarly, put

F f
p (V†) :=

(
V +
f ⊗ Vg ⊗ Vh

)
⊗X−1,

and define the f -unbalanced local condition H1
f (Qp,V

†) by

H1
f (Qp,V

†) := im
{

H1(Qp,F
f
p (V†))→ H1(Qp,V

†)
}
.

It is easy to see that the maps appearing in these definitions are injective, and in the following
we shall use this to identify H1

?(Qp,V
†) with H1(Qp,F ?

p (V†)) for ? ∈ {bal,f}. Fix a finite set
of primes S containing ∞ and the primes dividing NfNgNg, and let GQ,S be the Galois group of
the maximal extension of Q unramified outside S.

Definition 3.1.2. Let ? ∈ {bal,f}, and define the Selmer group Sel?(Q,V†) by

Sel?(Q,V†) := ker

{
H1(GQ,S ,V

†)→ H1(Qp,V
†)

H1
?(Qp,V†)

}
We call Selbal(Q,V†) (resp. Self (Q,V†)) the balanced (resp. f -unbalanced) Selmer group.

Let A† = HomZp(V†, µp∞) be the arithmetic dual of V†, and for ? ∈ {bal,f} define H1
?(Qp,A

†) ⊂
H1(Qp,A

†) to be the orthogonal complement of H1
?(Qp,V

†) under the local Tate duality

H1(Qp,V
†)×H1(Qp,A

†)→ Qp/Zp.

Similarly as above, we then define the balanced and f -unbalanced Selmer groups with coefficients
in A† by

Sel?(Q,A†) := ker

{
H1(GQ,S ,A

†)→ H1(Qp,A
†)

H1
?(Qp,A†)

×
∏

`∈Sr{p}

H1(Q`,A
†)

}
,

and let X?(Q,A†) = HomZp(Sel?(Q,A†),Qp/Zp) denote the Pontryagin dual of Sel?(Q,A†).
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3.2. Anticyclotomic Selmer groups for modular forms. Let f ∈ S2(Γ0(pNf )) be an ordi-
nary p-stabilised newform and K/Q an imaginary quadratic field as in §2.3.

Let Vf be the p-adic Galois representation associated to f . We adopt the convention that if f
corresponds to the isogeny class of an elliptic curve E/Q, then Vf ' VpE (rather than its dual).
By p-ordinarity, restricted to GQp the representation Vf fits into a short exact sequence

0→ V +
f → Vf → V −f → 0

with V ±f both 1-dimensional, and with the GQp-action on V −f given by the unramified character

sending arithmetic Frobenius to αp ∈ O×, the Up-eigenvalue of f .
Below we fix Σ to be any finite set of places of K containing∞ and the prime dividing pNf , and

for any field extension L/K let GL,Σ the Galois group of the maximal extension of L unramified
outside Σ.

Definition 3.2.1. Let L be a finite field extension of K, and let F = {Fv(Vf )}v|p be a collection
a GKv -stable subpaces Fv(Vf ) ⊂ Vf for v | p. We define the Greenberg Selmer group SelF (L, Vf )
by

SelF (L, Vf ) := ker

{
H1(GL,Σ, Vf )→

∏
w

H1(Lw, Vf )

H1
F (Lw, Vf )

}
,

where w runs over the finite primes of L lying above a prime v ∈ Σ, and

H1
F (Lw, Vf ) :=

{
ker{H1(Lw, Vf )→ H1(Lur

w , Vf )} if w - p,
im{H1(Lw,Fv(Vf ))→ H1(Lw, Vf )} if w | v | p.

We shall be particularly interested in the following choices of F :

• The relaxed-strict Selmer group Sel∅,0(L, Vf ) obtained by taking

Fv(Vf ) =

{
Vf if v = p,

0 if v = p.

• The ordinary Selmer group Sel(L, Vf ) obtained by taking Fv(Vf ) = V +
f for all v | p.

For a GK-stable lattice Tf ⊂ Vf , we let H1
F (Lw, Tf ) be the inverse image of H1

F (Lw, Vf ) under
the natural map H1(Lw, Tf )→ H1(Lw, Vf ), and define SelF (L, Tf ) by the same recipe as above.
Then, for Af := HomZp(Tf , µp∞), we define the dual Selmer group SelF∗(L,Af ) by

SelF∗(L,Af ) := ker

{
H1(GL,Σ, Af )→

∏
w

H1(Lw, Af )

H1
F∗(Lw, Af )

}
where H1

F∗(Lw, Af ) is the orthogonal complement of H1
F (Lw, Tf ) under local Tate duality

H1(Lw, Tf )×H1(Lw, Af )→ Qp/Zp.

Write K−m for the subextension of the the anticyclotomic Zp-extension K−∞ with [K−m : K] = pm,
and put

SelF (K−∞, Tf ) := lim←−
m

SelF (K−m, Tf ), SelF (K−∞, Af ) := lim−→
m

SelF (K−m, Af ),

where the limits are with respect to the corestriction and restriction maps, respectively. Let
Ψ : GK → OJΓ−K× be the character arising from the projection GK → Γ−. Writing Tf ⊗ Ψ−1
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(resp. Af ⊗Ψ) for the module Tf ⊗O OJΓ−K (resp. Af ⊗O OJΓ−K) with GK-action on the second
factor given by Ψ−1 (resp. Ψ), we then have natural OJΓ−K-module pseudo-isomorphisms

(3.1) SelF (K−∞, Tf ) ∼ SelF (K,Tf ⊗Ψ−1), SelF (K−∞, Af ) ∼ SelF (K,Af ⊗Ψ),

where the Selmer groups on the right-hand side are defined is the same way as in Definition 3.2.1,
with Fv(Tf⊗Ψ−1) := (Fv(Vf )∩Tf )⊗Ψ−1 and Fv(Af⊗Ψ) := HomZp(Tf/(Fv(Vf )∩Tf ), µp∞)⊗Ψ.

3.3. Decomposition of triple product Selmer groups. Suppose now that f is the Hida fam-
ily passing through the p-stabilised newform f ∈ S2(Γ0(pNf )), and (g, g∗) = (θψ(S1),θψ−1(S2))
are CM Hida families as in (2.6).

For any primitive Hida family φ, we now let Vφ be the realization of ρφ arising in the p-adic
étale cohomology of the p-tower of modular curves as in Ohta’s works [Oht99, Oht00], following
the conventions in [KLZ17, §7.2] (except that a “Hida family” for us is a “branch” in their sense).

In the case of g (and similarly g∗), when χ := ψ/ψc satisfies

(3.2) χ̄|GKp
6= 1,

where GKp ⊂ GK is a decomposition group at p, it follows from a slight extension of the isomor-
phism in [LLZ15, Cor. 5.2.5] (see [BL18, §3.2.3]) that

Vg ' IndQ
K(ψ−1ΨT1),

where T1 = v−1(1 + S1)− 1. Suppose Q0 : I→ O is such that f is the specialisation of f at Q0,

and write V†fgg∗ for the resulting specialisation of V†. Similarly setting T2 = v−1(1 +S2)−1 and

noting that (detVg)(detVg∗) = ΨT1ΨT2 ◦ V , we then have

(3.3)
V†fgg∗ ' Tf ⊗ IndQ

K(ψ−1ΨT1)⊗ IndQ
K(ψΨT2)⊗ (Ψ

1/2
T1

Ψ
1/2
T2
◦ V )−1

'
(
Tf ⊗ IndQ

KΨ1−c
W1

)
⊕
(
Tf ⊗ IndQ

Kχ
−1Ψ1−c

W2

)
,

where Tf is the specialisation of Vf at Q0 and

W1 = v−1(1 + S1)1/2(1 + S2)1/2 − 1, W2 = (1 + S1)1/2(1 + S2)−1/2 − 1,

In particular, together with Shapiro’s lemma this gives

(3.4) H1(Q,V†fgg∗) ' H1(K,Tf ⊗Ψ1−c
W1

)⊕H1(K,Tf ⊗ χ−1Ψ1−c
W2

)

Proposition 3.3.1. Suppose ψ is a ray class character of K such that χ = ψ/ψc satisfies (3.2).
Then under the isomorphism (3.4), the balanced Selmer group decomposes as

Selbal(Q,V†fgg∗) ' Sel∅,0(K,Tf ⊗Ψ1−c
W1

)⊕ Sel(K,Tf ⊗ χ−1Ψ1−c
W2

),

and the f -unbalanced Selmer group decomposes as

Self (Q,V†fgg∗) ' Sel(K,Tf ⊗Ψ1−c
W1

)⊕ Sel(K,Tf ⊗ χ−1Ψ1−c
W2

).

Proof. This is shown in [CD23, Prop. 5.3.1]; we recall the details for the convenience of the reader.
From (3.3), we see that

V†fgg∗ |GQp
'
(
Tf ⊗Ψ1−c

W1

)
⊕ (Tf ⊗Ψc−1

W1

)
⊕
(
Tf ⊗ χ−1Ψ1−c

W2

)
⊕
(
Tf ⊗ χΨc−1

W2

)
noting that χc = χ−1, and we find that the balanced local condition is given by

(3.5) F bal
p (V†fgg∗) '

(
Tf ⊗Ψ1−c

W1

)
⊕
(
T+
f ⊗ χ

−1Ψ1−c
W1

)
⊕
(
T+
f ⊗ χΨc−1

W2

)
,
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where T+
f ⊂ Tf is the specialisation of V +

f at Q0. Put Ṽ†fgg∗ = (Tf ⊗ Ψ1−c
W1

) ⊕ (Tf ⊗ χ−1Ψ1−c
W2

),

and note that

(3.6) H1(Q,V†fgg∗) ' H1(K, Ṽ†fgg∗)

by Shapiro’s lemma. For q ∈ {p, p}, letting F bal
q (Ṽ†fgg∗) be the submodule of Ṽ†fgg∗ corresponding

to F bal
p (V†fgg∗), from (3.5) we have

(3.7)

{
F bal

p (Ṽ†fgg∗) '
(
Tf ⊗Ψ1−c

W1

)
⊕
(
T+
f ⊗ χ

−1Ψ1−c
W2

)
,

F bal
p (Ṽ†fgg∗) ' T

+
f ⊗ χ

−1Ψ1−c
W2

,

using again that χc = χ−1 for the second isomorphism. As a result, under the isomorphism (3.6)
we have

Selbal(Q,V†fgg∗) '

ker

{
H1(GK,Σ,Ṽ†fgg∗)→

H1(Kp, Ṽ†fgg∗)
H1(Kp, (Tf ⊗Ψ1−c

W1
)⊕ (T+

f ⊗ χ−1Ψ1−c
W2

))
×

H1(Kp, Ṽ
†
fgg∗)

H1(Kp, T
+
f ⊗ χ−1Ψ1−c

W2
)

}
,

yielding the result in this case. Similarly, we find that the f -balanced local condition is given by{
F f

p (Ṽ†fgg∗) '
(
T+
f ⊗Ψ1−c

W1

)
⊕
(
T+
f ⊗ χ

−1Ψ1−c
W2

)
,

F f
p (Ṽ†fgg∗) '

(
T+
f ⊗Ψ1−c

W1

)
⊕
(
T+
f ⊗ χ

−1Ψ1−c
W2

)
,

and as above we arrive at the claimed description of Self (Q,V†fgg∗). �

As a consequence, we also obtain decompositions for corresponding Selmer groups with coeffi-

cients in A†fgg∗ = HomZp(V†fgg∗ , µp∞), mirroring in the case of Self (Q,A†fgg∗) the factorisation

of p-adic L-functions in Proposition 2.4.1. Put Af = HomZp(Tf , µp∞).

Corollary 3.3.2. Under the asumption in Proposition 3.3.1, we have the decompositions

Selbal(Q,A†fgg∗) ' Sel0,∅(K,Af ⊗Ψc−1
W1

)⊕ Sel(K,Af ⊗ χΨc−1
W2

),

Self (Q,A†fgg∗) ' Sel(K,Af ⊗Ψc−1
W1

)⊕ Sel(K,Af ⊗ χΨc−1
W2

).

Proof. This is immediate from Proposition 3.3.1 and local Tate duality. �

4. Iwasawa main conjectures

Keeping the setting from §3.3, and put Λ2 = OJS1, S2K and

V†fgg∗ = V†fgg∗⊗̂Λ2Λ2/(S1 − S2),

where Λ2 = OJS1, S2K. In this section we recall the diagonal cycle main conjecture formulated
in [ACR23] specialised to our setting, and explain its relation with the anticyclotomic Iwasawa
main conjecture for f .
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4.1. Diagonal cycle main conjecture. Let κ(f , g, g∗) ∈ H1(Q,V†) be the big diagonal class
constructed in [BSV22b, §8.1], where f is the primitive Hida family passing through f , and
denote by

(4.1) κ(f, gg∗) ∈ H1(Q,V†fgg∗)

its specialisation. More precisely, from loc. cit. one directly obtains a class as above with coeffi-
cient in a representation V†(N) isomorphic (non-canonically) to finitely many copies of V†, where
N = lcm(Nf , Ng, Ng∗) = lcm(Nf , DK`); to obtain (4.1) we apply the projection V†(N) → V†

corresponding to the choice of level-N test vectors for (f , g, g∗) furnished by [Hsi21, Thm. A].
From the decompositions in Proposition 3.3.1 we obtain

(4.2)
Selbal(Q,V†fgg∗) ' Sel∅,0(K,Tf ⊗Ψ1−c

T )⊕ Sel(K,Tf ⊗ χ−1Ψ1−c
W2

)/W2
,

Self (Q,V†fgg∗) ' Sel(K,Tf ⊗Ψ1−c
T )⊕ Sel(K,Tf ⊗ χ−1Ψ1−c

W2
)/W2

,

where T = T1 = v−1(1 +S1)− 1 and the subscript /W2 denotes the cokernel of multiplication by
W2. Put

F 3
p (V†fgg∗) := T+

f ⊗̂OV
+
f ⊗̂OV

+
g∗ ⊗X

−1,

and denote by F 3
p (V†fgg∗) the resulting submodule of V†fgg∗ . Similarly defining F bal

p (V†fgg∗) from

F bal
p (V†fgg∗) = F 2

p (V†fgg∗), in terms of the description in (3.7) we find that

(4.3)

{
F bal

p (Ṽ†fgg∗)/F
3
p (Ṽ†fgg∗) '

(
T−f ⊗Ψ1−c

T

)
⊕
(
T+
f ⊗ χ

−1Ψ1−c
W2

)
/W2

,

F bal
p (Ṽ†fgg∗)/F

3
p (Ṽ†fgg∗) ' (T+

f ⊗ χ
−1Ψ1−c

W2
)/W2

,

where T−f := Tf/T
+
f .

It follows from [BSV22b, Cor. 8.2] that κ(f, gg∗) lies in the balanced Selmer group Selbal(Q,V†fgg∗).

Therefore, viewing this class in H1(K, Ṽ†fgg∗) via the isomorphism (3.6), we can consider the image

of locp(κ(f, gg∗)) under the natural map

p−f : H1
(
Kp,F

bal
p (Ṽ†fgg∗)

)
→ H1

(
Kp,F

bal
p (Ṽ†fgg∗)/F

3
p (Ṽ†fgg∗)

)
→ H1(Kp, T

−
f ⊗Ψ1−c

T )

arising from the projection onto the first factor in (4.3).
Put

Λ = OJT K.
Let u := 1 + p, and for any Λ-module M and integer k, denote by Mk the specialisation of M at
T = uk−2− 1. Letting Φ be the field of fractions of O, it is then easy to see that the Bloch–Kato
logarithm and dual exponential maps define isomorphisms

(4.4)
logp : H1(Kp, T

−
f ⊗Ψ1−c

T )k ⊗Qp → Φ, k ≥ 3,

exp∗p : H1(Kp, T
−
f ⊗Ψ1−c

T )k ⊗Qp → Φ, k = 2.

The following fundamental result due to Bertolini–Seveso–Venerucci and Darmon–Rotger re-

lates p−f (locp(κ(f, gg∗))) to the restricted triple product p-adic L-function L f
p (f, gg∗) in (2.7).

Theorem 4.1.1 (Explicit reciprocity law). There is an injective Λ-module homomorphism

Logf : H1(Kp, T
−
f ⊗Ψ1−c

T )→ Λ
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with pseudo-null cokernel satisfying for any Z ∈ H1(Kp, T
−
f ⊗Ψ1−c

T ) the interpolation property

Logf (Z)k = ck ×

{
logp(Zk) if k ≥ 3,

expp(Zk) if k = 2,

where ck is an explicit nonzero constant, and such that

Logf
(
p−f (locp(κ(f, gg∗)))

)
= L f

p (f, gg∗).

Proof. The map Logf is obtained by specialising the three-variable big regulator map of [BSV22b,
§7.1], and the explicit reciprocity law is a consequence of the results of [BSV22b, Thm. A] and
[DR22, Thm. 10]. The details are explained in [ACR23, Prop. 7.3] and [CD23, Thm. 5.1.1]. �

The next result shows the equivalence between a “diagonal cycle main conjecture” in the spirit

of [PR87, Conj. B] and the Iwasawa–Greenberg main conjecture for L f
p (f, gg∗).

Proposition 4.1.2. The following statements (1)-(2) are equivalent:

(1) κ(f, gg∗) is not Λ-torsion,

rankΛ

(
Selbal(Q,V†fgg∗)

)
= rankΛ

(
Xbal(Q,A†fgg∗)

)
= 1,

and the following equality holds in Λ⊗Qp:

charΛ

(
Xbal(Q,A†fgg∗)tors

)
= charΛ

(
Selbal(Q,V†fgg∗)/(κ(f, gg∗))

)2
.

where the subscript tors denotes the Λ-torsion submodule.

(2) L f
p (f, gg∗) is nonzero, the modules Self (Q,V†fgg∗) and Xf (Q,A†fgg∗) are both Λ-torsion,

and

charΛ

(
Xf (Q,A†fgg∗)

)
=
(
L f
p (f, gg∗)2

)
in Λ⊗Qp.

Proof. This follows from an argument by now standard using Theorem 4.1.1 and global duality
as in [ACR23, Thm. 7.15]. �

4.2. Anticyclotomic main conjecture for modular forms. For our later use, here we record
some known results on the anticyclotomic Iwasawa main conjecture for modular forms.

Let F be the residue field of O, and denote by

ρ̄f : GQ → GL2(F)

the residual representation associated to f . Factor Nf = N+N− as in (2.5). Following [KPW17],
we say that Assumption (A) holds if:

• ρ̄f is absolutely irreducible,
• ρ̄f is ramified at every prime q | N− with q ≡ ±1 (mod p),
• either p > 5 or the image of ρ̄f contains a conjugate of GL2(Fp).

Note that this is the same as Assumption (A) from [KPW17], except that the latter also includes
the non-anomalous condition ap(f) 6≡ 1 (mod p); that the next result holds without this condition
follows from recent advances on Ihara’s lemma, [MS21].
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Theorem 4.2.1. Suppose that the ordinary p-stabilised newform f ∈ S2(Γ0(pNf )) is p-old, and
that N− is the squarefree product of an odd number of primes. Under Assumption (A), the module
Sel(K,Af ⊗Ψc−1

T ) is Λ-cotorsion, and

charΛ

(
Sel(K,Af ⊗Ψc−1

T )∨
)

=
(
Θf/K(T )2

)
in Λ⊗Qp.

Proof. This follows from the combination of the main result of Bertolini–Darmon [BD05], as later
refined by several authors (see [PW11, CH15, KPW17]), showing the Λ-cotornionness Sel(K,Af⊗
Ψc−1
T ) and the integral divisibility

(4.5) charΛ

(
Sel(K,Af ⊗Ψc−1

T )∨
)
⊃
(
Θf/K(T )2

)
,

and the converse divisibility that follows from the two-variable main conjecture for f/K proved in
the work of Skinner–Urban and Wan [SU14, Wan15] (after inverting p in the latter case) restricted
to the anticyclotomic line. �

Remark 4.2.2. By using the Euler system divisibility from [CD23, Thm. 5.6.1] (using diagonal
cycles rather than congruence arguments and Heegner points), the ramification hypothesis on ρ̄f
in Theorem 4.2.1 can be replaced by the “big image” hypothesis in [op. cit., §3.3.2].

5. Main result

In this section we state and prove the main result of this note toward the nonvanishing con-
jectures of [DR16] in the setting of rank two elliptic curves.

5.1. Generalised Kato classes. Let E/Q be an elliptic curve of conductor Nf , and let p > 3
a prime of good ordinary reduction for E. Let f ∈ S2(Γ0(pNf )) be the ordinary p-stabilisation
of the newform associated to E, and let (g, g∗) = (θψ(S1),θψ−1(S2)) be a dual pair of primitive
CM Hida families as in (2.6). When χ = ψ/ψc satisfies (3.2), we have

(5.1) H1(Q,V†fgg∗) ' H1(K,Tf ⊗Ψ1−c
T )⊕H1(K,Tf ⊗ χ−1Ψ1−c

W2
)/W2

by specialising (3.4). The following is a special case of the construction of generalised Kato classes
by Darmon–Rotger [DR16] in the adjoint case.

Definition 5.1.1. Let κp(E) be the image of κ(f, gg∗) under the composition

H1(Q,V†fgg∗)→ H1(K,Tf ⊗Ψ1−c
T )→ H1(K,Tf ) ' H1(K,TpE),

where the first arrow is the projection onto the first direct summand in (5.1), and the second is
induced by the multiplication by T on Tf ⊗Ψ1−c

T .

By (4.2), the inclusion κ(f, gg∗) ∈ Selbal(Q,V†fgg∗) from [BSV22b, Cor. 8.2] implies that

(5.2) κp(E) ∈ Sel∅,0(K,TpE).

In the following we shall view κp(E) as a class with coefficients in VpE.

Proposition 5.1.2. The following implication holds

L(f/K, 1) = 0 =⇒ κp(E) ∈ Sel(K,VpE).
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Proof. By (5.2), the inclusion κp(E) ∈ Sel(K,VpE) holds if and only if resp(κp(E)) vanishes
under the natural map H1(Kp, Vf )→ H1(Kp, V

−
f ). Since from the combination of Theorem 4.1.1,

Proposition 2.4.1, and Theorem 2.3.1 yield the equivalence

expp(resp(κp(E))) = 0 ⇐⇒ L(f/K, 1) · L(f/K ⊗ χ, 1) = 0,

and the Bloch–Kato dual in (4.4) is an isomorphism, the result follows. �

Denote by EK the twist of E by the quadratic character corresponding to K/Q.

Corollary 5.1.3. Suppose L(E, 1) = 0 and L(EK , 1) 6= 0. Then κp(E) ∈ Sel(Q, VpE).

Proof. Since Kato’s results [Kat04] show that Sel(Q, VpE
K) = 0 when L(EK , 1) 6= 0, this follows

from Proposition 5.1.2 and the isomorphism Sel(K,VpE) ' Sel(Q, VpE)⊕ Sel(Q, VpE
K). �

Remark 5.1.4. The proof of Proposition 5.1.2 show that when L(f/K, 1) = 0, the class κp(E)
lies in fact in the kernel of the restriction map on Sel(K,VpE) at the primes above p. In particular,
in the setting of Corollary 5.1.3, κp(E) lands in the strict Selmer group

Sel0(Q, VpE) = ker

{
Sel(Q, VpE)

locp−−→ E(Qp)⊗̂Qp

}
.

5.2. Nonvanishing of κp(E) in rank two. Denote by

ρf : GQ → AutFp(E[p]) ' GL2(Fp)

the mod p Galois representation associated to E, and assume that:

(h1) ρ̄f is absolutely irreducible,
(h2) there exists a prime q‖Nf , and if q ≡ ±1 (mod p) then ρ̄f is ramified at q,
(h3) either p > 5 of the image of ρ̄f contains a conjugate of GL2(Fp).

We shall consider generalised Kato classes as in §5.1 attached to the following.

Choice 5.2.1. Let q be a prime as in (h2) above, and let ` - 6pNf be a prime. Choose an
imaginary quadratic field K and a ring class character χ of K of conductor dividing `∞OK such
that:

(1) q is inert in K,
(2) every prime factor of Nf/q splits in K,
(3) ` splits in K,
(4) ` is ordinary for E,
(5) L(EK , 1) 6= 0 and L(E/K,χ, 1) 6= 0,
(6) χ|GKp

6= 1.

Remark 5.2.2. The existence of (infinitely many) K satisfying (1)–(3) and such that L(EK , 1) 6=
0 follows from [BFH90]; for any such K, the results of [Vat03] (see also [CH18, Thm. D]) ensure
that L(E/K,χ, 1) 6= 0 for all but finitely many χ of `-power conductor.

Fix (K,χ) as in Choice 5.2.1. Write χ = ψ/ψc with ψ a ray class character modulo `mOK for
some m > 0, let (g, g∗) = (θψ(S1),θψ−1(S2)) be the associated primitive CM Hida families as in

(2.6), and let κp(E) ∈ H1(K,VpE) the corresponding generalised Kato class.
By Corollary 5.1.3, when L(E, 1) = 0 we have κp(E) ∈ Sel(Q, VpE). Moreover, by our choice of

K and χ, when further E/Q has sign +1 (so in particular ords=1L(E, s) ≥ 2), the nonvanishing
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conjecture of Darmon–Rotger [DR16, Conj. 3.2] (as specialised in [op. cit., §4.5.3] to the setting
of rank two elliptic curves) predicts the equivalence

κp(E) 6= 0
?⇐⇒ dimQpSel(Q, VpE) = 2.

The following is the main result of this note in the direction of this conjecture.

Theorem 5.2.3. Suppose that L(E, s) vanishes to positive even order at s = 1. Then

κp(E) 6= 0 =⇒ dimQpSel(Q, VpE) = 2.

Conversely, if dimQpSel(Q, VpE) = 2 then κp(E) 6= 0 if and only if the restriction map

locp : Sel(Q, VpE)→ E(Qp)⊗̂Qp

is nonzero. Moreover, in that case κp(E) spans the strict Selmer group Sel0(Q, VpE) = ker(locp).

Remark 5.2.4. Theorem 5.2.3 recovers [CH22, Thm. A] under slightly weaker hypotheses on ρ̄f ,
and moreover, shows that the condition Sel(Q, VpE) 6= ker(locp) is necessary for the nonvanishing
of κp(E) when Sel(Q, VpE) is 2-dimensional.

Remark 5.2.5. When Sel(Q, VpE) is 2-dimensional and different from ker(locp), it follows from
Theorem 5.2.3 that

κp(E) = λ ·
(
logp(Q)P − logp(P )Q

)
,

for some λ ∈ Q×p , where (P,Q) is any basis for Sel(Q, VpE) and logp is the composition of locp
with the formal group logarithm on E(Qp)⊗̂Qp. This is consistent with the refined conjecture in
[DR16, Conj. 3.12] specialised to the setting of [op. cit.,§4.5.3], which further predicts a rationality
statement for λ (see also [BSV22a, Conj. 3.4, Rem. 3.5.2]).

The rest of this section is devoted to the proof of Theorem 5.2.3.

5.3. Some Galois cohomology. Put Kp = K ⊗Q Qp ' Kp ⊕Kp. Let

(5.3) locp = locp ⊕ locp : H1(GK,Σ, VpE)→ H1(Kp, VpE)

be the restriction map, and denote byXf (resp. Xp) the image of Sel(K,VpE) (resp. Sep∅,0(K,VpE))
under locp.

Lemma 5.3.1. We have dimQpSel∅,0(K,VpE) = dimQpSel(K,VpE) + δ, where

δ =


−1 if Xf 6= 0,

0 if Xf = Xp = 0,

1 if Xf = 0 and Xp 6= 0.

Proof. Since Xf is invariant under the action of complex conjugation, if Xf is nonzero then the
restriction maps Sel(K,VpE)→ H1(Kq, VpE) for q ∈ {p, p} are both nonzero, and so in this case
the result follows from [CHK+23, Lem. 2.2].

Now supposeXf = 0, so that Sel(K,VpE) is the same as the strict Selmer group Selstr(K,VpE) :=
ker(locp), and consider the exact sequence

(5.4) 0→ Selstr(K,VpE)→ Sel∅,0(K,VpE)
locp−−→ H1(Kp, VpE).

If Xp = 0, then (5.4) yields the result, so it remains to consider the case Xp 6= 0. If dimQpXp = 2,
then the image of (5.3) contains Xp⊕Xp, where Xp is the image of Xp under complex conjugation
(equivalently, the image of Sel0,∅(K,VpE)), but this contradicts [Ski20, Lem. 2.3.1]. Therefore if
Xp 6= 0 then it is one-dimensional, and the result in this case follows again from (5.4). �
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Remark 5.3.2. Standard conjectures predict that Xf 6= 0 unless Sel(K,VpE) = 0 (indeed, the
vanishing of Xf when Sel(K,VpE) 6= 0 would imply thatØ(E/K)[p∞] is infinite).

Recall that we set Λ = OJT K, and for any Λ-module M denote by M/T = M/TM the cokernel
of multiplication by T . The following is a variant of Mazur’s control theorem [Maz72].

Proposition 5.3.3. Multiplication by T induces natural maps

r∗ : Sel0,∅(K,Af )→ Sel0,∅(K,Af ⊗Ψc−1
T )[T ],

r : Sel∅,0(K,Tf ⊗Ψ1−c
T )/T → Sel∅,0(K,Tf )

with finite kernel and cokernel.

Proof. Letting Selrel(K,Af ) and Selrel(L,Af ⊗ Ψc−1
T ) be the Selmer groups defined in the same

manner as Sel0,∅(K,Af ) and Sel∅,0(L,Af ⊗Ψc−1
T ), respectively, but with the (propagated in the

case of Af ) relaxed local condition at the primes above p, the map r∗ fits into the commutative
diagram with exact rows

0 // Sel0,∅(K,Af ) //

r∗

��

Selrel(K,Af ) //

s∗

��

H1(Kp, Af )× H1(Kp,Af )

H1(Kp,Af )div

t∗

��
0 // Sel0,∅(K,Af ⊗Ψc−1

T )[T ] // Selrel(K,Af ⊗Ψc−1
T )[T ] // H1(Kp, Af ⊗Ψc−1

T )[T ]× {0},

where H1(Kp, Af )div denotes the maximal divisible submodule of H1(Kp, Af ). The map t∗ arises
from the cohomology long exact sequence associated to

0→ Af → Af ⊗Ψc−1
T

×T−−→ Af ⊗Ψc−1
T → 0,

and therefore is surjective with kernel H0(Kp, Af ⊗Ψc−1
T )/T . Since [KO20, Lem. 2.7] implies that

#H0(Kp, Af ⊗Ψc−1
T ) <∞, by the Snake Lemma to prove the stated property for r∗ it suffices to

show that s∗ has finite kernel and cokernel.
The latter map fits into the commutative diagram with exact rows

0 // Selrel(K,Af ) //

s∗

��

H1(GK,Σ, Af ) //

u∗

��

⊕
w∈Σ,w-p

H1(Kw,Af )

H1
f (Kw,Af )

v∗

��
0 // Selrel(K,Af ⊗Ψc−1

T )[T ] // H1(GK,Σ, Af ⊗Ψc−1
T )[T ] //

⊕
w∈Σ,w-p H1(Kw, Af ⊗Ψc−1

T )[T ],

where H1
f (Kw, Af ) is the natural image of ker{H1(Kw, Vf )→ H1(Kur

w , Vf )} (see Definition 3.2.1).

The finiteness of H0(Kp, Af ⊗Ψc−1
T ) implies that of H0(GK,Σ, Af ⊗Ψc−1

T ), and so the map u∗ has
finite kernel. Since u∗ is clearly surjective and by [Gre99, Lem. 3.3] (see also [JSW17, §3.3.6]) the
kernel of the map v∗ is finite, by the Snake Lemma it follows that s∗ has the desired properties.
This shows the result for r∗ and the case of r is shown similarly. �

5.4. Proof of the main result.

Proof of Theorem 5.2.3. The decomposition in Corollary 3.3.2 gives

(5.5) Xf (Q,A†fgg∗) ' Sel(K,Af ⊗Ψc−1
T )∨ ⊕

(
Sel(K,Af ⊗ χΨc−1

T )[T ]
)∨
.

The same argument as in the proof of Proposition 5.3.3 shows that the natural restriction map

Sel(K,Af ⊗ χ)→ Sel(K,Af ⊗ χΨc−1
T )[T ]
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has finite kernel and cokernel, and therefore from [BD05, Cor. 4] (a consequence of the divisibility
in the anticyclotomic main conjecture proved in op. cit. with p = `), as extended in [PW11, CH15,
KPW17]), it follows that

L(E/K,χ, 1) 6= 0 =⇒ #Sel(K,Af ⊗ χΨc−1
T )[T ] <∞.

Together with Theorem 4.2.1 and Proposition 2.4.1, in light of (5.5) this shows that Xf (Q,A†fgg∗)
is Λ-torsion, with

charΛ

(
Xf (Q,A†fgg∗)

)
=
(
L f
p (f, gg∗)2

)
in Λ⊗Qp. By Proposition 4.1.2, it follows that κ(f, gg∗) is not Λ-torsion, that both Selbal(Q,V†fgg∗)

and Xbal(Q,A†fgg∗) have Λ-rank one, and that

charΛ

(
Xbal(Q,A†)tors

)
= charΛ

(
Selbal(Q,V†)/(κ(f, gg∗))

)2
in Λ⊗Qp. Denote by κ1(f, gg∗) ∈ Sel∅,0(K,Tf ⊗Ψ1−c

T ) the projection of κ(f, gg∗) onto the first
direct summand in (4.2). By Proposition 3.3.1 and Corollary 3.3.2, the above shows that both
Sel∅,0(K,Tf ⊗Ψ1−c

T ) and X0,∅(K,Af ⊗Ψc−1
T ) have Λ-rank one, with

charΛ

(
X0,∅(K,Af ⊗Ψc−1

T )tors

)
= charΛ

(
Sel∅,0(K,Tf ⊗Ψ1−c

T )/(κ1(f, gg∗))
)2

in Λ⊗Qp. By the control theorem of Proposition 5.3.3, this implies that

(5.6) corankZpSel0,∅(K,Af ) = rankZp

(
X0,∅(K,Af ⊗Ψc−1

T )/T
)

= 1 + 2 rankZp(Z/T ),

where Z = Sel∅,0(K,Tf ⊗Ψ1−c
T )/(κ1(f, gg∗)). Thus we conclude that

corankZpSel0,∅(K,Af ) = 1 ⇐⇒ (κ1(f, gg∗) mod T ) 6= 0,

where (κ1(f, gg∗) mod T ) is the image of κ1(f, gg∗) in Sel∅,0(K,Tf ⊗Ψ1−c
T )/T . Since the natural

map

Sel∅,0(K,Tf ⊗Ψ1−c
T )/T → Sel∅,0(K,Tf )

has finite kernel by Proposition 5.3.3, and it sends (κ1(f, gg∗) mod T ) to κp(E) by construction,
we arrive at

(5.7) κp(E) 6= 0 ⇐⇒ rankZpSel∅,0(K,Tf ) = 1,

using the action of complex conjugation to reverse the roles of p and p. Now, assuming κp(E) 6= 0,
by Theorem 4.2.1 (resp. the p-parity conjecture [Nek01]) the case δ = 0 (resp. δ = 1) is excluded
in Lemma 5.3.1, and so dimQpSel(K,VpE) = 2; since the nonvanishing of L(EK , 1) implies that
Sel(Q, VpE) = Sel(K,VpE) by Kato’s work, the first implication in Theorem 5.2.3 follows.

Conversely, if dimQpSel(Q, VpE) = 2 (and so dimQpSel(K,VpE) = 2), from (5.6) we see that the
case δ = 0 is excluded in Lemma 5.3.1 and the case δ = −1 holds (i.e., dimQpSel∅,0(K,VpE) = 1)
if and only if Sel(Q, VpE) 6= ker(locp). By (5.7), this concludes the proof. �

Remark 5.4.1. Even though the approach in this paper recovers a strenghtened form of [CH22,
Thm. A] under slightly weaker hypotheses, a noteworthy advantage of the approach in op. cit. is
that — by relating the derived p-adic heights against κp(E) to the leading coefficient of Θf/K(T )
(see [CH22, Thm. 5.3]) — it provides a method to numerically verity the nonvanishing of κp(E),
and to relate its rationality properties predicted by [DR16, Conj. 3.12] to (the leading coefficient
part of) the anticyclotomic p-adic Birch–Swinnerton-Dyer conjectures formulated in [BD96]. (See
also [BSV22a] for a more general setting.)
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