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Abstract. Let f be a p-ordinary Hida family of tame level N , and let K be

an imaginary quadratic field satisfying the Heegner hypothesis relative to N .
By taking a compatible sequence of twisted Kummer images of CM points over

the tower of modular curves of level Γ0(N) ∩ Γ1(ps), Howard has constructed

a canonical class Z in the cohomology of a self-dual twist of the big Galois
representation associated to f . If a p-ordinary eigenform f on Γ0(N) of weight

k > 2 is the specialization of f at ν, one thus obtains from Zν a higher weight

generalization of the Kummer images of Heegner points. In this paper, we
relate the classes Zν to the étale Abel-Jacobi images of Heegner cycles when p

splits in K.
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1. Introduction

Fix a prime p > 3 and an integer N > 4 such that p - Nφ(N). Let

fo =
∑
n>0

anq
n ∈ Sk(X0(N))

be a p-ordinary newform of even weight k = 2r ≥ 2 and trivial nebentypus. Thus
fo is an eigenvector for all the Hecke operators Tn with associated eigenvalues an,
and ap is a p-adic unit for a choice of embeddings ι∞ : Q ↪→ C and ιp : Q ↪→ Qp

that will remain fixed throughout this paper. Also let O denote the ring of integers
of a (sufficiently large) finite extension L/Qp containing all the an.
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2 F. CASTELLA

For s > 0, let Xs be the compactified modular curve of level

Γs := Γ0(N) ∩ Γ1(ps),

and consider the tower

· · · → Xs
α−→ Xs−1 → · · ·

with respect to the degeneracy maps described on the non-cuspidal moduli by

(E,αE , πE) 7→ (E,αE , p · πE),

where αE denotes a cyclic N -isogeny on the elliptic curve E, and πE a point of E
of exact order ps. The group (Z/psZ)× acts on Xs via the diamond operators

〈d〉 : (E,αE , πE) 7→ (E,αE , d · πE)

compatibly with α under the reduction (Z/psZ)× → (Z/ps−1Z)×. Set Γ := 1+pZp.
Letting Js be the Jacobian variety of Xs, the inverse limit of the system induced
by Albanese functoriality,

(1.1) · · · → Tap(Js)⊗Zp O → Tap(Js−1)⊗Zp O → · · · ,

is equipped with an action of the Iwasawa algebras Λ̃O := O[[Z×p ]] and

ΛO := O[[Γ]].

Let hs be the O-algebra generated by the Hecke operators T` (` - Np), U` := T`
(`|Np), and the diamond operators 〈d〉 (d ∈ (Z/psZ)×) acting on the space Sk(Xs)
of cusp forms of weight k and level Γs. Hida’s ordinary projector

eord := lim
n→∞

Un!
p

defines an idempotent of hs, projecting to the maximal subspace of hs where Up acts

invertibly. We make each hs into a Λ̃O-algebra by letting the group-like element
attached to z ∈ Z×p act as zk−2〈z〉.

Taking the projective limit with respect to the restriction maps induced by the

natural inclusion Sk(Xs−1) ↪→ Sk(Xs) we obtain a Λ̃O-algebra

(1.2) hord := lim←−
s

eordhs

which can be seen to be independent of the weight k ≥ 2 used in its construction.
After a highly influential work [Hid86] of Hida, one can associate with fo a certain

local domain I quotient of hord, finite flat over ΛO, with the following properties.
For each n, let an ∈ I be the image of Tn under the projection hord → I, and
consider the formal q-expansion

f =
∑
n>0

anq
n ∈ I[[q]].

We say that a continuous O-algebra homomorphism ν : I → Qp is an arithmetic
prime if there is an integer kν ≥ 2, called the weight of ν, such that the composition

Γ→ I× → Q
×
p agrees with γ 7→ γkν−2 on an open subgroup of Γ of index psν−1 ≥ 1.

Denote by Xarith(I) the set of arithmetic primes of I, which will often be seen as
sitting inside Spf(I)(Qp). If ν ∈ Xarith(I), Fν will denote its residue field. Then:
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• for every ν ∈ Xarith(I), there exists an ordinary p-stabilized newform1

fν ∈ Skν (Xsν )

such that ν(f) ∈ Fν [[q]] gives the q-expansion of fν ;
• if sν = 1 and kν ≡ k (mod 2(p − 1)), there exists a normalized newform

f ]ν ∈ Skν (X0(N)) such that

(1.3) fν(q) = f ]ν(q)− pkν−1

ν(ap)
f ]ν(qp);

• there exists a unique νo ∈ Xarith(I) such that fo = f ]νo .

In particular, after “p-stabilization” (1.3), the form fo fits in the p-adic family f .
Similarly for the associated Galois representation Vfo : the continuous hord-linear

action of the absolute Galois group GQ on the module

(1.4) T := Tord ⊗hord I, where Tord := lim←−
s

eord(Tap(Js)⊗Zp O),

gives rise to a “big” Galois representation ρf : GQ → Aut(T) such that

ν(ρf ) ∼= ρ∗fν for every ν ∈ Xarith(I),

where ρ∗fν is the contragredient of the (cohomological) p-adic Galois representation
ρfν : GQ → Aut(Vfν ) attached to fν by Deligne; in particular, one recovers ρ∗fo from
ρf by specialization at νo.

Assume from now on that the residual representation ρ̄fo is irreducible; then T
can be shown to be free of rank 2 over I. (See [MT90, Théorème 7] for example.)
Let K be an imaginary quadratic field with ring of integers OK containing an ideal
N ⊂ OK with

(1.5) OK/N ∼= Z/NZ,

and denote by H the Hilbert class field of K. Under this Heegner hypothesis rela-
tive to N (but with no extra assumptions on the prime p), the work [How07b] of
Howard produces a compatible sequence U−sp ·Xs of cohomology classes with values
in a certain twist of the ordinary part of (1.1), giving rise to a canonical “big”
cohomology class X, the big Heegner point (of conductor 1), in the cohomology of a
self-dual twist T† of T. Moreover, if every prime factor of N splits in K, it follows
from his results that the class

Z := CorH/K(X)

lies in Nekovář’s extended Selmer group H̃1
f (K,T†). In particular, for every ν ∈

Xarith(I) with sν = 1 and kν ≡ k (mod 2(p − 1)) as above, the specialization Zν
belongs to the Bloch-Kato Selmer group H1

f (K,Vf]ν (kν/2)) of the self-dual repre-

sentation T† ⊗I Fν ∼= Vf]ν (kν/2). The classes Zν may thus be regarded as a natu-
ral higher weight analogue of the Kummer images of Heegner points, on modular
Abelian varieties (associated with weight 2 eigenforms).

But for any of the above f ]ν , one has an alternate (and completely different!)
method of producing such a higher weight analogue. Briefly, if kν = 2rν > 2,
associated to any elliptic curve A with CM by OK , there is a null-homologous cycle

∆heeg
A,rν

, a so-called Heegner cycle, on the (2rν − 1)-dimensional Kuga-Sato variety

1As defined in [NP00, (1.3.7)].
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Wrν giving rise to an H-rational class in the Chow group CHrν+1(Wrν )0 with Q-
coefficients. Since the representation Vf]ν (rν) appears in the étale cohomology of
Wrν :

H2rν−1
ét (W rν ,Qp)(rν)

π
f
]
ν−−→ Vf]ν (rν),

by taking the images of the cycles ∆heeg
A,rν

under the p-adic étale Abel-Jacobi map

Φét
H : CHrν+1(Wrν )0(H)→ H1(H,H2rν−1

ét (W rν ,Qp)(rν))

and composing with the map induced by πf]ν on H1’s, we may consider the classes

Φét
f]ν ,K

(∆heeg
rν ) := CorH/K(πf]νΦét

H(∆heeg
A,rν

)).

By the work [Nek00] of Nekovář, these classes are known to lie in the same
Selmer group as Zν , and the question of their comparison thus naturally arises.

Main Theorem (Thm. 5.11). Assume that p splits in K and that Z is not I-torsion.
Then for any ν ∈ Xarith(I) of weight kν = 2rν > 2 with kν ≡ k (mod 2(p− 1)) and
trivial character, we have

〈Zν ,Zν〉K =

(
1− prν−1

ν(ap)

)4 〈Φét
f]ν ,K

(∆heeg
rν ),Φét

f]ν ,K
(∆heeg

rν )〉K
u2(4D)rν−1

,

where 〈, 〉K is the cyclotomic p-adic height pairing on H1
f (K,Vf]ν (rν)), u := |O×K |/2,

and −D < 0 is the discriminant of K.

Thus assuming the non-degeneracy of the p-adic height pairing, it follows that
the étale Abel-Jacobi images of Heegner cycles are p-adically interpolated by Z.
We also note that Z is conjecturally always not I-torsion ([How07b, Conj. 3.4.1]),
and that by [How07a, Cor. 5] this conjecture can be verified in any given case by
exhibiting the non-vanishing of an appropriate L-value (a derivative, in fact).

This paper is organized as follows. Section 1 is aimed at proving an expression for
the formal group logarithms of ordinary CM points on Xs using Coleman’s theory
of p-adic integration. Our methods here are drawn from [BDP, Sect. 3], which we
extend in weight 2 to the case of level divisible by an arbitrary power of p, but with
ramification restricted to a potentially crystalline setting. Not quite surprisingly,
this restriction turns out to make our computations essentially the same as theirs,
and will suffice for our purposes.

In Sect. 2 we recall the generalised Heegner cycles and the formula for their p-
adic Abel-Jacobi images from loc.cit., and discuss the relation between these and
the more classical Heegner cycles.

In Sect. 3 we deduce from the work [Och03] of Ochiai a “big” logarithm map
that will allow as to move between different weights in the Hida family.

Finally, in Sect. 4 we prove our main results. The key observation is that, when
p splits in K, the combination of CM points on Xs taken in Howard’s construction
appears naturally in the evaluation of the critical twist of a p-adic modular form at
a canonical trivialized elliptic curve. The expression from Sect. 1 thus yields, for
infinitely many ν of weight 2, a formula for the p-adic logarithm of the localization
of Zν in terms of certain values of a p-adic modular form of weight 0 associated
with fν (Thm. 5.8). When extended by p-adic continuity to an arithmetic prime ν
of higher even weight, this expression is seen to agree with the formula from Sect. 2,
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and by the interpolation properties of the big logarithm map it corresponds to the
p-adic logarithm of the localization of Zν . Our main results follow easily from this.

Finally, we note that an extension of the results in this paper, and in particular
of the Main Theorem above, has a number of arithmetic applications arising from
the connection with the theory of p-adic L-functions. (See [Cas12].)

2. Preliminaries

2.1. p-adic modular forms. To avoid some issues related to the representability
of certain moduli problems, in this section we change notations from the Introduc-
tion, letting Xs be the compactified modular curve of level Γs := Γ1(Nps), viewed
as a scheme over Spec(Qp). Let π : Es → Xs be the universal generalized elliptic
curve over Xs, and let

ωXs := π∗Ω
1
Es/Xs(logZs)

be the invertible sheaf on Xs given by the pushforward of the relative differentials
on Es/Xs with log-poles along the inverse image of the cuspidal subscheme Zs ⊂ Xs.

Algebraically, H0(Xs, ω
⊗2
Xs

) gives the space of modular forms of weight 2 and
level Γs (defined over Qp). Consider the complex

(2.1) Ω•Xs/Qp
(logZs) : 0 −→ OXs

d−−→ Ω1
Xs/Qp

(logZs) −→ 0

of sheaves on Xs. The algebraic de Rham cohomology of Xs

H1
dR(Xs/Qp) := H1(Xs,Ω

•
Xs/Qp

(logZs))

is a finite-dimensional Qp-vector space equipped with a Hodge filtration

0 ⊂ H0(Xs,Ω
1
Xs/Qp

(logZs)) ⊂ H1
dR(Xs/Qp),

and by the Kodaira-Spencer isomorphism ω⊗2
Xs
∼= Ω1

Xs/Qp
(logZs), every cusp form

f ∈ S2(Xs) (in particular) defines a cohomology class ωf ∈ H1
dR(Xs/Qp).

Let X be the complete modular curve of level Γ1(N), also viewed over Spec(Qp),
and consider the subspaces of the associated rigid analytic space Xan:

Xord ⊂ X<1/(p+1) ⊂ X<p/(p+1) ⊂ Xan.

To define these, let X/Zp be the canonical integral model of X over Spec(Zp), and let

XFp := X ×Zp Fp denote its special fiber. The supersingular points SS ⊂ XFp(Fp)
is the finite set of points corresponding to the moduli of supersingular elliptic curves
(with Γ1(N)-level structure) in characteristic p. Let Ep−1 be the Eisenstein series

of weight p − 1 and level 1, seen as a global section of the sheaf ω
⊗(p−1)
X . (Recall

that we are assuming p ≥ 5.) The reduction of Ep−1 to XFp is the Hasse invariant,

which defines a section of the reduction of ω
⊗(p−1)
X with SS as its locus of (simple)

zeroes. If x ∈ X(Qp), let x̄ ∈ XFp(Fp) denote its reduction. Each point x̄ ∈ SS is
smooth in XFp , and the ordinary locus of X

Xord := Xan r
⋃
x̄∈SS

Dx̄

is defined to be the complement of their residue discs Dx̄ ⊂ Xan. The function
|Ep−1(x)|p defines a local parameter on Dx̄, and with the normalization |p|p = p−1,
X<1/(p+1) (resp. X<p/(p+1)) is defined to be complement in Xan of the subdiscs of

Dx̄ where |Ep−1(x)|p ≤ p−1/(p+1) (resp. |Ep−1(x)|p ≤ p−p/(p+1)), for all x̄ ∈ SS.
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Using the canonical subgroup HE (of order p) attached to every elliptic curve E
corresponding to a closed point in X<p/(p+1), the Deligne-Tate map

φ0 : X<1/(p+1) → X<p/(p+1)

is defined by sending E 7→ E/HE (with the induced action on the level structure)
under the moduli interpretation. This map is a finite morphism which by definition
lifts to characteristic zero the absolute Frobenius on XFp . (See [Kat73, Thm. 3.1].)

For every s > 0, the Deline-Tate map φ0 can be iterated s − 1 times on the

open rigid subspace X<p2−s/(p+1) of Xan where |Ep−1(x)|p > p−p
2−s/(p+1). Letting

αs : Xs → X be the map forgetting the “Γ1(ps)-part” of the level structure, define

W1(ps) ⊂ Xan
s

to be the open rigid subspace of Xs whose closed points correspond to triples
(E,αE , πE) whose image under αs lands inside X<p2−s(p+1) and are such that πE
generates the canonical subgroup of E of order ps (as in [Buz03, Def. 3.4]).

DefineW2(ps) ⊂ Xan
s is the same manner, replacing p2−s/(p+1) by p1−s/(p+1)

in the definition of W1(ps). Then we obtain a lifting of Frobenius φ = φs on Xs

making the diagram

W2(ps)
φ //

αs

��

W1(ps)

αs

��
X<p1−s(p+1)

φ0 // X<p2−s(p+1).

commutative by sending a point x = (E,αE , ıE) ∈ W2(ps), where ıE : µps ↪→ E[ps]
is an embedding giving the Γ1(ps)-level structure on E, to x′ = (φ0E, φ0αE , ı

′
E),

where ı′E is determined by requiring that αs(x
′) lands in X<p2−s/(p+1) and for each

ζ ∈ µps − {1}, ı′E(ζ) = φ0Q if ıE(ζ) = pQ. (Cf. [Col97b, Sect. B.2].)

Let Is := {v ∈ Q : 0 ≤ v < p2−s/(p + 1)}, and for v ∈ Is define the affinoid
subdomain Xs(v) of Xan

s inside W1(ps) whose closed points x satisfy |Ep−1(x)|p ≥
p−v. Then Xs(0) is the connected component of the ordinary locus of Xs containing
the cusp ∞.

Let k ∈ Z, and denote by ωXan
s

the rigid analytic sheaf on Xan
s deduced from

ωXs . The space of p-adic modular forms of weight k and level Γs (defined over Qp)
is the p-adic Banach space

Mord
k (Xs) := H0(Xs(0), ω⊗kXan

s
),

and the space of overconvergent p-adic modular forms of weight k and level Γs is
the p-adic Fréchet space

M rig
k (Xs) := lim−→

v

H0(Xs(v), ω⊗kXan
s

),

where the limit is with respect to the natural restriction maps as v ∈ Is increasingly
approaches p2−s/(p + 1). By restriction, a classical modular form in H0(Xs, ω

⊗k
Xs

)
defines an (obviously) overconvergent p-adic modular form of the same weight an
level. Moreover, the action of the diamond operators on Xs gives rise to an action
of (Z/psZ)× on the spaces of p-adic modular forms which agrees with the action

on H0(Xs, ω
⊗k
Xs

) under restriction.
We say that a ring R is a p-adic ring if the natural map R → lim←−R/p

nR is an
isomorphism. For varying s > 0, the data of a compatible sequence of embeddings
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µps ↪→ E as R-group schemes, amounts to the data of an embedding µp∞ ↪→ E[p∞]
of p-divisible groups, and also to the given of a trivialization of E over R, i.e. an
isomorphism

ıE : Ê → Ĝm

of the associated formal groups. The space M(N) of Katz p-adic modular functions
of tame level N (over Zp) is the space of functions f on trivialized elliptic curves
with Γ1(N)-level structure over arbitrary p-adic rings, assigning to the isomorphism
class of a triple (E,αE , ıE) over R a value f(E,αE , ıE) ∈ R whose formation is
compatible under base change. If R is a fixed p-adic ring, by only considering
p-adic rings which are R-algebras, we obtain the notion of Katz p-adic modular
functions defined over R, forming the space M(N)⊗̂ZpR which will also be denoted
by M(N) by an abuse of notation.

The action of z ∈ Z×p on a trivialization gives rise to an action of Z×p on M(N):

〈z〉f(E,αE , ıE) := f(E,αE , z
−1 · ıE),

and given a character χ ∈ Homcont(Z
×
p , R

×), we say that f ∈ M(N) has weight-

nebentypus χ if 〈z〉f = χ(z)f for all z ∈ Z×p . If k is an integer, denoting by zk the

k-th power character on Z×p , the subspace Mord
k (Nps, ε) of Mord

k (Xs) consisting of

p-adic modular forms with nebentypus ε : (Z/psZ)× → R× can be recovered as

(2.2) Mord
k (Nps, ε) ∼= {f ∈M(N) : 〈z〉f = zkε(z)f, for all z ∈ Z×p }.

Since it will play an important role later, we next recall from [Gou88, Sect. III.6.2]
the definition in terms of moduli of the twist of p-adic modular forms by characters
of not necessarily finite order. Let R be a p-adic ring, and let (E,αE , ıE) be a
trivialized elliptic curve with Γ1(N)-level structure over R. For each s > 0, consider
the quotient E0 := E/ı−1

E (µps), and let ϕ0 : E → E0 denote the projection. Since
p - N , ϕ0 induces a Γ1(N)-level structure αE0

on E0, and since ker(ϕ0) ∼= µps , the
dual ϕ̌0 : E0 → E is étale, inducing an isomorphism of the associated formal groups.
Thus (with a slight abuse of notation) ıE0

:= ıE ◦ ϕ̌0 : Ê0
∼−→ Ĝm is a trivialization

of E0, and since we have an embedding  : Z/psZ ∼= ker(ϕ̌0) ↪→ E0[ps], we deduce
an isomorphism

E0[ps] ∼= µps ⊕ Z/psZ

which we use to bijectively attach a ps-th root of unity ζC to every étale subgroup
C ⊂ E0[ps] of order ps, in such a way that 1 is attached to ker(ϕ̌0).

Now for f ∈M(N) and a ∈ Zp, define f ⊗ 1a+psZp to be the rule on trivialized
elliptic curves given by

(2.3) f ⊗ 1a+psZp(E,αE , ıE) =
1

ps

∑
C

ζ−aC · f(E0/C, αC , ıC)

where the sum is over the étale subgroups C ⊂ E0[ps] of order ps, and where αC
(resp. ıC) denotes the Γ1(N)-level structure (resp. trivialization) on the quotient
E0/C naturally induced by αE0 (resp. ıE0).

Lemma 2.1. The assignment a + psZp  
(
f 7→ f ⊗ 1a+psZp

)
gives rise to an

EndRM(N)-valued measure µGou on Zp.

Proof. Let
∑
n anq

n be the q-expansion of f , i.e. the value that it takes at the triple
(Tate(q), αcan, ıcan) = (Gm/q

Z, ζN ,µp∞ ↪→ Gm/q
Z) over the p-adic completion
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of R((q)). By the q-expansion principle, the claim follows immediately from the
equality

f ⊗ 1a+psZp(q) =
∑

n≡a mod ps

anq
n,

which is shown by adapting the arguments in [Gou88, p. 102]. �

Definition 2.2 (Gouvêa). Let f ∈ M(N) and χ : Zp → R be any continuous
multiplicative function. The twist of f by χ is

f ⊗ χ :=

(∫
Zp

χ(x)dµGou(x)

)
(f) ∈M(N).

This operation is compatible with the usual character twist of Hecke eigenforms:

Lemma 2.3. Let χ : Z×p → R× be a continuous character extended by zero
on pZp. If f ∈ M(N) has q-expansion

∑
n anq

n, then f ⊗ χ has q-expansion∑
n χ(n)anq

n, and if f has weight-nebentypus κ ∈ Homcts(Z
×
p , R

×), then f ⊗χ has

weight-nebentypus χ2κ.

Proof. See [Gou88, Cor. III.6.8.i] and [Gou88, Cor. III.6.9]). �

In particular, twisting by the identity function of Zp we obtain an operator

d : M(N) → M(N) whose effect on q-expansions is q ddq . For every k ∈ Z, we see

from (2.2) and Lemma 2.3, that this restricts to a map

d : Mord
k (Xs)→Mord

k+2(Xs)

which increases the weight by 2 and preserves the nebentypus. Moreover, for k = 0,
the arguments in [Col96, Prop. 4.3] can be adapted to show that d restricts to a

linear map M rig
0 (Xs)→M rig

2 (Xs), viewing M rig
k (Xs) ↪→Mord

k (Xs) by restriction.

2.2. Comparison isomorphisms. Let ζs be a primitive ps-th root of unity, and
let F be a finite extension of Qp(ζs) over which Xs acquires stable reduction, i.e.
such that the base extension Xs ×Qp

F admits a stable model over the ring of
integers OF of F . For the ease of notation, from now on we will denote Xs ×Qp

F
(as well as the associated rigid analytic space) simply by Xs.

Let Xs be the minimal regular model of Xs over OF , and denote by F0 the
maximal unramified subfield of F . The work [HK94] of Hyodo-Kato endows the
F -vector space H1

dR(Xs/F ) with a canonical F0-structure

(2.4) H1
log−cris(Xs) ↪→ H1

dR(Xs/F )

equipped with a semi-linear Frobenius operator ϕ.
After the proof [Tsu99] of the Semistable conjecture of Fontaine–Jannsen, these

structures are known to agree with those attached by Fontaine’s theory to the p-adic
GF -representation

(2.5) Vs := H1
ét(Xs,Qp).

More precisely, since Xs has semistable reduction, Vs is semistable in the sense of
Fontaine, and there is a canonical isomorphism Dst(Vs) −→ H1

log−cris(Xs), inducing
an isomorphism

(2.6) DdR(Vs)
∼−→ H1

dR(Xs/F )

as filtered ϕ-modules after extension of scalars to F .
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Consider the étale Abel-Jacobi map CH1(Xs)0(F ) → H1(F, Vs(1)) constructed
in [Nek00], which in this case agrees with the usual Kummer map

δF : Js(F )→ H1(F,Qp ⊗ Tap(Js)),

where Js = Pic0(Xs) is the connected Picard variety ofXs. (See [loc.cit., Ex. (2.3)].)
Let g ∈ S2(Xs) be a newform with primitive nebentypus, let Vg the p-adic Galois

representation attached to g, which is equipped with a Galois-equivariant projection
Vs → Vg, and let V ∗g be the representation contragredient to Vg, so that Vg(1) and
V ∗g are in Kummer duality. Also let Lg be a finite extension of Qp over which the
Hecke eigenvalues of g are defined. By [BK90, Ex. 3.11], the image of the induced
composite map

(2.7) δg,F : Js(F )
δF−−→ H1(F, Vs(1))→ H1(F, Vg(1))

lies in the Bloch-Kato “finite” subspace H1
f (F, Vg(1)), and by our assumption on g,

the Bloch-Kato exponential map gives an isomorphism

(2.8) expF,Vg(1) :
DdR(Vg(1))

Fil0DdR(Vg(1))
→ H1

f (F, Vg(1))

whose inverse will be denoted by logF,Vg(1).
Our aim in this section is to compute the images of certain degree 0 divisors on

Xs under the p-adic Abel-Jacobi map δ
(p)
g,F , defined as the composition

(2.9) Js(F )
δg,F−−−→ H1

f (F, Vg(1))
logF,Vg(1)−−−−−−→ DdR(Vg(1))

Fil0DdR(Vg(1))

∼−→ (Fil0DdR(V ∗g ))∨,

where the last identification arises from the de Rham pairing

(2.10) 〈 , 〉 : DdR(Vg(1))×DdR(V ∗g )→ DdR(Qp(1))⊗Qp Lg
∼= Lg

with respect to which Fil0DdR(Vg(1)) and Fil0DdR(V ∗g ) are exact annihilators of
each other. A basic ingredient for this computation will be the following alternate
description of the logarithm map logF,Vg(1).

Recall the interpretation of H1(F, Vg(1)) as the space Ext1
Rep(GF )(Qp, Vg(1)) of

extensions of Vg(1) by Qp in the category of p-adic GF -representations. Since F
contains Qp(ζs), Vg is a crystalline GF -representation in the sense of Fontaine, and
under that interpretation the Bloch-Kato “finite” subspace corresponds to those
extensions which are crystalline (see [Nek93, Prop. 1.26], for example):

(2.11) H1
f (F, Vg(1)) ∼= Ext1

Rep
cris

(GF )(Qp, Vg(1)).

Now consider a crystalline extension

(2.12) 0→ Vg(1)→W → Qp → 0.

Since Dcris(Vg(1))ϕ=1 = 0 by our assumptions, the resulting extension of ϕ-modules

(2.13) 0→ Dcris(Vg(1))→ Dcris(W )→ F0 → 0

admits a unique section sfrob
W : F0 → Dcris(W ) with sfrob

W (1) ∈ Dcris(W )ϕ=1. Ex-

tending scalars from F0 to F in (2.13) and taking Fil0-parts, we take an arbitrary
section sfil

W : F → Fil0DdR(W ) of the resulting exact sequence of F -vector spaces

(2.14) 0→ Fil0DdR(Vg(1))→ Fil0DdR(W )→ F → 0
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and form the difference

tW := sfil
W (1)− sfrob

W (1),

which can be seen in DdR(Vg(1)), and whose image modulo Fil0DdR(Vg(1)) is well-
defined.

Lemma 2.4. Under the identification (2.11), the above assignment

0→ Vg(1)→W → Qp → 0  tW mod Fil0DdR(Vg(1))

defines an isomorphism which agrees with the Bloch-Kato logarithm map

logF,Vg(1) : H1
f (F, Vg(1))

∼−→ DdR(Vg(1))

Fil0DdR(Vg(1))
.

Proof. See [Nek93, Lem. 2.7], for example. �

Let ∆ ∈ Js(F ) be the class of a degree 0 divisor on Xs with support contained
in the finite set of points S ⊂ Xs(F ). The extension class W = W∆ (2.12) corre-
sponding to δg,F (∆) can then be constructed from the étale cohomology of the open
curve Ys := Xs r S, as explained in [BDP, Sect. 3.1]. We describe the associated
sfil
W∆

and sfrob
W∆

.
By [Tsu99] (or also [Fal02]), denoting g-isotypical components by the superscript

g, there is a canonical isomorphism of F0 ⊗Qp
Lg-modules

(2.15) Dcris(Vg) ∼= H1
log−cris(Xs)

g

compatible with ϕ-actions and inducing an F ⊗Qp
Lg-module isomorphism

(2.16) DdR(Vg) ∼= H1
dR(Xs/F )g

after extension of scalars.
Writing ∆ =

∑
Q∈S nQ.Q for some nQ ∈ Z, we assume from now on that the

reductions of the points Q ∈ S are smooth and pair-wise distinct. Assume from
now on that the reduction of S in the special fiber is stable under the absolute
Frobenius. Like H1

dR(Xs/F ), the F -vector space H1
dR(Ys/F ) is equipped with a

canonical F0-structure

(2.17) H1
log−cris(Ys) ↪→ H1

dR(Ys/F ),

a Frobenius operator still denoted by ϕ, and a Hecke action compatible with that
in (2.4). Thus for W = W∆ the exact sequence (2.13) is obtained as the pullback

(2.18) Dcris(Vg(1))
� � // Dcris(W∆)

��

ρ // // F0 ⊗Qp Lg

∆

��
H1

log−cris(Xs)
g(1) �

� // H1
log−cris(Ys)

g(1)
⊕resQ// // (F0 ⊗Qp

Lg)
⊕S
0

of the bottom extension of ϕ-modules with respect to the F0 ⊗Qp Lg-linear map
sending 1 7→ (nQ)Q∈S , where the subscript 0 indicates taking the degree 0 subspace.
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On the other hand, after extending scalars from F0 to F and taking Fil0-parts,
(2.14) is given by the pullback2

(2.19) Fil0DdR(Vg(1)) �
� // Fil0DdR(W∆)

ρ // //

��

F ⊗Qp
Lg

∆

��
Fil1H1

dR(Xs/F )g �
� // Fil1H1

dR(Ys/F )g
⊕resQ// // (F ⊗Qp Lg)

⊕S
0

of the bottom exact sequence of free F⊗Qp
Lg-modules with respect to the F⊗Qp

Lg-
linear map sending 1 7→ (nQ)Q∈S .

Let g∗ ∈ S2(Xs) be the form dual to g, defined as the newform associated with
the twist g ⊗ ε−1

g , and let ωg∗ ∈ H0(Xs,Ω
1
Xs/F

) be its associated differential, so

that Fil0DdR(V ∗g ) = (F ⊗Qp
Lg).ωg∗ . Thus δ

(p)
g,F (∆) is determined by the value

(2.20) δ
(p)
g,F (∆)(ωg∗) = 〈tW∆

, ωg∗〉

of the pairing (2.10), which corresponds to the Poincaré pairing on H1
dR(Xs/F )

under the identification (2.16). Using rigid analysis, we now give an expression for
the latter pairing that will make (2.20) amenable to computations.

Let Xs be the canonical balanced model of Xs over Zp[ζs] constructed by Katz
and Mazur (see [KM85, Ch. 13]). The special fiber Xs×Zp[ζs]Fp is a reduced disjoint
union of Igusa curves over Fp intersecting at the supersingular points. Exactly two
of these components are isomorphic to the Igusa curve Ig(Γs) representing the
moduli problem ([Γ1(N)], [Γ1(ps)]) over Fp, and we let I∞ be the one that contains
the reduction of W1(ps)×Qp

Qp(ζs), and I0 be the other. (These two are the two
“good” components in the terminology of [MW86].)

By the universal property of the regular minimal model, there exists a morphism

(2.21) Xs → Xs ×Zp[ζs] OF
which reduces to a sequence of blow-ups on the special fiber. Letting κ be the
residue field of F , define W∞ ⊂ Xs (resp. W0 ⊂ Xs) to be the inverse image
under the reduction map via Xs of the unique irreducible component of Xs ×OF κ
mapping bijectively onto I∞×Fp κ (resp. I0×Fp κ) in Xs×Zp[ζs]κ via the reduction
of (2.21). Similarly, define U ⊂ Xs by considering the irreducible components of
Xs ×Zp[ζs] κ different from I∞ ×Fp κ and I0 ×Fp κ. Letting SS denote (the degree
of) the supersingular divisor of Ig(Γs), it follows that U intersects W∞ (resp. W0)
in a union of SS supersingular annuli.

Since they reduce to smooth points, the residue class DQ of each Q ∈ S is

conformal to the open unit disc D ⊂ Cp. Fix an isomorphism hQ : DQ
∼−→ D that

sends Q to 0, and for a real number rQ < 1 in pQ, denote by VQ ⊂ DQ the annulus
consisting of the points x ∈ DQ with rQ < |hQ(x)|p < 1. In the same manner, we
define annuli Vz for each z in the cuspidal subscheme Zs ⊂ Xs.

Attached to any (oriented) annulus V, there is a p-adic annular residue map

ResV : Ω1
V → Cp

defined by expanding ω ∈ Ω1
V as ω =

∑
n∈Z anT

n dT
T for a fixed uniformizing

parameter T on V (compatible with the orientation), and setting ResV(ω) = a0.
This descends to a linear functional on Ω1

V/dOV . (Cf. [Col89, Lem. 2.1].)

2Notice the effect of the Tate twist on the filtrations.
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For any basic wide-open W (as in [Buz03, p. 34]), define

(2.22) H1
rig(W) := H1(W,Ω•(logZ)) ∼= Ω1

W/dOW ,

where Ω•(logZ) denotes the complex of rigid analytic sheaves on W deduced from
(2.1) by analytification and pullback, and consider the basic wide-opens

W̃∞ :=W∞ r
⋃
Q∈S

(DQ r VQ) and W̃0 :=W0 r
⋃
Q∈S

(DQ r VQ).

As follows from the arguments in [BE10, Lem. 4.4.1], the spaces H1
rig(W̃∞) and

H1
rig(W̃0) are each equipped with a natural action of the Hecke operators T` (` - Np)

compatible with the Hecke action on H1
dR(Ys/F ) under restriction.

Lemma 2.5. • The natural restriction maps induce an isomorphism

H1
dR(Ys/F )g −→ H1

rig(W̃∞)g ⊕H1
rig(W̃0)g.

• A class ω ∈ H1
dR(Ys/F )g belongs to the natural image of H1

dR(Xs/F )g if an
only if it can be represented by a pair of differentials (ω∞, ω0) ∈ Ω1

W̃∞
×Ω1
W̃0

with vanishing p-adic annular residues.
• If η and ω are any two classes in H1

dR(Xs/F )g, their Poincaré pairing can
be computed as

〈η, ω〉 =
∑
V⊂W̃∞

ResV(Fω∞|V · η∞|V) +
∑
V⊂W̃0

ResV(Fω0|V · η0|V),(2.23)

where for each annulus V, FωV denotes any solution to dFωV = ωV on V.

Proof. By an excision argument, the first assertion is easily deduced from [Col97a,
Thm. 2.1] as in [BE10, Lem. 4.4.2]; the second and third are shown by adapting
the arguments in [Col96, §5] for each of the two components, as they are proven in
[Col94a, Prop. 1.3] for s = 1. (See also [Col97a, §3].) �

2.3. Coleman p-adic integration. Coleman’s theory provides a coherent choice
of local primitives that will allow us to compute (2.20) using the formula (2.23).

Recall the lift of Frobenius φ : W2(ps) → W1(ps) described in Sect. 2.1, where
Wi(p

s) are the strict neighborhoods of the connected component Xs(0) of the or-
dinary locus of Xs containing the cusp ∞ described there. Recall also the wide
open space W∞ described in the preceding section, which also contains Xs(0) by
construction.

Proposition 2.6 (Coleman). Let g =
∑
n>1 bnq

n ∈ S2(Xs) be a normalized
newform with primitive nebentypus of p-power conductor, so that bp is such that
Upg = bpg. Then there exists a locally analytic function Fωg onW∞ which is unique
up to a constant on W∞ and such that

• dFωg = ωg on W∞, and

• Fωg −
bp
p φ
∗Fωg ∈M

rig
0 (Xs).

Proof. This follows from the general result of Coleman [Col94b, Thm. 10.1] on
p-adic integration. Indeed, a computation on q-expansions shows that the action
of the Frobenius lift φ on differentials agrees with that of pV , with V the map
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acting as q 7→ qp on q-expansions, in the sense that φ∗ωg = pωV g on W ′∞ :=
φ−1(W∞ ∩W1(ps)). Since the differential ωg[p] = ωg − bpωV g attached to

g[p] =
∑

(n,p)=1

bnq
n

becomes exact upon restriction to W ′∞, this shows that the polynomial L(T ) =

1− bp
p T is such that

L(φ∗)ωg = 0.

Finally, since g has primitive nebentypus, bp has complex absolute value p1/2, and
hence [Col94b, Thm. 10.1] can be applied with L(T ) as above. �

Attached to a primitive ps-th root of unity ζ, there is an automorphism wζ of
Xs which interchanges the components W∞ and W0 (see [BE10, Lem. 4.4.3]).

Corollary 2.7. Set φ′ = wζ ◦ φ ◦ wζ . With hypotheses as in Proposition 2.6,
there exists a unique locally analytic function F ′ωg on W0 which vanishes at 0,

satisfies dF ′ωg = ωg on W0, and F ′ωg −
bp
p (φ′)∗F ′ωg is rigid analytic on a wide-open

neighborhood W ′0 of wζXs(0) in W0.

Proof. Proposition 2.6 applied to the differential ω′g := w∗ζωg gives the existence of

a locally analytic function Fω′g with F ′ωg := w∗ζFω′g having the desired properties.

The uniqueness of F ′ωg follows immediately from that of Fω′g . �

We refer to the locally analytic function Fωg (resp. F ′ωg ) appearing in Prop. 2.6

as the Coleman primitive of g on W∞ (resp. W0). Let g =
∑
n>0 bnq

n be as in

Proposition 2.6. The q-expansion
∑

(n,p)=1
bn
n q

n corresponds to a p-adic modular

form g′ vanishing at∞ and satisfying dg′ = g[p], where d is the operator described at
the end of Sect. 2.1, which here corresponds to the differential operator OW → Ω1

W
for any subspace W ⊂ Xs. Set d−1g[p] := g′.

Corollary 2.8. If Fωg is the Coleman primitive of g on W∞ which vanishes at ∞,
then

Fωg −
bp
p
φ∗Fωg = d−1g[p].

Proof. Since d−1g[p] is an overconvergent rigid analytic primitive of ωg[p] , and the

operator L(φ∗) = 1− bp
p φ
∗ acting on the space of locally analytic functions on W∞

is invertible, we see that L(φ∗)−1(d−1g[p]) satisfies the defining properties of Fωg .

Since d−1g[p] vanishes at ∞, the result follows. �

Now we can give a closed formula for the p-adic Abel-Jacobi images of certain
degree 0 divisors on Xs.

Proposition 2.9. Assume s > 1. Let g ∈ S2(Xs) be a normalized newform with
primitive nebentypus of p-power conductor, let P be an F -rational point of Xs

factoring through Xs(0) ⊂ Xs, and let ∆ ∈ Js(F ) be the divisor class of (P )− (∞).
Then

(2.24) δ
(p)
g,F (∆)(ωg∗) = Fωg∗ (P ),

where Fωg∗ is the Coleman primitive of ωg∗ on W∞ which vanishes at ∞.
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Proof. By (2.20), we must compute 〈tW∆
, ωg∗〉 = 〈sfil

W∆
, ωg∗〉 − 〈sfrob

W∆
, ωg∗〉, where

• sfil
W∆
∈ Fil1DdR(W∆) is such that ρ(sfil

W∆
) = 1 in (2.19), and

• sfrob
W∆
∈ Dcris(W∆)ϕ=1 is such that ρ(sfrob

W∆
) = 1 in (2.18).

By Lemma 2.5, we see that these can be represented, respectively, by

• ηfil
∆ a section of Ω1

Xs/F
over Ys with simple poles at P and ∞ and with

– ResP (ηfil
∆) = 1, while ResQ(ηfil

∆) = 0 for all Q ∈ S − {P};
– Res∞(ηfil

∆) = −1, while Resz(η
fil
∆) = 0 for all z ∈ Zs − {∞},

• ηfrob
∆ = (ηfrob

∞ , ηfrob
0 ) ∈ Ω1

W̃∞
× Ω1

W̃0
with

– (φ∗ηfrob
∞ , (φ′)∗ηfrob

∆ ) = (p · ηfrob
∞ + dG∞, p · ηfrob

0 + dG0) with G∞ and

G0 rigid analytic on φ−1W̃∞ and (φ′)−1W̃0, respectively;
– ResV(ηfrob

∆ ) = 0 for all supersingular annuli V; and
– ResVQ(ηfrob

∆ ) = ResQ(ηfil
∆) (Q ∈ S), ResVz (η

frob
∆ ) = Resz(η

fil
∆) (z ∈ Zs).

The arguments in [BDP, Prop. 3.21] can now be straightforwardly adapted to
deduce the result. Indeed, using the defining properties of the Coleman primitives
Fωg∗ and F ′ωg∗ of ωg∗ on W∞ and W0, respectively, one first shows that

(2.25)
∑
V⊂W̃∞

ResV(Fωg∗ · η
frob
∞ ) = 0 and

∑
V⊂W̃0

ResV(F ′ωg∗ · η
frob
0 ) = 0

as in [loc.cit., Lemma 3.20]. On the other hand, using the same primitives, one
shows as in [loc.cit., Lemma 3.19] that

(2.26)
∑
V⊂W̃∞

ResV(Fωg∗ · η
fil
∆) = Fωg∗ (P ) and

∑
V⊂W̃0

ResV(F ′ωg∗ · η
fil
∆) = 0.

Substituting (2.26) and (2.25) into the formula (2.23) for the Poincaré pairing
(and using that s > 1, so that there is no overlap between the supersingular annuli

in W̃∞ and the supersingular annuli in W̃0), the result follows. �

3. Generalised Heegner cycles

Let X1(N) be the compactified modular curve of level Γ1(N) defined over Q, and
let E be the universal generalized elliptic curve over X1(N). (Recall that N > 4.)
For r > 1, denote by Wr the (2r − 1)-dimensional Kuga-Sato variety3, defined as
the canonical desingularization of the (2r−2)-nd fiber product of E with itself over
X1(N). By construction, the variety Wr is equipped with a proper morphism

πr : Wr → X1(N)

whose fibers over a noncuspidal closed point of X1(N) corresponding to an elliptic
curve E with Γ1(N)-level structure is identified with 2r − 2 copies of E. (For a
more detailed description, see [BDP, Sect. 2.1].)

Let K be an imaginary quadratic field of odd discriminant −D < 0. It will be
assumed throughout that K satisfies the following hypothesis:

Assumption 3.1. All the prime factors of N split in K.

Denote by OK the ring of integers of K, and note that by this assumption we
may choose an ideal N ⊂ OK with OK/N ∼= Z/NZ that we fix once and for all.

3Perhaps most commonly denoted by W2r−2; cf. [Zha97] and [Nek95], for example.
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Let A be a fixed elliptic curve with CM by OK . The pair (A,A[N]) defines a
point PA on X0(N) rational over H, the Hilbert class field of K. Choose one of
the square-roots

√
−D ∈ OK , let Γ√−D ⊂ A×A be the graph of

√
−D, and define

Υheeg
A,r := Γ√−D ×

(r−1)
· · · × Γ√−D

viewed inside Wr by the natural inclusion (A×A)r−1 →Wr as the fiber of πr over
a point on X1(N) lifting PA. Let εW be the projector from [BDP, (2.1.2)], and set

(3.1) ∆heeg
A,r := εWΥheeg

A,r ,

which is an (r−1)-dimensional null-homologous cycle on Wr defining an H-rational
class in the Chow group CHr(Wr)0 (taken with Q-coefficients, as always here).

These cycles (3.1) are usually referred to as Heegner cycles (of conductor one,
weight 2r), and they share with classical Heegner points (as in [Gro84]) many of
their arithmetic properties (see [Nek92, Nek95, Zha97]).

We next recall a variation of the previous construction introduced in the recent
work [BDP] of Bertolini, Darmon, and Prasanna. Let A be the CM elliptic curve
fixed above, and consider the variety4

Xr := Wr ×A2r−2.

For each class [a] ∈ Pic(OK), represented by an ideal a ⊂ OK prime to N , let
Aa := A/A[a] and denote by ϕa the degree Na-isogeny

ϕa : A→ Aa.

The pair a∗ (A,A[N]) := (Aa, Aa[N]) defines a point PAa
in X0(N) rational over

H. Let Γtϕa
⊂ Aa ×A be the transpose of the graph of ϕa, and set

Υbdp
ϕa,r := Γtϕa

×
(2r−2)
· · · × Γtϕa

⊂ (Aa ×A)2r−2 = A2r−2
a ×A2r−2 (ıa,idA)−−−−−→ Xr,

where ıa is the natural inclusion A2r−2
a → Wr as the fiber of πr over a point on

X1(N) lifting PAa
. Letting εA be the projector from [BDP, (1.4.4)], the cycles

(3.2) ∆bdp
ϕa,r := εAεWΥbdp

ϕa,r

define classes in CH2r−1(Xr)0(H) and are referred to as generalised Heegner cycles.
We will assume for the rest of this paper that K also satisfies the following:

Assumption 3.2. The prime p splits in K.

Let g ∈ S2r(X0(N)) be a normalized newform, and let Vg be the p-adic Galois
representation associated to g by Deligne. By the Künneth formula, there is a map

H4r−3
ét (Xr,Qp(2r − 1)) −→ H2r−1

ét (W r,Qp(1))⊗ Sym2r−2H1
ét(A,Qp(1)),

which composed with the natural Galois-equivariant projection

H2r−1
ét (W r,Qp(1))⊗ Sym2r−2H1

ét(A,Qp(1))
πg⊗πNr−1−−−−−−−→ Vg(r)

induces a map

πg,Nr−1 : H1(F,H4r−3
ét (Xr,Qp(2r − 1))) −→ H1(F, Vg(r))

over any number field F . In the following we fix a number field F containing H.

4Notice that our indices differ from those in [BDP].
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Now consider the étale Abel-Jacobi map

Φét
F : CH2r−1(Xr)0(F )→ H1(F,H4r−3

ét (Xr,Qp)(2r − 1))

constructed in [Nek00]. Let Fp be the completion of ıp(F ), and denote by locp the

induced localization map from GF to Gal(Qp/Fp). Then we may define the p-adic
Abel-Jacobi map AJFp by the commutativity of the diagram

(3.3) CH2r−1(Xr)0(F )

AJFp

++

πg,Nr−1◦Φét
F //

,,

H1(F, Vg(r))
locp // H1(Fp, Vg(r))

H1
f (Fp, Vg(r))

∪

logFp,Vg(r)

��
Fil1DdR(Vg(r − 1))∨,

where the existence of the dotted arrow follows from [Nek00, Thm.(3.1)(i)], and the
vertical map is given by the logarithm map of Bloch-Kato, as it appeared in (2.9)
for r = 1. Using the comparison isomorphism of Faltings [Fal89], the map AJFp
may be evaluated at the class ωg⊗e⊗r−1

ζ , with eζ an Fp-basis of DdR(Qp(1)) ∼= Fp.

The main result of [BDP] yields the following formula for the p-adic Abel-Jacobi
images of the generalised Heegner cycles (3.2) which we will need.

Theorem 3.3 (Bertolini–Darmon–Prasanna). Let g =
∑
n bnq

n ∈ S2r(X0(N)) be
a normalized newform of weight 2r ≥ 2 and level N prime to p. Then

(1− bpp−r + p−1)
∑

[a]∈Pic(OK)

Na1−r ·AJFp(∆bdp
ϕa,r)(ωg ⊗ e

⊗r−1
ζ )

= (−1)r−1(r − 1)!
∑

[a]∈Pic(OK)

d−rg[p](a ∗ (A,A[N])),

where g[p] =
∑

(n,p)=1 bnq
n is the p-depletion of g.

Proof. See the proof of [BDP, Thm. 5.13]. �

We end this section by relating the images of Heegner cycles and of generalised
Heegner cycles under the p-adic height pairing. (Cf. [BDP, Sect. 2.4].)

Consider Πr := Wr×Ar−1 seen as a subvariety of Wr×Xr = Wr×Wr×(A2)r−1

via the map

(idWr
, idWr

, (idA,
√
−D)r−1).

Denoting by πW and πX the projections onto the first and second factors of Wr×Xr,
the rational equivalence class of the cycle Πr gives rise to a map on Chow groups

Πr : CH2r−1(Xr)→ CHr+1(Wr)

induced by Πr(∆) = πW,∗(Πr · π∗X∆).

Lemma 3.4. We have

〈∆heeg
A,r ,∆

heeg
A,r 〉Wr

= (4D)r−1 · 〈∆bdp
idA,r

,∆bdp
idA,r
〉Xr ,

where 〈, 〉Wr
and 〈, 〉Xr are the p-adic height pairings of [Nek93] on CHr+1(Wr)0

and CH2r−1(Xr)0, respectively.
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Proof. The image Φét
F (∆heeg

A,r ) remains unchanged if we replace Γ√−D by ZA :=

Γ√−D − (A× {0})−D({0} ×A) (see [Nek95, §II(3.6)]). Since ZA ·ZA = −2D, we
easily see from the construction of Πr that

(3.4) Φét
F (∆heeg

A,r ) = (−2D)r−1 · Φét
F (Πr(∆

bdp
idA,r

)).

On the other hand, if 〈, 〉A denotes the Poincaré pairing on H1
dR(A/F ), we have

〈(
√
−D)∗ω, (

√
−D)∗ω′〉A = D · 〈ω, ω′〉A,

for all ω, ω′ ∈ H1
dR(A/F ). By the definition of the p-adic height pairings 〈, 〉Wr

and
〈, 〉Xr (factoring through Φét

F ), we thus see that

(3.5) 〈∆bdp
idA,r

,∆bdp
idA,r
〉Xr = Dr−1 · 〈Πr(∆

bdp
idA,r

),Πr(∆
bdp
idA,r

)〉Wr .

Combining (3.4) and (3.5), the result follows. �

4. Big logarithm map

Let f =
∑
n>0 anq

n ∈ I[[q]] be a Hida family passing through (the ordinary
p-stabilization of) a p-ordinary newform fo ∈ Sk(X0(N)) as described in the In-
troduction. We begin this section by recalling the definition of a certain twist of f
such that all of its specializations at arithmetic primes of even weight correspond
to p-adic modular forms with trivial weight-nebentypus.

Decompose the p-adic cyclotomic character εcyc as the product

εcyc = ω · ε : GQ → Z×p = µp−1 × Γ.

Since k is even, the character ωk−2 admits a square root ω
k−2

2 : GQ → µp−1,
and in fact two different square roots, corresponding to the two different lifts of

k − 2 ∈ Z/(p − 1)Z to Z/2(p − 1)Z. Fix for now a choice of ω
k−2

2 , and define the
critical character to be

(4.1) Θ := ω
k−2

2 · [ε1/2] : GQ → Λ×O,

where ε1/2 : GQ → Γ denotes the unique square root of ε taking values in Γ.

Remark 4.1. As noted in [How07b, Rem. 2.1.4], the above choice of Θ is for most

purposes largely indistinguishable from the other choice, namely ω
p−1

2 Θ, where

ω
p−1

2 : Gal(Q(
√
p∗)/Q)

∼−→ {±1} (p∗ = (−1)
p−1

2 p).

Nonetheless, for a given fo as above, our main result (Theorem 5.11) will specifically
apply to only one of the two possible choices for the critical character.

The critical twist of T is then defined to be the module

(4.2) T† := T⊗I I†

equipped with the diagonal GQ-action, where I† = I(Θ−1) is I as a module over

itself with GQ acting via the character GQ
Θ−1

−−−→ Λ×O → I×.

Lemma 4.2. Let ρT† : GQ → Aut(T†) be the Galois representation carried by T†.
Then for every ν ∈ Xarith(I) of even weight kν = 2rν ≥ 2 we have

ν(ρT†) ∼= ρf ′ν ⊗ ε
rν
cyc,
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where f ′ν is a character twist of fν of the same weight and with trivial nebentypus.
In other words, defining V†ν := T† ⊗I Fν and letting Vf ′ν be the representation space
of ρf ′ν , we have

(4.3) V†ν ∼= Vf ′ν (rν),

and in particular V†ν is isomorphic to its Kummer dual.

Proof. This follows from a straightforward computation explained in [NP00, (3.5.2)]
for example (where T† is denoted by T ). �

Let θ : Z×p → Λ×O be such that Θ = θ ◦ εcyc. It follows from the preceding lemma
that the formal q-expansion

f† = f ⊗ θ−1 :=
∑
n>0

θ−1(n)anq
n ∈ I[[q]]

(where we put θ−1(n) = 0 whenever p|n) is such that, for every ν ∈ Xarith(I) of even
weight, V†ν is the Galois representation attached to the specialization fν⊗θ−1

ν of f†,
which by Lemma 2.3 is a p-adic modular form of weight 0 and trivial nebentypus.

We next recall some of the local properties of the big Galois representation T.
Let Iw ⊂ Dw ⊂ GQ be the inertia and decompositon groups at the place w|p
induced by our fixed embedding ıp : Q ↪→ Qp. In the following we will identify Dw

with the absolute Galois group GQp
. Then by a result of Mazur and Wiles (see

[Wil88, Thm. 2.2.2]) there exists a filtration of I[Dw]-modules

(4.4) 0→ F+
w T→ T→ F−w T→ 0

with F±w T free of rank one over I and with the Galois action on F−w T unramified,
given by the character α : Dw/Iw → I× sending an arithmetic Frobenius σp to ap.
Twisting (4.4) by Θ−1 we define F±w T† in the natural manner.

Let T∗ := HomI(T, I) be the contragredient5 of T, and consider the I-module

(4.5) D := (F+
w T∗⊗̂ZpẐ

nr
p )GQp ,

where F+
w T∗ := HomI(F−T, I) ⊂ T∗, and Ẑnr

p is the completion of the ring of

integers of the maximal unramified extension of Qp in Qp.
Fix once and for all a compatible system ζ = {ζs} of primitive ps-th roots of

unity, and denote by eζ the basis of DdR(Qp(1)) corresponding to 1 ∈ Qp under
the resulting identification DdR(Qp(1)) ∼= Qp.

Lemma 4.3. The module D is free of rank one over I, and for every ν ∈ Xarith(I)
of even weight kν = 2rν ≥ 2 there is a canonical isomorphism

(4.6) Dν ⊗DdR(Qp(rν)) ∼=
DdR(Vfν (rν))

Fil0DdR(Vfν (rν))
.

Proof. Since the action on F+
w T∗ is unramified, the first claim follows from [Och03,

Lemma 3.3] in light of the definition (4.5) of D. The second can be deduced from
[Och03, Lemma 3.2] as in the proof of [Och03, Lemma 3.6]. �

With the same notations as in Lemma 4.3, we denote by 〈, 〉dR the pairing

(4.7) 〈, 〉dR : Dν ⊗DdR(Qp(rν))× Fil1DdR(Vf∗ν (rν − 1))→ Fν

5So that T∗ ⊗I Fν ∼= Vfν for every ν ∈ Xarith(I).
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deduced from the usual de Rham pairing

DdR(Vfν (rν))

Fil0DdR(Vfν (rν))
× Fil0DdR(V ∗fν (1− rν))→ Fν

via the identification (4.6) and the isomorphism V ∗fν
∼= Vf∗ν (kν − 1).

Theorem 4.4 (Ochiai). Assume that the residual representation ρ̄fo is irreducible,
fix an I-basis η of D, and set λ := ap − 1. There exists an I-linear map

Log
(η)

T† : H1(Qp,F
+
w T†)→ I[λ−1]

such that if Y ∈ H1(Qp,F+
w T†) and ν ∈ Xarith(I) has weight kν = 2rν ≥ 2, then

ν(Log
(η)

T† (Y)) =
(−1)rν−1

(rν − 1)!

×


(

1− prν−1

ν(ap)

)−1 (
1− ν(ap)

prν

)
〈logVfν (rν)(Yν), η′ν〉dR if ϑν = 1;

1
G(ϑ−1

ν )

(
ν(ap)
prν−1

)sν
〈logs,Vfν (rν)(Yν), η′ν〉dR if ϑν 6= 1,

(4.8)

where

• logVfν (rν) (resp. logs,Vfν (rν)) is the Bloch-Kato logarithm map for Vfν (rν)

over Qp (resp. Qp,s := Qp(µps)),

• η′ν ∈ Fil1DdR(Vf∗ν (rν − 1)) is such that 〈ην ⊗ e⊗rνζ , η′ν〉dR = 1,

• ϑν : Z×p → F×ν is the finite order character z 7→ θν(z)z1−rν ,
• s > 0 is such that the conductor of ϑν is ps, and
• G(ϑ−1

ν ) is the Gauss sum
∑
x mod ps ϑ

−1
ν (x)ζxs .

Proof. Let Λ(C∞) := Zp[[C∞]], where C∞ is the Galois group of the cyclotomic
Zp-extension of Qp, and let Λcyc be the module Λ(C∞) equipped with the natural
action of GQp on group-like elements. Also, let γo be a topological generator of C∞
and define

I := (λ, γo − 1),

seen as an ideal of height 2 inside I⊗̂ZpΛ(C∞) ∼= I[[C∞]].

Consider the I⊗̂ZpΛ(C∞)-modules

D := D⊗̂ZpΛ(C∞), F+
w T ∗ := F+

w T∗⊗̂ZpΛcyc ⊗ ω
k−2

2 ,

the latter being equipped with the diagonal action of GQp
. By [Och03, Prop. 5.3]

there exists an injective I⊗̂ZpΛ(C∞)-linear map

ExpF+
w T ∗ : ID −→ H1(Qp,F

+
w T ∗),

with cokernel killed by λ, which interpolates the Bloch–Kato exponential map over
the arithmetic primes of I and of Λ(C∞).

As in (4.1), let ε1/2 : C∞ −→ Γ ⊂ Z×p be the unique square-root of the wild
component of the p-adic cyclotomic character εcyc, and let

Tw† : I[[C∞]] −→ I[[C∞]]

be the I-algebra isomorphism given by Tw†([γ]) = ε
1/2
w (γ)[γ] for all γ ∈ C∞. Then

letting F+
w T † be the I[[C∞]]-module F+

w T ∗ with the C∞-action twisted by ε1/2,
there is a natural projection Cor : F+

w T † −→ F+
w T† induced by the augmentation

map I[[C∞]] −→ I.
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Setting D† := ID⊗̂ZpI[[C∞]]/(ε1/2(γo)[γo]− 1), the composition

ID (Tw†)−1

−−−−−−→ ID
Exp

F+
wT ∗−−−−−−→H1(Qp,F

+
w T ∗)

⊗ε1/2

−−−−→ H1(Qp,F
+
w T †)

Cor−−−→ H1(Qp,F
+
w T†),

factors through an injective I-linear map

(4.9) ExpF+
w T† : D† −→ H1(Qp,F

+
w T†)

making, for every ν ∈ Xarith(I) as in the statement, the diagram

D†
Exp

F+
w T† //

Spν
��

H1(Qp,F+
w T†)

Spν
��

DdR(F+
w V

†
fν

) // H1(Qp,F+
w V

†
fν

)

commutative, where the bottom horizontal arrow is given by

(−1)rν−1(rν − 1)!×


(

1− prν−1

ν(ap)

)(
1− ν(ap)

prν

)−1

expV †fν
if ϑν = 1;

(
prν−1

ν(ap)

)sν
expV †fν

if ϑν 6= 1,

with expV †fν
the Bloch–Kato exponential map for V †fν , which factors as

DdR(V †fν )

Fil0DdR(V †fν )

∼←−− DdR(F+
w V

†
fν

)
exp

V
†
fν−−−−→ H1(Qp,F

+
w V

†
fν

) −→ H1(Qp, V
†
fν

).

Now if Y is an arbitrary class in H1(Qp,F+
w T†), then λ ·Y lands in the image

of the map ExpF+
w T† and so

LogT†(Y) := λ−1 · Exp−1

F+
w T†(λ ·Y)

is a well-defined element in I[λ−1] ⊗I D†. Thus defining LogηT†(Y) ∈ I[λ−1] by the
relation

LogT†(Y) = LogηT†(Y) · η ⊗ 1,

the result follows. �

5. The big Heegner point

In this chapter we prove the main results of this paper, relating the étale Abel-
Jacobi images of Heegner cycles to the specializations at higher even weights of the
big Heegner point Z (whose definition is recalled below), from where a deformation
of the p-adic Gross-Zagier formula of Nekovář over a Hida family follows at once.
There are two key points to the proof: the properties of the big logarithm map
deduced from the work of Ochiai as explained in the preceding section, and the local
study of (almost all) the weight 2 specializations of Z taken up in the following.
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5.1. Weight two specializations. Recall form Sect. 3 that K is a fixed imaginary
quadratic field in which all prime factors of N split, and that N ⊂ OK is a fixed
cyclic N -ideal, i.e. such that OK/N ∼= Z/NZ. We also assume that p splits in K,
and let p be the prime of K above p induced by our fixed embedding ıp, and by
p̄ the other. Finally, A is a fixed elliptic curve with CM by OK defined over the
Hilbert class field H of K.

Let R0 = Ẑnr
p be the completion of the ring of integers of the maximal unramified

extension of Qp, which we view as an overfield of H via ıp. Since p splits in K, A
admits a trivialization

ıA : Â→ Ĝm

over R0 with ı−1
A (µps) = A[ps] for every s > 0. Letting αA be the cyclic N -isogeny

on A with kernel A[N], the triple (A,αA, ıA) thus defines a trivialized elliptic curve
with Γ0(N)-level structure defined over R0.

Set A0 := A/A[ps] and let (A0, αA0
, ıA0

) be the trivialized elliptic curve deduced
from (A,αA, ıA) via the projection A→ A0. Let C ⊂ A0[ps] be any étale subgroup
of order ps, and set As := A0/C. Finally, let (As, αAs , ıAs) be the trivialized elliptic
curve with Γ0(N)-level structure deduced from (A0, αA0

, ıA0
) via the projection

A0 → As, and consider the triple

(5.1) hs = (As, αAs , ıAs(ζs)),

which defines an algebraic point on the modular curve Xs.

Write p∗ = (−1)
p−1

2 p, and let ϑ be the unique continuous character

(5.2) ϑ : GQ(
√
p∗) → Z×p /{±1}

such that ϑ2 = εcyc. Notice the inclusion GHps ⊂ GQ(
√
p∗) for any s > 0, where

Hps denotes the ring class field of K of conductor ps.

Lemma 5.1. The curve As has CM by the order Ops of K of conductor ps, and
the point hs is rational over Lps := Hps(µps). In fact we have

(5.3) hσs = 〈ϑ(σ)〉 · hs

for all σ ∈ Gal(Lps/Hps).

Proof. The first assertion is clear, and immediately from the construction we also
see that αAs is the cyclic N -isogeny on As with kernel As[N∩Ops ]. It follows that
the point (5.1) gives rise to precisely the point hs ∈ Xs(C) in [How07b, Eq. (4)].
The result thus follows from [loc.cit., Cor. 2.2.2]. �

If ν is an arithmetic prime of I, we let ψν denote its wild character, defined as
the composition of ν : I → Qp with the structure map Γ = 1 + pZp → I×. The

nebentypus of fν is then given by εfν = ψνω
k−kν , where ω : (Z/pZ)× → µp−1 ⊂ Z×p

is the Teichmüller character.
Recall the critical characters Θ and θ from Sect. 4, and for every ν ∈ Xarith(I)

of weight 2, consider the F×ν -valued Hecke character of K given by

(5.4) χν(x) = Θν(artQ(NK/Q(x)))

for all x ∈ A×K . Notice that since χν has finite order, it may alternately be seen as

character on GK via the Artin reciprocity map artK : A×K → Gab
K .
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Let OCp be the ring of integers of the completion of Qp. For every ν ∈ Xarith(I),
after fixing an embedding Fν → Qp, the form fν ∈ Skν (Xsν ) defines a p-adic mod-
ular form fν ∈M(N). Finally, recall the dual form f∗ν defined as in the paragraph
before (2.20).

Lemma 5.2. Let ν ∈ Xarith(I) have weight 2 and non-trivial wild character, and
let s > 1 be the p-power of the conductor of ψν . Then

(5.5) d−1f∗[p]ν ⊗ θν(A,αA, ıA) =
u

G(θ−1
ν )

∑
σ∈Gal(Hps/H)

χ−1
ν (σ̃) · d−1f∗[p]ν (hσ̃s ),

where u = |O×K |/2, G(θ−1
ν ) is the Gauss sum

∑
x mod ps θ

−1
ν (x)ζxs , and for every

σ ∈ Gal(Hps/H), σ̃ is any lift of σ to Gal(Lps/H).

Proof. Notice that the expression in the right hand side of (5.5) does not depend
on the choice of lifts σ̃. Indeed, as explained in [How07a, p. 808] the character
χ0,ν := χν |A×Q , seen as a Dirichlet character in the usual manner, is such that

χ−1
0,ν = θ2

ν . But since the weight of ν is 2, we have θ2
ν = εfν = ε−1

f∗ν
(see [How07a,

p. 806]), and our claim thus follows immediately from (5.3).

To compute the above value of the twist d−1f
∗[p]
ν ⊗ θν we follow Definition 2.2.

The integer s > 1 in the statement is such that θν factors through (Z/psZ)×,
therefore

d−1f∗[p]ν ⊗ θν(A,αA, ıA) =
∑

a mod ps

θν(a)

(∫
a+psZp

dµGou(x)

)
(d−1f∗[p]ν )(A,αA, ıA)

=
1

ps

∑
a mod ps

θν(a)
∑
C

ζ−aC · d−1f∗[p]ν (A0/C, αC , ıC),(5.6)

where as before A0 := A/ı−1
A (µps) = A/A[ps] and the sum is over the étale sub-

groups C ⊂ A0[ps] of order ps. Letting γs be a generator of Z/psZ, these subgroups
correspond bijectively with the cyclic subgroups Cu = 〈ζus .γs〉 ⊂ µps ×Z/psZ, with
u running over the integers modulo ps, and we set ζCu = ζus .

Since θν does not factor through (Z/ps−1Z)×, we have
∑
a mod ps θν(a)ζ−uas = 0

whenever u /∈ (Z/psZ)×. Continuing from (5.6), we thus obtain

d−1f∗[p]ν ⊗ θν(A,αA, ıA) =
1

ps

∑
a mod ps

θν(a)
∑

u mod ps

ζ−uas · d−1f∗[p]ν (ACu , αCu , ıCu)

=
1

ps

∑
u∈(Z/psZ)×

d−1f∗[p]ν (ACu , αCu , ıCu)
∑

a mod ps

θν(a)ζ−uas

=
1

G(θ−1
ν )

∑
u∈(Z/psZ)×

θ−1
ν (u) · d−1f∗[p]ν (ACu , αCu , ıCu),

with the last equality obtained by a change of variables. The result thus follows
from the relation∑
u∈(Z/psZ)×

θ−1
ν (u) · d−1f∗[p]ν (ACu , αCu , ıCu) = u

∑
σ∈Gal(Hps/H)

χ−1
ν (σ̃) · d−1f∗[p]ν (hσ̃s ),

where u = |O×K |/2, and for each σ ∈ Gal(Hps/H), σ̃ ∈ Gal(Lps/H) lifts σ. �
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Keeping the above notations, let ∆s ∈ Js(Lps) be the divisor class of (hs)− (∞),
and consider the element in Js(Lps)⊗Z Fν given by

(5.7) Q̃χν :=
∑

σ∈Gal(Hps/H)

∆σ̃
s ⊗ χ−1

ν (σ̃),

where for every σ ∈ Gal(Hps/H), σ̃ is any lift to Gal(Lps/H).
Let Fs be the completion of ıp(Lps), and consider the p-adic Abel-Jacobi map

δ
(p)
fν ,Fs

defined in (2.9) which we extend by Fν-linearity to a map

δ
(p)
fν ,Fs

: Js(Lps)⊗Z Fν −→ (Fil1DdR(Vf∗ν ))∨.

Proposition 5.3. Let ν ∈ Xarith(I) and s > 1 be as in Lemma 5.2. Then

(5.8)
∑

σ∈Gal(Hps/H)

χ−1
ν (σ̃) · d−1f∗[p]ν (hσ̃s ) = δ

(p)
fν ,Fs

(Q̃χν )(ωf∗ν ).

Proof. The integer s > 1 in the statement is so that the nebentypus εfν of fν is
primitive modulo ps. Moreover, since p splits in K, we see from the construction
that the point hs lies in the connected component Xs(0) of the ordinary locus of
Xs containing the cusp ∞. Thus Proposition 2.9 applies, giving

δ
(p)
fν ,Fs

(∆s)(ωf∗ν ) = Fωf∗ν
(hs),

where Fωf∗ν
is the Coleman primitive of ωf∗ν from Proposition 2.6 vanishing at ∞,

and by linearity

(5.9)
∑

σ∈Gal(Hps/H)

χ−1
ν (σ̃) · Fωfν

(hσ̃s ) = δ
(p)
fν ,Fs

(Q̃χν )(ωf∗ν ).

Since φ lifts the Deligne-Tate map to Xs, we see that φhs is defined over the subfield
Hps−1(ζs) ⊂ Lps . If bp denotes the Up-eigenvalue of f∗ν , by Corollary 2.8 we obtain∑

σ

χ−1
ν (σ̃) · d−1f∗[p]ν (hσ̃s ) =

∑
σ

χ−1
ν (σ̃) · Fωf∗ν

(hσ̃s )− bp
p

∑
σ

χ−1
ν (σ̃) · Fωf∗ν

(φhσ̃s )

=
∑
σ

χ−1
ν (σ̃) · Fωf∗ν

(hσ̃s ),

where all the sums are over σ ∈ Gal(Hps/H), and the second equality follows
immediately from the fact θν is primitive modulo ps. The result thus follows from
(5.9). �

Still with the same notations, recall Hida’s ordinary projector (1.2) and set
ys := eordhs, which naturally lies in eordJs(Lps) (see [How07b, p.100]). Equation
(5.3) then amounts to the fact that

(5.10) yσs = Θ(σ) · ys

for all σ ∈ Gal(Lps/Hps), where Θ is the critical character (4.1). Denoting by
Jord
s (Lps)

† the module eordJs(Lps) with the Galois action twisted by Θ−1, and by
y†s the point ys seen in this new module, (5.10) translates into the statement that

y†s ∈ H0(Hps , J
ord
s (Lps)

†).
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Lemma 5.4 (Howard). The classes

xs := CorHps/H(y†s) ∈ H0(H,Jord
s (Lps)

†)(5.11)

are such that
α∗xs+1 = Up · xs, for all s > 0

under the Albanese maps induced from the degeneracy maps α : Xs+1 → Xs.

Proof. This is shown in the course of the proof of [How07b, Lemma 2.2.4]. �

Abbreviate by Taord
p (Js) the module eord(Tap(Js)⊗Zp O) from the Introduction,

and denote by Taord
p (Js)

† this same module with the Galois action twisted by Θ−1.
By the Galois and Hecke-equivariance of the twisted Kummer map

Kums : H0(H,Jord
s (Lps)

†)→ H1(H,Taord
p (Js)

†)

constructed in [How07b, p. 101], Lemma 5.4 implies that the cohomology classes
Xs := Kums(xs) are such that α∗Xs+1 = Up · Xs, for all s > 0.

Definition 5.5 (Howard). The big Heegner point of conductor one is the cohomol-
ogy class X given by the image of lim←−s U

−s
p ·Xs under the natural map induced by

the hord[GQ]-linear projection lim←−s(Taord
p (Js)

†)→ T†.

Our object of study is in fact the big cohomology class

(5.12) Z := CorH/K(X),

which [How07b, Conj. 3.4.1] predicts to be not I-torsion. For ν ∈ Xarith(I) of weight
2, let L(s, fν , χν) be the Rankin-Selberg convolution L-function of [How09, §1]. In
the spirit of the classical Gross-Zagier theorem, one has the following criterion.

Theorem 5.6 (Howard). If ν ∈ Xarith(I) has weight 2 and non-trivial nebentypus,
then

(5.13) Zν 6= 0 ⇐⇒ L′(1, fν , χν) 6= 0,

and if the non-vanishing holds for at least one such ν, then Z is not I-torsion.

Proof. See [How07a, Prop. 3] for the equivalence (5.13), and [loc.cit, Cor. 5] for the
last implication. We outline the proof for future reference. For every ν ∈ Xarith(I)
of weight 2 and non-trivial nebentypus, consider (with the same notations as above)

(5.14) Qχν :=
∑

τ∈Gal(Lps/K)

∆τ
s ⊗ χ−1

ν (τ) ∈ Js(Lps)⊗Z Q.

If efν denotes the idempotent of the Hecke algebra (tensored with Q) defined by
the eigenform fν , the arguments in [How07a, pp. 809-810] show that

(5.15) Zν 6= 0 ⇐⇒ efνQχν 6= 0,

and by the ”twisted Gross-Zagier theorem” [How09, Thm. 4.6.2], one has

efνQχν 6= 0 ⇐⇒ L′(1, fν , χν) 6= 0.

�

Corollary 5.7. Assume that there is a ν′ ∈ Xarith(I) of weight 2 and non-trivial
nebentypus such that L′(1, fν′ , χν′) 6= 0. Then the localization map

locp : H1
f (K,V†ν)→ H1

f (Qp,V†ν)

is injective at all but finitely many ν ∈ Xarith(I).
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Proof. By [How07a, Cor. 5], the assumption implies that Z is nontorsion, and by

[How07b, Cor. 3.4.3] that H̃1
f (K,T†) has rank 1 over I. By [How07b, Lemma 2.1.7],

it follows that

H1
f (K,V†ν) = Zν .Fν ,

for all but finitely many ν of weight 2 and non-trival nebentypus. On the other hand,
since dimFνH

1
f (Qp,V†ν) = 1 for every ν of weight 2 with non-trivial nebentypus, we

see that it suffices to show that one has the implication

(5.16) Zν 6= 0 =⇒ locp(Zν) 6= 0

for every ν ∈ Xarith(I) of weight 2 and non-trivial nebentypus. (Indeed, (5.16) will
show that locp is injective at infinitely many ν, and by [How07b, Lemma 2.1.7] it
will follow that the kernel of the localization map

locp : H̃1
f (K,T†)→ H1(Qp,T†)

must be I-torsion, hence contained in only finitely arithmetic primes.)
The point Qχν (5.14) defines a K-rational point on a twist Jχν of Js by the

character χ−1
ν . Since the localization map

Jχν (K)⊗Z Q→ Jχν (Kp)

is injective, we thus see that (5.16) follows from (5.15), hence the result. �

For any class [a] ∈ Pic(OK), taking a representative a ⊂ OK prime to Np, define

a ∗ (A,αA, ıA) := (Aa, αAa
, ıAa

),

where Aa = A/A[N], αAa
= Aa[N], and ıAa

is the trivialization Âa
ϕ̂−1

a−−→ Â
ıA−→ Ĝm

induced by the projection ϕa : A→ Aa.

Theorem 5.8. Let ν ∈ Xarith(I) have weight 2 and non-trivial wild character ψν ,
and let s > 1 be the p-power of the conductor of ψν . Then
(5.17)∑

[a]∈Pic(OK)

d−1f [p]
ν ⊗ θ−1

ν (a ∗ (A,αA, ıA)) = u
ν(ap)

s

G(θ−1
ν )

logs,Vfν (1)(locp(Zν))(ωf∗ν ),

where u = |O×K |/2, and G(θ−1
ν ) is the Gauss sum

∑
x mod ps θ

−1
ν (x)ζxs .

Proof. Since clearly d−1f
[p]
ν ⊗ θ−1

ν = d−1f
∗[p]
ν ⊗ θν , letting Fs be the completion of

ıp(Lps) it suffices to establish the equality

(5.18) d−1f∗[p]ν ⊗ θν(A,αA, ıA) = u
ν(ap)

s

G(θ−1
ν )

logFs,Vfν (1)(locp(Xν))(ωf∗ν ).

Combining the formulas from Lemma 5.2 and Proposition 5.3, we have

(5.19) d−1f∗[p]ν ⊗ θν(A,αA, ıA) =
u

G(θ−1
ν )

δ
(p)
fν ,Fs

(Q̃χν ).

Now the integer s > 1 is such that the natural map T→ Vν can be factored as

(5.20) T→ Taord
p (Js)→ Vν ,
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and we have V†ν ∼= Vν as GLps -modules. Tracing through the construction of X, we

see that the image of Usp · Xν in H1(Lps ,V†ν) agrees with the image of Q̃χν under
the composite map (where the unlabelled arrow is induced by (5.20))

Js(Lps)⊗Z Fν
Kums−−−−→ H1(Lps ,Tap(Js)⊗Z Fν)

eord

−−→ H1(Lps ,Taord
p (Js)⊗Z Fν) −→

−→ H1(Lps ,Vν) ∼= H1(Lps ,V†ν).(5.21)

Since Up acts on V†ν as multiplication by ν(ap), we thus arrive at the equality

(5.22) Kums(e
ordQ̃χν ) = ν(ap)

s · resLps/H(Xν) ∈ H1(Lps ,Vν).

By [Rub00, Prop. 1.6.8], this shows that the restriction to locp(Xν) to GFs is con-
tained in the Bloch-Kato finite subspace H1

f (Fs,Vν) ∼= H1
f (Fs,V†ν). Since the map

δ
(p)
fν ,Fs

is defined by the commutativity of the diagram

Js(Lps)⊗Z Fν

δ
(p)
fν,Fs

++

(5.21) //

,,

H1(Lps ,Vν)
locp // H1(Fs,Vν)

H1
f (Fs,Vν)

∪

logFs,Vν
��

(Fil0DdR(Vν))∨,

we thus see that (5.18) follows from (5.19) and (5.22). �

Remark 5.9. The expression in the left hand side of (5.17) can be interpreted as the
value of a certain p-adic Rankin L-series at a point outside the range of classical
interpolation, and hence Theorem 5.8 may be seen as a p-adic analogue of the
Gross-Zagier formula for the classes Zν , in the same spirit as the main result of
[BDP]. This interpretation, which does not play a direct role in this paper, is
studied further in the companion paper [Cas12].

5.2. Higher weight specializations. Now we can prove our main result. Recall
from the Introduction that fo is a p-ordinary newform of level N prime to p, even
weight k ≥ 2 and trivial nebentypus, that

f =
∑
n>0

anq
n ∈ I[[q]]

is the Hida family passing through the ordinary p-stabilization of fo. Let νo be
the arithmetic prime of I such that fνo is the ordinary p-stabilization of fo, and let
T† = T ⊗ Θ−1 be the critical twist of T such that ϑνo is the trivial character (as

opposed to ω
p−1

2 .)
If fν is the ordinary p-stabilization of a p-ordinary newform f ]ν of even weight

2rν > 2 and trivial nebentypus, the Heegner cycle ∆heeg
A,rν

has been defined in Sect. 3,

and by [Nek00, Thm. (3.1)(i)] the class

(5.23) Φét
f]ν ,K

(∆heeg
rν ) := CorH/K(Φét

f]ν ,H
(∆heeg

A,rν
))

lies in the Bloch-Kato Selmer group H1
f (K,Vf]ν (rν)).

On the other hand, by [How07b, Prop. 2.4.5], the big Heegner point X lies in the
strict Greenberg Selmer group SelGr(H,T†) (defined in [loc.cit., Def. 2.4.2]), and
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since SelGr(K,V†ν) ∼= H1
f (K,V†ν) as explained in [How07b, p. 114]) and V†ν ∼= Vf]ν (rν)

by Lemma 4.2, the class
Zν = CorH/K(Xν)

naturally lies in H1
f (K,Vf]ν (rν)) as well. Our main result relates these two classes.

Assumption 5.10. (1) The residual representation ρ̄fo is irreducible,
(2) ρfo |GQp

has non-scalar semi-simplication,

(3) The prime p splits in K,
(4) Every prime divisor of N splits in K.

Theorem 5.11. Together with Assumptions 5.10, suppose that there exists some
ν′ ∈ Xarith(I) of weight 2 and non-trivial nebentypus such that

(5.24) L′(1, fν′ , χν′) 6= 0.

Then for all but finitely many arithmetic primes ν ∈ Xarith(I) of weight 2rν > 2
with 2rν ≡ k (mod 2(p− 1)), we have

(5.25) 〈Zν ,Zν〉K =

(
1− prν−1

ν(ap)

)4 〈Φét
f]ν ,K

(∆heeg
rν ),Φét

f]ν ,K
(∆heeg

rν )〉K
u2(4D)rν−1

,

where 〈, 〉K is the cyclotomic p-adic height pairing on H1
f (K,Vf]ν (rν)), u = |O×K |/2,

and −D < 0 is the discriminant of K.

Proof. Since Z ∈ SelGr(K,T†), the localization locp(Z) lies in the kernel of the
natural map

H1(Qp,T†)→ H1(Qp,F
−
w T†),

and since H0(Qp,F−w T†) = 0 by [How07b, Lemma 2.4.4], the class locp(Z) can be
seen as sitting inside H1(Qp,F+

w T†). Thus upon taking an I-basis η of D, we can
form

Larith
p (f†) := u · Log

(η)

T† (locp(Z)) ∈ I[λ−1] (λ := ap − 1).

On the other hand, consider the continuous function on Spf(I)(Qp) given by

Lanaly
p (f†) : ν 7→

∑
[a]∈Pic(OK)

d−1f [p]
ν ⊗ θ−1

ν (a ∗ (A,αA, ıA)).

(Its continuity can be checked by staring at the q-expansion of d−1f
[p]
ν ⊗ θ−1

ν and
appealing to the results in [Gou88, § I.3.5], for example.)

By the specialization property (4.8) of the map Log
(η)

T† , we see that Theorem 5.8
can be reformulated as follows: For every ν ∈ Xarith(I) of weight 2 and non-trivial

wild character, there exists a unit Ω
(η)
ν ∈ O×ν such that

(5.26) ν
(
Lanaly
p (f†)

)
= Ω(η)

ν · ν
(
Larith
p (f†)

)
.

In fact,

(5.27) Ω(η)
ν = 〈ην ⊗ e⊗rνζ , ωf∗ν 〉dR

under the pairing (4.7), so that ωf∗ν = Ω
(η)
ν · η′ν with η′ν as defined in Theorem 4.4.6

Since both Larith
p (f†) and Lanaly

p (f†) are continuous functions of ν, (5.26) shows that

the map ν 7→ Ω
(η)
ν is continuous, and hence (5.27) is valid for all ν ∈ Xarith(I).

6That Ω
(η)
ν , which a priori just lies in Fν , is indeed a unit is shown in [Och06, Prop. 6.4].
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Now let ν ∈ Xarith(I) be as in the statement. Then θν(z) = zrν−1ϑν(z) = zrν−1

as characters on Z×p , from where if follows that

ν
(
Lanaly
p (f†)

)
=

∑
[a]∈Pic(OK)

d−1f [p]
ν ⊗ θ−1

ν (a ∗ (A,αA, ıA))

=
∑

[a]∈Pic(OK)

d−rν f [p]
ν (a ∗ (A,A[N])).

By Theorem 3.3, setting
(5.28)

∆bdp
rν := NormH/K(∆bdp

ϕ(1),rν
) =

∑
[a]∈Pic(OK)

Na1−r ·∆bdp
ϕa,rν ∈ CH2rν−1(Xrν )0(K),

this shows that

ν
(
Lanaly
p (f†)

)
= Eν(rν)E∗ν (rν)

(−1)rν−1

(rν − 1)!
AJQp

(∆bdp
rν )(ωf]ν

⊗ e⊗rν−1
ζ )

= Eν(rν)E∗ν (rν)
(−1)rν−1

(rν − 1)!
logV†ν (locp(Φét

f]ν ,K
(∆bdp

rν )))(ωf]ν
⊗ e⊗rν−1

ζ ),(5.29)

where

Eν(rν) :=

(
1− prν−1

ν(ap)

)
, E∗ν (rν) :=

(
1− ν(ap)

prν

)
,

and Φét
f]ν ,K

:= πf]ν ,Nrν−1 ◦Φét
K with notations as in the diagram (3.3) defining AJQp .

On the other hand, by the specialization property of the map Log
(η)

T† we have

ν
(
Larith
p (f†)

)
= u

(−1)rν−1

(rν − 1)!
Eν(rν)−1E∗ν (rν)logV†ν (locp(Zν))(η′ν).(5.30)

Comparing (5.30) and (5.29), we thus conclude form (5.26) that

logV†ν (locp(Zν))(ωf]ν
⊗ e⊗rν−1

ζ ) =
1

u
Eν(rν)2logV†ν (locp(Φét

f]ν ,K
(∆bdp

rν )))(ωf]ν
⊗ e⊗rν−1

ζ ).

Since Fil1DdR(Vf]ν (rν − 1)) is spanned by ωf]ν
⊗ e⊗rν−1

ζ , it follows that

logV†ν (locp(Zν)) =
1

u
Eν(rν)2logV†ν (locp(Φét

f]ν ,K
(∆bdp

rν ))),

and since logV†ν is an isomorphism, that

(5.31) locp(Zν) =
1

u
Eν(rν)2locp(Φét

f]ν ,K
(∆bdp

rν )).

Our nonvanishing assumption (5.24) implies on the one hand, by Theorem 5.6,
that Zν is non-zero for all but finitely many ν ∈ Xarith(I), and on the other hand,
by Corollary 5.7, that the localization map locp is injective for all but finitely many
ν ∈ Xarith(I). In particular, we thus see from (5.31) that we have

〈Zν ,Zν〉K =
1

u2
Eν(rν)4〈Φét

f]ν ,K
(∆bdp

rν ),Φét
f]ν ,K

(∆bdp
rν )〉K

=
1

u2
Eν(rν)4

〈Φét
f]ν ,K

(∆heeg
rν ),Φét

f]ν ,K
(∆heeg

rν )〉K
(4D)rν−1

for all but finitely many ν as in the statement, where the last equality follows from
Lemma 3.4 in light of the definitions (5.23) and (5.28). The result follows. �
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