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CYCLES I: NORM RELATIONS AND p-ADIC INTERPOLATION
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Abstract. We construct an anticyclotomic Euler system for the Asai Galois representation
associated to p-ordinary Hilbert modular forms over real quadratic fields. We also show that
our Euler system classes vary in p-adic Hida families. The construction is based on the study
of certain Hirzebruch–Zagier cycles obtained from modular curves of varying level diagonally
emdedded into the product with a Hilbert modular surface. By Kolyvagin’s methods, in the
form developed by Jetchev–Nekovář–Skinner in the anticyclotomic setting, the construction
yields new applications to the Bloch–Kato conjecture and the Iwasawa Main Conjecture.
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1. Introduction

In this paper, we construct an anticyclotomic Euler system for the Asai Galois representa-
tion associated to p-ordinary Hilbert modular forms over real quadratic fields. We also show
that our Euler system classes vary in p-adic families. Using Kolyvagin’s methods, in the form
developed by Jetchev–Nekovář–Skinner [JNS24] in the anticyclotomic setting, our construc-
tion yields new applications towards the Bloch–Kato conjecture in rank one and towards the
Iwasawa Main Conjecture.

1.1. Setting. Let F be a real quadratic field with ring of integers OF . With conventions
as in Section 2, we let g ∈ Sl(Ng, χg;C) be a Hilbert eigenform over F of level Ng ⊂ OF ,
parallel weight l ≥ 2, and nebentype χg. Let K be an imaginary quadratic field of discriminant
−D < 0, and let ψ be a Hecke character of K of conductor c ⊂ OK and infinity type (1− k, 0)
for some even integer k ≥ 2. We assume the self-duality condition

χψεKχg|A×
Q,f

= 1,

where χψ denotes the central character of ψ, and εK is the quadratic character corresponding

to K/Q. Put N = NK/Q(c)DNF/Q(Ng). Fix a prime p ∤ 2N and an embedding ιp : Q ↪→ Qp,

where Q denotes the algebraic closure of Q in C, and let E = LP be a finite extension of Qp

with ring of integers O containing the image under ιp of the Fourier coefficients of g and the
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values of ψ. Let ρg : GF → GL(Vg) ≃ GL2(E) be the p-adic Galois representation attached
to g, and let

As(Vg) := ⊗-IndQF (Vg)
be the associated four-dimensional Asai representation.

1.2. The Euler system. A main result of this paper is the construction of an anticyclotomic
Euler system for the conjugate self-dual GK-representation

V := As(Vg)|GK(ψ
−1
P )(2− l − k/2),

where ψP : GK → L× is the p-adic avatar of ψ.
For each positive integer n, we let K[n] denote the maximal p-extension inside the ring class

field of K of conductor n, and let S be the set of all squarefree products of primes q split in
both F and K and coprime to pN . For any prime q of K where V is unramified, put

Pq(V ;X) = det(1− Fr−1
q X|V ),

where Frq denotes an arithmetic Frobenius element at q. The representation As(Vg) appears in
the middle-degree cohomology of Hilbert modular surfaces, and so taking integral coefficients
we obtain a GK-stable O-lattice T ⊂ V . Let hK denote the class number of K, and let

Selbal(K[np∞], T ) ⊂ H1
Iw(K[np∞], T ) := lim←−

s

H1(K[nps], T )

be the balanced Selmer group introduced in Section 2.7; in the range k < 2l, this interpolates
the Bloch–Kato Selmer groups for T over the tower K[np∞]/K[n].

Theorem A (Theorem 5.7). Suppose p splits in K and p ∤ hK, and that g is ordinary at p.
There exists a collection of classes

{κψ,g,n,∞ ∈ Selbal(K[np∞], T ) : m ∈ S}
such that whenever n, nq ∈ S with q a prime, we have

corK[nq]/K[n](κψ,g,nq,∞) = Pq(V ; Fr−1
q )κψ,g,n,∞,

where q is a prime of K above q.

It follows from our construction that the Euler system classes of Theorem A are interpolated
p-adically along the parallel weight Hida family G passing through the ordinary p-stabilization
of g. Indeed, the results of Section 4 yield a construction of two-variable families of cohomology
classes

κ∞(F ,G ) ∈ H1(Q,V†
FG )

where F (resp. G ) is a Hida family of elliptic modular forms (parallel weight Hilbert modular

forms), and V†
FG is a self-dual twist of the tensor product VF ⊗As(VG ) for the standard big

Galois representations VF and VG associated to F and G , respectively. The construction of
the classes κ∞(F ,G ) is based on the study of the p-adic étale Abel–Jacobi image of certain
generalized Hirzebruch–Zagier cycles obtained from modular curves of varying p-power level
diagonally embedded into the product with Hilbert modular surfaces, and is inspired by the
approach by Darmon–Rotger [DR22] in the setting of triple products of elliptic modular forms.

The classes κψ,g,n,∞ of Theorem A are obtained from a variant of the classes κ∞(F ,G )
with added tame level at n by taking F to be a CM Hida family attached to ψ and G to
be the parallel weight Hida family passing through g. The bulk of the work then goes into
the proof of the tame Euler system norm relations, which is obtained by a careful study of
the image under various degeneracy maps of the generalized Hirzebruch–Zagier cycles used in
the construction. It would be interesting to study whether an alternative proof of our Euler
systems norm relations can be given following the automorphic approach of Loeffler–Skinner–
Zerbes [LSZ22], as done by Grossi [Gro20] in the related setting of Asai–Flach classes.
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1.3. Applications. By Kolyvagin’s Euler system machinery, in the form developed by
Jetchev–Nekovář–Skinner [JNS24] in the anticyclotomic setting, we deduce bounds on Selmer
groups from the non-triviality of our Euler system. Our first result in this direction gives new
evidence towards the Bloch–Kato conjecture [BK90] in rank one.

In the next theorem, we use ‘big image’ to refer to Hypothesis (HS) in Section 6; in Proposi-
tion 6.3 we shall give sufficient conditions under which this is satisfied. As a piece of notation,
write

κψ,g,n ∈ Selbal(K[n], T )
for the image of κψ,g,n,∞ under the corestriction H1

Iw(K[np∞], T )→ H1(K[n], T ).

Theorem B (Theorem 7.1). Let the setting and hypotheses be as in Theorem A, and assume
in addition that V has big image. Let κψ,g := κψ,g,1. If k < 2l, then the following implication
holds:

κψ,g ̸= 0 =⇒ dimE Sel(K, V ) = 1,

where Sel(K, V ) ⊂ H1(GK, V ) is the Bloch–Kato Selmer group.

We also deduce applications to the Iwasawa Main Conjecture for V . More precisely, let

Selbal(K[np∞], A) ⊂ H1(K[np∞], A)

be the balanced Selmer group dual to Selbal(K[np∞], T ), where A = HomZp(T, µp∞), and let
Xbal(K[np∞], A) denote its Pontryagin dual. Write pOK = pp, with p the prime of K above p
induced by ιp, and put ΛF = O[[Γp]], where Γp is the Galois group of the unique Zp-extension
of K unramified outside p. As explained in Section 5, this can be naturally identified with the
Iwasawa algebra for the anticyclotomic Zp-extension K[p∞]/K.

Theorem C (Theorem 7.2). Let the setting and hypotheses be as in Theorem A, and assume
in addition that V has big image. If the class κψ,g,∞ := κψ,g,1,∞ is not ΛF -torsion, then the
modules Selbal(K[p∞], T ) and Xbal(K[p∞], A) have both ΛF -rank one, and

CharΛF
(Xbal(K[p∞], A)tors) ⊃ CharΛF

(
Selbal(K[p∞], T )

ΛF · κψ,g,∞

)2

as ideals in ΛF ⊗Zp Qp, where the subscript tors denotes the ΛF -torsion submodule.

1.4. Further directions. We expect the classes κ∞(F ,G ) to satisfy an explicit reciprocity
law relating their images under a Perrin-Riou big logarithm map to a p-adic Asai L-function as
constructed by Ishikawa [Ish17] in the p inert case. In particular, this would allow us to deduce
a variant of Theorem C for the F-unbalanced Selmer group XF (K[p∞], A) of Section 2.7, as
well as applications to the Bloch–Kato conjecture for V in analytic rank 0 in the range k ≥ 2l.
We plan to study these problems in a sequel to this paper.

It would also be interesting to study the implications of our Euler system in the “degenerate”
case where g = BC(g◦) is the base-change of an elliptic modular form g◦. As observed in
e.g. [Liu16, §1.3], in this case the Asai representation As(Vg) contains Sym

2(Vg◦) as a direct
summand; following the approach in [LZ23], one might hope to build on this decomposition
and (a suitable variant of) the Euler system of Theorem A to improve on the results obtained
[ACR23a] towards the anticyclotomic Iwasawa Main Conjecture for the adjoint representation
of g◦.

1.5. Related works. The Euler system constructed in this paper may be seen as an anticy-
clotomic analogue of the Asai–Flach Euler system of Lei–Loeffler–Zerbes [LLZ18]. Generalized
Hirzebruch–Zagier cycles similar to those constructed in this paper were studied in [BCF20]
and [FJ24]; following the approaches of [DR14] and [DR17], respectively, these works express
the syntomic Abel–Jacobi images of these cycles in terms of special values of p-adic Asai
L-functions outside the range of interpolation. (Unfortunately, the results of [BCF20] restrict
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to g of non-parallel weight, while [FJ24] is subject to a conjecture on the integral cohomology
of Hilbert modular surfaces.)

In a different direction, Kolyvagin’s methods, in a form influenced by the work of Bertolini–
Darmon [BD05] using level-raising congruences, were first applied in the setting of Hirzebruch–
Zagier cycles in work of Y. Liu [Liu16], with applications towards the Bloch–Kato conjecture
analogous to our Theorem B in the case of parallel weight 2 (but allowing more general twisted
triple products), in addition to certain counterparts in analytic rank 0.

1.6. Acknowledgements. We heartily thank Michele Fornea for stimulating discussions on
the construction of our Euler system classes and his detailed explanations of his earlier results
on generalized Hirzebruch–Zagier cycles. We also thank David Loeffler, Chris Skinner, and
Shou-Wu Zhang for several useful exchanges related to this work.
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DMS-2101458 and DMS-2401321; O.R. was supported by PID2023-148398NA-I00, funded by
MCIU/AEI/10.13039/501100011033/FEDER, UE.

This material is based upon work supported by the NSF grant DMS-1928930 while the au-
thors were in residence at MSRI/SLMath during the spring of 2023 for the program “Algebraic
Cycles, L-Values, and Euler Systems”.

2. Review of Hilbert cuspforms

In this section we summarize our conventions for Hilbert modular forms, which are mainly
taken from [FJ24] with some minor changes. Since for the purpose of this article we are only
interested in Hilbert modular forms of parallel weight, we restrict the discussion to this case.

2.1. General notations. Let F be a totally real number field with ring of integers OF . Let
IF denote the set of field embeddings of F into Q. Note that there is a natural identification
of F∞ := F ⊗Q R with RIF . Consider the algebraic group

G := ResF/Q(GL2,F ).

Let H denote the Poincaré upper half plane. The identity component G(R)+ of

G(R) = GL2(F∞) ≃
∏
σ∈IF

GL2(Rσ)

acts on HIF via Möbius transformations. We denote by i =
√
−1 ∈ H the square root of −1

belonging to H and we consider the point i = (i, . . . , i) ∈ HIF .

2.2. Adelic Hilbert cuspforms. Let K ≤ G(AQ,f ) be a compact open subgroup. A (holo-
morphic) Hilbert cuspform of parallel weight l and level K is a function f : G(A) → C that
satisfies the following properties:

• f(αxu) = f(x)jl(u∞, i)
−1 for all α ∈ G(Q) and u ∈ K ·C+

∞, where C+
∞ is the stabilizer

of i in G(R)+ and the automorphy factor is defined by

jl
(
γ, z
)
=
∏
σ∈IF

(aσdσ − bσcσ)−1(cσzσ + dσ)
l

for all γ =

((
aσ bσ
cσ dσ

))
σ∈IF

∈ G(R) and (zσ)σ∈IF ∈ HIF ;

• for every finite adelic point x ∈ G(AQ,f ) the (well-defined) function fx : HIF → C given
by fx(z) = f(xu∞)jl(u∞, i), where u∞ ∈ G(R)+ satisfies u∞i = z, is holomorphic;
• for all adelic points x ∈ G(A) and for all additive measures on F\AF we have∫

F\AF

f

((
1 a
0 1

)
x

)
da = 0;
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• if F = Q, then for every finite adelic point x ∈ G(AQ,f ) the function |Im(z)l/2fx(z)|
is uniformly bounded on H.

We denote by Sl(K;C) the C-vector space of Hilbert cuspforms of parallel weight l and
level K.

Definition 2.1. Let N be an integral OF -ideal. We define the following compact open
subgroups of G(AQ,f ):

• V0(N) =

{(
a b
c d

)
∈ G(Ẑ)

∣∣∣∣ c ∈ NÔF
}
,

• V1(N) =

{(
a b
c d

)
∈ V0(N)

∣∣∣∣ d ≡ 1 (mod NÔF )
}
,

• V 1(N) =

{(
a b
c d

)
∈ V0(N)

∣∣∣∣ a ≡ 1 (mod NÔF )
}
,

• V (N) =

{(
a b
c d

)
∈ V0(N)

∣∣∣∣ a, d ≡ 1; b, c ≡ 0 (mod NÔF )
}
.

We will frequently write Sl(N;C) instead of Sl(V
1(N);C).

Remark 1. There is a notion of q-expansion of Hilbert modular forms (see, for instance,
[Hid91, §1]), and, for any subring R ⊆ C, we denote by Sl(N;R) the R-module of cuspforms
in Sl(N;C) with Fourier coefficients in R.

2.3. Hecke Theory. Let K ≤ G(AQ,f ) be a compact open subgroup. Suppose that V (N) ≤
K.

For every g ∈ G(A), we define a double coset operator [KgK] acting on the space of adelic
Hilbert cuspforms of level K. Let

KgK =
∐
i

γiK,

be the decomposition of KgK into left K-cosets. Then the action of [KgK] on an adelic
Hilbert cuspform f is given by (

[KgK]f
)
(x) =

∑
i

f(xγi).

Definition 2.2. Let q be a prime ideal in OF and let ϖq be a uniformizer in OF,q. With a
slight abuse of notation, we also denote by ϖq the idèle with q-component equal to ϖq and
all other components equal to 1. The Hecke operator T (ϖq) on Sl(K;C) is defined by

T (ϖq) =
[
K

(
1 0
0 ϖq

)
K
]
.

If V 1(N) ≤ K or q ∤ N, the definition does not depend on the choice of uniformizer and we
may denote this Hecke operator simply by Tq.

Definition 2.3. Let z ∈ ZG(AQ,f ) (where ZG denotes the center ofG). The diamond operator
⟨z⟩ on Sl(K;C) is defined by (⟨z⟩f)(x) = f(xz).

Put cl+F (N) = F×\A×
F /F

×,+
∞ (1 +NÔF )×. Given a character

ψ : cl+F (N) −→ C×,

we denote by Sl(N, ψ,C) the submodule of Sl(N,C) on which the diamond operator ⟨z⟩ acts
by ψ(z)|z|2−lAF,f

for all z ∈ A×
F,f . Cuspforms in Sl(N, ψ,C) are said to have nebentype ψ.

Definition 2.4. A cuspform g ∈ Sl(N;C) is said to be an eigenform if it is an eigenvector for
all the Hecke operators of the form Tq, with q a finite prime, and for all diamond operators
⟨z⟩, with z ∈ ZG(AQ,f ).
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We define the operator Tp =
∏
v|p Tv acting on Sl(N;C). If p | N, we may also denote this

operator by Up.

Definition 2.5. An eigenform g ∈ Sl(N;C) is said to be p-ordinary if the eigenvalue of Tp
acting on g is a p-adic unit (under our fixed embedding ιp : Q ↪→ Qp).

2.4. Galois representations. Let g ∈ Sl(N, ψ;C) be an eigenform. For a sufficiently large
finite extension L/Qp, we denote by

ρg : GF −→ GL(Vg) = GL2(L)

the p-adic Galois representation attached to g by work of Eichler–Shimura, Deligne, Carayol,
Wiles, Taylor. It is unramified outside pN, and, if Frq is an arithmetic Frobenius element at
a prime q ∤ pN and ϖq is a uniformizer of OF,q, then

det(1− ρg(Frq)X) = 1− aq(g)X + ψ(ϖq)
−1|q|1−lX2.

Suppose that g is p-ordinary and l ≥ 2. Let p be a prime of F above p. Let αp(g) denote
the unit root of the Hecke polynomial X2 − ap(g)X + ψ(ϖp)

−1|p|1−l. Then,

ρg|GFp
≃
(
ϵ1 ∗
0 ϵ2

)
,

where ϵ2 is the unramified character such that ϵ2(Frp) = αp(g).

2.4.1. Asai representations. When F is a real quadratic field, we denote by

As(ρg) = ⊗-IndQFρg
the p-adic Galois representation obtained as the tensor-induction of ρg from F to Q. Suppose
that g is p-ordinary, and put

αp(g) =

{
αp1(g)αp2(g) if (p) = p1p2 splits in F ,

αp(g) if (p) = p is inert in F .

Then the representation As(ρg)|GQp
is endowed with a three-step filtration

As(Vg) = Fil0As(Vg) ⊃ Fil1As(Vg) ⊃ Fil2As(Vg) ⊃ Fil3As(Vg) = 0

with graded pieces of dimensions 1, 2, and 1, respectively, and the graded piece Gr0As(Vg) =

Fil0As(Vg)/Fil
1As(Vg) is unramified with arithmetic Frobenius acting as multiplication by

αp(g) (see [LLZ18, Cor. 9.2.2]).

2.5. Hida families. Let K be a compact open subgroup of GL2(ÔF ). Suppose that V 1(N) ≤
K for some integral ideal N of OF coprime to p. For α ≥ 1, let K1(pα) = K ∩ V 1(pα). Let O
denote the ring of integers of a sufficiently large finite extension L/Qp. The projective limit
of p-adic Hecke algebras

hF (K;O) := lim←−
α

hl(K
1(pα);O) acts on lim−→

α

Sl(K
1(pα);O)

through the Hecke operators Tq = lim←−α Tq and ⟨z⟩ = lim←−α⟨z⟩ and is independent of the weight

l. Since hF (K;O) is a compact ring, it can be decomposed as a direct sum of algebras

hF (K;O) = hordF (K;O)⊕ hssF (K;O),

so that Tp is invertible in hordF (K;O) and topologically nilpotent in hssF (K;O). We denote by

eord = lim
n→∞

Tn!p

the idempotent corresponding to the ordinary part hordF (K;O).
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Let ΛF = O[[1+pOF,p]]. There is a natural embedding ΛF ↪−→ hF (K;O) given by z 7→ ⟨z⟩.
As shown in [Hid89, Thm. 2.4], the ordinary Hecke algebra hordF (K;O) is finite and torsion-free
over ΛF .

Definition 2.6. For any ΛF -algebra I, the space of ordinary I-adic cuspforms of tame level
K is

S̄ordF (K; I) := HomΛF -mod

(
hordF (K1(p∞);O), I

)
.

When an I-adic cuspform is also a ΛF -algebra homomorphism, we call it a Hida family.

Let E+Np denote the closure in O×
F,p of the set of totally positive units in OF which are

congruent to 1 modulo Np. Then, as in [FJ24, eq. (16)], there is a canonical decomposition

cl+F (Np
∞)

≃−→ E+Np\(1 + pOF,p)× cl+F (Np)

z 7−→ (ξz, θ(z))

For any finite order character χ : cl+F (Np
∞)→ O×, we let S̄ordF (K,χ; I) denote the module of

ordinary I-adic cuspforms G of level K such that

G (⟨z⟩) = χ(z)[ξz].

An I-adic cuspform in S̄ordF (K,χ; I) will be said to have character χ.

Definition 2.7. Let ψ : 1 + pOF,p → O× be a finite order character. For any non-negative

integer l, the homomorphism 1 + pOF,p → O× defined by u 7→ ψ(u)NFp/Qp
(u)2−l induces a

O-algebra homomorphism

Pl,ψ : ΛF −→ O.
For a ΛF -algebra I, the set of arithmetic points, denoted by A(I), is the subset of
HomO-alg(I,Qp) consisting of homomorphisms that coincide with some Pl,ψ when restricted

to ΛF .

Note that if we specialize a Hida family G ∈ S̄ordF (K,χ; I) at an arithmetic point ν ∈ A(I)
lying above Pl,ψ, we obtain an eigenform of parallel weight l, level K, and nebentype defined

by z 7→ χ(z)ψ(ξz)NFp/Qp
(ξz)

2−l|z|l−2 for z ∈ A×
F,f .

2.6. Big Galois representations. Let G ∈ S̄ordF (N; IG ) be a Hida family. Let FG denote the
field of fractions of IG . We denote by

ρG : GF −→ GL(VG ) ≃ GL2(FG )

the big Galois representation attached to G . This representation is unramified outside pN,
and, if Frq is an arithmetic Frobenius element at a prime q ∤ pN and ϖq is a uniformizer of
OF,q, then

det(1− ρG (Frq)X) = 1− G (Tq)X + G (⟨ϖq⟩−1)|q|−1X2.

Moreover, for any prime p of F above p,

ρG |GFp
≃
(
ϵ1 ∗
0 ϵ2

)
,

where ϵ2 is the unramified character defined by ϵ2(Frp) = G (Tp). Thus we have a two-step
filtration

VG = Fil0VG ⊃ Fil1VG ⊃ Fil2VG = 0

of GFp-modules with Fil1VG having rank one, and the graded piece Gr0VG = Fil0VG /Fil
1VG

is unramified with arithmetic Frobenius acting as multiplication by G (Tp).

For each arithmetic point ν : IG → Qp, the representation VG ⊗IG ,ν Qp recovers the repre-
sentation attached to the ν-specialization Gν of G .
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2.6.1. Big Asai representations. When F is a real quadratic field, we denote by

As(ρG ) = ⊗-IndQF (ρG )

the big Galois representation obtained as the tensor-induction of ρG from F to Q. The
representation As(ρG )|GQp

is endowed with a three-step filtration

As(VG ) = Fil0As(VG ) ⊃ Fil1As(VG ) ⊃ Fil2As(VG ) ⊃ Fil3As(VG ) = 0

in which the graded pieces have dimensions 1, 2 and 1, respectively, and the GQp-action on the

graded piece Gr0As(Vg) = Fil0As(VG )/Fil
1As(VG ) is unramified, with arithmetic Frobenius

acting as multiplication by G (Tp).

2.7. Selmer conditions. Let F be a real quadratic field. Let

F ∈ S̄ordQ (Nf , χF ; IF ), G ∈ S̄ordF (Ng, χG ; IG )

be Hida families passing through the p-stabilizations of an elliptic modular form f ∈
Sk(Nf , χf ;C) and a Hilbert modular form g ∈ Sl(Ng, χg;C), respectively. Assume that

χfχg|A×
Q,f

= 1.

Let VF and VG be the Galois representations attached to F and G , and let As(VG ) be the
Asai representation introduced above. We decompose the cyclotomic character ϵcyc : GQ →
Z×
p = µp−1 × (1 + pZp) as

ϵcyc = ωcycθcyc,

with ωcyc and θcyc taking values in µp−1 and 1 + pZp, respectively. Let

κ1/2 : GQ → (Λ⊗ ΛF )×

denote the character defined by σ 7→ [θcyc(σ)
1/2]⊗ [θcyc(σ)

1/2], and put

η = ω3−k/2−l
cyc : GQ −→ µp−1 ⊂ Z×

p .

Definition 2.8. Let V†
FG by the twist of VF ⊗̂As(VG ) given by

V†
FG := VF ⊗̂As(VG )(ΞFG ),

where ΞFG = ϵ−1
cycηκ

−1/2 : GQ → (Λ⊗ ΛF )×.

Arising from the filtration on VF and As(VG ) discussed above, the Galois representation

V†
FG is naturally endowed with a GQp-stable filtration

V†
FG = F 0V†

FG ⊃ F 1V†
FG ⊃ F 2V†

FG ⊃ F 3V†
FG ⊃ F 4V†

FG = 0,

where the submodules have rank 8, 7, 4, 1 and 0, respectively. In particular, the piece of most
interest to us in this paper is

F 2V†
FG :=

(
Fil1VF ⊗̂Fil1As(VG ) + Fil0VF ⊗̂Fil2As(VG )

)
(ΞFG ).

We also define the GQp-stable rank-four submodule

VfFG :=
(
Fil1VF ⊗̂O As(VG )

)
(ΞFG ).

Specializing the Hida family G to g, we obtain a rank-eight IF -module

V†
Fg := VF ⊗̂O As(Vg)(ΞFg)

and GQp-stable rank-four IF -submodules F 2VFg and VfFg.

Fix a finite set Σ of places of Q containing ∞ and the primes dividing NfNF/Q(Ng)p, and

let QΣ be the maximal extension of Q unramified outside Σ.
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Definition 2.9. For L ∈ {bal,F} define the Selmer group SelL(V†
FG ) by

SelL(V†
FG ) = ker

(
H1(QΣ/Q,V†

FG ) −→
∏

v∈Σ∖{p,∞}

H1(Qnr
v ,V

†
FG )×

H1(Qp,V†
FG )

H1
L(Qp,V†

FG )

)
,

where Qnr
v denotes the maximal unramified extension of Qv and

H1
L(Qp,V†

FG ) =

ker
(
H1(Qp,V†

FG ) −→ H1(Qp,V†
FG /F

2V†
FG )

)
if L = bal,

ker
(
H1(Qp,V†

FG ) −→ H1(Qp,V
†
FG /V

f
FG )

)
if L = F .

We call Selbal(V†
FG ) (resp. SelF (V

†
FG )) the balanced (resp. F -unbalanced) Selmer group.

Considering instead the g-specialized modules, we similarly define the Selmer groups cor-

responding to the previous local conditions Selbal(V†
Fg) and SelF (V†

Fg).

3. Geometry of modular curves and Hilbert modular varieties

In this short section we review the definitions of certain maps and correspondences in the
elliptic and Hilbert settings for our later use in the paper.

3.1. Degeneracy maps. Let K be a compact open subgroup of GL2(ÔF ) containing V 1(N)
for some ideal N of OF . Let q be a prime ideal of OF , and let ϖq be a uniformizer in OF,q.
Suppose that (q,N) = 1. Given a non-negative integer α and a positive integer r, we put

K1
0 (q

α, qα+r) = K ∩ V 1(qα) ∩ V0(qα+r).
Consider the modular variety S10(q

α, qα+r) = Sh(G,K1
0 (q

α, qα+r)). Let ηq ∈ GL2(AF,f ) be
the element defined by

ηqq =

(
1 0
0 ϖq

)
, ηqv =

(
1 0
0 1

)
for v ̸= q.

We denote by µq the degeneracy map S10(q
α+1, qα+r)→ S10(q

α, qα+r) given by [x, g] 7→ [x, g].
We also have the two degeneracy maps

π1,q, π2,q : S10(q
α, qα+r) −→ S10(q

α, qα+r−1)

defined by [x, g] 7→ [x, g] and [x, g] 7→ [x, gηq], respectively.

3.2. Hecke correspondences. Let K1 and K2 be compact open subgroups of GL2(AF,f )
and let g ∈ GL2(AF,f ). Then we have a correspondence

Sh(G, gK1g
−1 ∩K2)

Sh(G,K1) Sh(G,K2)

which induces contravariant maps

[K1gK2] : H
∗(Sh(G,K2),Zp) −→ H∗(Sh(G,K1),Zp)

and covariant maps

[K1gK2]
′ : H∗(Sh(G,K1),Zp) −→ H∗(Sh(G,K2),Zp).

Let K, q and ηq be as in the previous subsection. Then we define the Hecke operators

Tq = [K1(qα)ηqK
1(qα)] = π2,q,∗ ◦ π∗1,q,

T ′
q = [K1(qα)ηqK

1(qα)]′ = π1,q,∗ ◦ π∗2,q.

When α > 0, we may also denote these operators by Uq and U ′
q, respectively.
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Let z ∈ A×
F,f . Then, we can define a homomorphism

Tz−1 : Sh(G,K) −→ Sh(G,K)

[x, g] 7−→
[
x, g

(
z 0
0 z

)]
.

The corresponding contravariant (resp. covariant) operator on H∗(Sh(G,K),Zp) will be de-
noted by ⟨z⟩ (resp. ⟨z⟩′). Note that ⟨z⟩′ = ⟨z−1⟩.

3.3. Atkin–Lehner maps. Let K = V 1(N) for some integer N . Let ι : GL2(AF,f ) →

GL2(AF,f ) denote the involution defined by g 7→ det(g)−1g. Let τN =

(
0 −1
N 0

)
and let

TτN : Sh(G,K) → Sh(G, τNKτ
−1
N ) be the homomorphism defined by [x, g] 7→ [x, gτ−1

N ]. Also

note that ι induces a map, that we will denote in the same way, ι : Sh(G, τNKτ
−1
N )→ Sh(G,K)

defined by [x, g] 7→ [x, ι(g)]. We define the homomorphism

λN : Sh(G,K) −→ Sh(G,K)

as the composition λN = ι ◦ TτN .
Let σ ∈ GQ and take s ∈ A×

Q,f such that artQ(s) = σ|Qab , where artQ denotes the geomet-

rically normalized Artin map. It follows from [FJ24, Lemma 7.10] that

Ts−1 ◦ λN ◦ σ = σ ◦ λN .

In particular, λN is defined over Q(ζN ). Note that the above relation implies

σ ◦ λN∗ ◦ σ−1 = ⟨s−1⟩ ◦ λN∗.

4. Big Hirzebruch–Zagier classes

4.1. A compatible collection of cycles. In this section we construct big Hirzebruch–Zagier
cycles following the approach of [DR22]. The construction works both when p splits in F and
when p is inert in F .

Let F be a real quadratic number field, let OF be its ring of integers and let σ ∈ Gal(F/Q)
be the nontrivial automorphism of F . We denote by OF,p the Zp-algebra OF ⊗ Zp.

Given a Zp-module (respectively OF,p-module) Ω, we denote by Ω′ the set of primitive
elements in Ω, i.e., the set of elements which are not divisible by any non-unit element of Zp
(respectively OF,p).

For each integer α ≥ 1, define the set

Σα = (Z/pαZ× Z/pαZ)′ × (OF /pα ×OF /pα)′

equipped with the diagonal action of GL2(Z/pαZ) by multiplication on the right. The quotient
Σα/SL2(Z/pαZ) is equipped with a determinant map

D : Σα/SL2(Z/pαZ) −→ OF /pαOF × (OF /pαOF )tr=0

defined by

D ((x0, y0), (x1, y1)) =

(∣∣∣∣x0 y0
x1 y1

∣∣∣∣ , ∣∣∣∣x1 y1
xσ1 yσ1

∣∣∣∣)
For each pair (t0, t1) ∈ OF /pαOF × (OF /pαOF )tr=0, we define

Σα[t0, t1] = {(v0, v1) ∈ Σα : D(v0, v1) = (t0, t1)} .

Lemma 4.1. The group SL2(Z/pαZ) acts simply transitively on Σα[t0, t1] if

[t0, t1] ∈ Iα := (OF /pαOF )× × (OF /pαOF )×,tr=0 .
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Proof. Let (v0, v1), (w0, w1) ∈ Σα satisfy D(v0, v1) = D(w0, w1) in Iα. Since det(v1, v
σ
1 ) =

det(w1, w
σ
1 ) is invertible, there is γ ∈ SL2(OF /pα) such that(

v1
vσ1

)
γ =

(
w1

wσ1

)
.

We deduce that γσ = γ, i.e. γ ∈ SL2(Z/pαZ). We are left to show that v0 · γ = w0. There
are a, b ∈ OF /pα such that

v0 = a · v1 + aσ · vσ1 , w0 = b · w1 + bσ · wσ1 ,
and we can compute that

aσ · det(vσ1 , v1) = det(v0, v1) = det(w0, w1) = bσ · det(wσ1 , w1),

thus aσ = bσ. The claim follows. □

Let K be a compact open subgroup of GL2(ÔF ). We assume that V 1(N) ⊆ K for some
ideal N of OF with (p,N) = 1. Let U = K ∩GL2(AQ,f ). For each positive integer α, let

K1(pα) = K ∩ V 1(pα), K1
0 (p

α+1) = K ∩ V0(pα+1) ∩ V 1(pα),

U1(pα) = U ∩ V 1(pα), U1
0 (p

α) = U ∩ V0(pα+1) ∩ V 1(pα)

and U(pα) = U ∩ V (pα).
For each positive integer α, consider the Hilbert modular surface S1(p

α) = Sh(G,K1(pα)),
which is defined over Q. The complex points of S1(p

α) are given by

S1(p
α)(C) = GL2(F )

+\H2 ×GL2(AF,f )/K1(pα).

We will also need to consider the Hilbert modular surface S10(p
α+1) = Sh(G,K1

0 (p
α+1)).

For each positive integer α we consider the modular curves

Y1(p
α) = Sh(GL2, U

1(pα)), Y (pα) = Sh(GL2, U(pα)),

which are defined over Q. We fix a connected component Y(pα) of Y (pα)Q(ζpα ) in such a way

that points in Y(pα+1) map to points in Y(pα) under the natural map from Y (pα+1) to Y (pα).
For instance, using the complex uniformization

Y (pα)(C) = GL2(Q)+\H ×GL2(AQ,f )/U(pα),

we could choose Y(pα) to be the image of the embedding ΓU (p
α)\H ↪→ Y (pα)(C) taking z to

[z, 1], where ΓU (p
α) = GL2(Q)+ ∩ U(pα). We will also need to consider the modular curve

Y10(p
α+1) = Sh(GL2, U

1
0 (p

α+1)).
Let (v0, v1) = ((c0, d0), (c1, d1)) be an element in Σα and choose matrices δ0 ∈ SL2(Zp) and

δ1 ∈ SL2(OF,p) such that the reduction modulo pα of their bottom row is given by v0 and v1,
respectively.

Let a ∈ GL2(Ẑ) be the element with local components av = 12 for v ̸= p and ap = δ−1
0 .

Let b ∈ GL2(ÔF ) be the element with local components av = 1v for v ∤ p and bp = δ−1
1 . Then

we can define a morphism of varieties defined over Q
φ(v0,v1) : Y (pα) −→ Y1(p

α)× S1(pα)
by the rule

[x, g] 7→ ([x, ga], [x, x, gb]) ,

where we use the same notation for an element g ∈ GL2(AQ,f ) and its natural inclusion in
GL2(AF,f ). We denote by ∆α(v0, v1) = φ(v0,v1)(Y(pα)) the scheme-theoretic image of Y(pα)
by φ(v0,v1). Since Y(pα) is only defined over Q(ζpα), so is ∆α(v0, v1).

It is clear that the cycle ∆α(v0, v1) ⊂ Y1(pα)× S1(pα) depends only on the class of (v0, v1)
in Σα/SL2(Z/pαZ). In particular, if (t0, t1) ∈ Iα, we can define

∆α[t0, t1] ∈ CH2(Y1(p
α)× S1(pα))(Q(ζα))
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to be equal to the cycle ∆α(v0, v1) for any (v0, v1) ∈ Σα[t0, t1].
For m ∈ (Z/pαZ)×, we denote by σm the element in Gal(Q(ζpα)/Q) defined by ζ 7→ ζm.

Lemma 4.2. Let [t0, t1] ∈ Iα. Then, for all σm ∈ Gal(Q(ζpα)/Q),

σm∆α[t0, t1] = ∆α[m · t0, m · t1].

Moreover, for all z0 ∈ Z×
p , z1 ∈ O×

F,p

⟨z−1
0 , z−1

1 ⟩∆α[t0, t1] = ∆α[(z0z1) · t0, NF/Q(z1) · t1].

Proof. To prove the first statement, we first note that the map

Y (pα) = GL2(Q)+\H ×GL2(AQ,f )/U(pα) −→ Q×,+\A×
Q,f/ det(U(pα))

[x, g] 7−→ det(g)

yields an isomorphism

π0(Y (pα)) ≃ Q×,+\A×
Q,f/ det(U(pα)),

Moreover, for all s ∈ A×
Q,f , the action of σ = artQ(s) ∈ Gal(Qab/Q) on π0(Y (pα)) is described,

via the above isomorphism, by t 7→ st.
Let m ∈ Z×

p . Let h ∈ GL2(AQ,f ) be the element with local components hp = diag(1,m)
and hv = 12 for v ̸= p. Then artQ(det(h)) = σm in Gal(Q(ζpα)/Q). Therefore, the Q-rational
morphism

φm : Y (pα) −→ Y (pα)

[x, g] 7−→ [x, gh]

descends to σm on π0(Y (pα)). Let (v0, v1) ∈ Σα[t0, t1]. Since φ(v0,v1) : Y (pα)→ Y1(p
α)×S1(pα)

is also a Q-rational morphism,

σm∆α[t0, t1] = σm
(
φ(v0,v1)(Y(p

α))
)
= φ(v0,v1) (σm(Y(p

α))) = φ(v0,v1) (φm(Y(p
α))) .

For j = 0, 1, let vj = (cj , dj) and

δj =

(
aj bj
cj dj

)
.

Then, we have

hpδ
−1
0 U1(pα)p =

(
d0 −m−1b0
−mc0 a0

)
U1(pα)p,

hpδ
−1
1 K1(pα)p =

(
d1 −m−1b1
−mc1 a1

)
K1(pαp ).

This shows that φ(v0,v1) ◦ φm = φ(v′0,v
′
1)
, where v′j = (mcj , dj) for j = 0, 1. Since D(v′0, v

′
1) =

(m · t0,m · t1), we deduce that

σm∆α[t0, t1] = φ(v′0,v
′
1)
(Y(pα)) = ∆α[m · t0,m · t1].

The result for diamond operators follows after noting that

δ−1
0

(
z0 0
0 z0

)
U1(pα)p =

(
z0d0 −z−1

0 b0
−z0c0 z−1

0 a0

)
U1(pα)p,

δ−1
1

(
z1 0
0 z1

)
K1(pα)p =

(
z1d1 −z−1

1 b1
−z1c1 z−1

1 a1

)
K1(pα)p.

□
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Lemma 4.3. Let α ≥ 1 and let [t′0, t
′
1] ∈ Iα+1 map to [t0, t1] ∈ Iα. Then

(ϖ1, ϖ1)∗∆α+1[t
′
0, t

′
1] = p3∆α[t0, t1],

(ϖ2, ϖ2)∗∆α+1[t
′
0, t

′
1] = (Up, Up)∆α[t0, t1].

Moreover, the cycles ∆α[t0, t1] satisfy the distribution relation∑
[t′0,t

′
1]

∆α+1[t
′
0, t

′
1] = (ϖ1, ϖ1)

∗∆α[t0, t1],

where the sum is taken over pairs [t′0, t
′
1] ∈ Iα+1 which map to [t0, t1] ∈ Iα.

Proof. Choose (v′0, v
′
1) ∈ Σα+1[t

′
0, t

′
1] and let (v0, v1) be its image in Σα[t0, t1].

We have a commutative diagram

Y(pα+1) Y1(p
α+1)× S1(pα+1)

Y(pα) Y1(p
α)× S1(pα)

φ(v′0,v
′
1)

φ(v0,v1)

in which the horizontal maps are closed embeddings. Since the left vertical map is finite of
degree p3, we deduce the first identity in the lemma.

To prove the second identity, we observe that in the diagram

Y(pα+1) Y1(p
α+1)× S1(pα+1)

Y01(p
α+1)× S01(pα+1)

φ(v′0,v
′
1)

ϕ(v′0,v
′
1)

(µ,µ)

the diagonal arrow is also a closed embedding. The map ϕ(v′0,v′1) above is simply defined as the

composition of the other two maps in the diagram, and we define ∆♭
α+1[t0, t1] as the scheme-

theoretic image of ϕ(v′0,v′1). The notation here reflects the fact that ∆♭
α+1[t0, t1] only depends

on [t0, t1] ∈ Iα, and it is clear from the definitions that (µ, µ)∗∆α+1[t
′
0, t

′
1] = ∆♭

α+1[t0, t1]. Now,
in the diagram

Y(pα+1) Y01(p
α+1)× S01(pα+1)

Y(pα) Y1(p
α)× S1(pα)

ϕ(v′0,v
′
1)

(π1,π1)

φ(v0,v1)

the horizontal arrows are again closed embeddings, whereas the vertical maps are both finite
of degree p3. Hence, we obtain the identity

(π1, π1)
∗∆α[t0, t1] = ∆♭

α+1[t0, t1].

Altogether, we have

(ϖ2, ϖ2)∗∆α+1[t
′
0, t

′
1] = (π2, π2)∗(π1, π1)

∗∆α[t0, t1] = (Up, Up)∆α[t0, t1].

Finally, to prove the last statement, observe that the map (µ, µ) is a Galois cover and the
sum in the statement is taken over the Galois-translates of a fixed ∆α+1[t

′
0, t

′
1]. Therefore,∑

[t′0,t
′
1]

∆α+1[t
′
0, t

′
1] = (µ, µ)∗(µ, µ)∗∆α+1[t

′
0, t

′
1] = (ϖ1, ϖ1)

∗∆α[t0, t1].

□
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4.2. Galois cohomology classes. Assume from now on that V 1(N) ≤ K for some integer
N such that p ∤ N . We shorten notation by writing

Zα = Y1(p
α)× S1(pα).

Let E be a finite extension of Qp and let O denote its ring of integers.
We want to use the cycles ∆α[t0, t1] ⊆ Zα to define compatible families of Galois cohomology

classes with coefficients in H3
ét(Zα,Q,O(2)). To that end, we first modify the cycles ∆α[t0, t1]

to make them null-homologous, i.e., to obtain cycles in the kernel of the étale cycle class map

CH2(Zα)(Q(ζα)) −→ H4
ét(Zα,Q,Zp(2)).

Let ℓ be a rational prime and define

∆◦
α[t0, t1] = (ℓ+ 1− (Tℓ, id))∆α[t0, t1] ∈ CH2(Zα)(Q(ζα)).

Since, as in the proof of [FJ24, Prop. 5.10], the correspondence ℓ+1− (Tℓ, id) annihilates the
cohomology group H4

ét(Zα,Q,Zp(2)), the cycles ∆◦
α[t0, t1] are null-homologous.

Fix an element [a, b] ∈ I1. We denote by |∆◦
1[a, b]| the support of the cycle ∆◦

1[a, b] and we
define ∆◦

α[[a, b]] to be the variety fitting in the Cartesian diagram

∆◦
α[[a, b]] Zα

|∆◦
1[a, b]| Z1.

We also define the variety Uα = Zα −∆◦
α[[a, b]].

As before, let Λ = O[[1+pZp]] and ΛF = O[[1+pOF,p]]. We define Λ⊗ΛF -module structure
onH∗

ét(Zα,Q,O), H
∗
ét(∆

◦
α[[a, b]]Q,O) andH

∗
ét(Uα,Q,O) by letting a group-like element [u1]⊗[u2]

act by ⟨u1, u2⟩′ = ⟨u−1
1 , u−1

2 ⟩.
Let [t0, t1] be an element in Iα mapping to [a, b] in I1. Then, we have the following com-

mutative diagram of O[GQ(ζ1)]-modules

H3
ét(Zα,Q,O)(2)(−κ

1/2) E O

H3
ét(Zα,Q,O)(2)(−κ

1/2) H3
ét(Uα,Q,O)(2)(−κ

1/2) H0
ét(∆

◦
α[[a, b]]Q,O)(−κ

1/2),

j

where

• κ1/2 : GQ(ζ1) → (Λ⊗ ΛF )× is the character defined by σ 7→ [ϵcyc(σ)
1/2]⊗ [ϵcyc(σ)

1/2],
with the square root taken in 1 + pZp;
• j : O ↪→ H0

ét(∆
◦
α[[a, b]]Q,O)(−κ

1/2) is the map sending 1 ∈ O to the cycle ∆◦
α[t0, t1];

• the upper row is the pullback of the lower row via the map j.

To simplify notation, let λα denote the Atkin–Lehner map λNpα introduced in Section 3.3,
using the same notation both for Y1(p

α) and for S1(p
α). Then, we define the class

κ̃α[t0, t1] ∈ H1(Q(ζ1), H
3
ét(Zα,Q,O)(2)(−κ

1/2))

as the image of 1 ∈ O via the connecting map

O −→ H1(Q(ζ1), H
3
ét(Zα,Q,O)(2)(−κ

1/2))

arising from the upper short exact sequence in the diagram, and we define the class

κα[t0, t1] ∈ H1(Q(ζ1), H
3
ét(Zα,Q,O)(2)(−κ

1/2)(⟨ωN , ωN ⟩))
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as the image of κ̃α[t0, t1] via the Atkin–Lehner map

(λα, λα)∗ : H
1(Q(ζ1), H

3
ét(Zα,Q,O)(2)(−κ

1/2))→ H1(Q(ζ1), H
3
ét(Zα,Q,O)(2)(−κ

1/2)(⟨ωN , ωN ⟩)),

where ωN : GQ →
∏
q|N Z×

q is defined by ωN (σ) =
∏
q|N ϵq,cyc(σ).

Lemma 4.4. Let α ≥ 1 and let [t′0, t
′
1] ∈ Iα+1 map to [t0, t1] ∈ Iα. Then

(ϖ2, ϖ2)∗κα+1[t
′
0, t

′
1] = p3κα[t0, t1],

(ϖ1, ϖ1)∗κα+1[t
′
0, t

′
1] = (U ′

p, U
′
p)κα+1[t0, t1].

Moreover, the classes κα[t0, t1] satisfy the distribution relation∑
[t′0,t

′
1]

κα+1[t
′
0, t

′
1] = (ϖ2, ϖ2)

∗κα[t0, t1],

where the sum is taken over pairs [t′0, t
′
1] ∈ Iα+1 which map to [t0, t1] ∈ Iα.

Proof. This follows from Lemma 4.3 taking into account the relations

(ϖ1, ϖ1)∗ ◦ (λα+1, λα+1) = (λα, λα)∗ ◦ (ϖ2, ϖ2)∗,

(U ′
p, U

′
p) ◦ (λα, λα)∗ = (λα, λα)∗ ◦ (Up, Up).

□

Define

H3
ét(Z∞,Q,O) = lim←−

α≥1

H3
ét(Zα,Q,O),

where the projective limit is taken with respect to the maps (ϖ1, ϖ1)∗, and let

V = e′H3
ét(Z∞,Q,O)(2)(−κ

1/2)(⟨ωN , ωN ⟩),

where

e′ = lim
n→∞

(U ′
p, U

′
p)
n!

is Hida’s anti-ordinary projector. For convenience we also introduce the notation

Vα = H3
ét(Zα,Q,O)(2)(−κ

1/2).

Now, given an element [t0, t1] ∈ I∞ := lim←−α≥1
Iα, in view of Lemma 4.4 we define a class

κ∞[t0, t1] = lim←−
α≥1

(U ′
p, U

′
p)

−αe′κα[t0, t1] ∈ H1(Q(ζ1),V).

Observe that we can canonically identify I1 with the set of torsion elements in O×
F ×O

×,tr=0
F

and therefore we can define a canonical lift of [a, b] to I∞, which we will denote in the same way.
Let ω0 and ω1 be characters of (Z/pZ)× and (OF /pOF )×, respectively, taking values in E×

for some finite extension E of Qp. Assume that there exists a character η of (Z/pZ)× taking
values in E× (in fact in Z×

p ) such that ω0ω1 = η2 as characters of (Z/pZ)×. The character η

is then determined by ω0 and ω1 up to the unique quadratic character of (Z/pZ)×. Choose a
trace-zero element δ ∈ (OF /pOF )×. Define

κ∞(ω0, ω1; η) =
1

#I1

∑
[a,b]∈I1

η−1(NF/Q(a)δb)ω0(δb)ω1(a)κ∞[a, b].

We decompose the cyclotomic character ϵcyc : GQ → Z×
p = µp−1 × (1 + pZp) as ϵcyc =

ωcycθcyc, with ωcyc and θcyc taking values in µp−1 and 1 + pZp, respectively. Note that

we can extend the character κ1/2 : GQ(ζ1) → (Λ ⊗ ΛF )× to a character of GQ by τ 7→
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[θcyc(τ)
1/2]⊗[θcyc(τ)1/2]. Then, as a map ofO[GQ]-modules, the Atkin–Lehner correspondence

(λα, λα) actually yields a map

(λα, λα)∗ : H
1(Q(ζ1), Vα) −→ H1(Q(ζ1), Vα)(⟨ωNωcyc, ωNωcyc⟩).

In the following lemma we consider the class κ∞(ω0, ω1; η) as a class in

H1(Q(ζ1),V)(⟨ωcyc, ωcyc⟩).

Lemma 4.5. For all σm ∈ Gal(Q(ζ∞)/Q),

σmκ∞(ω0, ω1; η) = η(m)κ∞(ω0, ω1; η).

For all z0 ∈ µ(Z×
p ), z1 ∈ µ(O×

F,p),

⟨z0, z1⟩κ∞(ω0, ω1; η) = ω0(z0)ω1(z
σ
1 )κ∞(ω0, ω1; η).

Proof. It follows easily from the definition of the class κ∞(ω0, ω1; η) using Lemma 4.2. □

Consider the idempotent

eω0,ω1 =
1

#I1

∑
(z0,z1)∈µ(Z×

p )×µ(O×
F,p)

ω−1
0 (z0)ω

−1
1 (zσ1 )⟨z0, z1⟩

and let Vω0,ω1 = eω0,ω1V. As a consequence of the previous lemma, we have that

κ∞(ω0, ω1; η) ∈ H1(Q(ζ1),Vω0,ω1)(η
2),

where η = η ◦ ϵcyc, and, after twisting, we can regard κ∞(ω0, ω1; η) as the restriction of a class
in H1(Q,Vω0,ω1(η)). We use the same notation κ∞(ω0, ω1; η) to denote this class.

5. Euler system norm relations

In this section, we construct a split anticyclotomic Euler system for the Asai representation
attached to (p-ordinary) Hilbert modular forms over real quadratic fields.

5.1. CM Hida famlies. Let K be an imaginary quadratic field of discriminant −D < 0 and
let εK be the corresponding quadratic character. Assume that p splits in K as

(p) = pp,

with p the prime of K above p induced by our fixed embedding ιp : Q ↪→ Qp. Assume also
that p does not divide the class number hK. Let ψ be a Hecke character of K of conductor c
coprime to p and infinity type (1− k, 0) for some even integer k ≥ 2, taking values in a finite
extension L/K. Let χψ be the unique Dirichlet character modulo NK/Q(c) such that

ψ((n)) = nk−1χψ(n)

for integers n coprime to NK/Q(c). Put Nψ = NK/Q(c)D, and let θψ ∈ Sk(Nψ, χψεK) be the
theta series attached to ψ, i.e.,

θψ =
∑

(a,c)=1

ψ(a)qNK/Q(a).

Let P denote the prime of L above p induced by ιp, put E = LP and let O ⊂ E be the ring
of integers. Let λ denote the unique Hecke character of infinity type (−1, 0) and conductor p
whose p-adic avatar λP : K×\A×

K,f → E×, defined by

λP(x) = x−1
p λ(x)

for xp the p-component of x ∈ AK,f , factors through Γp, the Galois group of the unique Zp-
extension of K unramified outside p. Then we can uniquely write ψ = ψ0λ

k−1, with ψ0 a ray
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class character of conductor dividing cp. Since (c, p) = 1 and k is even, it easily follows that
ψ is non-Eisenstein and p-distinguished, meaning that

(1) ψ|O×
K,p
̸≡ ω (mod P),

where ω is the Teichmüller character (see [LLZ14, Rem. 5.1.3]. Letting ψP be the continuous

E-valued character of K×\A×
K,f defined by

ψP(x) = x1−kp ψ(x),

and viewing it as a character of GK via the geometrically normalized Artin map, the p-adic

representation (dual to Deligne’s) attached to the eigenform θψ is given by IndQKE(ψ−1
P ). Note

that by (1), the associated residual representation is absolutely irreducible and p-distinguished.
Consider the q-expansion

Θ =
∑

(a,cp)=1

[a]qNK/Q(a) ∈ O[[Hcp∞ ]][[q]],

where Hcp∞ denotes the maximal pro-p quotient of the ray class group of K of conductor cp∞,
and [a] is the image of a in Hcp∞ under the Artin map. Since we assume that p ∤ hK, we can
factor Hcp∞

∼= Hc × Γp. Hence, we have Θ ∈ O[Hc]⊗O O[[Γp]][[q]], and putting ψ̄0 := ψ0|Hc we
can specialize this to

(2) F =
∑

(a,cp)=1

ψ̄0([a])[a]pq
NK/Q(a) ∈ ΛF [[q]],

where ΛF = O[[Γp]] and [a]p denotes the image of a in Γp. We identify Γp with Γ = 1 + pZp
via the isomorphism Γ ∼= O(1)

K,p → Γp defined by u 7→ artp(u)
−1, where artp stands for the

geometric local Artin map, and in this way we identify ΛF with Λ. We can therefore regard
F as a primitive Hida family of tame level Nψ and character χψεKω

k−2 passing through the
ordinary p-stabilization of θψ.

Let Γac be the Galois group of the anticyclotomic Zp-extension of K; this can be identified

with the anti-diagonal in (1 + pZp)× (1 + pZp) ∼= O(1)
K,p ×O

(1)
K,p via the Artin map. Let

κac : Γac −→ Z×
p

be the character defined by mapping the element ((1 + p)−1, (1 + p)) to 1 + p and let κac :
Γac → Λ× be the character defined by mapping ((1 + p)−1, (1 + p)) to the group-like element
[1 + p]. We use the same notation for the corresponding characters of GQ.

For each positive integer n, let K[n] denote the maximal p-subextension of the ring class
field of K of conductor n and let Rn = Gal(K[n]/K). Also, for n coprime to pNψ and α > 0,
let Yα,n denote the affine modular curve of level V 1(Nψp

α) ∩ V0(n2), and put

H1
ét(Y∞,n,Q,O) = lim←−

α

H1
ét(Yα,n,Q,O),

with the projective limit defined with respect to the maps ϖ1∗. We also let

T′(Nψ(n
2)) = e′hQ(V

1(Nψ) ∩ V0(n2);O)

denote the big anti-ordinary Hecke algebra acting on e′H1
ét(Y∞,n,Q,O), and we regard

T′(Nψ(n
2)) as a Λ-module by sending the group-like element [z] ∈ Λ to ⟨z⟩′ ∈ T′(Nψ(n

2)).
Let Γn,p denote the Galois group over K of the compositum of K[n] and the unique Zp-

extension of K unramified outside p, and note that Γn,p ∼= Rn × Γp.
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Proposition 5.1. There exists a homomorphism ϕn : T′(Nψ(n
2))→ Λ[Rn] ∼= O[[Γn,p]] defined

on generators by

ϕn(T
′
q) = ω(q)k/2−1q1−k/2

∑
q

(κ2−kac ψ)(q)[q],

for every rational prime q, where the sums runs over ideals of OK coprime to ncp of norm q;
and

ϕn(⟨ϖ−1
q ⟩′) = (ωk−2χψεK)(q)[(q)]

for all rational prime coprime to pNψn.

Proof. This follows from [LLZ15, Prop. 3.2.1] as in [ACR23b, Lemma 3.5]. □

Let n be a positive integer coprime to pNψ and let q be a rational prime coprime to pNψ.
Let π11,∗, π12,∗ and π22,∗ denote the degeneracy maps

πij,∗ = πi,q,∗ ◦ πj,q,∗ : H1
ét(Y∞,nq,Q,O) −→ H1

ét(Y∞,n,Q,O).

Following [LLZ15, § 3.3], we define norm maps

N nq
n : Λ[Rnq]⊗ϕnq H

1
ét(Y∞,nq,Q,O) −→ Λ[Rn]⊗ϕn H1

ét(Y∞,n,Q,O)

by the formulae:

• if q | n,
N nq
n = 1⊗ π11,∗;

• if q ∤ n and q splits in K as (q) = qq,

N nq
n = 1⊗ π11,∗ − ω(k−2)/2(q)

(
κ2−kac ψP(Fr

−1
q )[q]

qk/2
+
κ2−kac ψP(Fr

−1
q )[q]

qk/2

)
⊗ π12,∗

+
χψ(q)ω

k−2(q)

q
[(q)]⊗ π22,∗;

• if q ∤ n and q is inert in K,

N nq
n = 1⊗ π11,∗ −

χψ(q)ω
k−2(q)

q
[(q)]⊗ π22,∗.

More generally, if n′ = nr, where r is coprime to pNψ, we define N n′
n by composing the

previously defined norm maps in the natural way.

Let κ
1/2
0 : GQ → Λ× be the character defined by τ 7→ [θcyc(τ)

1/2] and let η0 : GQ → E× be

the character defined by τ 7→ ωcyc(τ)
1−k/2.

Lemma 5.2. Let B be the set of positive integers coprime to pNψ. Then there is a family of
Λ[GQ]-equivariant isomorphisms

νn : Λ[Rn]⊗ϕn H1
ét(Y∞,n,Q,O)(η0κ

−1/2
0 ) −→ IndQK[n] Λ(ψ

−1
P κk−2

ac κ−1
ac )(−k/2)

for all n ∈ B, such that for n | n′ the diagram

Λ[Rn′ ]⊗ϕn′ H
1
ét(Y∞,n′,Q,O)(η0κ

−1/2
0 ) IndQK[n′] Λ(ψ

−1
P κk−2

ac κ−1
ac )(−k/2)

Λ[Rn]⊗ϕn H1
ét(Y∞,n,Q,O)(η0κ

−1/2
0 ) IndQK[n] Λ(ψ

−1
P κk−2

ac κ−1
ac )(−k/2)

νn′

Nn′
n Norm

νn

commutes.

Proof. This follows from [LLZ15, Cor. 5.2.6] as in [ACR23b, Cor. 3.6]. □
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5.2. Norm relations. Let ψ be a Hecke character of K as above, and let G ∈ S̄ordF (Ng, χG ; IG )
be a Hida family passing through the ordinary p-stabilization of an ordinary Hilbert eigenform
g ∈ Sl(Ng, χg;C). Assume that

χψεKχg|A×
Q,f

= 1.

Let N = NψNF/Q(Ng), and put

K = V 1(N) ≤ GL2(AF,f ), U = K ∩GL2(AQ,f ).

For each positive integer α, let Sα be the Hilbert modular surface of level K1(pα) and let Yα
be the modular curve of level U1(pα). In Section 4, we constructed codimension-2 cycles

∆α[t0, t1] ∈ CH2(Yα × Sα)(Q(ζα)).

For any positive integer m coprime to pN , let Y10(p
α,m) denote the modular curve of level

U1(pα) ∩ U0(m), let S10(p
α,m) denote the Hilbert modular surface of level K1(pα) ∩K0(m)

and let ∆̃α,m[t0, t1] ∈ CH(Y10(p
α,m)×S10(pα,m)) be the cycle constructed in Section 4 taking

as base level K0(m) = K ∩ V0(m) instead of K. Recall that the construction requires the
choice of a connected component Ym(pα) of the modular curve Ym(p

α) of level U(pα)∩U0(m).
The complex points of Ym(p

α) are given by

Ym(p
α)(C) = GL2(Q)+\H ×GL2(AQ,f )/U(pα) ∩ U0(m),

and we choose Ym(pα) to be the image of the embedding Γα,m\H ↪→ Ym(p
α)(C) taking z to

[z, 1], where Γα,m = GL2(Q)+ ∩ U(pα) ∩ U0(m).

Lemma 5.3. Let m be a positive integer coprime to pN and let q be a rational prime coprime
to pN which splits in F as (q) = q1q2. Then

(π1,q, π1,q1π2,q2)∗∆̃α,mq[t0, t1] = (1, Tq2)∆̃α,m[t0, t1];

(π1,q, π2,q1π2,q2)∗∆̃α,mq[t0, t1] = (T ′
q, 1)∆̃α,m[q

−1t0, q
−1t1];

(π2,q, π1,q1π1,q2)∗∆̃α,mq[t0, t1] = (Tq, 1)∆̃α,m[t0, t1];

(π2,q, π1,q1π2,q2)∗∆̃α,mq[t0, t1] = (1, T ′
q1)∆̃α,m[q

−1t0, q
−1t1].

If q is coprime to m we have

(π1,q, π1,q1π1,q2)∗∆̃α,mq[t0, t1] = (q + 1)∆̃α,m[t0, t1];

(π2,q, π2,q1π2,q2)∗∆̃α,mq[t0, t1] = (q + 1)∆̃α,m[q
−1t0, q

−1t1];

otherwise, if q | m, we have

(π1,q, π1,q1π1,q2)∗∆̃α,mq[t0, t1] = q∆̃α,m[t0, t1];

(π2,q, π2,q1π2,q2)∗∆̃α,mq[t0, t1] = q∆̃α,m[q
−1t0, q

−1t1].

Proof. Let (v0, v1) ∈ Σα[t0, t1]. Choose matrices δ0 ∈ SL2(Zp) and δ1 ∈ SL2(OF,p) such
that the reduction modulo pα of their bottom row is given by v0 and v1, respectively. Let

a ∈ GL2(Ẑ) be the element with local components av = 12 for v ̸= p and ap = δ−1
0 . Let

b ∈ GL2(ÔF ) be the element with local components av = 1v for v ∤ p and bp = δ−1
1 . Then

∆̃α,m[t0, t1] is the scheme-theoretic image of Ym(pα) by the morphism of varieties

φ(v0,v1) : Ym(p
α) −→ Y10(p

α,m)× S10(pα,m)

[x, g] 7−→ ([x, ga], [x, gb]),

and similarly for ∆̃α,mq.
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Consider the following commutative diagram

Ym(pα) Y10(p
α,mq)× S10(pα,mq)

Y10(p
α,mq)× S10(pα,m),

φ(v0,v1)

ϕ(v0,v1)
(1,π1,q1π1,q2 )

where ϕ(v0,v1) is simply defined as the composition of the other two maps. Note that

ϕ(v0,v1)(Ymq(p
α)) = (1, π1,q1π1,q2)∗φ(v0,v1)(Ym(p

α)) = (1, π1,q1π1,q2)∗∆̃α,mq[t0, t1].

We also have the commutative diagram

Ymq(pα) Y10(p
α,mq)× S10(pα,m)

Ym(pα) Y10(p
α,m)× S10(pα,m),

ϕ(v0,v1)

π1,q (π1,q ,1)

φ(v0,v1)

where the vertical maps are both finite of degree q, if q | m, or q + 1, if q ∤ m. It follows that

(π1,q, 1)
∗∆̃α,m[t0, t1] = ϕ(v0,v1)(Ymq(p

α)) = (1, π1,q1π1,q2)∗∆̃α,mq[t0, t1].

Therefore

(π2,q, π1,q1π1,q2)∗∆̃α,mq[t0, t1] = (π2,q, 1)∗(π1,q, 1)
∗∆̃α,m[t0, t1] = (Tq, 1)∆̃α,m[t0, t1]

and

(π1,q, π1,q1π1,q2)∗∆̃α,mq[t0, t1] = (π1,q, 1)∗(π1,q, 1)
∗∆̃α,m[t0, t1] = deg(π1,q)∆̃α,m[t0, t1].

A similar argument shows that

(π1,q, π1,q1π2,q2)∗∆̃α,mq[t0, t1] = (1, Tq2)∆̃α,m[t0, t1].

Now consider the commutative diagram

Ym(pα) Y10(p
α,mq)× S10(pα,mq)

Y10(p
α,mq)× S10(pα,m),

φ(v0,v1)

ψ(v0,v1)
(1,π2,q1π2,q2 )

where ψ(v0,v1) is simply defined as the composition of the other two maps. Note that

ψ(v0,v1)(Ymq(p
α)) = (1, π2,q1π2,q2)∗φ(v0,v1)(Ym(p

α)) = (1, π2,q1π2,q2)∗∆̃α,mq[t0, t1].

Let Ym(pα)ηq be the image of the embedding Γ
ηq
α,m\H ↪→ Ym(p

α)(C) taking z to [z, ηq], where

Γ
ηq
α,m = GL2(Q)+ ∩ ηq(U(pα) ∩ U0(m))η−1

q . Then, we have the commutative diagram

Ymq(pα) Y10(p
α,mq)× S10(pα,m)

Ym(pα)ηq Y10(p
α,m)× S10(pα,m),

ψ(v0,v1)

π2,q (π2,q ,1)

φ(v0,v1)

where the vertical maps are both finite of degree q, if q | m, or q+1, if q ∤ m. It is easy to see
that

φ(v0,v1)(Ym(p
α)ηq) = ∆̃α,m[q

−1t0, q
−1t1].

It follows that

(π2,q, 1)
∗∆̃α,m[q

−1t0, q
−1t1] = ψ(v0,v1)(Ymq(p

α)) = (1, π2,q1π2,q2)∗∆̃α,mq[t0, t1].
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Therefore

(π1,q, π2,q1π2,q2)∗∆̃α,mq[t0, t1] = (π1,q, 1)∗(π2,q, 1)
∗∆̃α,m[q

−1t0, q
−1t1]

= (T ′
q, 1)∆̃α,m[q

−1t0, q
−1t1]

and

(π2,q, π2,q1π2,q2)∗∆̃α,mq[t0, t1] = (π2,q, 1)∗(π2,q, 1)
∗∆̃α,m[q

−1t0, q
−1t1]

= deg(π2,q)∆̃α,m[q
−1t0, q

−1t1].

A similar argument shows that

(π2,q, π1,q1π2,q2)∗∆̃α,mq[t0, t1] = (1, T ′
q1)∆̃α,m[q

−1t0, q
−1t1].

□

For each rational prime q coprime to pN which splits in F we fix a factorization (q) = q1q2
in F . Then, if n is a squarefree product of such primes, we put n1 =

∏
q|n q1 and n2 =

∏
q|n q2

and define

∆α,n[t0, t1] = (1, π1,n21π2,n22)∗∆̃α,n2 [t0, t1] ∈ CH2(Yα,n × Sα)(Q(ζα)),

where Yα,n denotes the modular curve of level V 1(Npα) ∩ V0(n2).

Lemma 5.4. Let n be as above and let q be a rational prime coprime to pNn and which splits
in F as (q) = q1q2. Then, the following relations hold:

(π1,q2 , 1)∗∆α,nq[t0, t1] =
{
(1, T 2

q2)− (q + 1)(1, ⟨ϖ−1
q2 ⟩)

}
∆α,n[t0, t1],

(π1,qπ2,q, 1)∗∆α,nq[t0, t1] = (1, ⟨ϖq1⟩Tq1Tq2)∆α,n[q
−1t0, q

−1t1]− (⟨ϖq⟩Tq, ⟨ϖq1⟩)∆α,n[q
−2t0, q

−2t1],

(π2,q2 , 1)∗∆α,nq[t0, t1] =
{
(1, ⟨ϖ2

q1⟩T
2
q1)− (q + 1)(⟨1, ⟨ϖq1⟩)

}
∆α,n[q

−2t0, q
−2t1].

Proof. After Lemma 5.3, the proof is essentially the same as that of [ACR23b, Lem. 4.4]. We
include the computation that yields the first relation in the statement for the convenience of
the reader:

(π1,q2 , 1)∗∆α,nq[t0, t1] = (1, π1,n21π2,n22)∗(π1,q2 , π1,q21π2,q22)∗∆̃α,n2q2 [t0, t1]

= (1, π1,n21π2,n22)∗(π1,q, π1,q1π2,q2)∗(π1,q, π1,q1π2,q2)∗∆̃α,n2q2 [t0, t1]

= (1, π1,n21π2,n22)∗(π1,q, π1,q1π2,q2)∗(1, Tq2)∆̃α,n2q[t0, t1]

= (1, π1,n21π2,n22)∗
{
(1, Tq2)(π1,q, π1,q1π2,q2)∗ − (1, ⟨ϖq2⟩−1)(π1,q, π1,q1π1,q2)∗

}
∆̃α,n2q[t0, t1]

= (1, π1,n21π2,n22)∗
{
(1, T 2

q2)− (q + 1)(1, ⟨ϖq2⟩−1)
}
∆̃α,n2 [t0, t1]

=
{
(1, T 2

q2)− (q + 1)(1, ⟨ϖq2⟩−1)
}
∆α,n[t0, t1],

using Lemma 5.3 for the third and fifth equalities. □

Let ω : (Z/pZ)× → E× denote the Teichmüller character. We define the characters

ω0 = ω2−k : (Z/pZ)× −→ E×,

ω1 = ω2−l ◦NF/Q : (OF /pOF )× −→ E×

and the characters

η0 = ω1−k/2 : (Z/pZ)× −→ E×,

η1 = ω2−l : (Z/pZ)× −→ E×,

so that η20 = ω0 and η21 = ω1 as characters of (Z/pZ)×. Let η = η0η1. Let θ : Z×
p → 1 + pZp

denote the projection corresponding to the canonical decomposition Z×
p
∼= µp−1 × (1 + pZp).
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Let κ
1/2
0 : Z×

p → Λ× be the character defined by u 7→ [θ(u)1/2] and let κ
1/2
1 : Z×

p → (ΛF )× be

the character defined by u 7→ [θ(u)1/2]F . Let κ
1/2 : Z×

p → (Λ⊗ΛF )× be the character defined

by u 7→ [θ(u)1/2]⊗ [θ(u)1/2]F . We also define the GQ-characters

η0 = η0 ◦ ϵcyc, η1 = η1 ◦ ϵcyc, η = η ◦ ϵcyc,
and likewise

κ
1/2
0 = κ

1/2
0 ◦ ϵcyc, κ

1/2
1 = κ

1/2
1 ◦ ϵcyc, κ1/2 = κ1/2 ◦ ϵcyc.

Similarly to what we did in Section 4, for each positive integer n we define

Vω0,ω1,n = eω0,ω1e
′ lim←−
α

H3
ét(Yα,n,Q × Sα,Q,O)(2)(κ

−1/2)(⟨ωN , ωN ⟩),

with projective limit taken with respect to the maps (ϖ1, ϖ1)∗. It follows from the Künneth
decomposition that there exists a projection

Vω0,ω1,n −→ Vω0,n⊗̂OVω1 ,

where

Vω0,n = eω0e
′ lim←−
α

H1
ét(Yα,n,Q,O(1))(κ

−1/2
0 )(⟨ωN ⟩),

and

Vω1 = eω1e
′ lim←−
α

H2
ét(Sα,Q,O(1))(κ

−1/2
1 )(⟨ωN ⟩).

As in Section 4, we can use the cycles ∆α,n[t0, t1] to construct cohomology classes

κ∞,n(ω0, ω1; η) ∈ H1(Q,Vω0,n(η0)⊗̂OVω1(η1)).

Proposition 5.5. Let n be as above and let q be a rational prime coprime to pNn and which
splits in F as (q) = q1q2. Then, the following relations hold:

(π2,q2 , 1)∗κ∞,nq(ω0, ω1; η) =
{
(1, (T ′

q2)
2)− (q + 1)(1, ⟨ϖ−1

q2 ⟩
′)
}
κ∞,n(ω0, ω1; η)

(π1,qπ2,q, 1)∗κ∞,nq(ω0, ω1; η) =
{
η−1(q)κ1/2(q)(1, ⟨ϖq1⟩′T ′

q1T
′
q2)

− ω−1
0 (q)ω−1

1 (q)κ(q)(⟨ϖq⟩′T ′
q, ⟨ϖq1⟩′)

}
κ∞,n(ω0, ω1; η)

(π1,q2 , 1)∗κ∞,nq(ω0, ω1; η) = ω−1
0 (q)ω−1

1 (q)κ(q)
{
(1, ⟨ϖ2

q1⟩
′(T ′

q1)
2)− (q + 1)(1, ⟨ϖq1⟩′)

}
κ∞,n(ω0, ω1; η)

Proof. This is a direct consequence of Lemma 5.4, noting that the Atkin–Lehner map (λα, λα)
used in the construction of the classes κ∞,n(ω0, ω1; η) interchanges the degeneracy maps π1
and π2. □

Let As(VG )
† = As(VG )(η1κ

−1/2
1 ). The maximal quotient of Vω1 ⊗ΛF FG where T ′

q acts by
multiplication by G (Tq) and ⟨ϖq⟩′ acts by multiplication by G (⟨ϖq⟩), for all prime q coprime
to N , is isomorphic to a direct sum of copies of As(VG )

†(−1)(χ−1
g ◦ ωN ). The choice of a test

vector Ğ for G determines a ΛF [GQ]-equivariant homomorphism

Vω1(η1) −→ As(VG )
†(−1)(χ−1

g ◦ ωN ).

Similarly, on account of Lemma 5.2, the choice of a test vector F̆ for F determines ΛO[GQ]-
equivariant homomorphisms,

Vω0,n(η0) −→ IndQK[n] ΛO(ψ
−1
P κk−2

ac κ−1
ac )(1− k/2)((χ−1

ψ ϵK) ◦ ωN )

for each positive integer n, and, again by Lemma 5.2, these homomorphisms can be chosen so
that they satisfy the compatibility property stated there. Assume that we have chosen such
a family of compatible homomorphisms, and define

(3) κ̃∞,n(F ,G ) ∈ H1(Q, IndQK[n] ΛO(ψ
−1
P κk−2

ac κ−1
ac )(−k/2)⊗̂O As(VG )

†)



AN ANTICYCLOTOMIC EULER SYSTEM OF HIRZEBRUCH–ZAGIER CYCLES I 23

to be the resulting image of κ∞,n(ω0, ω1; η). By Shapiro’s lemma, we can regard κ̃∞,n(F ,G )
as an Iwasawa cohomology class

κ̃∞,n(F ,G ) ∈ H1
Iw(K[np∞],VG ,ψ(κ

k−2
ac )) = lim←−

s

H1(K[nps],VG ,ψ(κ
k−2
ac )),

where VG ,ψ = As(VG )
†(ψ−1

P )(−k/2). Put

κ∞,n(F ,G ) = ω0(n)ω1(n)κ(n)
−1χ−1

G (ϖn1)[ξ
−1
ϖn1

]κ̃∞,n(F ,G ).

Proposition 5.6. Let n be a squarefree product of primes coprime to pN and split in F , and
let q be a rational prime coprime to pNn and which splits in F as (q) = q1q2 and splits in K
as (q) = qq. Then,

corK[nq]/K[n] κ∞,n(F ,G ) = qω1(q)χG (ϖq1)χG (ϖq2)

(
κ2−kac ψP(Fr

−1
q )

qk/2
Fr−1

q

)2

− η1(q)κ−1/2
1 (q)aq1(G )aq2(G )

(
κ2−kac ψP(Fr

−1
q )

qk/2
Fr−1

q

)
+ χG (ϖq1)[ξϖq1

]aq1(G )2 + q−1χG (ϖq2)[ξϖq2
]aq2(G )2 − q−1(q2 + 1)

− η1(q)κ−1/2
1 (q)aq1(G )aq2(G )

(
κ2−kac ψP(Fr

−1
q )

qk/2
Fr−1

q

)

+ qω1(q)χG (ϖq1)χG (ϖq2)

(
κ2−kac ψP(Fr

−1
q )

qk/2
Fr−1

q

)2

.

Proof. The corestriction map in Galois cohomology corresponds to the norm map in
Lemma 5.2 under Shapiro’s isomorphism. Thus, the result follows from Lemma 5.2 and
Proposition 5.5 after a somewhat tedious computation. □

Similarly as in Section 2.7, we can define a balanced Selmer group

Selbal(Ind
Q
K[n] ΛO(κ

−1
ac )⊗̂OVG ,ψ) ⊂ H1(QΣ/Q, IndQK[n] ΛO(κ

−1
ac )⊗̂OVG ,ψ),

and we let Selbal(K[np∞],VG ,ψ) denote its image under the natural isomorphism

H1(QΣ/Q, IndQK[n] ΛO(κ
−1
ac )⊗̂OVG ,ψ) ∼= H1

Iw(K[np∞],VG ,ψ)

arising from Shapiro’s lemma.
It is now easy to deduce from the above results that we thus obtain an anticyclotomic Euler

system for VG ,ψ in the sense of [JNS24], as summarized in the next theorem.

Theorem 5.7. Let S be the set of squarefree products of primes q split in both F and K and
coprime to pN . There exists a collection of classes{

κψ,G ,n,∞ ∈ Selbal(K[np∞],VG ,ψ) : n ∈ S
}

such that whenever n, nq ∈ S with q a prime, we have

corK[nq]/K[n](κψ,G ,nq,∞) = Pq(VG ,ψ; Fr
−1
q )κψ,G ,n,∞,

where q is a prime of K above q, and

Pq(VG ,ψ;X) = det(1− Fr−1
q X|VG ,ψ).

In particular, we obtain an anticyclotomic Euler system for each specialization of G .
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Proof. One can check that, defining

κ∗∞,n(F ,G ) :=
∏
q|n

ω−1
1 (q)χ−1

G (ϖq1)χ
−1
G (ϖq2)

(
κ2−kac ψP(Frq) Frq

)2
κ∞,n(F ,G )

for all n ∈ S, from the norm relations of Proposition 5.5 one has

corK[nq]/K[n] κ
∗
∞,nq(F ,G ) ≡ Pq(VG ,ψ(κ

k−2
ac ); Fr−1

q )κ∗∞,n(F ,G ) (mod q − 1)

for any rational prime q with nq ∈ S, where
Pq(VG ,ψ(κ

k−2
ac );X) = det(1− Fr−1

q X|VG ,ψ(κ
k−2
ac )).

By [Rub00, Lem. 9.6.1], from κ∗∞,n(F ,G ) we can obtain classes satisfying norm relations

involving the Euler factor Pq(VG ,ψ(κ
k−2
ac ); Fr−1

q ), and by the twisting result of [Rub00,

Thm. 6.3.5], we can get rid of the twist by κk−2
ac , yielding classes κψ,G ,n,∞ ∈ H1

Iw(K[np∞],VG ,ψ)
with the stated norm relations. Finally, the fact that these classes belong to the bal-
anced Selmer group follows from [NN16, Thm. 5.9] by the same argument as in [ACR23b,
Prop. 4.9]. □

6. Verifying the hypotheses

Let g and ψ be as in the introduction, and let L be a finite extension of Q containing F ,
the Fourier coefficients of g, and the image of ψ. For each prime P of L, let

ρstdg,P : GF −→ GL2(LP)

be the corresponding Galois representation attached to g, as described in [LLZ18, Thm. 4.3.1].
From these representations, we can define the corresponding Asai representations

ρg,P : GQ −→ GL4(LP)

by taking the tensor-induction of ρstdg,P. We denote by As(g)P the corresponding 4-dimensional
Galois-module. Since we are interested in prescribing good choices of P, we write VP for the
GK-representation

VP = As(g)P(ψ
−1
P )(2− l − k/2).

within which we fix a Galois stable lattice TP. Note that the representation VP is conjugate
self-dual, i.e. V c

P ≃ V ∨
P (1).

The aim of this section is to give conditions under which hypothesis (HS) in [ACR23b, §8.1]
hold for TP (and so also the weaker hypothesis (HW) for VP in loc. cit.), so the general results
of [JNS24] can be applied to the Euler system constructed in Theorem 5.7.

We denote by gσ the internal conjugate of g. Throughout this section, we make the following
assumptions:

• g is not of CM type;
• g is not Galois-conjugate to gσ.

As in [Loe17, §3.1], we define subfields Fg = Fgσ of L, open subgroups Hg and Hgσ of GF ,
quaternion algebras Bg and Bgσ , and algebraic groups Gg and Ggσ , and we put

B = Bg ×Bgσ , G = Gg ×Gm Ggσ .

Let H = Hg ∩Hgσ ∩GK(c)◦ , where K(c)◦ denotes the ray class field of K of conductor c. Then
we have an adelic representation

ρ̃stdg,gσ : H −→ G(Q̂)

and representations
ρ̃stdg,gσ ,p : H −→ G(Qp)

for every rational prime p. According to [Loe17, Thm. 3.2.2], for all but finitely many primes
p we can conjugate ρ̃stdg,,gσ ,p so that ρ̃stdg,gσ ,p(H) = G(Zp). Note that although the result is stated
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in the setting of elliptic modular forms, it follows from [op. cit., Rem. 2.3.2] that the same
result holds in the setting of Hilbert modular forms.

Definition 6.1. Let P be a prime of L above p, and let E be the subfield of LP generated
by the field Fg. We say that the prime P is good if the following conditions hold:

• p ≥ 7;
• p is unramified in B;
• p is coprime to c and Ng;

• ρ̃stdg,gσ ,p(H) = G(Zp);
• E = Qp.

Lemma 6.2. Assume that there is at least one prime which divides DK but not DFNg. Then,
if P is a good prime,

(ρg,P × ρgσ ,P)(H ∩GK(p∞)◦) = SL2(Zp)× SL2(Zp).

Proof. For the ease of notation, write K∞ for the anticyclotomic Zp-extension K[p∞] of K. Let
F (ρg,P) and F (ρgσ ,P) be the Galois extensions of F cut out by the representations ρg,P and
ρgσ ,P attached to g and gσ, respectively, and note that they are unramified outside pDFNg.
Therefore, the condition on DK implies that FK ∩ F (ρg,P) = F and FK ∩ F (ρgσ ,P) = F .
Moreover, since any Galois extension of F contained in FK∞ must itself contain FK, we also
have FK∞ ∩ F (ρg,P) = F and FK∞ ∩ F (ρgσ ,P) = F .

The conditions on P imply that

(ρg,P × ρgσ ,P)(H ∩GQ(µp∞ )) = SL2(Zp)× SL2(Zp),
and, from the remarks in the previous paragraph, it follows that

(ρg,P × ρgσ ,P)(H ∩GK∞(µp∞ )) = SL2(Zp)× SL2(Zp).
Finally, since H ∩GK(p∞)◦ is a normal subgroup of H ∩GK∞(µp∞ ) of index dividing p− 1 and

there are no such subgroups in SL2(Zp)× SL2(Zp), the lemma follows. □

Now we are able to give conditions on P under which the results of [JNS24] can be applied
to our setting, i.e. to the representation TP defined above. We say that g is non-Eisenstein
(resp. p-distinguished) at P if the residual representation ρ̄g,P associated to ρg,P is irreducible
(resp. the semi-simplication of ρ̄g,P|GFp

is non-scalar for every prime p of F above p).

Proposition 6.3. Assume that there is at least one prime which divides DK but not DFNg.
Let P be a good prime above p at which g is non-Eisenstein and p-distinguished, and assume
that there exists η ∈ GFK(p∞)◦ such that ψP(η) ̸= ψcP(η) modulo p. Then hypothesis (HS) in

[ACR23b, §8.1] hold for TP.

Proof. Since ψP is trivial when restricted to H ∩ GK(p∞)◦ , condition (1’) follows easily from
the previous Lemma 6.2. To prove condition (2’), we closely follow the proof of [Loe17, Prop.
4.2.1]. We regard χg as a finite order character of GF using class field theory. By Lemma 6.2,
the image of ηH ∩GK(p∞)◦ under ρg,P × ρgσ ,P contains all the elements of the form((

x 0
0 x−1χg(η)

)
,

(
y 0
0 y−1χσg (η)

))
, x, y ∈ Z×

p .

Now choose x ∈ Z×
p satisfying

x−2χg(η) ̸≡ 1 (mod p), x2χσg (η)ψP(η)
−2 ̸≡ 1 (mod p),

which is possible since p ≥ 7, and let y = x−1ψP(η). Choose σ0 ∈ ηH ∩GK(p∞)◦ whose image
under ρg,P × ρgσ ,P is given by the element above, with the choices of x and y which we have
just specified. Then, the eigenvalues of σ0 acting on TP are 1, x−2χg(η), x

2χσg (η)ψP(η)
−2 and

ψcP(η)ψP(η)
−1, which proves condition (2’).
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To check condition (3’), we can argue as in [KLZ17, Rem. 11.1.3]. By the previous lemma,
we can find an element τ0 ∈ H ∩GK(p∞)◦ such that

(ρg,P × ρgσ ,P)(τ0) =
((
−1 0
0 −1

)
,

(
1 0
0 1

))
,

so τ0 acts on TP as multiplication by −1. Finally, condition (4’) follows from the assumption
that g is non-Eisenstein and p-distinguished. □

7. Applications

In this section we apply the general machinery of [JNS24] to the Euler system constructed in
this paper to deduce applications towards the Bloch–Kato conjecture and the anticyclotomic
Iwasawa Main Conjecture for Asai representations.

7.1. Bloch–Kato conjecture. As in the introduction, let g be a Hilbert eigenform of parallel
weight l and let ψ be a Hecke character of infinity type (1− k, 0) for some even integer k ≥ 2,
and put

V := As(Vg)|GK(ψ
−1
P )(2− l − k/2),

Write κψ,g,h,n ∈ H1(K[n], T ) for the image of the Iwasawa cohomology classes of Theorem 5.7
under the corestriction map H1

Iw(K[np∞], T )→ H1(K[n], T ).
The following result yields evidence towards the Bloch–Kato conjecture in rank 1.

Theorem 7.1. Assume that p splits in K and p ∤ hK, and that g is ordinary at p. Let P be
a good prime of L above p at which g is non-Eisenstein and p-distinguished, and assume that
the conditions in Proposition 6.3 are satisfied. Let

κψ,g := κψ,g,1.

If k < 2l, then the following implication holds:

κψ,g ̸= 0 =⇒ dimE Sel(K, V ) = 1,

where Sel(K, V ) ⊂ H1(K, V ) is the Bloch–Kato Selmer group.

Proof. By virtue of Theorem 5.7, the classes κψ,g,h,n land in Selbal(K[n], T ) and (for varying
n ∈ S) form an anticyclotomic Euler system for V . Thus, from the general results of [JNS24],
as recalled in [ACR23b, Thm. 8.3], and whose technical conditions are satisfied thanks to
Proposition 6.3, the non-vanishing of κψ,g implies that the balanced Selmer group Selbal(K, V )
is 1-dimensional over E. Since for k < 2l one can show the equality

Selbal(K, V ) = Sel(K, V )

following the argument in [ACR23b, Lem. 9.1], this concludes the proof. □

7.2. Iwasawa Main Conjecture. With notations as in Section 2.7, put

A†
Fg = HomZp(V

†
Fg, µp∞),

and for L ∈ {bal,F}, define the Selmer group SelL(A†
Fg) as in Definition 2.9, taking

H1
L(Qp,A†

Fg) to be the orthogonal complement of H1
L(Qp,V†

Fg) under the local Tate duality

H1(Qp,V†
Fg)×H

1(Qp,A†
Fg) −→ Qp/Zp.

Taking F to be the CM Hida family attached to ψ as in Section 5.1, similarly as in Lemma 5.2
we then have a GQ-module isomorphism

V†
Fg ≃ ΛO(κ

−1
ac )⊗̂OT.
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We then let SelL(K[p∞], T ) ⊂ H1
Iw(K[p∞], T ) be the Selmer group corresponding to SelL(V†

Fg)

under the Shapiro isomorphism

H1(Q,V†
Fg)
∼= H1(K,ΛO(κ

−1
ac )⊗̂OT ) ∼= H1

Iw(K∞, T ),

and likewise let SelL(K[p∞], A) correspond to SelL(A†
Fg) under H

1(Q,V†
Fg)
∼= H1(K[p∞], A).

Finally, put

XL(K[p∞], A) := Homcont(SelL(K[p∞], A),Qp/Zp)
for the Pontryagin dual of SelL(K[p∞], A), which is a finitely generated ΛF -module.

Theorem 7.2. Let the hypotheses as in Theorem 7.1. If the class

κψ,g,∞ := κψ,g,1,∞

is not ΛF -torsion, then the modules Selbal(K[p∞], T ) and Xbal(K[p∞], A) have both ΛF -rank
one, and

CharΛF
(Xbal(K[p∞], A)tors) ⊃ CharΛF

(
Selbal(K[p∞], T )

ΛF · κψ,g,∞

)2

as ideals in ΛF ⊗Zp Qp, where the subscript tors denotes the ΛF -torsion submodule.

Proof. In view of Proposition 6.3, this follows from the general results of [JNS24], in the form
stated in [ACR23b, Thm. 8.5], applied to the Euler system of Theorem 5.7. □

The prediction that equality should hold in Theorem 7.2, even as ideals in ΛF , is suggested
by a natural extension of Perrin-Riou’s Heegner point main conjecture [PR87, Conj. B]. It also
admits a natural counterpart expressing the characteristic ideal of the F-unbalanced Selmer
group XF (K[p∞], A) in terms of a p-adic Asai L-function. This will be explored in the sequel
to this work.
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