GENERALISED KATO CLASSES ON CM ELLIPTIC CURVES OF RANK 2
FRANCESC CASTELLA

ABSTRACT. Let E/Q be a CM elliptic curve and let p > 5 be a prime of good ordinary reduction
for E. Suppose that L(E, s) vanishes at s = 1 and has sign +1 in its functional equation, so in
particular ords—1 L(E, s) > 2. In this paper we slightly modify a construction of Darmon—Rotger
to define a generalised Kato class &, € Sel(Q, V,E), and prove the following rank two analogue
of Kolyvagin’s result:

kp 0 = dimq,Sel(Q,V,E) = 2.
Conversely, when dimq, Sel(Q, V, E) = 2 we show that x, # 0 if and only if the restriction map

Sel(Q, V, E) — E(Qp)®Q,
is nonzero. The proof of these results, which extend and strenghten similar results of the author
with Hsieh in the non-CM case, exploit a new link between the nonvanishing of generalised Kato
classes and a main conjecture in anticyclotomic Iwasawa theory.

1. INTRODUCTION

Let E be an elliptic curve over the rationals. The systematic construction of rational points
on FE, akin to the construction of Heegner points when ords—1 L(F,s) < 1 in the works of Gross—
Zagier and Kolyvagin from the 1980s, is a well-known open problem lying behind further progress
on the Birch—Swinnerton-Dyer conjecture in situations of higher order of vanishing. As an approx-
imation to this problem, and following the reformulation and vast generalisation of the conjecture
by Bloch—Kato, one might also attempt to construct non-torsion Selmer classes in such situations.

Suppose L(E, s) has sign +1 in its functional equation and vanishes at s = 1 (so ords—=1 L(E, s) >
2). Fix a prime p > 5, and suppose E has CM by an imaginary quadratic field in which p splits.
In this paper, we introduce a generalised Kato class r, € Sel(Q, V,E) in the p-adic Selmer group
fitting into the exact sequence

0 — E(Q) ®z, Qp — Sel(Q, V,E) — Q, ®z, Ta,III(E/Q) — 0,

where Ta,III(E/Q) is the p-adic Tate module for the Shafarevich-Tate group of E. The class &,
is obtained from a “twisted variant” of a construction due to Darmon-Rotger [DR16], whence the
terminology. One of the main results in this paper is a proof of the following rank two analogue
of Kolyvagin’s result [Kol88]:

kp#0 = dimq,Sel(Q,V,E) = 2.

Conversely, still in the setting that L(E, s) vanishes to positive even order at s = 1, we show that
if dimqg,Sel(Q, V, E) = 2 then &, # 0 if and only if the restriction map

Sel(Q, V,F) — E(Q,)&Q,
is nonzero, where F(Q,)®Q, is the p-adic completion @n E(Qp)/p"E(Qp) tensored with Q.
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In the non-CM case, similar results (for the generalised Kato classes /@Z],DR introduced in [DR16])
were obtained in a joint work for the author with M.-L. Hsieh [CH22|. The approach introduced
in this paper to handle the CM case (a case that is essentially excluded by the approach in loc. cit.;
for instance, it requires E' to have some prime ¢ # p of multiplicative reduction) also yields a new
proof of the original results in the non-CM case (see [Cas23]).

In the rest of this Introduction we explain our results more precisely, and some key ideas behind
the proof.

1.1. Diagonal cycle main conjecture. Following the work of Darmon—Rotger [DR17], as fur-
ther systematically developed also by Bertolini-Seveso—Venerucci (see [DR22, BSV22]), attached
to a triple of Hida families (¢, g, h) with tame characters having product x,xgxn = 1 one has a
big diagonal class
r(¢.g9,h) € H(Q, V),

where VT is a self-dual twist of the triple tensor product of the Galois representations associated to
©, g, h. It follows from its geometric construction (interpolating p-adic étale Abel-Jacobi images
of generalised Gross—Kudla—Schoen diagonal cycles in p-adic families) that x(¢, g, k) lands in the
balanced Selmer group Sele’d(Q7 V.

Denote by R = ]Lp®ﬁ]lg®ﬁ]lh the completed tensor product of the ring of definition of ¢, g, h;
this is a finite extension of the three-variable Iwasawa algebra A®gA& s A, where A = O[1 + pZ,]
and O is a finite extension of Z,. Under the root number condition

e’:‘g(VQO) =+1 for all primes £ | N,NgNj,

(see (2.4) for the unexplained notation), the range of specialisations @ € Spec(R)(Q,) for which
k(p, g, h) recovers a generalised Gross—Kudla—Schoen diagonal cycle, is also a range in which the
sign of the triple product L-function L(sz s) is —1.

Motivated by Perrin-Riou’s Heegner point main conjecture [PR87] (and more precisely, Howard’s
extension in the context of big Heegner points [How07]), the following is expected about x(¢, g, h):

Conjecture A (Big diagonal class main conjecture). The class k(p, g, h) is not R-torsion, the
modules Sel”®(Q, V1) and XP(Q, AT) both have R-rank one, and

Sel*?(Q, V1) >2
R - 'V”'(Lpa g, h’)
in R ® Qp, where the subscript tors denotes the R-torsion submodule.

Here X"3(Q, AT) = Hom(Sel(Q, AT),Q,/Z,) is the Pontryagin dual of the balanced Selmer
group with coefficients in AT = Homgz, (VT, =) (see §4.2).

When the Hida families g, h are specialised to classical modular forms g, h of weights [,m > 2
with [ = m (mod 2) and ¢ is a CM Hida family, denoting by VL oh the resulting specialisation of

VT, the divisibility

charR (Xbal(Qv AT)tors) = CharR <

Selbal(Q, prgh) ) 2
chgh : K(907 9, h)

in Rygn ® Qp was proved under some hypotheses in [ACR23b, Thm. 9.10] by constructing an an-
ticyclotomic Euler system (in the sense of Jetchev—Nekovai—Skinner [JNS]) having the specialised

big diagonal class k(¢, g, h) as its bottom class. On the other hand, closer to the setting of this
paper, when ¢ is specialised to a classical modular form ¢ of even weight £ > 2 and g, h are

charg,,, ( X‘Dal(Q7 ALgh)tors) D chary,, (
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both CM Hida families with respect to the same imaginary quadratic field, a similar divisibility
is obtained in [CD23, Thm. 3.3.3] by building an anticyclotomic Euler system containing the re-
sulting specialisation of k(¢, g, h) as its bottom class. However, both of these results are subject
to a “big image” hypothesis which in particular for the results of [CD23] excludes the case where
© has CM.

The first main result of this paper is the proof of a two-variable specialisation of Conjecture A
in the CM case. We consider the case in which ¢ = 6(X\g) € S2(I'o(V,)) has CM by an imaginary
quadratic field K in which p = pp splits, and

g=20,(51), h=20,,(5)

are both CM Hida families by the same K (see §3.1 for the construction of 0y,(S;)). Here Xg
(resp. A1, A2) is a Hecke character of K of infinity type (—1,0) (resp. finite order). We assume the
conductor N, of ¢ is prime-to-p, and let N, IV}, denote the tame conductor of g, h, respectively.

Letting VL oh denote the resulting two-variable specialisation of VT, under mild hypotheses on

g and h (see Proposition 4.3.1) it is easy to see that

~ Q(y—1y—1y—1g,1— Q/y—1y—cy— -1
1) v! bgh = Ind (A0 TATIA \IJWIC) @ IndjE (Mg 'ATOA; oY)
@ IndF (A\g AT I ST1C) @ IndF (Mg TATeA 108,

where Wi = (14 S1)Y2(1 + S2)Y/2 —1 and Wy = (1 + 51)Y/2(1 + S3)~ /2 — 1 are formal variables
parametrising anticyclotomic weight space. By the self-duality condition x,x4Xxn = 1, the Hecke
character

A= Ao A2
is self-dual, and so are the other three characters appearing in (1 1). Let sign(\) € {£1} be the
sign in the functional equation for the Hecke L-function L(A™!,s) (with center at s = 0), and

similarly for the other three characters
MATAS =AM A2)H AoAAs = ANSTH AoAfAe = AT

appearing in (1.1). The theta series ¢ can be obtained as a weight 2 specialisation of a unique
CM Hida family ¢, and we let Rygn >~ O[S1, S2] be the resulting specialisation of the coefficient
ring R. Denote by pg, p, the residual Galois representations associated to g, h, respectively.

Theorem A. Let the triple
(¢,9,h) = (0(X0), 0, (51), 0x,(52))

be as above, and suppose that:
(i) ged(Ny, Ng, Ny) is squarefree.
(i) pg,pn are both absolutely irreducible and p-distinguished.
(iii) sign(\) = sign(A(A X)) = sign(AAS™H) = sign()\)\c_l) = +1.
Then k(p,g,h) is not Rygn-torsion, the modules Selbal(Q7 ) and Xbal(Q,ALgh) both have
Rygn-rank one, and

wgh

Selbal(Qv Lpgh) )2
R(pgh : 5(807 g, h)
in Ropgh ® Qp. In other words, Conjecture A holds for (¢, g, h).

charg,, (X bal(Q, gogh)tors) = charg_, (
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A key input in the proof of this result is the relation between Conjecture A and the anticyclo-
tomic main conjecture for Hecke characters. Indeed, in the setting of Theorem A, we show that
the balanced Selmer group Selbal(Q,VL gh) decomposes as

. Sel”(Q, V1 ;) = Sely o (K, Th @ Whi®) @ Selo g (K, Ty nppe-t © UE:t)
® Sely o (K, Tyye1 @ Ujp®) @ Selg o (K, Tyyer @ U )).

The Selmer groups in the right-hand side of this decomposition correspond to usual (i.e., Bloch—
Kato) anticyclotomic Selmer groups attached to Hecke characters, except for the Selmer group

Selo,@(K, T)\()\l)q)cfl (] \:[J‘C/V*ll)7

which is obtained from the usual anticyclotomic Selmer group for Ty, x,)e-1 by reversing the local
conditions at the primes above p and p. We exploit the fact that Conjecture A follows from the
Iwasawa—Greenberg main conjecture for the p-adic triple product L-function .4 (p, g, h) € Rogn
constructed by Hsieh [Hsi21]. Under certain conditions preventing the vanishing of % (¢, g, h)
for sign reasons, this main conjecture predicts that the p-unbalanced Selmer group X% (Q, AL gh) is
R gn-torsion, with characteristic ideal generated by Lo, g, h)2. We prove a decomposition for
X?(Q, AL gh) analogous to (1.2) in which (contrary to the case of the balanced Selmer groups) all
direct summands agree with classical anticyclotomic Selmer groups for Hecke characters. Together
with a parallel factorisation for % (¢, g, h)? into a product of four anticyclotomic Katz p-adic
L-functions, we thus deduce from the works of Agboola~Howard [AH06] and Arnold [Arn07] (an
anticyclotomic specialision of Rubin’s proof of the Iwasawa main conjecture for K [Rub9l]) a
proof of the Iwasawa-Greenberg main conjecture for X% (Q, AL on)- (The sign conditions in (iii)

of Theorem A are needed at this point, as otherwise our results imply that X gD(Q,AL gh) has
R gh-rank two.) The proof of Theorem A then follows.

1.2. Generalised Kato classes attached to E. We keep K to be an imaginary quadratic field
in which p = pp splits, and now let E/Q be an elliptic curve with CM by the ring of integers of
K. Note that the splitting condition on p implies that E has good ordinary reduction of p. Let
1 be the Hecke character of K attached to E, so that

L(E,s) = L(¢g,s).

Suppose the sign is the functional equation of L(E, s) is w = +1. In the second part of the paper,
we choose Hecke characters Ag, A1, A2 for K as above satisfying

(1.3) vE = AAAS,  LUE'AT0) L' AT 0) - L(vg' (M), 0) £ 0,
whose existence follows from nonvanishing results due to Greenberg and Rohrlich [Gre85, Roh84],

and — inspired by a construction of generalised Kato classes due to Darmon—Rotger [DR17, DR16]
— we let

Kp € HY(Q,V,E)
be the image of the resulting big diagonal class k(p, g, h) (for (¢, g, k) = (0(No), 0, (S1),0x,(52))
as above) under the composition
HY(Q, V! ) = HY(Q,IndR (T xexs @ U5 )) — HY(Q, IndF(Ty,,)) ~ HY(Q, T, E)
arising from projection onto the second direct summand in (1.1) and the specialisation at W; = 0.
The construction of k, might be seen as a twisted variant of the construction of geneneralised Kato
classes in [DR16], which for an elliptic curve E/Q as above would take \g = ¢ g and the finite
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order Hecke characters A1, Ay to be inverses of each other (similarly as in [CH22|). Nevertheless,
from the explicit reciprocity law of [DR22] and [BSV22] we deduce the implication

L(E,1)=0 = &k, € Sel(Q,V,E).
Since we assume that L(E, s) has sign +1, the vanishing of L(F, 1) implies that ords—1 L(E, s) > 2,
and so by the Bloch-Kato conjecture [BK90], the Selmer group Sel(Q, V,E) is expected to be at

least 2-dimensional. Our next result is consistent with this expectation, and further justifies the
view of k), as a “rank 2 p-adic regulator”.

Theorem B. Suppose L(E, s) vanishes to positive even order at s = 1. Let \g, A1, Ao be any triple
of Hecke characters of K as above satisfying (1.3) and the conditions (1)—(iii) in Theorem A, and
let Ky, be the associated generalised Kato class. Then

kp #0 = dimqg,Sel(Q,V,F) = 2.
Conversely, if dimq,Sel(Q, V,E) = 2 then y # 0 if and only if the restriction map
res, : Sel(Q, V,E) — E(Q,)®Q,

1S monzero.

The existence of (infinitely many) triples Ag, A1, A2 satisfying (1.3) and the conditions in Theo-
rem A follows easily from the aforementioned nonvanishing results due to Greenberg and Rorhlich
(note that the sign condition (iii) is implied by (1.3)).

In addition to Theorem A, the ingredients in the proof of Theorem B are a version of Mazur’s
control theorem for the Selmer groups in the decomposition (1.1) and a global duality argument
allowing us to relate the rank of Sely g(K, Ty, ) and dimq,Sel(Q, V,E).

The result of Theorem B is consistent with predictions by Darmon—Rotger [DR16], and it offers
some new insights. More precisely, that the conditions dimq,Sel(Q, V,£) = 2 and res, # 0 imply
kp 7 0 is suggested by [op. cit., Conj. 3.12] (in the “rank (2,0) setting” of §4.5.3); a new insight
of Theorem B is that the condition res, # 0 is also necessary for the nonvanishing of x,,.

1.3. Application to rank two Selmer basis. The construction of k, € Sel(Q, V,E) depends
on a choice Ag, A1, Ag, but it follows from our results that different choices give rise to the same
Selmer class up to scaling. (In fact, whenever nonzero, x, generates the one-dimensional subspace
ker(res,) C Sel(Q, V,E).) It is then natural to ask for a class in the two-dimensional Sel(Q, V,E)
complementary to the line spanned by &,. Our results also yield an answer to this question under
some hypotheses.

Let W the completion of the ring of integers of the maximal unramified extension of Q,, and
let £, = Ly; € W[Z(f)] be the Katz p-adic L-function recalled in Theorem 2.1.1 below, where
Z(f) is the Galois group of the extension K (E[p*°])/K and f C Ok is the conductor of ¢g. For
s € Z,, define

Ly(s) = Lo(pwe)* ™), Ly(s) = LoE)ve) ™),

where (—) : Z5 — 1+ pZ, is the projection onto the 1-units.

Theorem C. Let the hypotheses be as in Theorem B, and assume in addition that UI(E/Q)[p>]
is finite and the following conditions hold:

ords—1Ly(s) = 2, ordszlL;(s) =1.
Then Sel(Q, V,E) is 2-dimensional, with

Sel(Q, V, E) = Qurip & Qpat?,
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where Ky is a generalised Kato class and 1"(32) 1s a “derived” elliptic unit.

Proof. The assumption that ords—1Ly(s) = 2 implies that

r = dimq,Sel(Q, V,E) < 2
by Rubin’s proof of the Iwasawa main conjecture for K and the work of Perrin-Riou (see [Rub91,
Thm. 4.1] and [PR84, Ch. IV, Thm. 22]). On the other hand, it also implies > 2 by the theorem

of Coates—Wiles [CW77] and the p-parity conjecture [Guo93]. Therefore r = 2, and by [Rub92,
Prop. 4.4] the construction of derived elliptic units in [op. cit., §6] yields a class

oY € Sel(K, T,E) ~ Sel(Q, T, E)
where T, E is the p-adic Tate module of E. Since by [Rub92, Thm. 9.5(ii)] and our assumptions

we have resp(azf) ) # 0, the result follows from Theorem B. O

1.4. Acknowledgements. It is a pleasure to thank Ashay Burungale for stimulating exchanges,
especially about the idea to consider a setting along the lines of that in §6.1. We are also grateful
to Ming-Lun Hsieh for his comments on an early draft. During the preparation of this paper, the
author was partially supported by the NSF grants DMS-1946136 and DMS-2101458.

2. p-ADIC L-FUNCTIONS

In this section we recall the two p-adic L-functions that will appear in our arguments, one due
to Katz [Kat78] attached to Hecke characters of an imaginary quadratic field, and another due
to Hsieh [Hsi21] (extending and refining earlier constructions due to Harris-Tilouine [HT01] and
Darmon—Rotger [DR14]) attached to triple products of modular forms in Hida families.

Fix a prime p > 2 and an imaginary quadratic field K with ring of integers O in which

(spl) (p) = pp splits,
with p the prime of K above p determined by a fixed embedding ¢, : Q — Qp.

2.1. Katz p-adic L-function. Denote by Dy < 0 the discriminant of K, and fix an integral
ideal € C Ok coprime to p. Let W be a finite extension of the Witt ring W (F,), and denote by
Z(€) the Galois group of the ray class field extension K (€p>)/K.

We say that a Hecke character x : K*\Aj} — C* has infinity type (a,b) if xoo(2) = 2970, We
take geometric normalisations for the reciprocity maps of class field theory. If x has conductor
dividing €, viewing x as a Q-valued character (via a fixed embedding o, : Q < C*) defined on
the group of fractional ideals of K coprime to €, with a slight abuse of notation we also denote
by x the character of Z(€) defined by the rule

x(o7h) = p(x(1)
for all primes [t €, where oy € Z(€) is the Artin symbol of [.

Theorem 2.1.1. There exists an element Ly, ¢ € W[Z(C)] such that for all Hecke characters x
of conductor dividing €p> and infinity type (k + j,—j) with k > 1, j > 0, we have

k425 N
Loelx) = (5;00) -r<k+j>-< ¢207> () - LP (1. 0),

where E,(x) is the modified Euler factor
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and L®Y) (x, s) is the L-function of x deprived from the Euler factors at the primes dividing p<.
Moreover, we have the functional equation

Lpe(x) = L,e(x) "N,

where x€ is the composition of x with the action of the non-trivial element ¢ € Aut(K/Q), and
the equality is up to a p-adic unit.

Proof. See [Kat78], [HT93]; our formulation follows of the interpolation property follows [Hsil4,
Prop. 4.19] most closely. The functional equation is shown in [dS87, Thm. I1.6.4]. O

2.2. Triple product p-adic L-function. Let I be a normal domain finite flat over
A = ﬁ[[]' +pzpﬂ,

where & is the ring of integers of a finite extension of Q). For a positive integer N with p { N
and a Dirichlet character x : (Z/NpZ)* — 0>, we denote by S°(N,x,I) C I[¢] the space of
ordinary I-adic cusp forms of tame level N and branch character x as defined in [Hsi21, §3.1].
Denote by %f C Spec H(Qp) the set of arithmetic points of 1, consisting of the ring homomor-
phisms @ : T — Qp such that Q[11pz, is given by z — ZFaeg(z) for some kg € Zso called the
weight of @ and €g(z) € ppo. As in [Hsi2l, §3.1], we say that f =3 07 an(f)g" € S°(N, x,I)
is a primitive Hida family if for every @ € %f the specialisation f gives the g-expansion of an
ordinary p-stabilised newform of weight of kg and tame conductor N. Attached to such f we let
.’{]‘fls be the set of ring homomorphisms ) as above with kg € Z such that f is the g-expansion
of a classical modular form. Note that %Hds contains f{fr by Hida’s results, but it can also contain
points () — of special relevance for this paper — for which f, is a classical weight one form.
For f a primitive Hida family, we let

pf: GQ — AutH(Vf) ~ GLQ(H)

denote the associated Galois representation, which here we take to be the dual of that in [Hsi21,
§3.2]; in particular, the determinant of pg is X1 - cyc in the notations of loc. cit., where ecyc is
the p-adic cyclotomic character. Note also that the pg in loc. cit. is valued in Frac(Il), but it is
well-known that when the residual representation py is absolutely irreducible, one may find a free
I-module Vy of rank 2 realising the same Galois representation after extension of scalars. There
may be different Vp giving rise to the same rational py after extension of scalars; for now we take
any such V; (assuming p¢ to be absolutely irreducible), and later in §4.3 we specify a particular
choice well-suited to our applications.

By [Wil88, Thm. 2.2.2], restricted to Gq, the Galois representation V} fits into a short exact
sequence

0=V = Vy =V =0,

where the quotient VJZ is free of rank one over I, with the Gq,-action given by the unramified

character sending an arithmetic Frobenius o, to a,(f).
Let

(Qovg) h’) € SO(NQDa Xs&v ]L,O) X SO(Ngv Xg’ Hg) X SO(Nha Xha ]Ih)
be a triple of primitive Hida families with

(2.1) XoXgXh = w?® for some a € Z,
where w is the Teichmiller character. Put

R = 1,®61,&¢1,
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which is a finite extension of the three-variable Iwasawa algebra AQsAQ4sA, and let
X2 :={(Qv,Q1,Q2) € 355; X 351?:,8 x Xf®
ko > kg, + kg, and kg, = kg, + kg, (mod 2)}

be the weight space for R in the so-called @-unbalanced range.
Let V = Vgo@[jvg@ﬁ‘/h be the triple tensor product Galois representation attached to (¢, g, h),
and writing det V = XZ%e.y. (as is possible by (2.1)), set

(2.2) vi=vegx!,
which is a self-dual twist of V. Define the rank four Gq,-invariant subspace .77 (V') C V1 by
(2.3) FEV) = VI®sVyooVh @ X"

For every Q = (Qo, Q1,Q2) € X% we denote by Ff (Vg) - VZ) the corresponding specialisation.
Finally, for every rational prime ¢ denote by 55(V22) the epsilon factor attached to the restriction
of VTQ to Gq, as in [Tat79, p. 21|, and assume that

(2.4) for some Q € X%, we have eg(VZ?) = +1 for all primes ¢ | N, NgNp,.

As explained in [Hsi21, §1.2], it is known that condition (2.4) is independent of @, and it implies
that the sign in the functional equation for the triple product L-function

L(V},s)

(relating its values at s and —s) is +1 for all Q € X%.
For the next statement, we refer the reader to §2.3 for a review of the congruence ideal asso-
ciated with a primitive Hida family.

Theorem 2.2.1. Let (¢, g, h) be a triple of primitive Hida families as above satisfying conditions
(2.1) and (2.4). Assume in addition that:

o gcd(Ny, Ny, Ny) is square-free,
e the residual representation py, is absolutely irreducible and p-distinguished,

and fiz a generator 1, of the congruence ideal of ¢. Then there exists a unique element
Zf(p,g.h) R
such that for all Q = (Qo, Q1,Q2) € X% of weight (ko, k1, k2) with eq, = 1 we have

(£ (,9:h)(@Q)” =Ty (0)- a2 EFFVY) - [ @+’
PO R TV (g, T LT

where:
* Ty; (0) = To(cQ)Toleg +2 = ki = k2)Tc(eg + 1 = ki)Tc(eg + 1 = k2), with

cQ = (ko + k1 + k2 —2)/2
and T'c(s) = 2(27) 7T (s);
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. . . .
Q<PQ0 1s the camomnical period

ko—1 ko—2

oy, 17 L(p) L(p)
— ko+1 QoITo(Ny) Xo\P)P Xo\P)P
Qg = (2V=T)frt =R (1 25— ) (1= 25 —).
PAIPQq Qo Qo
with ¢g), € Sko(Ny) the newform of conductor N, associated with ¢, Xfp the prime-to-p
part of Xy, and aq, the specialisation of ay(p) € 175 at Qo;

. 5p(¢%§a(VTQ)) is the modified p-Euler factor

E(FL(VE)) = i L e
P\Tp \V Q)] T gp(gf(vé))-Lp(VTQ/gz;p(VTQ)vO) Lp(VT@O)

Y

and Yexe s an explicitly defined subset of the prime factors of NyNyNy, [Hsi2l, p. 416].
Proof. This is [Hsi21, Thm. A]. O

Remark 2.2.2. For simplicity, we have stated the interpolation property of %5 (¢, g, h) only
for @ with eg, = 1, as this will suffice for our purposes; see [Hsi21, Thm. A] for the interpolation
property for all Q € x%.

2.3. Congruence ideal. Let f € S°(INy, xs,I) be a primitive Hida family defined over I. Asso-
ciated with f there is a I-algebra homomorphism

Af : T(Nf,]l) —1
where T(Ny,I) is the Hecke algebra acting on &, S°(Ny, x, 1), with x running over the characters

of (Z/pN;Z)*. Let Ty, be the local component of T(N¢,I) through which ¢ factors, and following
[Hid88] define the congruence ideal C(f) of f by

C(f) = Ag(Annt, (ker Af)) C L

When the residual representation py is absolutely irreducible and p-distinguished, it follows from
the results of [Wil95] and [Hid88] that C(f) is generated by a nonzero element 7y € I.

3. FACTORISATION OF p-ADIC TRIPLE PRODUCT L-FUNCTION

In this section we relate the triple product p-adic L-function attached to triples of Hida families
with CM by K to a product of anticyclotomic Katz p-adic L-functions.

3.1. Hida families with CM. We review the construction of CM Hida families following the
exposition in [Hsi21, §8.1]. Since it will suffice for our purposes, we assume that the class number
hik = [Pic(Ok)| of K is coprime to p. Let Ko, be the unique Z2-extension of K, and denote by
Ky~ the maximal subfield of K, unramified outside p. Put

I = Gal(Koo/K) = Z2, Ty := Gal(Kpe /K) ~ Zy,.

Recall that for every ideal € C Ok we let K(C) be the ray class field of K of conductor €. Thus
Ky is also the maximal Z,-extension inside K (p>°). By our assumption on hg, the restriction
of the Artin map to K, induces an isomorphism 1+ pZ, ~ Ty, where we identified Z,5 and (’)Ix(p
by the embedding ¢,. Denote by 7, the topological generator of I'yc corresponding to 1+p under
this isomorphism, and for each variable S let Wg : I'ag, — Z,,[S]* be the universal character given
by

V(o) = (1+9)',
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(o)

where [(0) € Z) is such that o, = fyé . Fix € prime to p, and for any finite order character

Y : Gg — 0 of tame conductor € put

0,(5) (@) = > ¢(oa)¥s (0a)a™ € O[S][ql,
(a,p@)=1

where 0, € Gal(K (¢p>°)/K) is the Artin symbol. Then 6,(S) is a primitive Hida family (called
the primitive CM Hida family with branch character ¢) defined over &[S] of level DgN(€) and
tame character (¢ o “//)77K/Qw_1, where

vV Gy =GR
is the transfer map and 7y /q is the quadratic character associated to K /Q.

3.2. Congruence ideal of CM Hida families. Let ¢ be a primitive CM Hida family defined
over O[S]. In this section we recall the characterisation of the congruence ideal of ¢ that follows
from its relation with the anticyclotomic main conjecture for the underlying imaginary quadratic
field K.

Let Ny, = DgIN(€) be the tame conductor of ¢, and assume that the ideal € C O is coprime
to p and fixed under the action of complex conjugation, so ¢ acts on Z(€) = Gal(K(€p>*°)/K).
Let A¢ be the torsion subgroup and Z(€), and put I'x := Z(€)/A¢ ~ Z2, which is identified
with the Galois group of the unique Zg—extension K+ /K. Fix a decomposition

(31) Z(Q:) =~ A@ X FK,

and note that if p{ hg, as we assume in the following, then A¢ has order prime to p.

Let Z(€)™ be the maximal subgroup of Z(€) fixed by the action of c. Put Z(€)~ = Z(€)/Z(€)*,
and denote by 7 : Z(€) — Z(€)~ the natural projection. We also have a decomposition (which
we fix to be compatible with (3.1) under 7)

Z(€)” ~ Ay xT~,

where A, is the torsion subgroup of A¢ and I'™ is the eigenspace of I'x where c acts as inversion.
The residual representation p,, is of the form

P ™ Ind%z/;
for some Galois character ¥ : G — F*, where F is the residue field of ¢. Put ¢~ := ¢°"!, and
upon enlarging @ if necessary, denote by 1~ : Gg — €* the Teichmiiller lift of 1»~. We shall
call ¢~ the anticyclotomic branch character corresponding to the CM Hida family ¢. Since ¢~
has order prime to p, its composition with 7 factors through Ag, but its prime-to-p conductor
may be a proper divisor of €. Let ¢ be the prime-to-p conductor of ¢~ viewed as a character
of Ag via 7 (i.e., ¢ is the maximal divisor of € such that x7 factors though the quotient map
A¢ — A), put TS = {y¢71: v € T}, and denote by ﬁgc;_l) € W[ '] the image of the Katz
p-adc L-function L, . under the composition 7

WI[Z(c)] = WITk] — WL,

where the first arrow is the projection defined by ¥~ (viewed as a primitive character on A.) and
the second arrow is given by v + v~ for v € I'r. Since p is odd, the map v¢~! ('y|Kpoo)1/2

yields an isomorphism F;{l ~ I'yeo. Upon choosing a topological generator v, € I'yeo as in §3.1,
(c-1)

we shall thus view [,p7 -

as an element in W[S].
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Lemma 3.2.1. Let ¢ be a primitive CM Hida family with corresponding to the anticyclotomic
branch character ¥~ . Suppose that 1/)_|GKp # 1, where Gg, C Gk is a decomposition group at p.

Then the congruence ideal C(gp) is generated by Elgc;_l) in W[S] ®z, Qp-

Proof. The assumption on ¢~ implies that Py is absolutely irreducible and p-distinguished, and
so the congruence ideal C'(¢) C O[S] is known to be principal. Letting n, € O[S] be a generator,
from [HT93, Thm.I] and [HT94, Thm. 0.3] we have the divisibilities

c—1 c—1
(3:2) £V ng | Fio
in W[S] ®z, Qp and OS] ®z, Qp, respectively, where ‘Fp(ib_*l) € O[S] is a characteristic power

series for the Pontyagin dual of the ¢~ -isotypic component of Gal(M5 /K ,), the Galois group
of the maximal pro-p abelian extension of K, := K(cp™)? (©" unramified outside p. (For the
second divisibility in (3.2), note that the local non-triviality of )~ implies that ord p(ﬁé(;;,l)) =0
for all “trivial zero primes” P C W[S] in the sense of [HT94].) Since Rubin’s proof [Rub91] of
the two-variable main conjecture for K yields the divisibility (F, (C_l)) D (L'(C_l)) (see e.g. [SU14,

P~ P~
Prop. 3.9] for the descent argument), together with (3.2) the result follows. O

Remark 3.2.2. As explained in [ACR23a, §4.4], under some further hypotheses on the branch

character ¥, it follows from Hida’s proof [Hid06a] on the anticyclotomic main conjecture for K,
refining the results of [HT93, HT94|, that C(¢) is integrally generated by hy - £ where hx

p7w_ ?
is the class number of K.

3.3. Proof of the factorisation. Now we let

(.9, h) = (0¢,(S0), 0, (51), 01,(52))

be a triple of primitive CM Hida families satisfying conditions (2.1) and (2.4). Here &, A1, A2 are
finite characters of K, and we denote by &; (i = 0, 1,2) their conductors, which we assume to be
stable under the action of complex conjugation. Suppose ¢ = 6()\) is the weight 2 newform of
conductor N, associated to the specialisation of ¢ at Qo € 352’[[50]1 (so in particular eg, = 1). Let

(3.3) R ~ ﬁ[[So,Sl,SQ]] — ﬁ[[Sl,SQ]]
be the specialisation map at g, and denote by
2L (p,9,h)(S1,52) € O[5, S2]

the image of the triple product p-adic L-function %7 (¢, g,h) € R of Theorem 2.2.1 under this
map. On the other hand, for y a Hecke character of K of prime-to-p conductor €, we denote by
L, the image of Tw,-1(L, ¢) under the natural projection W[Z(€)] — W[I'"], where

Tw,-1 : WZ(¢)] - W[Z(¢")]

is the W-linear isomorphism given by v + x~!(7)y for v € Z(€). As usual, upon choosing a
topological generator v~ € I'", we shall identify W[I'"] with the power series ring W[W] via
4~ + 1+ W. Finally, denote by A+ A\* the involution of W[I'~] given by v+ v~ ! for v € T'~.

Proposition 3.3.1. Let (¢, g, h) = (0(Xg), 0, (S1),0x,(S2)) be a CM triple as above, and suppose
in addition that:

e gcd(Ny, Ny, Ny) is squarefree.

e The anticyclotomic branch character of ¢ satisfies @*]GKP # 1.
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Put
Wi=(1+8)21+8)Y?—1, Wa=(1+58)Y31+8) 2 -1

Then we have the factorisation
zpw(%g, h)Q(Sh Sa)=u- £;A0A1A2 (Wh)* E;)\O)\C,\g (W)
X £;AOMA3(W2)L : g;AOA?AQ(WQ),
where uw € W[1/p]*.

Proof. For i = 1,2, let (; be a primitive p™i-th root of unity with n; > 0, and put Q1 = (1{s — 1,
Q2 = Clgl —1, so the specialisations g, , hg, are both CM forms of weight 1. Let ¢; : I'™ — ppeo
be the finite order character given by €;(7~) = ¢; and put @ = (Qo, Q1,Q2). Noting that for the
above triple (¢, g, h) the character X in (2.2) is given by

X = (VY0 7) : Gq = Z,[S1, 5],
we find the decomposition of p-adic representations
VH©Q, = IndZO\ AT A e ) @ IndZF (A AN, %)
@ IdZOAGIATIA %Y @ nd (A AT Le);

1 1
9};0( )®Qp_/\Op)‘lp)‘Zpelp@/\Op)‘lp/\Qpﬁlp
B A p A p A2 p€ap B Ao pALFAZp€2p-

Thus the terms appearing in the interpolation formula of Theorem 2.2.1 become:

Fvé(O) . L(VTQ, O) = 71'_4 . L()‘al)‘l_l)‘Q_lel_l’ 0) X L(Aal)‘l_c)\;cela 0)

(3.4)
LOGIAT N %6, 0) - LG IAT A Y ea, 0);
(3.5) 523(5‘\;30(\[7)) gp(/\ol)wl)‘zl _1) 5p(>‘61)‘1_c)‘2_051)
‘ x E (AT TATIATCS ) - E(Ag AN, Le):;
lellF, (n Ao(p) Ao(p)
3.6 QO :—2\/—13.‘“(”.(1— °><1— 0).
(30 ear = 2V U e U o)

On the other hand, from Hida’s formula for the adjoint L-value [HT93, Thm. 7.1] and Dirichlet’s
class number formula we obtain
2 D} 2mhg
H@HFO(M&) T 94.3 ’ wK\/m'

L(MoAg©, 1).
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Noting that L(AgAy €, 1) = LASA; ', 1) = L(ASA; 'N71,0) and that ASA; 'N~! has infinity type
(2,0), and letting ¢ denote the prime-to-p conductor of )\8_1, the interpolation property in The-
orem 2.1.1 can thus be rewritten as

P Q,\? 2372
EP,C()‘S)‘O 'N 1) = <p) ) :

Q) Dg'
/\O(P)>< Ao(p) ) W 5
X | 1— — 1— —_—
< Ao(p) pro(p) /) hi Ieloe,)
. Qp 2 7T2\/— 0 WK
T\ D P RACTR

using (3.6) for the second equality. By the functional equation for Katz’s p-adic L-function (see
Theorem 2.1.1) together with Lemma 3.2.1, this shows that

1 Q,\* =
(3.7) _ u(p) T
QEOQO Qoo D3,
where u' € W[1/p]* is independent of @1, Q2. Thus substituting (3.4), (3.5), (3.6) and (3.7) into
the interpolation formula for % (i, g, h) we thus arrive at
L2090, ) (e = 1,GG T = 1) =u'Di’ Loy 30, (G = 1) Ly ens (G — 1)
— -1 _
X ﬁp,)\o,\l)\g(C2 —-1) "Cp7)\0)\‘i~')\2(<2 - 1),

for all non-trivial p-power roots of unity (i, (2, and the result follows. U

4. SELMER GROUP DECOMPOSITIONS

In this section we define different Selmer groups attached to Hecke characters and triple prod-
ucts of modular forms, and for one of the latter Selmer groups, we prove a decomposition mirroring
the factorisation in Proposition 3.3.1.

4.1. Selmer groups for Hecke characters. Let v be a Hecke character of K with values in
the ring of integers & of a finite extension ® of Q,. Denote by &, the free &-module of rank 1
on which Gk acts via v~ and put

Tu:ﬁua V=T, ®¢?, AIJ:VI//TI/:TII X ((I)/ﬁ)

Let X be any finite set of places of K containing oo and the primes dividing p or the conductor of
v, and for any finite extension F//K denote by Gy the Galois group of the maximal extension
of ' unramified outside the places above X.

Definition 4.1.1. Let F'/K be a finite extension, and for v a prime of F' above p put
Hé(Fv,Vy) :Hl(Fv>VV)> H(l)(Fv,V,,) :{0}'
For (Ly, L5) € {0,0}%2 define the Selmer group Selg,, c;(F, V) by

(Fy, V3) HY(F,,V,)
H(i

Selz, ¢ (FV)-ker( (Grs, Vi —>HH1 Fov) B (7 Vi)
vy (2]

< 1] Hl(Fv,V,,)).

vEX, vfpoo
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Remark 4.1.2. In particular, if v has infinity type (—1,0), the Selmer group

Sel@,O(Fa VI/) = ker <H1 (GF,Ea Vl/) — H Hl(Fva Vl/) X H Hl (Fva Vl/)>
v|p vEX, vipoo

agrees with the Bloch-Kato Selmer group of V,, (see e.g. [AHO06, §1.1] or [Arn07, §1.2]). (Therefore
in that case Sely g(F, V,c) agrees with the Bloch-Kato Selmer group of Ve.)

For ? € {0,0}, the local condition H}(F,,T,) and H}(F,, A,) are defined from the above by
propagation, and using these we define Selﬁp,LF(R T,) and Selgp,l;ﬁ(F, Ay) by the same recipe as
before. Then, letting K, /K denote the anticyclotomic Z,-extension of K, we set

Selﬁp7£F(Koo, T,,) = 1&1 Selgp,gﬁ(Kn, Tl,),

4.1 )
(4.1) Selz, £, (Koo, Ay) = lim Selz, £, (Kn, Ay).

Let A = O[] ~ O[W] be the anticyclotomic Iwasawa algebra, and denote by ¥y : Gx —
A* the universal character given g — [g|x_ ], where v +— [v] is the inclusion of '~ intro A~ as a
group-like element. Then by Shapiro’s lemma we have isomorphisms

H'(K,T, ® Vi) ~ limHY(K,,, T,), H'(K, A, ® Uw) ~lim H' (K, A,).
n

n

In the following we let Selcpvgﬁ(K, T, ® \I/;Vl) and Selgp,gﬁ(K, A, ® ¥y ) be the Selmer groups
corresponding to (4.1) under these isomorphism, and let

Xe,o5(K, Ay ® Vi) = Homg, (Selg, £, (K, Ay @ Yw), Qp/Zp)

denote the Pontryagin dual of Selgmgﬁ(K, A, @ Wy).
We conclude this section by recalling the following result due to Agboola—Howard [AHO06] and
Arnold [Arn07] on the anticyclotomic Iwasawa main conjecture for K.

Theorem 4.1.3. Let v be a Hecke character of K of infinity type (—1,0) satisfying that v° =71,
where U is the complex conjugate of v, and suppose that v has sign +1 in its functional equation.
Then Sely o(K, T, ® Uy} ) = 0, Xo9(K, Ave ® Uy,) is A-torsion, and

chary (Xo (K, Aye ® Uy)) = (L, ,(W))
as ideals in Ay ® Q.

Proof. In the case where v is the Hecke character associated with an elliptic curve F/Q with CM
by K, this is [AH06, Thm. 2.4.17]. The general case is given in [Arn07, Thm. 2.1]. O

4.2. Selmer groups for triple products. Let (¢, g,h) be a triple of primitive Hida families
as in §2.2 satisfying (2.1), and recall the self-dual twist VI = Vo ® Vg ® Vi, ® X1 of the tensor
product of their associated big Galois representations.

Definition 4.2.1. Put
FRVY) = Z2(V) = (VieV oVe+ ViV +Vee VeV ex,
and define the balanced local condition H} _(Qp, VT) by
Hp(Qp, V1) = im (HY(Q,, 70 (V1)) — H'(Q,, VT)).
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Similarly, put ﬁ;‘o(VT) = (ngr ®Vy® Vh) ® X~! and define the @-unbalanced local condition
H.(Q,, V1) by
He(Qp, V1) == im(HY(Qp, 75 (V1)) — HY(Q), VT)).
It is easy to see that the maps appearing in these definitions are injective, and in the following
we shall use this to identify H}(Qp, V1) with H(Q,, #/ (V")) for ? € {bal, ¢}.

Definition 4.2.2. Let S be a finite set of primes containing oo and the primes dividing pN, Ny Ny,
and let Gq s be the Galois group of the maximal extension of Q unramified outside S. For every

? € {bal, ¢}, define the Selmer group Sel’(Q, V1) by

Sel’(Q, V') := ker{Hl(GQS,VT) (gp’ < [JHY(Q), VT) }
vV v£p

We call Sel®®(Q, V) (resp. Sel?(Q, VT)) the balanced (resp. @-unbalanced) Selmer group.

Let AT = Homg, (VT, pyee) and for ? € {bal, ¢} define H}(Q,, AT) C H'(Q,, AT) to be the
orthogonal complement of H}(Q,, V1) under the local Tate duality
HY(Qp, V1) x H'(Qp, AT) — Q,/Z.

Similarly as above, we then define the balanced and ¢-unbalanced Selmer groups with coeflicients

in AT by

Q ’ nr
Sel’(Q, AT := ker{Hl(GQﬁ,AT) Qz AT % HHl ,Ah }
’ v#p

and let X7(Q, AT) = Homg, (Sel’(Q, A"), Q,/Z,) be the Pontryagin dual of Sel’(Q, A').

4.3. Proof of the decompositions. For a primitive Hida family f, from now on we let V; be
the realisation of py arising from the p-adic élale cohomology of the p-tower of modular curves of
tame level Ny as in the work of Ohta [Oht99, Oht00] (see also [KLZ17, §7.2], whose conventions
we adopt). We shall exploit the following fact.

Proposition 4.3.1. Let ¢ = 0:(S) be a primitive CM Hida family associated to the finite order
character &. If §*|GK)O # 1, where Gk, C Gk is a decomposition group at p, then

Vi~ Ind3(T; © Ug)
as O[S][Gql-modules.

Proof. This follows from a slight extension of the isomorphism in [LLZ15, Cor. 5.2.5]. See [BL18,
§3.2.3] for details. O

Suppose now that (¢, g, h) is a CM triple as in §3.3, with ¢ = §(\g) € S2(I'g(N,)) a newform
obtained as the specialisation of ¢ = 6¢,(Sp) at Qo € %2’[[50]]’ and let VLgh be the image of V1
under the specialisation map (3.3) at Q9. Then from Proposition 4.3.1 we obtain

Vi ~ Id3 (1)) ® IndF(Ty, @ Us,) @ IdE(Th, ® Ts,) @ X7,
where X = (\1139/12\111/2 oY) :Gq — Z,[S1,S2]*, and so an immediate computation shows that
2 Vi gn = IdR (Taga i, @ Uip©) @ IndF (Thoaers ® U5,
® Ind @ (Tapang ® V) @ Id R (Thgrer, @ wh,
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where Wy, Wy are as in Proposition 3.3.1. Therefore,
(4.3) Hl(QVLgh) ~ HY (K, Tagagn, © Wiy %) & H' (K, Tagaeas ® W5, 1)
® HI(K, T>\0>\1>\§ & \I’Il/‘;;) ® HI(K, TAO>\T>\2 & \I/IC/V_;)
by Shapiro’s lemma.
Proposition 4.3.2. Under (4.3), the balanced Selmer group decomposes as
Selbal(Q, VLgh) ~ Selg),o(K, T>\o>\1>\2 X \11‘14710) D Selo,@(K, T,\O)\T)\g & \I/%;ll)
@ Selp o (K, Tagang @ U15.%) @ Sely o (K, Tagaer, @ U521,
and the p-unbalanced Selmer group decomposes as
Sel?(Q, VI, ) ~ Sely o (K, Tapa,a, ® i) @ Sel (K, Thyneas @ ')
@ Selp o (K, Troarg ® \1111/;20) @ Selp o (K, Trorsr, @ \I’Ic,‘;;)
The proof will follow easily from the following.
Lemma 4.3.3. Under (4.3), the Selmer group Selbal(Q,VLgh) corresponds to the submodule of
HY (K, (Thgax, @ ‘Ifyl/;lc) © (Trorsrg ® ‘I/%Zl) @ (Thoaing ® ‘I/%/E;) © (Trgrcr, ® ‘1’51721))
consisting of unramified-outside-p classes x with res,(x) belonging to

HY (Kp, (Thoane @ ¥3p.9) @& (Tagang © U15.°) @ (Tagaer, ® U§1))  if v =,

H (K, Thgaers © ¥§;1) ifv=",
and the Selmer group Sel? (Q, V]Lpgh) stmilarly corresponds to the submodule consisting of unramified-
outside-p classes x with resy(z) = 0 (and no condition at p).

Proof. Using (4.2) we see that the balanced local condition is given by
FPNVE ) = (Taoan ® U%) @ (Thean, @ i)
® (Thaoang ® Vi) @ (Tagaer, © U,

from where we obtain

bal 1— 1— -1
(4.4) F° (VLgh) = (Tooaine @ Ui %) @ (Tagaiag @ V) © (Thgaen, @ Wiy t),
. . i
T (prgh) = Thorerg ® UL

yielding the stated descriptions of Sel® (K, VL gh). Similarly, we see that the @-unbalanced local
condition is given by

FEVEL ) = (Torn, @ U1r%) @ (Taasag @ U5
® (Tapang ® Vi) @ (Tagaer, © Ui,
and this immediately yields the stated description of Sel?(Q, VL gh). O

Proof of Proposition 4.3.2. Put
Wogh = (Thorne ® ¥i%) @ (Tagaeag © U h)

(4.5)
® (T)\O)\l)\g ® \If‘l;[;;) S (T)\O,\'f)\g ® qj%l)a
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so we have

(4.6) H(Q, V! ) ~ HY(K, V] ).

Denoting by Sel{P} (K, @Lgh) the submodule of H!(K, \7; gh) consisting of unramified-outside-p
classes, it follows from Lemma 4.3.3 that under the above isomorphism the balanced Selmer group
Selbal(Q,VL gh) corresponds to the kernel of the restriction map from Sel{?} (K, VLgh) to

v \Vdl
HI(KW V(pgh) % Hl(Kﬁ’ Vgagh)
HY(Kp, (Thoane © ¥ip9) @ (Tagaing © ¥15.°) @ (Tagaer, ® U51)) - HU(Kp, Thgreas @ U5

and this kernel is isomorphic to

Selw,O(Ky T)‘OAIAQ & \IJ%/IZC) D 861@70(K, T)\O)\lAg X \Il%/‘%c) fa) Sel@,O(K, '1")\0)\(1:)\2 ® \1"‘3721)
x Selo o (K, Tagagag ® Ui t).

This shows the result for Sel”® (K, VL gh)» and the case of Sel” (K, VL gh) follows from Lemma 4.3.3

in the same manner. O

As a consequence we also obtain the following decomposition for the Selmer groups with co-
efﬁcien?s in AL gh = Homzp (VL gh’ [ipee ), mirroring in the case of Sel? (K, AL gh) the factorisation
of p-adic L-functions in Proposition 3.3.1.

Corollary 4.3.4. The balanced Selmer group Selbal(Q,ALgh) decomposes as

Selbal(Q7ALgh) ~ Selg g (K, Axeacrg ® \11%711) @ Selpo (K, Axeryn, ® \11‘14;16)
® Selo o (I, Angasr, © Ui,) @ Selg p(K, Axsaag @ Pip®),

and the p-unbalanced Selmer group Sel?(Q, ALgh) decomposes as

Sel?(Q, Ajagh) ~ Sel(]’@(K, A)\g)\?)\g ® \11%711) ® Selo7w(K, A)\S)\Mz ® \If‘l,[;lc)
& Selg g (K, Axgrer, © U5 1) @ Sely (K, Axerag @ Uyy°).
Proof. This is immediate from Proposition 4.3.2 and local Tate duality. (]
Remark 4.3.5. Note that the decompositions of Selbal(Q,ALgh) and Sel“”(Q,ALgh) in Corol-
lary 4.3.4 only differ in their second direct summand: the term Sely (K, Axer,n, ® \I/Il/;lc) in the

former is replaced by Selg g(K, Axga, 2, ®\I/‘1,[71°) in the latter (i.e., the local conditions at the primes

above p are reversed). From the description in §4.1, it follows that Sely g (K, Axea,n, ® \11‘1,[71 ) cor-
responds to a Bloch-Kato Selmer group for AjA; A2 over the anticyclotomic Z,-extension of K.

5. DIAGONAL CYCLE MAIN CONJECTURE

In this section we give the proof of a two-variable variant of the diagonal cycle main conjecture
formulated in [ACR23b] specialised to the CM case.
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5.1. Big diagonal classes. Let (¢, g, h) be a CM triple as in §3.3, with ¢ = 0(\g) € So(I'o(V,))
the newform corresponding to the specialisation of ¢ = 0¢,(So) at Qo € :{;[[So}]' Denote by

(51) H(@?.gvh) € Hl(Q7Vjogh)

the specialisation at @y of the big diagonal class k(¢, g, h) constructed in [BSV22, §8.1].

More precisely, letting N = lem(N,, Ny, Np,), the construction in loc. cit. produces a class in
T
egh

Our class (5.1) is obtained by taking the image under the map VL on(N) — VL oh

the cohomology of a representation V' . (N) non-canonically isomorphic to finitely many copies

.I_
of V¢gh.

associated to the level-N test vectors for the triple (¢, g, h) furnished by [Hsi21, Thm. A].
It follows from [BSV22, Cor. 8.2] that x(p, gh) lands in Selbal(Q,VLgh), and therefore viewing

this class in H!(K, @Lgh) via (4.6), by Proposition 4.3.2 this implies that
resg(k(, g, h)) € H' (Kg, Tagaers ® U5 1),

where W1 = (1 + S1)Y2(1 + Sp)1/2 — 1.

Put u; =1+ p (i = 1,2) and for any O[S, So]-module M and integers ki, ko > 1 of the same
parity, denote by My, 1, the specialisation of M at S; = ufi_l — 1. Let @ be the field of fractions
of . Then one easily checks that there are isomorphisms
(5.2) logg : H (K, Tagxers @ U5 )i o, ® Qp — @ if ky + ko > 3,

exps + H! (G, Tagagrg ® U5 ek, ®Qp = @ if ky + ko =2,
given by the Bloch—Kato logarithm and dual exponential maps, respectively.

Theorem 5.1.1 (Explicit reciprocity law). Let (p,g,h) = (0(Xo), Ox,(S1)0,(S2)) be a CM triple
as above, with Rygn = O[S1,S2]. There is an injective Rygn-module homomorphism

Log¥ : Hl(Kg, TAOM’)\S & \I’%;ll) — Rygh
with pseudo-null cokernel satisfying for any 3 € H! (K Tagaeag ®\If“j[7ll) the interpolation property
logﬁ(SkLkz) if ki + ko > 3,
expﬁ(sk’l,kz) Zf kl + k2 — 2}
where ¢y, k, 15 an explicit nonzero constant, and such that
Log(’p (I‘eSﬁ(H(QO, g, h’))) = gpw(gp7 g, h)
Proof. Let ﬂg’(VT) be the rank one subspace of ﬁg(VT) = ﬂ;aI(VT) given by
3 _Ute Ut Ut ~1
F(VH) =VI®sVios Vi @ X7,

Logw(B)kl,k2 = Chy ko X {

Then one immediately finds that %} vt/ ff;’(VT) naturally contains the representation
(5.3) VI = (Voo /V RV @oVy @ X7
ogh) be the specialisation of T3 (V1), and likewise for Vgh,
in terms of the description given in the proof of Lemma 4.3.3, we find that
{ﬁg(vjpgh) = Thornne @ \Ijll/l;lc’

g3yt _
’/ﬁ (Vsagh) =0,

as a direct summand. Letting .7} (VT
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and that ;
h bal -1
Ve = T (Vogn) = Troxgrg @ Wiy,
The construction of the map Log¥ thus follows from specialising at Qg the three-variable p-adic
regulator map of [BSV22, §7.1] similarly as in the proof of [ACR23b, Prop. 7.3, and the stated

explicit reciprocity law is then a consequence of [BSV22, Thm. A] (see also [DR22, Thm. 10]). O

As explained in [ACR23b, §7.3], the following result can be seen as the equivalence between
two formulations (‘without p-adic L-functions’ and ‘with p-adic L-functions’, respectively) of the

Iwasawa—Greenberg main conjecture [Gre94] for VL oh-

Proposition 5.1.2. The following statements (1)-(2) are equivalent:
(1) k(p,g,h) is not Rygn-torsion,

rankg (Selbal(Q,VLgh)) = rankg,__, (Xbal(Q,ALgh)) =1,

and the following equality holds in R,gn @ Qp:

Selbal(Q VT ) 2
bal T = st
charg,,, (X (Q7A<pgh)t°rs) _Charnwgh( (r(e,g,h)) ) .
(2) 24 (p,g,h) is nonzero,

rankr,,, (Sel?(Q, VI ) = ranke_,, (X(Q, AL ,)) =0,
and the following equality holds in R,gn @ Qp:

charg__, (X¥(Q, ALgh)) = (-iﬂp(p(% g, h))2-

Proof. This can be deduced from Theorem 5.1.1 and global duality in the same way as [ACR23b,
Thm. 7.15]. See [Lai22] for the details in the stated level of generality. O

5.2. Proof of Theorem A. We can now conclude the proof of our main first main result towards
the diagonal cycle main conjecture (Conjecture A). Let K be an imaginary quadratic field in which
the prime p > 5 splits: (p) = pp. Let Ao (resp. A1, A2) be a Heche character of K of infinity type
(—1,0) (resp. finite order). For i =0, 1,2, let €; be the conductor of \; and suppose that A = \;
(so in particular €; = €;). Then L(A\;'A\['A; 1, 0) is self-dual, and we let sign(AgA1\2) € {£1} be
the sign in its functional equation (with center at s = 0). Being anticyclotomic twists of AgA1Ae,
the same applies to the characters \gATAS, AgA1AS, and AgATA2. We then let

(QDa g, h) = (0(A0)7 0)\1 (Sl)? 0/\2 (52))

be the triple consisting of the newform ¢ = §(A\g) € S2(I'g(N,)), where N, = DgN(Cp), and the
primitive CM Hida families associated to A\; and Ag, respectively.
Theorem 5.2.1. Suppose that pt &; fori=0,1,2 and that:

(i) ged(Ny, Ng, Ny) is squarefree.

(ii) pg and pp are both absolutely irreducible and p-distinguished.

(iii) Sign()\o)\l)\Q) = sign()\g)\‘f)\g) = sign()\g)\l)\g) = Sign()\o)\(f)\g) = +1.
Then class k(p, g, h) is not Rogn-torsion, the modules Sele’Ll((Q,VT ) and Xbal(Q,AT ) both

’ _ ) pgh pgh
have Rgn-rank one, and the following equality holds in Rygn @ Qp:

Selbal(Q,VLgh) >2'
7:\J«,ogh ' R(‘Pag7 h’)

Chaer)gh (Xbal(Qa A:’fogh,)tors) = Chaergh <
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In other words, Conjecture A specialised to the triple (p, g, h) holds.

Proof. By Greenberg’s nonvanishing results [Gre83, Gre85] (see [AH06, Cor.2.1.5] and [Arn07,
Prop. 2.3]), our sign assumptions imply that the four anticyclotomic Katz p-adic L-functions
in the factorisation of Proposition 3.3.1 are nonzero, and so we deduce that % (p,g,h) is
also nonzero. (Note that the condition that p, be absolutely irreducible and p-distinguished
as needed in Proposition 3.3.1 is automatic in the case ¢ = §(A\g) € S2(I'g(N,)); see e.g. [KLZ17,
Rem. 7.2.7].) Moreover, Theorem 4.1.3 implies that each of the direct summands in the decompo-
sition of X¥(Q, AL gh) given in Proposition 4.3.2 is torsion, with characteristic ideal generated by
a corresponding anticyclotomic Katz p-adic L-function. Therefore X¥(Q, AL gh) is Rgn-torsion,
with
Charnwgh (Xw(Q, Aj@gh)) = (gpw(g)’ g, h))2

in Rygn ® Qp. Together with the equivalence of Proposition 5.1.2, this concludes the proof. [

6. GENERALISED KATO CLASSES

In this section we define generalised Kato classes attached to CM elliptic curves E/Q, following
a slight modification of the construction due to Darmon-Rotger [DR16]. Then we prove our main
result on the nonvashing of these classes in situations of rank 2.

6.1. Construction of the classes. Let E/Q be an elliptic curve with CM by the maximal order
Ok. Let p > 5 be a prime of good ordinary reduction for E; in particular, (spl) holds. Let ¥ g be
the Grossencharacter of K associated to E by the theory of complex multiplication, so we have

L(E,s) = L(¢g,s).

Note that L(¢g,s) = L(¢$%,s) = L(g', s — 1), since ¥py§, = N.
Let 41,05 be distinct primes split in K with (142, pNg) = 1, where Ng is the conductor of E.
For i = 1,2, let ¢; be a ring class character of conductor ;" Ok for some m; > 0.

Proposition 6.1.1. Suppose E has root number +1. Then there exist infinitely many ring class
characters ¢1, ¢o as above with

(;Sl‘GKP ) ¢2|GK;: # ]-a
where Gk, C Gk s a decomposition group at p, and such that

L(vg'¢1",0) - Lz d3 ", 0) - L(vg'¢1 65 ,0) # 0.
Proof. Since the primes ¢; and 5 both split in K, for any ring class characters ¢1, ¢o as above the
signs in the functional equations for L(wglqﬁl_l, s),L(i/ng(bQ_l, s), L(wglqﬁl_lgbz_l, s) are the same
as the sign of L(E,s). Thus if E has root number +1, the nonvanishing results of [Gre85] and
[Roh84] imply that, as ¢1, @2 vary, only finitely many of the values L(wgl 710)- L(z/JEl(;SQ_ 1o).
L(wglqbl_lqﬁ;l, 0) are zero, whence the result. O

We now fix a pair of ring class characters ¢1, ¢2 as above, and writing
¢i=A"°

with \; a ray class character modulo ("™ Oy (see [Hid06b, Lem. 5.31], for example), we consider
the CM triple

(6.1) (¢,9,h) = (0(VEAT A3 ©), 05, (51),01,(52)).
The following definition might be seen as twisted variant of the generalised Kato classes intro-
duced by Darmon—Rotger [DR16] (whose construction in the setting conjecturally of relevance for
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rank two elliptic curves over Q, namely the “adjoint case”studied in [op. cit.,§4.3], would suggest
taking ¢ = 0(vg), rather than ¢ as above).

Definition 6.1.2 (Generalised Kato class). Denote by V]Lpgh the restriction of VLgh to S1 = So,

let x(p,gh) € HI(Q,VLgh) be the corresponding projection of (5.1), and put S = S;. We define

kp to be the image of x(y, gh) under the composition

Sel*(Q, V) = Sely g(K, Ty, @ W§™") = Sely (K, Ty, ),

where the first arrow is given by the projection onto the second direct summand from the decom-

position of Sel”(Q, VL@) from Proposition 4.3.2 (with Ao := ¥gA; °A;€), and the second arrow

is induced by the multiplication by S on Ty, ® \Ilg_l.
Using HY(K, Tyy,,) ® Q, ~ HY(Q, V,E), we shall also view £, in the latter group.
Lemma 6.1.3. Suppose L(E,1) =0. Then k, € Sel(Q, V,E).

Proof. Viewing ry, in Sely ¢(K, Ty,,), it suffices to show that resz(r,) = 0. The assumption implies
that L(¢El, 0) = 0, and so from Theorem 2.1.1, Proposition 3.3.1, and Theorem 5.1.1, we obtain

LELN=0 = £, (00=0 = Z£(pg h)0,0)=0
= expy(k(p,g,h)11) =0,

where, as in Theorem 5.1.1, k(¢, g, h)g, 1, denotes the specialisation of k(¢, g, h) at S; = wki—1_1.
Since for k1 + k2 = 2 the Bloch-Kato dual exponential (5.2) is injective, this gives the result. O

6.2. A control theorem. Let
A = 0]8S].

For any A-module M, we Mg for the cokernel of multiplication by S, i.e., Mg := M/SM. The
following is a variant of Mazur’s control theorem for the “reversed” Selmer groups of Remark 4.3.5.

Proposition 6.2.1. There are natural isomorphisms
r* SGIQ,O(K, A¢9E) — Selg)’o(K, A¢% (024 \I’klgfc)[S},
r 2 Sely (K, Ty ® U5) 15 — Selo (K, Typ),
induced by multiplication by S.

Proof. The map r* fits into the commutative diagram with exact rows

0

SGIQ)’O (K, Aw%) Sel{p} (K, Aw%) I‘I1 (Kﬁa chE)

ir* is* J{t*
0 —= Selyo(K, Ay @ W) [S] — Sell? (K, Aye @ U§°)[S] —= H! (K, Aye ® Uy °)[S].
It follows from Lubin-Tate theory that K;(£[p]) has degree p—1 over Kj (see e.g. [dS87, Ch. IJ),

and therefore HO(KOO@ E[p™]) = 0 since I'" is pro-p. By inflation-restriction, it follows that the
map t* is an isomorphism.
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The map s* fits into the commutative diagram with exact rows

Sel{p} (K, AQ’Z)CE) H1 (Kz/K, AQ’Z)CE) ®w€2§,uﬂ(p Hl(Kw, A¢%)

0 —= SelPH(K, Aye @ W) [S] — H'(Ky /K, Ays @ U5 °)[S] —> Bes g B (K, Ayg, @ U5°)[S).

The vanishing of HY(K . 5, £[p™]) implies that u* is an isomorphism, and as shown in the proof
of [dS87, Lem.IV.3.5] as a consequence of [Maz72, Cor. 4.4], the map v* is injective.

Therefore, by the Snake Lemma applied to the above two diagrams we conclude that ker(r*) =
ker(s*) = 0 and that coker(r*) = coker(s*) = ker(v*) = 0. This gives the result for r*, and the
case of r is shown in the same manner. O

Finally, for the proof of our second main result we shall use the following relation between the
rank of the “reversed” Selmer group for ¢g and that of its usual Selmer group.

Lemma 6.2.2. We have
ranko,.  Sel(K,Ty,) —1 ifloc, # 0,

rank Sely g(K, Ty ) =
Oy Selog (K, Ty ) {rank@K’pSel(K,TwE)%—l if loc, =0,

where loc, : Sel(Q, V,E) — E(Q,)®Q, the restriction map at p.
Proof. By global duality we have the exact sequence

Hl(vaT¢E)

BY v
—_— 1(K, Aye
E(Kv) ® (/)I(713 _> Se ( Y wE) )

(6.2) 0 — Sel(K, Ty,) = Sela (K, Ty,) = [ [
vlp

where the last arrow corresponds (by Tate’s local duality) to the Pontryagin dual of the restriction
map

B:Sel(K, Ay ) — [ [ E(Ky) ® (K5/Okp)-
vlp

Note that the target of the map 8 has Ok p-rank one, and from the action of complex conjugation
and the isomorphism Sel(K, Ay, ) =~ Sely=(E£/Q) we see that ranke, ,im(3) = dimq,im(locy).

Suppose first that loc, # 0, so by the above remarks the map / has finite cokernel. By (6.2),
it follows that « has finite image, and therefore

ranko,. ,Selrel (K, Ty, ) = ranko,  Sel(K, Ty,).
In particular, this implies that
ranko,.  Selg g(K, Ty, ) = ranke, , ker(loc, : Sel(K, Ty,) — E(K,) ® Ok,),
yielding the result in this case. On the other hand, if loc, = 0 then from (6.2) it follows that
ranko,.  Selie (K, Ty, ) = ranko,.  Sel(K, Ty,,) + 1.

Since H' (K, Ty, )/ E(Kp) ® Ok p is torsion, the modules Selyei (K, Ty,,) and Sely (K, Ty, ) have
the same rank, so this concludes the proof. Il
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6.3. Proof of Theorem B. We now prove our main result on the nonvanishing of generalised
Kato classes k, € Sel(Q, V,E) in situations where ords—; L(E,s) > 2.

Recall that we let E/Q be an elliptic curve with CM by an imaginary quadratic field K in which
the prime p > 5 splits as (p) = pp. Suppose E has root number +1, and let x, € H(Q, V, E) be

the generalised Kato class attached to a pair of ring class characters ¢; = )\i_c, P9 = )\%_C as in
Proposition 6.1.1; then, by Lemma 6.1.3, k), € Sel(Q, V,E) as long as L(E, 1) = 0.

Theorem 6.3.1. Suppose L(E,s) vanishes to positive even order at s = 1. Then
kp #0 = dimqg,Sel(Q,V,FE) = 2.
Conversely, if dimq,Sel(Q, V,E) = 2 then ky # 0 if and only if the restriction map
res, : Sel(Q, V,E) — E(Q,)®Q,
1S NONZETo.

Proof. Put S = S;. Restricted to S = So, the factorisation in Proposition 3.3.1 (in which then
W1 =S and Wy = 0) reads as the equality

2 - Lo - -
fp‘p(@,@) (S) = £P7¢E¢1¢2 (S) ’ EPﬂlJE (S) ' ’CPﬂ/)Etﬁl (0) ' £P71/1E¢2 (O)

up to a multiplication by a unit w € W[1/p]*. On the other hand, the decomposition in Corol-
lary 4.3.4 for the unbalanced Selmer group becomes

XAQ, ALgn) = Xog(K, Augsgas © VG & Xog(K, Ayg @ U5™°)

® Xop(K, Aygos @ UG) 15 © Xo (K, Ayg s © Ug®)/s.
Noting that the involution ¢ gives X (K, Aye gepe @ \I/}{C)L = Xo,0(K, Ayg psgs @ \Ifgfl), from

Theorem 4.1.3 we deduce that X#(Q, AL gh) is A-torsion with

2
chary (X#(Q. AlL,)) = (£ (¢, gh))
as ideals in Ayy ® Q. By Proposition 5.1.2, it follows that
(6.3) rankA(Xbal(Q,ALﬂ)) = rankA(SEIbal(QavL@)) =1,

and

Selbal(Q VT ) 2
bal t _ ' " wgh
(6.4) chary (X (Q, A‘p@)tors) = CharA< A n(ogh) )

as ideals in Ayy ® Q. Now, the implications
Lpg'dr ¢y 1,00 20 = Lo, . (0)#0
— ‘X07@(K, Aw%¢f¢§ ®\I1§_1)/S‘ < 00.

follow from the interpolation property of £p_ b1 and the combination of Theorem 4.1.3 and

Magzur’s control theorem, respectively. The nonvanishing of L(wglgéfl, 0) and L(@bglgb; 1.0) sim-
ilarly implies

Xoo(K, Aggas © W) 5| < 00, | Xop(K, Agges WG, < o0,
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and so from (6.3) and the balanced Selmer group decomposition from Corollary 4.3.4:

xX"(Q, Afpﬂ) ~ Xog(K, Ays gsss © UG @ Xp (K, Aye @ U5 °)

® Xop (K, Aygse @ VG) /5 ® Xop(K, Aygas © Vg°) s,
we deduce that
(6.5) rank (Xp (K, Age ® U ) =1
On the other hand, by the control theorem of Proposition 6.2.1 the O p-rank of the specialisation
Xp,0(Q, Aye, ® \IJIIS_C)/S satisfies
ranko,. , (Xg0(K, Aye @ \Iffg_c)/g) = corankoy, , (Selp o (K, Aye )

(6.6) = ranko, , (Selp o (K, Tw%))

= ranko, , (Sely (K, Tyy)).

using the isomorphism Sely (K, Tw%) ~ Sely g(K, Ty, ) given by the action of complex conjugation
for the last equality.

Denote by g (¢, gh) € Selyg(K, Ty, ® ¢ the projection of #(yp, gh) onto the second direct
summand in the balanced Selmer groups decomposition from Proposition 4.3.2:

Selbal(Q, VL@) ~ Sel@,O(K’ T¢E¢1¢2 & ‘I’klg*c) D Selo,@(K, Tll}E @ \Ijgvil)

D Sd@p(K, T¢E¢1 & \I/Alg_c)/s D SEIQ’O(K, T¢E¢2 & \I/g_l)/s.

Since our assumptions imply that ¥g¢1, Ypo2, Y Ed1¢s have all root number +1, by Theorem 4.1.3
we have

Se"™(Q, Vign)  Selg (K, Ty, @ W5
A-rk(p.gh) —  A-rp(e,gh)
Together with Theorem 5.2.1 (note that the choice of ¢1, ¢2 in Proposition 6.1.1 guarantee that
the associated primtitive CM Hida families g, h satisfy the conditions in that result), this gives
that Sely g (K, Ty ®\I/§_1) has A-rank one, and we have the following equality of ideals in Ayy®Q):

(6.7) chary (Xp o(K, Aye ® \pg—c)mrs) = £;¢%¢?¢§ (S)" - charp (SE)2,
where 35 = Sel g(K, Ty, @ TG 1)/A - kg(p,gh). From (6.5), (6.6), and (6.7), we thus see that
ranko, , (Sel (K, Ty,)) = 1 — ordg (ﬁﬂwmmz (5)") 4 2ranko,, ((3£)/s)
=1+ 2ranko, ((BE)/S),

using Theorem 2.1.1 and the nonvanishing of L(wglqﬁfld); 1.0) for the last equality.
Since by construction the injection

SelO,@(K7 Ty, ® ‘llg_l)/s - SelO,@(K7 Tﬂ)E)

of Proposition 6.2.1 sends kg(p, gh) mod S into x,, we conclude that
(6.8) ranko, , (Selgg(K,Ty,)) =1 <= Ky #0.

The first claim in the Theorem now follows from (6.8) and Lemma 6.2.2, noting that by the work
of Rubin [Rub91] proving the Iwasawa main conjecture for K, the vanishing of L(F, 1) implies
the non-triviality of Sel(Q, V,E). Similarly, the last claim in the Theorem is a direct consequence
of (6.8) and Lemma6.2.2. O
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Remark 6.3.2. The result of Theorem 6.3.1 confirms expectations suggested by the conjectures
of Darmon—Rotger [DR16] (see esp. Conjecture 3.12 in op. cit. as specialised to the “rank (2,0)
setting” in §4.5.3), and further shows that the nonvanishing of the restriction map res, is necessary
for the implication dimq,Sel(Q, V,E) = 2 = &, # 0 to hold.
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