
GENERALISED KATO CLASSES ON CM ELLIPTIC CURVES OF RANK 2

FRANCESC CASTELLA

Abstract. Let E/Q be a CM elliptic curve and let p ≥ 5 be a prime of good ordinary reduction
for E. Suppose that L(E, s) vanishes at s = 1 and has sign +1 in its functional equation, so in
particular ords=1L(E, s) ≥ 2. In this paper we slightly modify a construction of Darmon–Rotger
to define a generalised Kato class κp ∈ Sel(Q, VpE), and prove the following rank two analogue
of Kolyvagin’s result:

κp 6= 0 =⇒ dimQpSel(Q, VpE) = 2.

Conversely, when dimQpSel(Q, VpE) = 2 we show that κp 6= 0 if and only if the restriction map

Sel(Q, VpE)→ E(Qp)⊗̂Qp

is nonzero. The proof of these results, which extend and strenghten similar results of the author
with Hsieh in the non-CM case, exploit a new link between the nonvanishing of generalised Kato
classes and a main conjecture in anticyclotomic Iwasawa theory.

1. Introduction

Let E be an elliptic curve over the rationals. The systematic construction of rational points
on E, akin to the construction of Heegner points when ords=1L(E, s) ≤ 1 in the works of Gross–
Zagier and Kolyvagin from the 1980s, is a well-known open problem lying behind further progress
on the Birch–Swinnerton-Dyer conjecture in situations of higher order of vanishing. As an approx-
imation to this problem, and following the reformulation and vast generalisation of the conjecture
by Bloch–Kato, one might also attempt to construct non-torsion Selmer classes in such situations.

Suppose L(E, s) has sign +1 in its functional equation and vanishes at s = 1 (so ords=1L(E, s) ≥
2). Fix a prime p ≥ 5, and suppose E has CM by an imaginary quadratic field in which p splits.
In this paper, we introduce a generalised Kato class κp ∈ Sel(Q, VpE) in the p-adic Selmer group
fitting into the exact sequence

0→ E(Q)⊗Zp Qp → Sel(Q, VpE)→ Qp ⊗Zp TapØ(E/Q)→ 0,

where TapØ(E/Q) is the p-adic Tate module for the Shafarevich–Tate group of E. The class κp
is obtained from a “twisted variant” of a construction due to Darmon–Rotger [DR16], whence the
terminology. One of the main results in this paper is a proof of the following rank two analogue
of Kolyvagin’s result [Kol88]:

κp 6= 0 =⇒ dimQpSel(Q, VpE) = 2.

Conversely, still in the setting that L(E, s) vanishes to positive even order at s = 1, we show that
if dimQpSel(Q, VpE) = 2 then κp 6= 0 if and only if the restriction map

Sel(Q, VpE)→ E(Qp)⊗̂Qp

is nonzero, where E(Qp)⊗̂Qp is the p-adic completion lim←−nE(Qp)/p
nE(Qp) tensored with Qp.
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2 F. CASTELLA

In the non-CM case, similar results (for the generalised Kato classes κDR
p introduced in [DR16])

were obtained in a joint work for the author with M.-L. Hsieh [CH22]. The approach introduced
in this paper to handle the CM case (a case that is essentially excluded by the approach in loc. cit.;
for instance, it requires E to have some prime ` 6= p of multiplicative reduction) also yields a new
proof of the original results in the non-CM case (see [Cas23]).

In the rest of this Introduction we explain our results more precisely, and some key ideas behind
the proof.

1.1. Diagonal cycle main conjecture. Following the work of Darmon–Rotger [DR17], as fur-
ther systematically developed also by Bertolini–Seveso–Venerucci (see [DR22, BSV22]), attached
to a triple of Hida families (ϕ, g,h) with tame characters having product χϕχgχh = 1 one has a
big diagonal class

κ(ϕ, g,h) ∈ H1(Q,V†),

where V† is a self-dual twist of the triple tensor product of the Galois representations associated to
ϕ, g,h. It follows from its geometric construction (interpolating p-adic étale Abel–Jacobi images
of generalised Gross–Kudla–Schoen diagonal cycles in p-adic families) that κ(ϕ, g,h) lands in the

balanced Selmer group Selbal(Q,V†).
Denote by R = Iϕ⊗̂OIg⊗̂OIh the completed tensor product of the ring of definition of ϕ, g,h;

this is a finite extension of the three-variable Iwasawa algebra Λ⊗̂OΛ⊗̂OΛ, where Λ = OJ1 + pZpK
and O is a finite extension of Zp. Under the root number condition

ε`(VQ
0
) = +1 for all primes ` | NϕNgNh

(see (2.4) for the unexplained notation), the range of specialisations Q ∈ Spec(R)(Qp) for which
κ(ϕ, g,h) recovers a generalised Gross–Kudla–Schoen diagonal cycle, is also a range in which the

sign of the triple product L-function L(V†Q, s) is −1.

Motivated by Perrin-Riou’s Heegner point main conjecture [PR87] (and more precisely, Howard’s
extension in the context of big Heegner points [How07]), the following is expected about κ(ϕ, g,h):

Conjecture A (Big diagonal class main conjecture). The class κ(ϕ, g,h) is not R-torsion, the

modules Selbal(Q,V†) and Xbal(Q,A†) both have R-rank one, and

charR
(
Xbal(Q,A†)tors

)
= charR

(
Selbal(Q,V†)

R · κ(ϕ, g,h)

)2

in R⊗Qp, where the subscript tors denotes the R-torsion submodule.

Here Xbal(Q,A†) = Hom(Sel(Q,A†),Qp/Zp) is the Pontryagin dual of the balanced Selmer

group with coefficients in A† = HomZp(V†, µp∞) (see §4.2).
When the Hida families g,h are specialised to classical modular forms g, h of weights l,m ≥ 2

with l ≡ m (mod 2) and ϕ is a CM Hida family, denoting by V†ϕgh the resulting specialisation of

V†, the divisibility

charRϕgh

(
Xbal(Q,A†ϕgh)tors

)
⊃ charΛac

(
Selbal(Q,V†ϕgh)

Rϕgh · κ(ϕ, g, h)

)2

in Rϕgh⊗Qp was proved under some hypotheses in [ACR23b, Thm. 9.10] by constructing an an-
ticyclotomic Euler system (in the sense of Jetchev–Nekovář–Skinner [JNS]) having the specialised
big diagonal class κ(ϕ, g, h) as its bottom class. On the other hand, closer to the setting of this
paper, when ϕ is specialised to a classical modular form ϕ of even weight k ≥ 2 and g,h are
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both CM Hida families with respect to the same imaginary quadratic field, a similar divisibility
is obtained in [CD23, Thm. 3.3.3] by building an anticyclotomic Euler system containing the re-
sulting specialisation of κ(ϕ, g,h) as its bottom class. However, both of these results are subject
to a “big image” hypothesis which in particular for the results of [CD23] excludes the case where
ϕ has CM.

The first main result of this paper is the proof of a two-variable specialisation of Conjecture A
in the CM case. We consider the case in which ϕ = θ(λ0) ∈ S2(Γ0(Nϕ)) has CM by an imaginary
quadratic field K in which p = pp splits, and

g = θλ1(S1), h = θλ2(S2)

are both CM Hida families by the same K (see §3.1 for the construction of θλi(Si)). Here λ0

(resp. λ1, λ2) is a Hecke character of K of infinity type (−1, 0) (resp. finite order). We assume the
conductor Nϕ of ϕ is prime-to-p, and let Ng, Nh denote the tame conductor of g,h, respectively.

Letting V†ϕgh denote the resulting two-variable specialisation of V†, under mild hypotheses on

g and h (see Proposition 4.3.1) it is easy to see that

(1.1)
V†ϕgh ' IndQ

K

(
λ−1

0 λ−1
1 λ−1

2 Ψ1−c
W1

)
⊕ IndQ

K

(
λ−1

0 λ−c1 λ−c2 Ψc−1
W1

)
⊕ IndQ

K

(
λ−1

0 λ−1
1 λ−c2 Ψ1−c

W2

)
⊕ IndQ

K

(
λ−1

0 λ−c1 λ−1
2 Ψc−1

W2

)
,

where W1 = (1 + S1)1/2(1 + S2)1/2− 1 and W2 = (1 + S1)1/2(1 + S2)−1/2− 1 are formal variables
parametrising anticyclotomic weight space. By the self-duality condition χϕχgχh = 1, the Hecke
character

λ := λ0λ1λ2

is self-dual, and so are the other three characters appearing in (1.1). Let sign(λ) ∈ {±1} be the
sign in the functional equation for the Hecke L-function L(λ−1, s) (with center at s = 0), and
similarly for the other three characters

λ0λ
c
1λ

c
2 = λ(λ1λ2)c−1, λ0λ1λ

c
2 = λλc−1

2 , λ0λ
c
1λ2 = λλc−1

1

appearing in (1.1). The theta series ϕ can be obtained as a weight 2 specialisation of a unique
CM Hida family ϕ, and we let Rϕgh ' OJS1, S2K be the resulting specialisation of the coefficient
ring R. Denote by ρ̄g, ρ̄h the residual Galois representations associated to g,h, respectively.

Theorem A. Let the triple

(ϕ, g,h) = (θ(λ0),θλ1(S1),θλ2(S2))

be as above, and suppose that:

(i) gcd(Nϕ, Ng, Nh) is squarefree.
(ii) ρ̄g, ρ̄h are both absolutely irreducible and p-distinguished.

(iii) sign(λ) = sign(λ(λ1λ2)c−1) = sign(λλc−1
2 ) = sign(λλc−1

1 ) = +1.

Then κ(ϕ, g,h) is not Rϕgh-torsion, the modules Selbal(Q,V†ϕgh) and Xbal(Q,A†ϕgh) both have

Rϕgh-rank one, and

charRϕgh

(
Xbal(Q,A†ϕgh)tors

)
= charRϕgh

(
Selbal(Q,V†ϕgh)

Rϕgh · κ(ϕ, g,h)

)2

in Rϕgh ⊗Qp. In other words, Conjecture A holds for (ϕ, g,h).
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A key input in the proof of this result is the relation between Conjecture A and the anticyclo-
tomic main conjecture for Hecke characters. Indeed, in the setting of Theorem A, we show that

the balanced Selmer group Selbal(Q,V†ϕgh) decomposes as

(1.2)
Selbal(Q,V†ϕgh) ' Sel∅,0(K,Tλ ⊗Ψ1−c

W1
)⊕ Sel0,∅(K,Tλ(λ1λ2)c−1 ⊗Ψc−1

W1
)

⊕ Sel∅,0(K,Tλλc−1
2
⊗Ψ1−c

W2
)⊕ Sel∅,0(K,Tλλc−1

1
⊗Ψc−1

W2
).

The Selmer groups in the right-hand side of this decomposition correspond to usual (i.e., Bloch–
Kato) anticyclotomic Selmer groups attached to Hecke characters, except for the Selmer group

Sel0,∅(K,Tλ(λ1λ2)c−1 ⊗Ψc−1
W1

),

which is obtained from the usual anticyclotomic Selmer group for Tλ(λ1λ2)c−1 by reversing the local
conditions at the primes above p and p. We exploit the fact that Conjecture A follows from the
Iwasawa–Greenberg main conjecture for the p-adic triple product L-function L ϕ

p (ϕ, g,h) ∈ Rϕgh
constructed by Hsieh [Hsi21]. Under certain conditions preventing the vanishing of L ϕ

p (ϕ, g,h)

for sign reasons, this main conjecture predicts that the ϕ-unbalanced Selmer group Xϕ(Q,A†ϕgh) is

Rϕgh-torsion, with characteristic ideal generated by L ϕ
p (ϕ, g,h)2. We prove a decomposition for

Xϕ(Q,A†ϕgh) analogous to (1.2) in which (contrary to the case of the balanced Selmer groups) all

direct summands agree with classical anticyclotomic Selmer groups for Hecke characters. Together
with a parallel factorisation for L ϕ

p (ϕ, g,h)2 into a product of four anticyclotomic Katz p-adic
L-functions, we thus deduce from the works of Agboola–Howard [AH06] and Arnold [Arn07] (an
anticyclotomic specialision of Rubin’s proof of the Iwasawa main conjecture for K [Rub91]) a

proof of the Iwasawa–Greenberg main conjecture for Xϕ(Q,A†ϕgh). (The sign conditions in (iii)

of Theorem A are needed at this point, as otherwise our results imply that Xϕ(Q,A†ϕgh) has

Rϕgh-rank two.) The proof of Theorem A then follows.

1.2. Generalised Kato classes attached to E. We keep K to be an imaginary quadratic field
in which p = pp splits, and now let E/Q be an elliptic curve with CM by the ring of integers of
K. Note that the splitting condition on p implies that E has good ordinary reduction of p. Let
ψE be the Hecke character of K attached to E, so that

L(E, s) = L(ψE , s).

Suppose the sign is the functional equation of L(E, s) is w = +1. In the second part of the paper,
we choose Hecke characters λ0, λ1, λ2 for K as above satisfying

(1.3) ψE = λ0λ
c
1λ

c
2, L(ψ−1

E λc−1
1 , 0) · L(ψ−1

E λc−1
2 , 0) · L(ψ−1

E (λ1λ2)c−1, 0) 6= 0,

whose existence follows from nonvanishing results due to Greenberg and Rohrlich [Gre85, Roh84],
and — inspired by a construction of generalised Kato classes due to Darmon–Rotger [DR17, DR16]
— we let

κp ∈ H1(Q, VpE)

be the image of the resulting big diagonal class κ(ϕ, g,h) (for (ϕ, g,h) = (θ(λ0),θλ1(S1),θλ2(S2))
as above) under the composition

H1(Q,V†ϕgh)→ H1
(
Q, IndQ

K(Tλ0λc1λc2 ⊗Ψc−1
W1

)
)
→ H1(Q, IndQ

K(TψE
)) ' H1(Q, TpE)

arising from projection onto the second direct summand in (1.1) and the specialisation at W1 = 0.
The construction of κp might be seen as a twisted variant of the construction of geneneralised Kato
classes in [DR16], which for an elliptic curve E/Q as above would take λ0 = ψE and the finite
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order Hecke characters λ1, λ2 to be inverses of each other (similarly as in [CH22]). Nevertheless,
from the explicit reciprocity law of [DR22] and [BSV22] we deduce the implication

L(E, 1) = 0 =⇒ κp ∈ Sel(Q, VpE).

Since we assume that L(E, s) has sign +1, the vanishing of L(E, 1) implies that ords=1L(E, s) ≥ 2,
and so by the Bloch–Kato conjecture [BK90], the Selmer group Sel(Q, VpE) is expected to be at
least 2-dimensional. Our next result is consistent with this expectation, and further justifies the
view of κp as a “rank 2 p-adic regulator”.

Theorem B. Suppose L(E, s) vanishes to positive even order at s = 1. Let λ0, λ1, λ2 be any triple
of Hecke characters of K as above satisfying (1.3) and the conditions (i)–(iii) in Theorem A, and
let κp be the associated generalised Kato class. Then

κp 6= 0 =⇒ dimQpSel(Q, VpE) = 2.

Conversely, if dimQpSel(Q, VpE) = 2 then κp 6= 0 if and only if the restriction map

resp : Sel(Q, VpE)→ E(Qp)⊗̂Qp

is nonzero.

The existence of (infinitely many) triples λ0, λ1, λ2 satisfying (1.3) and the conditions in Theo-
rem A follows easily from the aforementioned nonvanishing results due to Greenberg and Rorhlich
(note that the sign condition (iii) is implied by (1.3)).

In addition to Theorem A, the ingredients in the proof of Theorem B are a version of Mazur’s
control theorem for the Selmer groups in the decomposition (1.1) and a global duality argument
allowing us to relate the rank of Sel0,∅(K,TψE

) and dimQpSel(Q, VpE).
The result of Theorem B is consistent with predictions by Darmon–Rotger [DR16], and it offers

some new insights. More precisely, that the conditions dimQpSel(Q, VpE) = 2 and resp 6= 0 imply
κp 6= 0 is suggested by [op. cit., Conj. 3.12] (in the “rank (2, 0) setting” of §4.5.3); a new insight
of Theorem B is that the condition resp 6= 0 is also necessary for the nonvanishing of κp.

1.3. Application to rank two Selmer basis. The construction of κp ∈ Sel(Q, VpE) depends
on a choice λ0, λ1, λ2, but it follows from our results that different choices give rise to the same
Selmer class up to scaling. (In fact, whenever nonzero, κp generates the one-dimensional subspace
ker(resp) ⊂ Sel(Q, VpE).) It is then natural to ask for a class in the two-dimensional Sel(Q, VpE)
complementary to the line spanned by κp. Our results also yield an answer to this question under
some hypotheses.

Let W the completion of the ring of integers of the maximal unramified extension of Qp, and
let Lp = Lp,f ∈ WJZ(f)K be the Katz p-adic L-function recalled in Theorem 2.1.1 below, where
Z(f) is the Galois group of the extension K(E[p∞])/K and f ⊂ OK is the conductor of ψE . For
s ∈ Zp define

Lp(s) = Lp(ψE〈ψE〉s−1), L∗p(s) = Lp(ψc
E〉ψc

E〉s−1),

where 〈−〉 : Z×p → 1 + pZp is the projection onto the 1-units.

Theorem C. Let the hypotheses be as in Theorem B, and assume in addition thatØ(E/Q)[p∞]
is finite and the following conditions hold:

ords=1Lp(s) = 2, ords=1L
∗
p(s) = 1.

Then Sel(Q, VpE) is 2-dimensional, with

Sel(Q, VpE) = Qpκp ⊕Qpx
(2)
p ,
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where κp is a generalised Kato class and x
(2)
p is a “derived” elliptic unit.

Proof. The assumption that ords=1Lp(s) = 2 implies that

r := dimQpSel(Q, VpE) ≤ 2

by Rubin’s proof of the Iwasawa main conjecture for K and the work of Perrin-Riou (see [Rub91,
Thm. 4.1] and [PR84, Ch. IV, Thm. 22]). On the other hand, it also implies r ≥ 2 by the theorem
of Coates–Wiles [CW77] and the p-parity conjecture [Guo93]. Therefore r = 2, and by [Rub92,
Prop. 4.4] the construction of derived elliptic units in [op. cit., §6] yields a class

x
(2)
p ∈ Sel(K,TpE) ' Sel(Q, TpE)

where TpE is the p-adic Tate module of E. Since by [Rub92, Thm. 9.5(ii)] and our assumptions

we have resp(x
(2)
p ) 6= 0, the result follows from Theorem B. �

1.4. Acknowledgements. It is a pleasure to thank Ashay Burungale for stimulating exchanges,
especially about the idea to consider a setting along the lines of that in §6.1. We are also grateful
to Ming-Lun Hsieh for his comments on an early draft. During the preparation of this paper, the
author was partially supported by the NSF grants DMS-1946136 and DMS-2101458.

2. p-adic L-functions

In this section we recall the two p-adic L-functions that will appear in our arguments, one due
to Katz [Kat78] attached to Hecke characters of an imaginary quadratic field, and another due
to Hsieh [Hsi21] (extending and refining earlier constructions due to Harris–Tilouine [HT01] and
Darmon–Rotger [DR14]) attached to triple products of modular forms in Hida families.

Fix a prime p > 2 and an imaginary quadratic field K with ring of integers OK in which

(spl) (p) = pp splits,

with p the prime of K above p determined by a fixed embedding ιp : Q ↪→ Qp.

2.1. Katz p-adic L-function. Denote by DK < 0 the discriminant of K, and fix an integral
ideal C ⊂ OK coprime to p. Let W be a finite extension of the Witt ring W (Fp), and denote by
Z(C) the Galois group of the ray class field extension K(Cp∞)/K.

We say that a Hecke character χ : K×\A×K → C× has infinity type (a, b) if χ∞(z) = zazb. We
take geometric normalisations for the reciprocity maps of class field theory. If χ has conductor
dividing C, viewing χ as a Q-valued character (via a fixed embedding ι∞ : Q ↪→ C×) defined on
the group of fractional ideals of K coprime to C, with a slight abuse of notation we also denote
by χ the character of Z(C) defined by the rule

χ(σ−1
l ) = ιp(χ(l))

for all primes l - C, where σl ∈ Z(C) is the Artin symbol of l.

Theorem 2.1.1. There exists an element Lp,C ∈ WJZ(C)K such that for all Hecke characters χ
of conductor dividing Cp∞ and infinity type (k + j,−j) with k ≥ 1, j ≥ 0, we have

Lp,C(χ) =

(
Ωp

Ω∞

)k+2j

· Γ(k + j) ·
(

2π√
DK

)j
· Ep(χ) · L(pC)(χ, 0),

where Ep(χ) is the modified Euler factor

Ep(χ) =
L(0, χp)

ε(0, χp) · L(1, χ−1
p )

,
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and L(pC)(χ, s) is the L-function of χ deprived from the Euler factors at the primes dividing pC.
Moreover, we have the functional equation

Lp,C(χ) = Lp,C((χc)−1N−1),

where χc is the composition of χ with the action of the non-trivial element c ∈ Aut(K/Q), and
the equality is up to a p-adic unit.

Proof. See [Kat78], [HT93]; our formulation follows of the interpolation property follows [Hsi14,
Prop. 4.19] most closely. The functional equation is shown in [dS87, Thm. II.6.4]. �

2.2. Triple product p-adic L-function. Let I be a normal domain finite flat over

Λ := OJ1 + pZpK,

where O is the ring of integers of a finite extension of Qp. For a positive integer N with p - N
and a Dirichlet character χ : (Z/NpZ)× → O×, we denote by So(N,χ, I) ⊂ IJqK the space of
ordinary I-adic cusp forms of tame level N and branch character χ as defined in [Hsi21, §3.1].

Denote by X+
I ⊂ Spec I(Qp) the set of arithmetic points of I, consisting of the ring homomor-

phisms Q : I → Qp such that Q|1+pZp is given by z 7→ zkQεQ(z) for some kQ ∈ Z≥2 called the
weight of Q and εQ(z) ∈ µp∞ . As in [Hsi21, §3.1], we say that f =

∑∞
n=1 an(f)qn ∈ So(N,χ, I)

is a primitive Hida family if for every Q ∈ X+
I the specialisation fQ gives the q-expansion of an

ordinary p-stabilised newform of weight of kQ and tame conductor N . Attached to such f we let

Xcls
I be the set of ring homomorphisms Q as above with kQ ∈ Z such that fQ is the q-expansion

of a classical modular form. Note that Xcls
I contains X+

I by Hida’s results, but it can also contain
points Q — of special relevance for this paper — for which fQ is a classical weight one form.

For f a primitive Hida family, we let

ρf : GQ → AutI(Vf ) ' GL2(I)
denote the associated Galois representation, which here we take to be the dual of that in [Hsi21,
§3.2]; in particular, the determinant of ρf is χI · εcyc in the notations of loc. cit., where εcyc is
the p-adic cyclotomic character. Note also that the ρf in loc. cit. is valued in Frac(I), but it is
well-known that when the residual representation ρ̄f is absolutely irreducible, one may find a free
I-module Vf of rank 2 realising the same Galois representation after extension of scalars. There
may be different Vf giving rise to the same rational ρf after extension of scalars; for now we take
any such Vf (assuming ρ̄f to be absolutely irreducible), and later in §4.3 we specify a particular
choice well-suited to our applications.

By [Wil88, Thm. 2.2.2], restricted to GQp the Galois representation Vf fits into a short exact
sequence

0→ V +
f → Vf → V −f → 0,

where the quotient V −f is free of rank one over I, with the GQp-action given by the unramified

character sending an arithmetic Frobenius σp to ap(f).
Let

(ϕ, g,h) ∈ So(Nϕ, χϕ, Iϕ)× So(Ng, χg, Ig)× So(Nh, χh, Ih)

be a triple of primitive Hida families with

(2.1) χϕχgχh = ω2a for some a ∈ Z,

where ω is the Teichmüller character. Put

R = Iϕ⊗̂OIg⊗̂OIh,
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which is a finite extension of the three-variable Iwasawa algebra Λ⊗̂OΛ⊗̂OΛ, and let

Xϕ
R := {(Q0, Q1, Q2) ∈ X+

Iϕ × Xcls
Ig × Xcls

Ih

: kQ0 ≥ kQ1 + kQ2 and kQ0 ≡ kQ1 + kQ2 (mod 2)}

be the weight space for R in the so-called ϕ-unbalanced range.
Let V = Vϕ⊗̂OVg⊗̂OVh be the triple tensor product Galois representation attached to (ϕ, g,h),

and writing det V = X 2εcyc (as is possible by (2.1)), set

(2.2) V† := V ⊗X−1,

which is a self-dual twist of V. Define the rank four GQp-invariant subspace Fϕ
p (V†) ⊂ V† by

(2.3) Fϕ
p (V†) := V +

ϕ ⊗̂OVg⊗̂OVh ⊗X−1.

For every Q = (Q0, Q1, Q2) ∈ Xϕ
R we denote by Fϕ

p (V†Q) ⊂ V†Q the corresponding specialisation.

Finally, for every rational prime ` denote by ε`(V
†
Q) the epsilon factor attached to the restriction

of V†Q to GQ`
as in [Tat79, p. 21], and assume that

(2.4) for some Q ∈ Xϕ
R, we have ε`(V

†
Q) = +1 for all primes ` | NϕNgNh.

As explained in [Hsi21, §1.2], it is known that condition (2.4) is independent of Q, and it implies
that the sign in the functional equation for the triple product L-function

L(V†Q, s)

(relating its values at s and −s) is +1 for all Q ∈ Xϕ
R.

For the next statement, we refer the reader to §2.3 for a review of the congruence ideal asso-
ciated with a primitive Hida family.

Theorem 2.2.1. Let (ϕ, g,h) be a triple of primitive Hida families as above satisfying conditions
(2.1) and (2.4). Assume in addition that:

• gcd(Nϕ, Ng, Nh) is square-free,
• the residual representation ρ̄ϕ is absolutely irreducible and p-distinguished,

and fix a generator ηϕ of the congruence ideal of ϕ. Then there exists a unique element

L ϕ
p (ϕ, g,h) ∈ R

such that for all Q = (Q0, Q1, Q2) ∈ Xϕ
R of weight (k0, k1, k2) with εQ0 = 1 we have

(L ϕ
p (ϕ, g,h)(Q))2 = Γ

V†Q
(0) ·

L(V†Q, 0)

(
√
−1)2k0 · Ω2

ϕQ0

· Ep(Fϕ
p (V†Q)) ·

∏
`∈Σexc

(1 + `−1)2,

where:

• Γ
V†Q

(0) = ΓC(cQ)ΓC(cQ + 2− k1 − k2)ΓC(cQ + 1− k1)ΓC(cQ + 1− k2), with

cQ = (k0 + k1 + k2 − 2)/2

and ΓC(s) = 2(2π)−sΓ(s);
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• ΩϕQ0
is the canonical period

ΩϕQ0
:= (−2

√
−1)k0+1 ·

‖ϕ◦Q0
‖2Γ0(Nϕ)

ıp(ηϕQ0
)
·
(

1−
χ′ϕ(p)pk0−1

α2
Q0

)(
1−

χ′ϕ(p)pk0−2

α2
Q0

)
,

with ϕ◦Q0
∈ Sk0(Nϕ) the newform of conductor Nϕ associated with ϕQ0

, χ′ϕ the prime-to-p

part of χϕ, and αQ0 the specialisation of ap(ϕ) ∈ I×ϕ at Q0;

• Ep(Fϕ
p (V†Q)) is the modified p-Euler factor

Ep(Fϕ
p (V†Q)) :=

Lp(F
ϕ
p (V†Q), 0)

εp(F
ϕ
p (V†Q)) · Lp(V†Q/F

ϕ
p (V†Q), 0)

· 1

Lp(V
†
Q, 0)

,

and Σexc is an explicitly defined subset of the prime factors of NϕNgNh, [Hsi21, p. 416].

Proof. This is [Hsi21, Thm. A]. �

Remark 2.2.2. For simplicity, we have stated the interpolation property of L ϕ
p (ϕ, g,h) only

for Q with εQ0 = 1, as this will suffice for our purposes; see [Hsi21, Thm. A] for the interpolation

property for all Q ∈ Xϕ
R.

2.3. Congruence ideal. Let f ∈ So(Nf , χf , I) be a primitive Hida family defined over I. Asso-
ciated with f there is a I-algebra homomorphism

λf : T(Nf , I)→ I
where T(Nf , I) is the Hecke algebra acting on ⊕χSo(Nf , χ, I), with χ running over the characters
of (Z/pNfZ)×. Let Tm be the local component of T(Nf , I) through which λf factors, and following
[Hid88] define the congruence ideal C(f) of f by

C(f) := λf (AnnTm(kerλf )) ⊂ I.
When the residual representation ρ̄f is absolutely irreducible and p-distinguished, it follows from
the results of [Wil95] and [Hid88] that C(f) is generated by a nonzero element ηf ∈ I.

3. Factorisation of p-adic triple product L-function

In this section we relate the triple product p-adic L-function attached to triples of Hida families
with CM by K to a product of anticyclotomic Katz p-adic L-functions.

3.1. Hida families with CM. We review the construction of CM Hida families following the
exposition in [Hsi21, §8.1]. Since it will suffice for our purposes, we assume that the class number
hK = |Pic(OK)| of K is coprime to p. Let K∞ be the unique Z2

p-extension of K, and denote by
Kp∞ the maximal subfield of K∞ unramified outside p. Put

Γ∞ := Gal(K∞/K) ' Z2
p, Γp∞ := Gal(Kp∞/K) ' Zp.

Recall that for every ideal C ⊂ OK we let K(C) be the ray class field of K of conductor C. Thus
Kp∞ is also the maximal Zp-extension inside K(p∞). By our assumption on hK , the restriction
of the Artin map to K×p induces an isomorphism 1+pZp ' Γp∞ , where we identified Z×p and O×Kp

by the embedding ιp. Denote by γp the topological generator of Γp∞ corresponding to 1+p under
this isomorphism, and for each variable S let ΨS : Γ∞ → ZpJSK× be the universal character given
by

ΨS(σ) = (1 + S)l(σ),
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where l(σ) ∈ Zp is such that σ|Kp∞ = γ
l(σ)
p . Fix C prime to p, and for any finite order character

ψ : GK → O× of tame conductor C put

θψ(S)(q) =
∑

(a,pC)=1

ψ(σa)Ψ
−1
S (σa)q

N(a) ∈ OJSKJqK,

where σa ∈ Gal(K(cp∞)/K) is the Artin symbol. Then θψ(S) is a primitive Hida family (called
the primitive CM Hida family with branch character ψ) defined over OJSK of level DKN(C) and
tame character (ψ ◦ V )ηK/Qω

−1, where

V : Gab
Q → Gab

K

is the transfer map and ηK/Q is the quadratic character associated to K/Q.

3.2. Congruence ideal of CM Hida families. Let ϕ be a primitive CM Hida family defined
over OJSK. In this section we recall the characterisation of the congruence ideal of ϕ that follows
from its relation with the anticyclotomic main conjecture for the underlying imaginary quadratic
field K.

Let Nϕ = DKN(C) be the tame conductor of ϕ, and assume that the ideal C ⊂ OK is coprime
to p and fixed under the action of complex conjugation, so c acts on Z(C) = Gal(K(Cp∞)/K).
Let ∆C be the torsion subgroup and Z(C), and put ΓK := Z(C)/∆C ' Z2

p, which is identified

with the Galois group of the unique Z2
p-extension K∞/K. Fix a decomposition

(3.1) Z(C) ' ∆C × ΓK ,

and note that if p - hK , as we assume in the following, then ∆C has order prime to p.
Let Z(C)+ be the maximal subgroup of Z(C) fixed by the action of c. Put Z(C)− = Z(C)/Z(C)+,

and denote by π : Z(C) → Z(C)− the natural projection. We also have a decomposition (which
we fix to be compatible with (3.1) under π)

Z(C)− ' ∆−C × Γ−,

where ∆−C is the torsion subgroup of ∆C and Γ− is the eigenspace of ΓK where c acts as inversion.
The residual representation ρ̄ϕ is of the form

ρ̄ϕ ' IndQ
Kψ̄

for some Galois character ψ̄ : GK → F×, where F is the residue field of O. Put ψ̄− := ψ̄c−1, and
upon enlarging O if necessary, denote by ψ− : GK → O× the Teichmüller lift of ψ̄−. We shall
call ψ− the anticyclotomic branch character corresponding to the CM Hida family ϕ. Since ψ−

has order prime to p, its composition with π factors through ∆C, but its prime-to-p conductor
may be a proper divisor of C. Let c be the prime-to-p conductor of ψ− viewed as a character
of ∆C via π (i.e., c is the maximal divisor of C such that χπ factors though the quotient map

∆C � ∆c), put Γc−1
K = {γc−1 : γ ∈ ΓK}, and denote by L(c−1)

p,ψ− ∈ WJΓc−1
K K the image of the Katz

p-adc L-function Lp,c under the composition

WJZ(c)K→WJΓKK→WJΓc−1
K K,

where the first arrow is the projection defined by ψ− (viewed as a primitive character on ∆c) and

the second arrow is given by γ 7→ γc−1 for γ ∈ ΓK . Since p is odd, the map γc−1 7→ (γ|Kp∞ )1/2

yields an isomorphism Γc−1
K ' Γp∞ . Upon choosing a topological generator γp ∈ Γp∞ as in §3.1,

we shall thus view L(c−1)
p,ψ− as an element in WJSK.
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Lemma 3.2.1. Let ϕ be a primitive CM Hida family with corresponding to the anticyclotomic
branch character ψ−. Suppose that ψ̄−|GKp

6= 1, where GKp ⊂ GK is a decomposition group at p.

Then the congruence ideal C(ϕ) is generated by L(c−1)
p,ψ− in WJSK⊗Zp Qp.

Proof. The assumption on ψ̄− implies that ρ̄ϕ is absolutely irreducible and p-distinguished, and
so the congruence ideal C(ϕ) ⊂ OJSK is known to be principal. Letting ηϕ ∈ OJSK be a generator,
from [HT93, Thm. I] and [HT94, Thm. 0.3] we have the divisibilities

(3.2) L(c−1)
p,ψ− | ηϕ | F

(c−1)
p,ψ−

in WJSK ⊗Zp Qp and OJSK ⊗Zp Qp, respectively, where F (c−1)
p,ψ− ∈ OJSK is a characteristic power

series for the Pontyagin dual of the ψ−-isotypic component of Gal(M−∞/K
−
c,∞), the Galois group

of the maximal pro-p abelian extension of K−c,∞ := K(cp∞)Z(c)+ unramified outside p. (For the

second divisibility in (3.2), note that the local non-triviality of ψ̄− implies that ordP (L(c−1)
p,ψ− ) = 0

for all “trivial zero primes” P ⊂ WJSK in the sense of [HT94].) Since Rubin’s proof [Rub91] of

the two-variable main conjecture for K yields the divisibility (F (c−1)
p,ψ− ) ⊃ (L(c−1)

p,ψ− ) (see e.g. [SU14,

Prop. 3.9] for the descent argument), together with (3.2) the result follows. �

Remark 3.2.2. As explained in [ACR23a, §4.4], under some further hypotheses on the branch
character ψ−, it follows from Hida’s proof [Hid06a] on the anticyclotomic main conjecture for K,

refining the results of [HT93, HT94], that C(ϕ) is integrally generated by hK · L(c−1)
p,ψ− , where hK

is the class number of K.

3.3. Proof of the factorisation. Now we let

(ϕ, g,h) = (θξ0(S0),θλ1(S1),θλ2(S2))

be a triple of primitive CM Hida families satisfying conditions (2.1) and (2.4). Here ξ0, λ1, λ2 are
finite characters of K, and we denote by Ci (i = 0, 1, 2) their conductors, which we assume to be
stable under the action of complex conjugation. Suppose ϕ = θ(λ0) is the weight 2 newform of
conductor Nϕ associated to the specialisation of ϕ at Q0 ∈ X+

OJS0K (so in particular εQ0 = 1). Let

(3.3) R ' OJS0, S1, S2K→ OJS1, S2K

be the specialisation map at Q0, and denote by

L ϕ
p (ϕ, g,h)(S1, S2) ∈ OJS1, S2K

the image of the triple product p-adic L-function L ϕ
p (ϕ, g,h) ∈ R of Theorem 2.2.1 under this

map. On the other hand, for χ a Hecke character of K of prime-to-p conductor C, we denote by
L−p,χ the image of Twχ−1(Lp,C) under the natural projection WJZ(C)K→WJΓ−K, where

Twχ−1 :WJZ(C′)K→WJZ(C′)K

is the W-linear isomorphism given by γ 7→ χ−1(γ)γ for γ ∈ Z(C). As usual, upon choosing a
topological generator γ− ∈ Γ−, we shall identify WJΓ−K with the power series ring WJW K via
γ− 7→ 1 +W . Finally, denote by λ 7→ λι the involution of WJΓ−K given by γ 7→ γ−1 for γ ∈ Γ−.

Proposition 3.3.1. Let (ϕ, g,h) = (θ(λ0),θλ1(S1),θλ2(S2)) be a CM triple as above, and suppose
in addition that:

• gcd(Nϕ, Ng, Nh) is squarefree.
• The anticyclotomic branch character of ϕ satisfies ψ̄−|GKp

6= 1.
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Put

W1 = (1 + S1)1/2(1 + S2)1/2 − 1, W2 = (1 + S1)1/2(1 + S2)−1/2 − 1.

Then we have the factorisation

L ϕ
p (ϕ, g,h)2(S1, S2) = u · L−p,λ0λ1λ2(W1)ι · L−p,λ0λc1λc2(W1)

× L−p,λ0λ1λc2(W2)ι · L−p,λ0λc1λ2(W2),

where u ∈ W[1/p]×.

Proof. For i = 1, 2, let ζi be a primitive pni-th root of unity with ni > 0, and put Q1 = ζ1ζ2 − 1,
Q2 = ζ1ζ

−1
2 −1, so the specialisations gQ1

,hQ2 are both CM forms of weight 1. Let εi : Γ− → µp∞

be the finite order character given by εi(γ
−) = ζi and put Q = (Q0, Q1, Q2). Noting that for the

above triple (ϕ, g,h) the character X in (2.2) is given by

X = (Ψ
1/2
S1

Ψ
1/2
S2
◦ V ) : GQ → ZpJS1, S2K×,

we find the decomposition of p-adic representations

V†Q ⊗Qp = IndQ
K(λ−1

0 λ−1
1 λ−1

2 ε−1
1 )⊕ IndQ

K(λ−1
0 λ−c1 λ−c2 ε1)

⊕ IndQ
K(λ−1

0 λ−1
1 λ−c2 ε−1

2 )⊕ IndQ
K(λ−1

0 λ−c1 λ−1
2 ε2);

Fϕ
p (V†Q)⊗Qp = λ−1

0,pλ
−1
1,pλ

−1
2,pε
−1
1,p ⊕ λ

−1
0,pλ

−c
1,pλ

−c
2,pε1,p

⊕ λ−1
0,pλ

−1
1,pλ

−c
2,pε
−1
2,p ⊕ λ

−1
0,pλ

−c
1,pλ

−1
2,pε2,p.

Thus the terms appearing in the interpolation formula of Theorem 2.2.1 become:

(3.4)
Γ
V†Q

(0) · L(V†Q, 0) = π−4 · L(λ−1
0 λ−1

1 λ−1
2 ε−1

1 , 0) · L(λ−1
0 λ−c1 λ−c2 ε1, 0)

× L(λ−1
0 λ−1

1 λ−c2 ε−1
2 , 0) · L(λ−1

0 λ−c1 λ−1
2 ε2, 0);

(3.5)
Ep(Fϕ

p (V†Q)) = Ep(λ−1
0 λ−1

1 λ−1
2 ε−1

1 ) · Ep(λ−1
0 λ−c1 λ−c2 ε1)

× Ep(λ−1
0 λ−1

1 λ−c2 ε−1
2 ) · Ep(λ−1

0 λ−c1 λ−1
2 ε2);

(3.6) ΩϕQ0
= (−2

√
−1)3 ·

‖ϕ‖2Γ0(Nϕ)

ıp(ηϕQ0
)
·
(

1− λ0(p)

λ0(p̄)

)(
1− λ0(p)

pλ0(p̄)

)
.

On the other hand, from Hida’s formula for the adjoint L-value [HT93, Thm. 7.1] and Dirichlet’s
class number formula we obtain

‖ϕ‖2Γ0(Nϕ) =
D2
K

24π3
· 2πhK

wK
√
DK
· L(λ0λ

−c
0 , 1).
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Noting that L(λ0λ
−c
0 , 1) = L(λc0λ

−1
0 , 1) = L(λc0λ

−1
0 N−1, 0) and that λc0λ

−1
0 N−1 has infinity type

(2, 0), and letting c denote the prime-to-p conductor of λc−1
0 , the interpolation property in The-

orem 2.1.1 can thus be rewritten as

Lp,c(λc0λ−1
0 N−1) =

(
Ωp

Ω∞

)2

· 23π2

√
DK

3

×
(

1− λ0(p)

λ0(p̄)

)(
1− λ0(p)

pλ0(p̄)

)
· wK
hK
· ‖ϕ‖2Γ0(Nϕ)

= −
(

Ωp

Ω∞

)2

· π
2
√
−1

√
DK

3 · ΩϕQ0
· ηϕQ0

· wK
hK

,

using (3.6) for the second equality. By the functional equation for Katz’s p-adic L-function (see
Theorem 2.1.1) together with Lemma 3.2.1, this shows that

(3.7)
1

Ω2
ϕQ0

= u′
(

Ωp

Ω∞

)4

· π
4

D3
K

,

where u′ ∈ W[1/p]× is independent of Q1, Q2. Thus substituting (3.4), (3.5), (3.6) and (3.7) into
the interpolation formula for L ϕ

p (ϕ, g,h) we thus arrive at

L ϕ
p (ϕ, g,h)2(ζ1ζ2 − 1, ζ1ζ

−1
2 − 1) = u′D−3

K · L
−
p,λ0λ1λ2

(ζ−1
1 − 1) · L−p,λ0λc1λc2(ζ1 − 1)

× L−p,λ0λ1λc2(ζ−1
2 − 1) · L−p,λ0λc1λ2(ζ2 − 1),

for all non-trivial p-power roots of unity ζ1, ζ2, and the result follows. �

4. Selmer group decompositions

In this section we define different Selmer groups attached to Hecke characters and triple prod-
ucts of modular forms, and for one of the latter Selmer groups, we prove a decomposition mirroring
the factorisation in Proposition 3.3.1.

4.1. Selmer groups for Hecke characters. Let ν be a Hecke character of K with values in
the ring of integers O of a finite extension Φ of Qp. Denote by Oν the free O-module of rank 1
on which GK acts via ν−1 and put

Tν = Oν , Vν = Tν ⊗O Φ, Aν = Vν/Tν = Tν ⊗O (Φ/O).

Let Σ be any finite set of places of K containing∞ and the primes dividing p or the conductor of
ν, and for any finite extension F/K denote by GF,Σ the Galois group of the maximal extension
of F unramified outside the places above Σ.

Definition 4.1.1. Let F/K be a finite extension, and for v a prime of F above p put

H1
∅(Fv, Vν) = H1(Fv, Vν), H1

0(Fv, Vν) = {0}.

For (Lp,Lp) ∈ {∅, 0}⊕2 define the Selmer group SelLp,Lp(F, Vν) by

SelLp,Lp(F, Vν) = ker

(
H1(GF,Σ, Vν)→

∏
v|p

H1(Fv, Vν)

H1
Lp(Fv, Vν)

×
∏
v|p

H1(Fv, Vν)

H1
Lp(Fv, Vν)

×
∏

v∈Σ,v-p∞

H1(Fv, Vν)

)
.
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Remark 4.1.2. In particular, if ν has infinity type (−1, 0), the Selmer group

Sel∅,0(F, Vν) = ker

(
H1(GF,Σ, Vν)→

∏
v|p

H1(Fv, Vν)×
∏

v∈Σ,v-p∞

H1(Fv, Vν)

)
agrees with the Bloch–Kato Selmer group of Vν (see e.g. [AH06, §1.1] or [Arn07, §1.2]). (Therefore
in that case Sel0,∅(F, Vνc) agrees with the Bloch–Kato Selmer group of Vνc .)

For ? ∈ {∅, 0}, the local condition H1
?(Fv, Tν) and H1

?(Fv, Aν) are defined from the above by
propagation, and using these we define SelLp,Lp(F, Tν) and SelLp,Lp(F,Aν) by the same recipe as

before. Then, letting K∞/K denote the anticyclotomic Zp-extension of K, we set

(4.1)

SelLp,Lp(K∞, Tν) = lim←−
n

SelLp,Lp(Kn, Tν),

SelLp,Lp(K∞, Aν) = lim−→
n

SelLp,Lp(Kn, Aν).

Let Λ = OJΓ−K ' OJW K be the anticyclotomic Iwasawa algebra, and denote by ΨW : GK →
Λ× the universal character given g 7→ [g|K∞ ], where γ 7→ [γ] is the inclusion of Γ− intro Λ− as a
group-like element. Then by Shapiro’s lemma we have isomorphisms

H1(K,Tν ⊗Ψ−1
W ) ' lim←−

n

H1(Kn, Tν), H1(K,Aν ⊗ΨW ) ' lim−→
n

H1(Kn, Aν).

In the following we let SelLp,Lp(K,Tν ⊗ Ψ−1
W ) and SelLp,Lp(K,Aν ⊗ ΨW ) be the Selmer groups

corresponding to (4.1) under these isomorphism, and let

XLp,Lp(K,Aν ⊗ΨW ) = HomZp(SelLp,Lp(K,Aν ⊗ΨW ),Qp/Zp)

denote the Pontryagin dual of SelLp,Lp(K,Aν ⊗ΨW ).

We conclude this section by recalling the following result due to Agboola–Howard [AH06] and
Arnold [Arn07] on the anticyclotomic Iwasawa main conjecture for K.

Theorem 4.1.3. Let ν be a Hecke character of K of infinity type (−1, 0) satisfying that νc = ν,
where ν is the complex conjugate of ν, and suppose that ν has sign +1 in its functional equation.
Then Sel∅,0(K,Tν ⊗Ψ−1

W ) = 0, X0,∅(K,Aνc ⊗ΨW ) is Λ-torsion, and

charΛ

(
X0,∅(K,Aνc ⊗ΨW )

)
=
(
L−p,ν(W )

)
as ideals in ΛW ⊗Qp.

Proof. In the case where ν is the Hecke character associated with an elliptic curve E/Q with CM
by K, this is [AH06, Thm. 2.4.17]. The general case is given in [Arn07, Thm. 2.1]. �

4.2. Selmer groups for triple products. Let (ϕ, g,h) be a triple of primitive Hida families
as in §2.2 satisfying (2.1), and recall the self-dual twist V† = Vϕ ⊗ Vg ⊗ Vh ⊗ X−1 of the tensor
product of their associated big Galois representations.

Definition 4.2.1. Put

F bal
p (V†) = F 2

p (V†) :=
(
V +
ϕ ⊗ V +

g ⊗ Vh + V +
ϕ ⊗ Vg ⊗ V +

h + Vϕ ⊗ V +
g ⊗ V +

h

)
⊗X−1,

and define the balanced local condition H1
bal(Qp,V

†) by

H1
bal(Qp,V

†) := im
(
H1(Qp,F

bal
p (V†))→ H1(Qp,V

†)
)
.
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Similarly, put Fϕ
p (V†) :=

(
V +
ϕ ⊗ Vg ⊗ Vh

)
⊗ X−1 and define the ϕ-unbalanced local condition

H1
ϕ(Qp,V

†) by

H1
ϕ(Qp,V

†) := im
(
H1(Qp,F

ϕ
p (V†))→ H1(Qp,V

†)
)
.

It is easy to see that the maps appearing in these definitions are injective, and in the following
we shall use this to identify H1

?(Qp,V
†) with H1(Qp,F ?

p (V†)) for ? ∈ {bal,ϕ}.

Definition 4.2.2. Let S be a finite set of primes containing∞ and the primes dividing pNϕNgNh,
and let GQ,S be the Galois group of the maximal extension of Q unramified outside S. For every

? ∈ {bal,ϕ}, define the Selmer group Sel?(Q,V†) by

Sel?(Q,V†) := ker

{
H1(GQ,S ,V

†)→ H1(Qp,V
†)

H1
?(Qp,V†)

×
∏
v 6=p

H1(Qnr
v ,V

†)

}
.

We call Selbal(Q,V†) (resp. Selϕ(Q,V†)) the balanced (resp. ϕ-unbalanced) Selmer group.

Let A† = HomZp(V†, µp∞) and for ? ∈ {bal,ϕ} define H1
?(Qp,A

†) ⊂ H1(Qp,A
†) to be the

orthogonal complement of H1
?(Qp,V

†) under the local Tate duality

H1(Qp,V
†)×H1(Qp,A

†)→ Qp/Zp.

Similarly as above, we then define the balanced and ϕ-unbalanced Selmer groups with coefficients
in A† by

Sel?(Q,A†) := ker

{
H1(GQ,S ,A

†)→ H1(Qp,A
†)

H1
?(Qp,A†)

×
∏
v 6=p

H1(Qnr
v ,A

†)

}
,

and let X?(Q,A†) = HomZp(Sel?(Q,A†),Qp/Zp) be the Pontryagin dual of Sel?(Q,A†).

4.3. Proof of the decompositions. For a primitive Hida family f , from now on we let Vf be
the realisation of ρf arising from the p-adic élale cohomology of the p-tower of modular curves of
tame level Nf as in the work of Ohta [Oht99, Oht00] (see also [KLZ17, §7.2], whose conventions
we adopt). We shall exploit the following fact.

Proposition 4.3.1. Let ϕ = θξ(S) be a primitive CM Hida family associated to the finite order
character ξ. If ξ̄−|GKp

6= 1, where GKp ⊂ GK is a decomposition group at p, then

Vf ' IndQ
K(Tξ ⊗ΨS)

as OJSK[GQ]-modules.

Proof. This follows from a slight extension of the isomorphism in [LLZ15, Cor. 5.2.5]. See [BL18,
§3.2.3] for details. �

Suppose now that (ϕ, g,h) is a CM triple as in §3.3, with ϕ = θ(λ0) ∈ S2(Γ0(Nϕ)) a newform

obtained as the specialisation of ϕ = θξ0(S0) at Q0 ∈ X+
OJS0K, and let V†ϕgh be the image of V†

under the specialisation map (3.3) at Q0. Then from Proposition 4.3.1 we obtain

V†ϕgh ' IndQ
K(Tλ0)⊗ IndQ

K(Tλ1 ⊗ΨS1)⊗ IndQ
K(Tλ2 ⊗ΨS2)⊗X−1,

where X = (Ψ
1/2
S1

Ψ
1/2
S2
◦ V ) : GQ → ZpJS1, S2K×, and so an immediate computation shows that

(4.2)
V†ϕgh ' IndQ

K(Tλ0λ1λ2 ⊗Ψ1−c
W1

)⊕ IndQ
K(Tλ0λc1λc2 ⊗Ψc−1

W1
)

⊕ IndQ
K(Tλ0λ1λc2 ⊗Ψ1−c

W2
)⊕ IndQ

K(Tλ0λc1λ2 ⊗Ψc−1
W2

),



16 F. CASTELLA

where W1,W2 are as in Proposition 3.3.1. Therefore,

(4.3)
H1(Q,V†ϕgh) ' H1(K,Tλ0λ1λ2 ⊗Ψ1−c

W1
)⊕H1(K,Tλ0λc1λc2 ⊗Ψc−1

W1
)

⊕H1(K,Tλ0λ1λc2 ⊗Ψ1−c
W2

)⊕H1(K,Tλ0λc1λ2 ⊗Ψc−1
W2

)

by Shapiro’s lemma.

Proposition 4.3.2. Under (4.3), the balanced Selmer group decomposes as

Selbal(Q,V†ϕgh) ' Sel∅,0(K,Tλ0λ1λ2 ⊗Ψ1−c
W1

)⊕ Sel0,∅(K,Tλ0λc1λc2 ⊗Ψc−1
W1

)

⊕ Sel∅,0(K,Tλ0λ1λc2 ⊗Ψ1−c
W2

)⊕ Sel∅,0(K,Tλ0λc1λ2 ⊗Ψc−1
W2

),

and the ϕ-unbalanced Selmer group decomposes as

Selϕ(Q,V†ϕgh) ' Sel∅,0(K,Tλ0λ1λ2 ⊗Ψ1−c
W1

)⊕ Sel∅,0(K,Tλ0λc1λc2 ⊗Ψc−1
W1

)

⊕ Sel∅,0(K,Tλ0λ1λc2 ⊗Ψ1−c
W2

)⊕ Sel∅,0(K,Tλ0λc1λ2 ⊗Ψc−1
W2

).

The proof will follow easily from the following.

Lemma 4.3.3. Under (4.3), the Selmer group Selbal(Q,V†ϕgh) corresponds to the submodule of

H1(K, (Tλ0λ1λ2 ⊗Ψ1−c
W1

)⊕ (Tλ0λc1λc2 ⊗Ψc−1
W1

)⊕ (Tλ0λ1λc2 ⊗Ψ1−c
W2

)⊕ (Tλ0λc1λ2 ⊗Ψc−1
W2

))

consisting of unramified-outside-p classes x with resv(x) belonging to{
H1(Kp, (Tλ0λ1λ2 ⊗Ψ1−c

W1
)⊕ (Tλ0λ1λc2 ⊗Ψ1−c

W2
)⊕ (Tλ0λc1λ2 ⊗Ψc−1

W2
)) if v = p,

H1(Kp, Tλ0λc1λc2 ⊗Ψc−1
W1

) if v = p,

and the Selmer group Selϕ(Q,V†ϕgh) similarly corresponds to the submodule consisting of unramified-

outside-p classes x with resp(x) = 0 (and no condition at p).

Proof. Using (4.2) we see that the balanced local condition is given by

F bal
p (V†ϕgh) = (Tλ0λ1λ2 ⊗Ψ1−c

W1
)⊕ (Tλc0λ1λ2 ⊗Ψ1−c

W1
)

⊕ (Tλ0λ1λc2 ⊗Ψ1−c
W2

)⊕ (Tλ0λc1λ2 ⊗Ψc−1
W2

),

from where we obtain

(4.4)
F bal

p (V†ϕgh) = (Tλ0λ1λ2 ⊗Ψ1−c
W1

)⊕ (Tλ0λ1λc2 ⊗Ψ1−c
W2

)⊕ (Tλ0λc1λ2 ⊗Ψc−1
W2

),

F bal
p (V†ϕgh) = Tλ0λc1λc2 ⊗Ψc−1

W1
,

yielding the stated descriptions of Selbal(K,V†ϕgh). Similarly, we see that the ϕ-unbalanced local

condition is given by

Fϕ
p (V†ϕgh) = (Tλ0λ1λ2 ⊗Ψ1−c

W1
)⊕ (Tλ0λc1λc2 ⊗Ψc−1

W1
)

⊕ (Tλ0λ1λc2 ⊗Ψ1−c
W2

)⊕ (Tλ0λc1λ2 ⊗Ψc−1
W2

),

and this immediately yields the stated description of Selϕ(Q,V†ϕgh). �

Proof of Proposition 4.3.2. Put

(4.5)
Ṽ†ϕgh := (Tλ0λ1λ2 ⊗Ψ1−c

W1
)⊕ (Tλ0λc1λc2 ⊗Ψc−1

W1
)

⊕ (Tλ0λ1λc2 ⊗Ψ1−c
W2

)⊕ (Tλ0λc1λ2 ⊗Ψc−1
W2

),
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so we have

(4.6) H1(Q,V†ϕgh) ' H1(K, Ṽ†ϕgh).

Denoting by Sel{p}(K, Ṽ†ϕgh) the submodule of H1(K, Ṽ†ϕgh) consisting of unramified-outside-p

classes, it follows from Lemma 4.3.3 that under the above isomorphism the balanced Selmer group

Selbal(Q,V†ϕgh) corresponds to the kernel of the restriction map from Sel{p}(K, Ṽ†ϕgh) to

H1(Kp, Ṽ†ϕgh)

H1(Kp, (Tλ0λ1λ2 ⊗Ψ1−c
W1

)⊕ (Tλ0λ1λc2 ⊗Ψ1−c
W2

)⊕ (Tλ0λc1λ2 ⊗Ψc−1
W2

))
×

H1(Kp, Ṽ
†
ϕgh)

H1(Kp, Tλ0λc1λc2 ⊗Ψc−1
W1

)
,

and this kernel is isomorphic to

Sel∅,0(K,Tλ0λ1λ2 ⊗Ψ1−c
W1

)⊕ Sel∅,0(K,Tλ0λ1λc2 ⊗Ψ1−c
W2

)⊕ Sel∅,0(K,Tλ0λc1λ2 ⊗Ψc−1
W2

)

× Sel0,∅(K,Tλ0λc1λc2 ⊗Ψc−1
W1

).

This shows the result for Selbal(K,V†ϕgh), and the case of Selϕ(K,V†ϕgh) follows from Lemma 4.3.3

in the same manner. �

As a consequence we also obtain the following decomposition for the Selmer groups with co-

efficients in A†ϕgh = HomZp(V†ϕgh, µp∞), mirroring in the case of Selϕ(K,A†ϕgh) the factorisation

of p-adic L-functions in Proposition 3.3.1.

Corollary 4.3.4. The balanced Selmer group Selbal(Q,A†ϕgh) decomposes as

Selbal(Q,A†ϕgh) ' Sel0,∅(K,Aλc0λc1λc2 ⊗Ψc−1
W1

)⊕ Sel∅,0(K,Aλc0λ1λ2 ⊗Ψ1−c
W1

)

⊕ Sel0,∅(K,Aλc0λc1λ2 ⊗Ψc−1
W2

)⊕ Sel0,∅(K,Aλc0λ1λc2 ⊗Ψ1−c
W2

),

and the ϕ-unbalanced Selmer group Selϕ(Q,A†ϕgh) decomposes as

Selϕ(Q,A†ϕgh) ' Sel0,∅(K,Aλc0λc1λc2 ⊗Ψc−1
W1

)⊕ Sel0,∅(K,Aλc0λ1λ2 ⊗Ψ1−c
W1

)

⊕ Sel0,∅(K,Aλc0λc1λ2 ⊗Ψc−1
W2

)⊕ Sel0,∅(K,Aλc0λ1λc2 ⊗Ψ1−c
W2

).

Proof. This is immediate from Proposition 4.3.2 and local Tate duality. �

Remark 4.3.5. Note that the decompositions of Selbal(Q,A†ϕgh) and Selϕ(Q,A†ϕgh) in Corol-

lary 4.3.4 only differ in their second direct summand: the term Sel∅,0(K,Aλc0λ1λ2 ⊗Ψ1−c
W1

) in the

former is replaced by Sel0,∅(K,Aλc0λ1λ2⊗Ψ1−c
W1

) in the latter (i.e., the local conditions at the primes

above p are reversed). From the description in §4.1, it follows that Sel0,∅(K,Aλc0λ1λ2 ⊗Ψ1−c
W1

) cor-
responds to a Bloch–Kato Selmer group for λc0λ1λ2 over the anticyclotomic Zp-extension of K.

5. Diagonal cycle main conjecture

In this section we give the proof of a two-variable variant of the diagonal cycle main conjecture
formulated in [ACR23b] specialised to the CM case.
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5.1. Big diagonal classes. Let (ϕ, g,h) be a CM triple as in §3.3, with ϕ = θ(λ0) ∈ S2(Γ0(Nϕ))
the newform corresponding to the specialisation of ϕ = θξ0(S0) at Q0 ∈ X+

OJS0K. Denote by

(5.1) κ(ϕ, g,h) ∈ H1(Q,V†ϕgh)

the specialisation at Q0 of the big diagonal class κ(ϕ, g,h) constructed in [BSV22, §8.1].
More precisely, letting N = lcm(Nϕ, Ng, Nh), the construction in loc. cit. produces a class in

the cohomology of a representation V†ϕgh(N) non-canonically isomorphic to finitely many copies

of V†ϕgh. Our class (5.1) is obtained by taking the image under the map V†ϕgh(N) → V†ϕgh
associated to the level-N test vectors for the triple (ϕ, g,h) furnished by [Hsi21, Thm. A].

It follows from [BSV22, Cor. 8.2] that κ(ϕ, gh) lands in Selbal(Q,V†ϕgh), and therefore viewing

this class in H1(K, Ṽ†ϕgh) via (4.6), by Proposition 4.3.2 this implies that

resp(κ(ϕ, g,h)) ∈ H1(Kp, Tλ0λc1λc2 ⊗Ψc−1
W1

),

where W1 = (1 + S1)1/2(1 + S2)1/2 − 1.
Put ui = 1 + p (i = 1, 2) and for any OJS1, S2K-module M and integers k1, k2 ≥ 1 of the same

parity, denote by Mk1,k2 the specialisation of M at Si = uki−1
i − 1. Let Φ be the field of fractions

of O. Then one easily checks that there are isomorphisms

(5.2)

{
logp : H1(Kp, Tλ0λc1λc2 ⊗Ψc−1

W1
)k1,k2 ⊗Qp → Φ if k1 + k2 ≥ 3,

exp∗p : H1(Kp, Tλ0λc1λc2 ⊗Ψc−1
W1

)k1,k2 ⊗Qp → Φ if k1 + k2 = 2,

given by the Bloch–Kato logarithm and dual exponential maps, respectively.

Theorem 5.1.1 (Explicit reciprocity law). Let (ϕ, g,h) = (θ(λ0),θλ1(S1)θλ2(S2)) be a CM triple
as above, with Rϕgh = OJS1, S2K. There is an injective Rϕgh-module homomorphism

Logϕ : H1(Kp, Tλ0λc1λc2 ⊗Ψc−1
W1

)→ Rϕgh

with pseudo-null cokernel satisfying for any Z ∈ H1(Kp, Tλ0λc1λc2⊗Ψc−1
W1

) the interpolation property

Logϕ(Z)k1,k2 = ck1,k2 ×

{
logp(Zk1,k2) if k1 + k2 ≥ 3,

expp(Zk1,k2) if k1 + k2 = 2,

where ck1,k2 is an explicit nonzero constant, and such that

Logϕ
(
resp(κ(ϕ, g,h))

)
= L ϕ

p (ϕ, g,h).

Proof. Let F 3
p (V†) be the rank one subspace of F 2

p (V†) = F bal
p (V†) given by

F 3
p (V†) = V +

ϕ ⊗̂OV
+
g ⊗̂OV

+
h ⊗X

−1,

Then one immediately finds that F 2
p (V†)/F 3

p (V†) naturally contains the representation

(5.3) Vgh
ϕ := (Vϕ/V

+
ϕ )⊗̂OV

+
g ⊗̂OV

+
h ⊗X

−1

as a direct summand. Letting F 3
p (V†ϕgh) be the specialisation of F 3

p (V†), and likewise for Vgh
ϕ ,

in terms of the description given in the proof of Lemma 4.3.3, we find that{
F 3

p (V†ϕgh) = Tλ0λ1λ2 ⊗Ψ1−c
W1

,

F 3
p (V†ϕgh) = 0,
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and that
Vgh
ϕ ' F bal

p (V†ϕgh) ' Tλ0λc1λc2 ⊗Ψc−1
W1

The construction of the map Logϕ thus follows from specialising at Q0 the three-variable p-adic
regulator map of [BSV22, §7.1] similarly as in the proof of [ACR23b, Prop. 7.3], and the stated
explicit reciprocity law is then a consequence of [BSV22, Thm. A] (see also [DR22, Thm. 10]). �

As explained in [ACR23b, §7.3], the following result can be seen as the equivalence between
two formulations (‘without p-adic L-functions’ and ‘with p-adic L-functions’, respectively) of the

Iwasawa–Greenberg main conjecture [Gre94] for V†ϕgh.

Proposition 5.1.2. The following statements (1)-(2) are equivalent:

(1) κ(ϕ, g,h) is not Rϕgh-torsion,

rankRϕgh

(
Selbal(Q,V†ϕgh)

)
= rankRϕgh

(
Xbal(Q,A†ϕgh)

)
= 1,

and the following equality holds in Rϕgh ⊗Qp:

charRϕgh

(
Xbal(Q,A†ϕgh)tors

)
= charRϕgh

(
Selbal(Q,V†ϕgh)

(κ(ϕ, g,h))

)2

.

(2) L ϕ
p (ϕ, g,h) is nonzero,

rankRϕgh

(
Selϕ(Q,V†ϕgh) = rankRϕgh

(
Xϕ(Q,A†ϕgh)

)
= 0,

and the following equality holds in Rϕgh ⊗Qp:

charRϕgh

(
Xϕ(Q,A†ϕgh)

)
=
(
L ϕ
p (ϕ, g,h)

)2
.

Proof. This can be deduced from Theorem 5.1.1 and global duality in the same way as [ACR23b,
Thm. 7.15]. See [Lai22] for the details in the stated level of generality. �

5.2. Proof of Theorem A. We can now conclude the proof of our main first main result towards
the diagonal cycle main conjecture (Conjecture A). Let K be an imaginary quadratic field in which
the prime p ≥ 5 splits: (p) = pp. Let λ0 (resp. λ1, λ2) be a Heche character of K of infinity type
(−1, 0) (resp. finite order). For i = 0, 1, 2, let Ci be the conductor of λi and suppose that λci = λi
(so in particular Ci = Ci). Then L(λ−1

0 λ−1
1 λ−1

2 , 0) is self-dual, and we let sign(λ0λ1λ2) ∈ {±1} be
the sign in its functional equation (with center at s = 0). Being anticyclotomic twists of λ0λ1λ2,
the same applies to the characters λ0λ

c
1λ

c
2, λ0λ1λ

c
2, and λ0λ

c
1λ2. We then let

(ϕ, g,h) = (θ(λ0),θλ1(S1),θλ2(S2))

be the triple consisting of the newform ϕ = θ(λ0) ∈ S2(Γ0(Nϕ)), where Nϕ = DKN(C0), and the
primitive CM Hida families associated to λ1 and λ2, respectively.

Theorem 5.2.1. Suppose that p - Ci for i = 0, 1, 2 and that:

(i) gcd(Nϕ, Ng, Nh) is squarefree.
(ii) ρ̄g and ρ̄h are both absolutely irreducible and p-distinguished.

(iii) sign(λ0λ1λ2) = sign(λ0λ
c
1λ

c
2) = sign(λ0λ1λ

c
2) = sign(λ0λ

c
1λ2) = +1.

Then class κ(ϕ, g,h) is not Rϕgh-torsion, the modules Selbal(Q,V†ϕgh) and Xbal(Q,A†ϕgh) both

have Rϕgh-rank one, and the following equality holds in Rϕgh ⊗Qp:

charRϕgh

(
Xbal(Q,A†ϕgh)tors

)
= charRϕgh

(
Selbal(Q,V†ϕgh)

Rϕgh · κ(ϕ, g,h)

)2

.
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In other words, Conjecture A specialised to the triple (ϕ, g,h) holds.

Proof. By Greenberg’s nonvanishing results [Gre83, Gre85] (see [AH06, Cor. 2.1.5] and [Arn07,
Prop. 2.3]), our sign assumptions imply that the four anticyclotomic Katz p-adic L-functions
in the factorisation of Proposition 3.3.1 are nonzero, and so we deduce that L ϕ

p (ϕ, g,h) is
also nonzero. (Note that the condition that ρ̄ϕ be absolutely irreducible and p-distinguished
as needed in Proposition 3.3.1 is automatic in the case ϕ = θ(λ0) ∈ S2(Γ0(Nϕ)); see e.g. [KLZ17,
Rem. 7.2.7].) Moreover, Theorem 4.1.3 implies that each of the direct summands in the decompo-

sition of Xϕ(Q,A†ϕgh) given in Proposition 4.3.2 is torsion, with characteristic ideal generated by

a corresponding anticyclotomic Katz p-adic L-function. Therefore Xϕ(Q,A†ϕgh) is Rϕgh-torsion,

with
charRϕgh

(
Xϕ(Q,A†ϕgh)

)
=
(
L ϕ
p (ϕ, g,h)

)2
in Rϕgh ⊗Qp. Together with the equivalence of Proposition 5.1.2, this concludes the proof. �

6. Generalised Kato classes

In this section we define generalised Kato classes attached to CM elliptic curves E/Q, following
a slight modification of the construction due to Darmon–Rotger [DR16]. Then we prove our main
result on the nonvashing of these classes in situations of rank 2.

6.1. Construction of the classes. Let E/Q be an elliptic curve with CM by the maximal order
OK . Let p ≥ 5 be a prime of good ordinary reduction for E; in particular, (spl) holds. Let ψE be
the Grossencharacter of K associated to E by the theory of complex multiplication, so we have

L(E, s) = L(ψE , s).

Note that L(ψE , s) = L(ψc
E , s) = L(ψ−1

E , s− 1), since ψEψ
c
E = N.

Let `1, `2 be distinct primes split in K with (`1`2, pNE) = 1, where NE is the conductor of E.
For i = 1, 2, let φi be a ring class character of conductor `mi

i OK for some mi > 0.

Proposition 6.1.1. Suppose E has root number +1. Then there exist infinitely many ring class
characters φ1, φ2 as above with

φ1|GKp
, φ2|GKp

6= 1,

where GKp ⊂ GK is a decomposition group at p, and such that

L(ψ−1
E φ−1

1 , 0) · L(ψ−1
E φ−1

2 , 0) · L(ψ−1
E φ−1

1 φ−1
2 , 0) 6= 0.

Proof. Since the primes `1 and `2 both split in K, for any ring class characters φ1, φ2 as above the
signs in the functional equations for L(ψ−1

E φ−1
1 , s), L(ψ−1

E φ−1
2 , s), L(ψ−1

E φ−1
1 φ−1

2 , s) are the same
as the sign of L(E, s). Thus if E has root number +1, the nonvanishing results of [Gre85] and
[Roh84] imply that, as φ1, φ2 vary, only finitely many of the values L(ψ−1

E φ−1
1 , 0) ·L(ψ−1

E φ−1
2 , 0) ·

L(ψ−1
E φ−1

1 φ−1
2 , 0) are zero, whence the result. �

We now fix a pair of ring class characters φ1, φ2 as above, and writing

φi = λ1−c
i

with λi a ray class character modulo `miOK (see [Hid06b, Lem. 5.31], for example), we consider
the CM triple

(6.1) (ϕ, g,h) = (θ(ψEλ
−c
1 λ−c2 ),θλ1(S1),θλ2(S2)).

The following definition might be seen as twisted variant of the generalised Kato classes intro-
duced by Darmon–Rotger [DR16] (whose construction in the setting conjecturally of relevance for
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rank two elliptic curves over Q, namely the “adjoint case”studied in [op. cit.,§4.3], would suggest
taking ϕ = θ(ψE), rather than ϕ as above).

Definition 6.1.2 (Generalised Kato class). Denote by V†ϕgh the restriction of V†ϕgh to S1 = S2,

let κ(ϕ, gh) ∈ H1(Q,V†ϕgh) be the corresponding projection of (5.1), and put S = S1. We define

κp to be the image of κ(ϕ, gh) under the composition

Selbal(Q,V†ϕgh)→ Sel0,∅(K,TψE
⊗Ψc−1

S )→ Sel0,∅(K,TψE
),

where the first arrow is given by the projection onto the second direct summand from the decom-

position of Selbal(Q,V†ϕgh) from Proposition 4.3.2 (with λ0 := ψEλ
−c
1 λ−c2 ), and the second arrow

is induced by the multiplication by S on TψE
⊗Ψc−1

S .

Using H1(K,TψE
)⊗Qp ' H1(Q, VpE), we shall also view κp in the latter group.

Lemma 6.1.3. Suppose L(E, 1) = 0. Then κp ∈ Sel(Q, VpE).

Proof. Viewing κp in Sel0,∅(K,TψE
), it suffices to show that resp(κp) = 0. The assumption implies

that L(ψ−1
E , 0) = 0, and so from Theorem 2.1.1, Proposition 3.3.1, and Theorem 5.1.1, we obtain

L(E, 1) = 0 =⇒ L−ψE
(0) = 0 =⇒ L ϕ

p (ϕ, g,h)(0, 0) = 0

=⇒ exp∗p(κ(ϕ, g,h)1,1) = 0,

where, as in Theorem 5.1.1, κ(ϕ, g,h)k1,k2 denotes the specialisation of κ(ϕ, g,h) at Si = uki−1−1.
Since for k1 + k2 = 2 the Bloch–Kato dual exponential (5.2) is injective, this gives the result. �

6.2. A control theorem. Let

Λ = OJSK.

For any Λ-module M , we M/S for the cokernel of multiplication by S, i.e., M/S := M/SM . The
following is a variant of Mazur’s control theorem for the “reversed” Selmer groups of Remark 4.3.5.

Proposition 6.2.1. There are natural isomorphisms

r∗ : Sel∅,0(K,Aψc
E

)→ Sel∅,0(K,Aψc
E
⊗Ψ1−c

S )[S],

r : Sel0,∅(K,TψE
⊗Ψc−1

S )/S → Sel0,∅(K,TψE
),

induced by multiplication by S.

Proof. The map r∗ fits into the commutative diagram with exact rows

0 // Sel∅,0(K,Aψc
E

) //

r∗

��

Sel{p}(K,Aψc
E

) //

s∗

��

H1(Kp, Aψc
E

)

t∗

��
0 // Sel∅,0(K,Aψc

E
⊗Ψ1−c

S )[S] // Sel{p}(K,Aψc
E
⊗Ψ1−c

S )[S] // H1(Kp, Aψc
E
⊗Ψ1−c

S )[S].

It follows from Lubin–Tate theory that Kp(E[p]) has degree p−1 over Kp (see e.g. [dS87, Ch. I]),

and therefore H0(K∞,p, E[p∞]) = 0 since Γ− is pro-p. By inflation-restriction, it follows that the
map t∗ is an isomorphism.
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The map s∗ fits into the commutative diagram with exact rows

0 // Sel{p}(K,Aψc
E

) //

s∗

��

H1(KΣ/K,Aψc
E

) //

u∗

��

⊕
w∈Σ,w-p H1(Kw, Aψc

E
)

v∗

��
0 // Sel{p}(K,Aψc

E
⊗Ψ1−c

S )[S] // H1(KΣ/K,Aψc
E
⊗Ψ1−c

S )[S] //
⊕

w∈Σ,w-p H1(Kw, Aψc
E
⊗Ψ1−c

S )[S].

The vanishing of H0(K∞,p, E[p∞]) implies that u∗ is an isomorphism, and as shown in the proof
of [dS87, Lem. IV.3.5] as a consequence of [Maz72, Cor. 4.4], the map v∗ is injective.

Therefore, by the Snake Lemma applied to the above two diagrams we conclude that ker(r∗) =
ker(s∗) = 0 and that coker(r∗) = coker(s∗) = ker(v∗) = 0. This gives the result for r∗, and the
case of r is shown in the same manner. �

Finally, for the proof of our second main result we shall use the following relation between the
rank of the “reversed” Selmer group for ψE and that of its usual Selmer group.

Lemma 6.2.2. We have

rankOK,p
Sel0,∅(K,TψE

) =

{
rankOK,p

Sel(K,TψE
)− 1 if locp 6= 0,

rankOK,p
Sel(K,TψE

) + 1 if locp = 0,

where locp : Sel(Q, VpE)→ E(Qp)⊗̂Qp the restriction map at p.

Proof. By global duality we have the exact sequence

(6.2) 0→ Sel(K,TψE
)→ Selrel(K,TψE

)
α−→
∏
v|p

H1(Kv, TψE
)

E(Kv)⊗OK,p
β∨−−→ Sel(K,Aψc

E
)∨,

where the last arrow corresponds (by Tate’s local duality) to the Pontryagin dual of the restriction
map

β : Sel(K,Aψc
E

)→
∏
v|p

E(Kv)⊗ (Kp/OK,p).

Note that the target of the map β has OK,p-rank one, and from the action of complex conjugation
and the isomorphism Sel(K,AψE

) ' Selp∞(E/Q) we see that rankOK,p
im(β) = dimQp im(locp).

Suppose first that locp 6= 0, so by the above remarks the map β has finite cokernel. By (6.2),
it follows that α has finite image, and therefore

rankOK,p
Selrel(K,TψE

) = rankOK,p
Sel(K,TψE

).

In particular, this implies that

rankOK,p
Sel0,∅(K,TψE

) = rankOK,p
ker
(
locp : Sel(K,TψE

)→ E(Kp)⊗OK,p
)
,

yielding the result in this case. On the other hand, if locp = 0 then from (6.2) it follows that

rankOK,p
Selrel(K,TψE

) = rankOK,p
Sel(K,TψE

) + 1.

Since H1(Kp, TψE
)/E(Kp)⊗OK,p is torsion, the modules Selrel(K,TψE

) and Sel0,∅(K,TψE
) have

the same rank, so this concludes the proof. �
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6.3. Proof of Theorem B. We now prove our main result on the nonvanishing of generalised
Kato classes κp ∈ Sel(Q, VpE) in situations where ords=1L(E, s) ≥ 2.

Recall that we let E/Q be an elliptic curve with CM by an imaginary quadratic field K in which
the prime p ≥ 5 splits as (p) = pp. Suppose E has root number +1, and let κp ∈ H1(Q, VpE) be

the generalised Kato class attached to a pair of ring class characters φ1 = λ1−c
1 , φ2 = λ1−c

2 as in
Proposition 6.1.1; then, by Lemma 6.1.3, κp ∈ Sel(Q, VpE) as long as L(E, 1) = 0.

Theorem 6.3.1. Suppose L(E, s) vanishes to positive even order at s = 1. Then

κp 6= 0 =⇒ dimQpSel(Q, VpE) = 2.

Conversely, if dimQpSel(Q, VpE) = 2 then κp 6= 0 if and only if the restriction map

resp : Sel(Q, VpE)→ E(Qp)⊗̂Qp

is nonzero.

Proof. Put S = S1. Restricted to S1 = S2, the factorisation in Proposition 3.3.1 (in which then
W1 = S and W2 = 0) reads as the equality

L ϕ
p (ϕ, gh)2(S) = L−p,ψEφ1φ2

(S)ι · L−p,ψE
(S) · L−p,ψEφ1

(0) · L−p,ψEφ2
(0)

up to a multiplication by a unit u ∈ W[1/p]×. On the other hand, the decomposition in Corol-
lary 4.3.4 for the unbalanced Selmer group becomes

Xϕ(Q,A†ϕgh) ' X0,∅(K,Aψc
Eφ

c
1φ

c
2
⊗Ψc−1

S )⊕X0,∅(K,Aψc
E
⊗Ψ1−c

S )

⊕X0,∅(K,Aψc
Eφ

c
1
⊗Ψc−1

S )/S ⊕X0,∅(K,Aψc
Eφ

c
2
⊗Ψ1−c

S )/S .

Noting that the involution ι gives X0,∅(K,Aψc
Eφ

c
1φ

c
2
⊗ Ψ1−c

S )ι = X0,∅(K,Aψc
Eφ

c
1φ

c
2
⊗ Ψc−1

S ), from

Theorem 4.1.3 we deduce that Xϕ(Q,A†ϕgh) is Λ-torsion with

charΛ

(
Xϕ(Q,A†ϕgh)

)
=
(
L ϕ
p (ϕ, gh)

)2
as ideals in ΛW ⊗Qp. By Proposition 5.1.2, it follows that

(6.3) rankΛ

(
Xbal(Q,A†ϕgh)

)
= rankΛ

(
Selbal(Q,V†ϕgh)

)
= 1,

and

(6.4) charΛ

(
Xbal(Q,A†ϕgh)tors

)
= charΛ

(Selbal(Q,V†ϕgh)

Λ · κ(ϕ, gh)

)2

as ideals in ΛW ⊗Qp. Now, the implications

L(ψ−1
E φ−1

1 φ−1
2 , 0) 6= 0 =⇒ L−p,ψEφ1φ2

(0) 6= 0

=⇒
∣∣∣X0,∅(K,Aψc

Eφ
c
1φ

c
2
⊗Ψc−1

S )/S

∣∣∣ <∞.
follow from the interpolation property of L−p,ψEφ1φ2

and the combination of Theorem 4.1.3 and

Mazur’s control theorem, respectively. The nonvanishing of L(ψ−1
E φ−1

1 , 0) and L(ψ−1
E φ−1

2 , 0) sim-
ilarly implies ∣∣∣X0,∅(K,AφcEφ

c
1
⊗Ψc−1

S )/S

∣∣∣ <∞, ∣∣∣X0,∅(K,AφcEφ
c
2
⊗Ψc−1

S )/S

∣∣∣ <∞,
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and so from (6.3) and the balanced Selmer group decomposition from Corollary 4.3.4:

Xbal(Q,A†ϕgh) ' X0,∅(K,Aψc
Eφ

c
1φ

c
2
⊗Ψc−1

S )⊕X∅,0(K,Aψc
E
⊗Ψ1−c

S )

⊕X0,∅(K,Aψc
Eφ

c
1
⊗Ψc−1

S )/S ⊕X0,∅(K,Aψc
Eφ

c
2
⊗Ψ1−c

S )/S ,

we deduce that

(6.5) rankΛ

(
X∅,0(K,Aψc

E
⊗Ψ1−c

S )
)

= 1.

On the other hand, by the control theorem of Proposition 6.2.1 the OK,p-rank of the specialisation

X∅,0(Q, Aψc
E
⊗Ψ1−c

S )/S satisfies

(6.6)

rankOK,p

(
X∅,0(K,Aψc

E
⊗Ψ1−c

S )/S
)

= corankOK,p

(
Sel∅,0(K,Aψc

E
)
)

= rankOK,p

(
Sel∅,0(K,Tψc

E
)
)

= rankOK,p

(
Sel0,∅(K,TψE

)
)
,

using the isomorphism Sel∅,0(K,Tψc
E

) ' Sel0,∅(K,TψE
) given by the action of complex conjugation

for the last equality.
Denote by κE(ϕ, gh) ∈ Sel0,∅(K,TψE

⊗Ψc−1
S ) the projection of κ(ϕ, gh) onto the second direct

summand in the balanced Selmer groups decomposition from Proposition 4.3.2:

Selbal(Q,V†ϕgh) ' Sel∅,0(K,TψEφ1φ2 ⊗Ψ1−c
S )⊕ Sel0,∅(K,TψE

⊗Ψc−1
S )

⊕ Sel∅,0(K,TψEφ1 ⊗Ψ1−c
S )/S ⊕ Sel∅,0(K,TψEφ2 ⊗Ψc−1

S )/S .

Since our assumptions imply that ψEφ1, ψEφ2, ψEφ1φ2 have all root number +1, by Theorem 4.1.3
we have

Selbal(Q,V†ϕgh)

Λ · κ(ϕ, gh)
'

Sel0,∅(K,TψE
⊗Ψc−1

S )

Λ · κE(ϕ, gh)
.

Together with Theorem 5.2.1 (note that the choice of φ1, φ2 in Proposition 6.1.1 guarantee that
the associated primtitive CM Hida families g,h satisfy the conditions in that result), this gives
that Sel0,∅(K,TψE

⊗Ψc−1
S ) has Λ-rank one, and we have the following equality of ideals in ΛW⊗Qp:

(6.7) charΛ

(
X∅,0(K,Aψc

E
⊗Ψ1−c

S )tors

)
= L−p,ψc

Eφ
c
1φ

c
2
(S)ι · charΛ

(
ZE
)2
,

where ZE = Sel0,∅(K,TψE
⊗Ψc−1

S )/Λ · κE(ϕ, gh). From (6.5), (6.6), and (6.7), we thus see that

rankOK,p

(
Sel0,∅(K,TψE

)
)

= 1− ordS
(
L−p,ψEφ1φ2

(S)ι
)

+ 2 rankOK,p

(
(ZE)/S

)
= 1 + 2 rankOK,p

(
(ZE)/S

)
,

using Theorem 2.1.1 and the nonvanishing of L(ψ−1
E φ−1

1 φ−1
2 , 0) for the last equality.

Since by construction the injection

Sel0,∅(K,TψE
⊗Ψc−1

S )/S → Sel0,∅(K,TψE
)

of Proposition 6.2.1 sends κE(ϕ, gh) mod S into κp, we conclude that

(6.8) rankOK,p

(
Sel0,∅(K,TψE

)
)

= 1 ⇐⇒ κp 6= 0.

The first claim in the Theorem now follows from (6.8) and Lemma 6.2.2, noting that by the work
of Rubin [Rub91] proving the Iwasawa main conjecture for K, the vanishing of L(E, 1) implies
the non-triviality of Sel(Q, VpE). Similarly, the last claim in the Theorem is a direct consequence
of (6.8) and Lemma 6.2.2. �
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Remark 6.3.2. The result of Theorem 6.3.1 confirms expectations suggested by the conjectures
of Darmon–Rotger [DR16] (see esp. Conjecture 3.12 in op. cit. as specialised to the “rank (2, 0)
setting” in §4.5.3), and further shows that the nonvanishing of the restriction map resp is necessary
for the implication dimQpSel(Q, VpE) = 2 =⇒ κp 6= 0 to hold.
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[JNS] Dimitar Jetchev, Jan Nekovář, and Christopher Skinner, preprint.
[Kat78] Nicholas M. Katz, p-adic L-functions for CM fields, Invent. Math. 49 (1978), no. 3, 199–297.
[KLZ17] Guido Kings, David Loeffler, and Sarah Livia Zerbes, Rankin-Eisenstein classes and explicit reciprocity

laws, Camb. J. Math. 5 (2017), no. 1, 1–122.
[Kol88] V. A. Kolyvagin, Finiteness of E(Q) and Sha(E,Q) for a subclass of Weil curves, Izv. Akad. Nauk

SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671.
[Lai22] Shilin Lai, Algebraic aspects of Iwasawa theory in the Gan–Gross–Prasad setting, Ph.D. thesis, Princeton

University, 2022.
[LLZ15] Antonio Lei, David Loeffler, and Sarah Livia Zerbes, Euler systems for modular forms over imaginary

quadratic fields, Compos. Math. 151 (2015), no. 9, 1585–1625.
[Maz72] Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math.

18 (1972), 183–266.
[Oht99] Masami Ohta, Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves,

Compositio Math. 115 (1999), no. 3, 241–301.
[Oht00] , Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves. II, Math.

Ann. 318 (2000), no. 3, 557–583.
[PR84] Bernadette Perrin-Riou, Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mém. Soc. Math.
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