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Abstract. Let E/Q be a CM elliptic curve and p an odd prime of good ordinary reduction for
E. Suppose L(E, s) has sign w = +1 and vanishes at s = 1, so in particular ords=1L(E, s) ≥ 2.
In this paper we modify a construction of Darmon–Rotger [DR17] to define a new generalised
Kato class κp ∈ Sel(Q, VpE) conjectured to be nonzero precisely when E has rank 2. Our main
results show that, under some hypothesis, κp 6= 0 precisely when Sel(Q, VpE) is 2-dimensional.
Moreover, combined with work of Rubin [Rub92], we can exhibit explicit bases for Sel(Q, VpE)
in certain cases.

1. Introduction

Fix an odd prime p. Let E/Q be an elliptic curve with complex multiplication by the ring of
integers of an imaginary quadratic field K in which p = pp splits. Let L(E, s) be the Hasse–Weil
L-function of E/Q, and denote by w ∈ {±1} the sign in its functional equation:

L(E, s) = wL(E, 2− s).

1.1. Rubin’s p-converse theorem. We begin by recalling the following result by Rubin [Rub94],
giving the first “p-converse” to the theorem of Gross–Zagier and Kolyvagin.

Theorem (Rubin). Assume that w = −1. Then there exists a Heegner point P ∈ E(Q) such
that

rankZE(Q) = 1

#Ø(E/Q)[p∞] <∞

}
=⇒ P /∈ E(Q)tors,

and hence ords=1L(E, s) = 1.

The proof of this result is deduced in [Rub94, Thm. 4] as a consequence of the Iwasawa
main conjecture for K [Rub91], Perrin-Riou’s calculation of the Euler characteristic of a Selmer
group attached to E/K over the Zp-extension of K unramified outside p [PR84], and Bertrand’s
transcendence result [Ber84]; the claim that ords=1L(E, 1) is a consequence of the Gross–Zagier
formula [GZ86].

1.2. Statement of the main result. In this paper we prove an analogue of Rubin’s p-converse
theorem in rank 2, in which the Heegner point P is replaced by a certain Selmer class

κp ∈ Sel(Q, VpE).

Here Sel(Q, VpE) denotes the p-adic Selmer group of E/Q fitting into the exact sequence

0→ E(Q)⊗Z Qp → Sel(Q, VpE)→ TapØ(E/Q)⊗Zp Qp → 0,

where TapØ(E/Q) is the p-adic Tate module of the Tate–Shafarevich group of E/Q.
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The class κp may be viewed as a variant of the generalised Kato classes introduced by Darmon–
Rotger [DR16] and a natural extension of [op. cit., Conj. 3.2] predicts that κp 6= 0 precisely when
E has rank 2.

Recall that the fine Selmer group Sel0(Q, VpE) is defined as the kernel of the restriction map

locp : Sel(Q, VpE)→ H1(Qp, VpE).

Our first main result in this paper is the following.

Theorem A (Theorem 6.3.2). Suppose w = +1 and L(E, 1) = 0, so in particular ords=1L(E, s) ≥
2. If Sel(Q, VpE) 6= Sel0(Q, VpE), then the following implication holds:

dimQpSel(Q, VpE) = 2 =⇒ κp 6= 0;

more precisely, κp is a nonzero class in the fine Selmer group Sel0(Q, VpE).

It is worth-noting that the vanishing of L(E, 1) implies that the p-adic Selmer group Sel(Q, VpE)
is non-trivial [Rub91], so the above condition Sel(Q, VpE) 6= Sel0(Q, VpE) holds unless E(Q) is
finite andØ(E/Q)[p∞] is infinite.

1.3. Application to rank 2 Selmer basis. The construction of κp depends on certain auxiliary
choices, but it follows from our results that different choices give rise to the same Selmer class up
to scaling. Hence it is natural to ask for a class in the 2-dimensional Sel(Q, VpE) complementary
to the line spanned by κp.

Let λ be the Hecke character of K attached to E, so that

L(E, s) = L(λ, s),

and denote by λc the composition of λ with the action of the nontrivial element c ∈ Gal(K/Q).
Denote by W the completion of the ring of integers of the maximal unramified extension of Qp,
and let Lp = Lp,c ∈ WJZ(c)K be the Katz p-adic L-function recalled in Theorem 2.1.1 below,
where Z(c) is the Galois group of the extension K(E[p∞])/K. Following [Rub94], for s ∈ Zp
define

Lp(s) = Lp(λ〈λ〉s−1), L∗p(s) = Lp(λc〈λc〉s−1),

where 〈−〉 : Z×p → 1 + pZp is the projection onto the 1-units. Assuming that E(Q) has a point
of infinite order, the p-adic Birch and Swinnerton-Dyer conjectures formulated in op. cit. predict
that ords=1Lp(s) = r and ords=1L

∗
p(s) = r − 1, where r = rankZE(Q) ≥ 1.

Theorem B. Assume that #Ø(E/Q)[p∞] <∞ and the following conditions hold:

ords=1Lp(s) = 2, ords=1L
∗
p(s) = 1.

Then Sel(Q, VpE) is 2-dimensional, with

Sel(Q, VpE) = Qpκp ⊕Qpxp,

where κp is a generalised Kato class and xp is a derived elliptic unit.

Proof. The assumption that ords=1Lp(s) = 2 implies, on the one hand, that

r := dimQpSel(Q, VpE) ≤ 2

by [Rub91, Thm. 4.1] and [PR84, Ch. IV, Thm. 22], and on the other hand that r ≥ 2 by the
theorem of Coates–Wiles [CW77] and the p-parity conjecture [Guo93]. Therefore r = 2, and by
[Rub92, Prop. 4.4] the construction of derived elliptic units in [op. cit., §6] yields a class

xp ∈ Sel(K,TpE) ' Sel(Q, TpE)
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denoted x
(2)
p in loc. cit., where TpE is the p-adic Tate module of E. By [Rub92, Thm. 9.5(ii)],

the assumptions #Ø(E/Q)[p∞] <∞ and ords=1L
∗
p(s) = 1 imply that xp /∈ Sel0(Q, VpE), so the

result follows from Theorem A. �

1.4. A rank 2 Kolyvagin theorem. We can also prove a converse to Theorem A, going in the
direction of Kolyvagin’s theorem [Kol88].

Theorem C (Theorem 7.0.1). Suppose w = +1 and L(E, 1) = 0. If Sel(Q, VpE) 6= Sel0(Q, VpE),
then the following implication holds:

κp 6= 0 =⇒ dimQpSel(Q, VpE) = 2.

The proof of Theorem C builds on a “degeneration” to weights (1, 1) of the diagonal cycle
Euler system for Rankin–Selberg convolutions constructed in a joint work with Alonso and Rivero
[ACR21], and the general theory of anticyclotomic Euler systems developed by Jetchev–Nekovář–
Skinner [JNS]. The key new observation here is that such a result in rank 2 can be deduced from
a rank 1 Kolyvagin theorem for a non-classical Selmer group.

1.5. Relation to other works. In [CH22], the author and M.-L. Hsieh obtained results analo-
gous to Theorem A and Theorem C for certain generalised Kato classes κ′p introduced by Darmon–
Rotger [DR16], but the CM case eluded their approach. Indeed, the generalised Kato classes κ′p
studied in [CH22] are attached to the choice of:

(i) a quadratic imaginary field M in which p splits such that L(EM , 1) 6= 0;
(ii) a ring class character χ = ψ/ψc of M such that L(E/M , χ, 1) 6= 0,

so that the twisted L-value L(E, ad0(θψ), 1) is nonzero. It is under these nonvanishing hypotheses
that [DR16, Conj. 3.2] predicts that κ′p 6= 0 precisely when E has rank 2.

For elliptic curves E/Q with CM byK, condition (i) can be arranged by takingM 6= K [BFH90],
but condition (ii) is problematic, as Vatsal’s nonvanishing results for L(E/M , χ, 1) [Vat03] require
E to have some prime of multiplicative reduction, but unfortunately (having integral j-invariant)
CM elliptic curves have no such primes. Thus, lacking stronger nonvanishing results, in the CM
setting the construction of κ′p from [DR16] appears to be ill-suited.

The proof of Theorem A and Theorem C is therefore completely different, and our results for
the class κp constructed here hint at a new variant of the conjectures in [DR16] for CM elliptic
curves. The approach in this paper reveals a close link between [DR16, Conj. 3.2] (a nonvanishing
criterion for generalised Kato classes) in the rank (2,0) adjoint CM setting and a main conjecture
in anticyclotomic Iwasawa theory. Moreover, the approach should generalise to other contexts,
starting with the case studied in [CH22] and its analogue for supersingular primes p [CH].

1.6. Acknowledgements. It is a pleasure to thank Ashay Burungale for stimulating exchanges,
especially about the idea to consider a setting along the lines of our Choice 3.2.2, and also Ming-
Lun Hsieh for his comments on an earlier draft. During the preparation of this paper, the author
was partially supported by the NSF grants DMS-1946136 and DMS-2101458.

2. p-adic L-functions

In this section we recall the two p-adic L-functions that will appear in our arguments, one due
to Katz [Kat78] attached to Hecke characters of an imaginary quadratic fields, and another due
to Hsieh [Hsi21] attached to triple products of modular forms in Hida families.
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From now on we fix a prime p > 2 and an imaginary quadratic field K with ring of integers
OK in which

(spl) (p) = pp splits,

with p the prime of K above p determined by a fixed embedding ιp : Q ↪→ Qp.

2.1. Katz p-adic L-function. Denote by DK < 0 the discriminant of K, and fix an integral
ideal c ⊂ OK coprime to p. Let W be a finite extension of the Witt ring W (Fp), and denote by
Z(c) the Galois group of the ray class field extension K(cp∞)/K.

We say that a Hecke character χ : K×\A×K → C× has infinity type (a, b) if χ∞(z) = zazb.

Theorem 2.1.1. There exists an element Lp,c ∈ WJZ(c)K such that for all Hecke characters χ
of conductor dividing cp∞ and infinity type (k + j,−j) with k ≥ 1, j ≥ 0, we have

Lp,c(χ) =

(
Ωp

Ω∞

)k+2j

· Γ(k + j) ·
(

2π√
DK

)j
· Ep(χ) · L(pc)(χ, 0),

where Ep(χ) is the modified Euler factor

Ep(χ) =
L(0, χp)

ε(0, χp) · L(1, χ−1
p )

and L(pc)(χ, s) is the L-function L(pc)(χ, 0) deprived from the Euler factors at the primes l|pc.
Moreover, we have the functional equation

Lp,c(χ) = Lp,c((χc)−1N−1),

where χc is the composition of χ with the action of the non-trivial automorphism of K/Q, and
the equality is up to a p-adic unit.

Proof. See [Kat78], [HT93]; our formulation follows of the interpolation property follows [Hsi14,
Prop. 4.19] most closely. The functional equation is shown in [dS87, Thm. II.6.4]. �

2.2. Triple product p-adic L-function. Let I be a normal domain finite flat over

Λ := OJ1 + pZpK,

where O is the ring of integers of a finite extension of Qp. For a positive integer N with p - N
and a Dirichlet character χ : (Z/NpZ)× → O×, we denote by So(N,χ, I) ⊂ IJqK the space of
ordinary I-adic cusp forms of tame level N and branch character χ as defined in [Hsi21, §3.1].

Denote by X+
I ⊂ Spec I(Qp) the set of arithmetic points of I, consisting of the ring homomor-

phisms Q : I → Qp such that Q|1+pZp is given by z 7→ zkQεQ(z) for some kQ ∈ Z≥2 called the
weight of Q and εQ(z) ∈ µp∞ . As in [Hsi21, §3.1], we say that f =

∑∞
n=1 an(f)qn ∈ So(N,χ, I)

is a primitive Hida family if for every Q ∈ X+
I the specialisation fQ gives the q-expansion of an

ordinary p-stabilised newform of weight of kQ and tame conductor N . Attached to such f we

let Xcls
I ⊂ X+

I be the set of ring homomorphisms Q as above with kQ ∈ Z such that fQ is the
q-expansion of a classical modular form.

For f a primitive Hida family, we let

ρf : GQ → AutI(Vf ) ' GL2(I)

denote the associated Galois representation, which here we take to be the dual of that in [Hsi21,
§3.2]; in particular, the determinant of ρf is χI · εcyc in the notations of loc. cit., where εcyc is the
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p-adic cyclotomic character. By [Wil88, Thm. 2.2.2], restricted to GQp the Galois representation
Vf fits into a short exact sequence

0→ V +
f → Vf → V −f → 0,

where the quotient V −f is free of rank one over I, with the GQp-action given by the unramified

character sending an arithmetic Frobenius Frp to ap(f).
Let

(ϕ, g,h) ∈ So(Nϕ, χϕ, Iϕ)× So(Ng, χg, Ig)× So(Nh, χh, Ih)

be a triple of primitive Hida families with

(2.1) χϕχgχh = ω2a for some a ∈ Z,

where ω is the Teichmüller character. Put

R = Iϕ⊗̂OIg⊗̂OIh,

which is a finite extension of the three-variable Iwasawa algebra Λ⊗̂OΛ⊗̂OΛ, and let

Xϕ
R := {(Q0, Q1, Q2) ∈ X+

Iϕ × Xcls
Ig × Xcls

Ih

: kQ0 ≥ kQ1 + kQ2 and kQ0 ≡ kQ1 + kQ2 (mod 2)}

be the weight space for R in the so-called ϕ-unbalanced range.
Let V = Vϕ⊗̂OVg⊗̂OVh be the triple tensor product Galois representation attached to (ϕ, g,h),

and writing det V = X 2εcyc define

(2.2) V† := V ⊗X−1,

which is a self-dual twist of V. Define the rank four GQp-invariant subspace Fϕ
p (V†) ⊂ V† by

(2.3) Fϕ
p (V†) := V +

ϕ ⊗̂OVg⊗̂OVh ⊗X−1.

For every Q = (Q0, Q1, Q2) ∈ Xϕ
R we denote by Fϕ

p (V†Q) ⊂ V†Q the corresponding specialisations.

Finally, for every rational prime ` denote by ε`(V
†
Q) the epsilon factor attached to the restriction

of V†Q to GQ`
as in [Tat79, p. 21], and assume that

(2.4) for some Q ∈ Xϕ
R, we have ε`(V

†
Q) = +1 for all prime factors ` of NϕNgNh.

As explained in [Hsi21, §1.2], it is known that condition (2.4) is independent of Q, and it implies
that the sign in the functional equation for the triple product L-function

L(V†Q, s)

(relating its values at s and −s) is +1 for all Q ∈ Xϕ
R.

For the next statement, we refer the reader to §2.3 for a review of the congruence ideal asso-
ciated with a primitive Hida family.

Theorem 2.2.1. Let (ϕ, g,h) be a triple of primitive Hida families as above satisfying conditions
(2.1) and (2.4). Assume in addition that:

• gcd(Nϕ, Ng, Nh) is square-free,
• the residual representation ρ̄ϕ is irreducible and p-distinguished,
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and fix a generator ηϕ of the congruence ideal of ϕ. Then there exists a unique element

Lϕp (ϕ, g,h) ∈ R

such that for all Q = (Q0, Q1, Q2) ∈ Xϕ
R of weight (k0, k1, k2) with εQ0 = 1 we have

(Lϕp (ϕ, g,h)(Q))2 = Γ
V†Q

(0) ·
L(V†Q, 0)

(
√
−1)2k0 · Ω2

ϕQ0

· Ep(Fϕ
p (V†Q)) ·

∏
`∈Σexc

(1 + `−1)2,

where:

• Γ
V†Q

(0) = ΓC(cQ)ΓC(cQ + 2− k1 − k2)ΓC(cQ + 1− k1)ΓC(cQ + 1− k2), with

cQ = (k0 + k1 + k2 − 2)/2

and ΓC(s) = 2(2π)−sΓ(s);
• ΩϕQ0

is the canonical period

ΩϕQ0
:= (−2

√
−1)k0+1 ·

‖ϕ◦Q0
‖2Γ0(Nϕ)

ıp(ηϕQ0
)
·
(

1−
χ′ϕ(p)pk0−1

α2
Q0

)(
1−

χ′ϕ(p)pk0−2

α2
Q0

)
,

with ϕ◦Q0
∈ Sk0(Nϕ) the newform of conductor Nϕ associated with ϕQ0

, χ′ϕ the prime-to-p

part of χϕ, and αQ0 the specialisation of ap(ϕ) ∈ I×ϕ at Q0;

• Ep(Fϕ
p (V†Q)) is the modified p-Euler factor

Ep(Fϕ
p (V†Q)) :=

Lp(F
ϕ
p (V†Q), 0)

εp(F
ϕ
p (V†Q)) · Lp(V†Q/F

ϕ
p (V†Q), 0)

· 1

Lp(V
†
Q, 0)

,

and Σexc is an explicitly defined subset of the prime factors of NϕNgNh, [Hsi21, p. 416].

Proof. This is [Hsi21, Thm. A]. �

Remark 2.2.2. For simplicity, we have stated the interpolation property of Lϕp (ϕ, g,h) restricted
to Q with εQ0 = 1, as this will suffice for our purposes; see [Hsi21, Thm. A] for the interpolation

property for all Q ∈ Xϕ
R.

2.3. Congruence ideal. Let f ∈ So(Nf , χf , I) be a primitive Hida family defined over I. Asso-
ciated with f there is a I-algebra homomorphism

λf : T(Nf , I)→ I

where T(Nf , I) is the Hecke algebra acting on ⊕χSo(Nf , χ, I), where χ runs over the characters of
(Z/pNfZ)×. Let Tm be the local component of T(Nf , I) through which λf factors, and following
[Hid88] define the congruence ideal C(f) of f by

C(f) := λf (AnnTm(kerλf )) ⊂ I.

When the residual representation ρ̄f is irreducible and p-distinguished, it follows from the results
of [Wil95] and [Hid88] that C(f) is generated by a nonzero element ηf ∈ I.

3. Factorisation of p-adic triple product L-function

In this section we relate the triple product p-adic L-function attached to triples of forms with
CM by K to a product of anticyclotomic Katz p-adic L-functions.
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3.1. Hida families with CM. We review the construction of CM Hida families following the
exposition in [Hsi21, §8.1]. Since it will suffice for our purposes, we assume that the class number
hK = |Pic(OK)| of K is coprime to p. Let K∞ be the unique Z2

p-extension of K, and denote by
Kp∞ the maximal subfield of K∞ unramified outside p. Put

Γ∞ := Gal(K∞/K) ' Z2
p, Γp∞ := Gal(Kp∞/K) ' Zp.

For every integral ideal c ⊂ OK we denote by K(c) the ray class field of K of conductor c. Thus
Kp∞ is also the maximal Zp-extension inside K(p∞). By our assumption on hK , the restriction
of the Artin map to K×p induces an isomorphism 1+pZp ' Γp∞ , where we identified Z×p and O×Kp

by the embedding ιp. Denote by γp the topological generator of Γp∞ corresponding to 1+p under
this isomorphism, and for each variable S let ΨS : Γ∞ → ZpJSK× be the universal character given
by

ΨS(σ) = (1 + S)l(σ),

where l(σ) ∈ Zp is such that σ|Kp∞ = γ
l(σ)
p . Fix c prime to p, and for any finite order character

ψ : GK → O× of tame conductor c put

θψ(S)(q) =
∑

(a,pc)=1

ψ(σa)Ψ
−1
S (σa)q

N(a) ∈ OJSKJqK,

where σa ∈ Gal(K(cp∞)/K) is the Artin symbol of a. Then θψ(S) is a primitive Hida family

defined over OJSK of level DKN(c) and tame character (ψ ◦ V )ηK/Qω
−1, where V : Gab

Q → Gab
K

is the transfer map and ηK/Q is the quadratic character associated to K/Q.

3.2. Setting. Let E/Q be an elliptic curve of conductor N with CM by the maximal order OK .
Assume that the prime p > 2 is a prime of good ordinary reduction for E, so in particular (spl)
holds, and note that hK = 1. Let λ be the Grossencharacter of K associated to E by the theory
of complex multiplication, so we have

L(E, s) = L(λ, s).

We now introduce a triple
(ϕ, g,h)

attached to certain auxiliary choices. Let `, `′ be distinct primes split in K with (``′, Np) = 1.
Take Φ (resp. Ξ) a ring class character of conductor `mOK (resp. (`′)nOK) for some m,n > 0,
and write

Φ = φ1−c, Ξ = ξ1−c

with φ (resp. ξ) a ray class character modulo `mOK (resp. qnOK), where c is the non-trivial
automorphism ofK/Q (see [Hid06b, Lemma 5.31]). As usual, here we write φc for the composition
of φ with c, and write φ1−c (and similarly ξ1−c) to denote the product φ(φc)−1. Consider the
primitive CM Hida families

g = θφ(S1), h = θξ(S2)

of level DK`
2m and DK(`′)2n, respectively. On the other hand, put ψ = (φcξc)−1 and let

(3.1) ϕ := θ(λψ)

be the theta series of weight 2 associated to λψ.
Note that

L(E, s) = L(λ, s) = L(λ−1, s− 1),

since E is defined over Q. The following immediate consequence of the nonvanishing results due
to Greenberg and Rohrlich will be a key ingredient in the proof of our main result.
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Theorem 3.2.1. There exists ring class characters Φ and Ξ as above such that:

(1) Both Φ and Ξ have order prime to p,
(2) The restrictions φ|GQp

and ξ|GQp
are both non-trivial,

(3) Both φ and ξ have order at 3,

and the following nonvanishing condition holds:

L(λ−1Φ−1, 0) · L(λ−1Ξ−1, 0) · L(λ−1,Φ−1Ξ−1, 0) 6= 0.

Proof. Since conditions (1)–(3) exclude only finitely many ring class characters, this follows from
the nonvanishing results of [Gre85] and [Roh84]. �

Choice 3.2.2. From now on, we fix a pair of ring class characters Φ and Ξ satisfying the conditions
of Theorem 3.2.1, and let (ϕ, g,h) be the resulting triple as defined above.

For the construction of nontrivial Selmer classes in the Selmer group of E, we will be interested
in the Iwasawa main conjecture and the p-adic L-function for the triple (ϕ, g,h).

3.3. Congruence ideal of CM Hida families. Denote by Γ− the maximal Zp-free quotient of
Z−(c) := Z(c)/Z(c)1+c, and let

π− : Z(c)→ Γ−

be the natural projection. For a Hecke character η of conductor dividing cp∞, we denote by L−p,η
the image of Lp,c under the map WJZ(c)K→WJΓ−K given by γ 7→ η(γ)π−(γ) for γ ∈ Z(c). Here,
with a slight abuse of notation, we enlarge W if necessary so that is contains the values of η, but
we continue to denote it by W.

Lemma 3.3.1. Let ϕ be the primitive CM Hida passing through the ordinary p-stabilisation of
ϕ in (3.1). Then the congruence ideal C(ϕ) is generated by

hK
wK
· L−

p,λc−1ψc−1 ,

where hK = |Pic(OK)| and wK = |O×K |.

Proof. A generator of C(ϕ) is given by a congruence power series H(ϕ) attached to ϕ as in
[Hid06a]. By our Choice 3.2.2 of Φ and Ξ, the H(ϕ) corresponds to a branch character satisfying
the hypotheses (1)–(4) in [Hid06a, p. 466], so as noted in p. 469 of op. cit, the result follows from
the proof of the anticyclotomic Iwasawa main conjecture by Hida–Tilouine [HT93, HT94] and
Hida [Hid06a]. �

3.4. Proof of the factorisation. Let ϕ ∈ OJS0KJqK be the primitive CM Hida family associated
to the character ϕ in (3.1), and let Q0 ∈ X+

OJS0K be such that ϕQ0
is the ordinary p-stabilisation

of ϕ. Letting

(3.2) R ' OJS0K⊗̂OOJS1, S2K→ OJS1, S2K

be the specialisation map at Q0, in the followiing we denote by

L ϕ
p (ϕ, g,h)(S1, S2) ∈ OJS1, S2K

the image of the triple product p-adic L-function L ϕ
p (ϕ, g,h) ∈ R of Theorem 2.2.1 under this

map. Upon the choice of a topological generator γ− ∈ Γ−, as usual we shall identify WJΓ−K with
the power series ring WJW K via γ− 7→ 1 +W . Denote by λ 7→ λι the involution of WJΓ−K given
by γ− 7→ (γ−)−1.
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Proposition 3.4.1. Put

W1 = (1 + S1)1/2(1 + S2)1/2 − 1, W2 = (1 + S1)1/2(1 + S2)−1/2 − 1.

Then we have the factorisation

L ϕ
p (ϕ, g,h)2(S1, S2) = u · L−

p,λ−1ψc−1(W1)ι · L−
p,λ−1(W1)

× L−
p,λ−1φc−1(W2)ι · L−

p,λ−1ξc−1(W2),

where u ∈ W× is a p-adic unit.

Proof. Denote by V†Q0
the image of V† under the specialisation map (3.2). Then from (2.2) and

the definition of ϕ we see that

V†Q0
= IndQ

K(λ−1ψ−1)⊗ IndQ
K(φ−1ΨS1)⊗ IndQ

K(ξ−1ΨS2)⊗X−1,

where X = (Ψ
1/2
S1

Ψ
1/2
S2
◦ V ) : GQ → ZpJS1, S2K×, and so an immediate computation shows that

(3.3)
V†Q0

' IndQ
K(λ−1ψc−1Ψ1−c

W1
)⊕ IndQ

K(λ−1Ψc−1
W1

)

⊕ IndQ
K(λ−1φc−1Ψ1−c

W2
)⊕ IndQ

K(λ−1ξc−1Ψc−1
W2

).

For i = 1, 2, let ζi be a primitive pni-th root of unity with ni > 0, and put Q1 = ζ1ζ2 − 1,
Q2 = ζ1ζ

−1
2 −1, so the specialisations gQ1

,hQ2 are both CM forms of weight 1. Let εi : Γ− → µp∞

be the finite order character given by εi(γ
−) = ζi. Letting Q = (Q0, Q1, Q2), we thus see that

V†Q = IndQ
K(λ−1ψc−1ε−1

1 )⊕ IndQ
K(λ−1ε1)

⊕ IndQ
K(λ−1φc−1ε−1

2 )⊕ IndQ
K(λ−1ξc−1ε2),

Fϕ
p (V†Q) = λ−1

p ψc−1
p ε−1

1,p ⊕ λ
−1
p ε1,p ⊕ λ−1

p φc−1
p ε−1

2,p ⊕ λ
−1
p ξc−1

p ε2,p.

Thus the terms appearing in the interpolation formula of Theorem 2.2.1 become:

(3.4)
Γ
V†Q

(0) · L(V†Q, 0) = π−4 · L(λ−1ψc−1ε−1
1 , 0) · L(λ−1ε1, 0)

× L(λ−1φc−1ε−1
2 , 0) · L(λ−1ξc−1ε2, 0);

Ep(Fϕ
p (V†Q)) = Ep(λ−1ψc−1ε−1

1 ) · Ep(λ−1ε1) · Ep(λ−1φc−1ε−1
2 ) · Ep(λ−1ξc−1ε2);(3.5)

ΩϕQ0
= (−2

√
−1)3 ·

‖ϕ‖2Γ0(Nϕ)

ıp(ηϕQ0
)
·
(

1− λψ(p)

λψ(p̄)

)(
1− λψ(p)

pλψ(p̄)

)
;(3.6)

and we note that Σexc = ∅ in this case.
On the other hand, from Hida’s formula for the adjoint L-value [HT93, Thm. 7.1] and Dirichlet’s

class number formula we obtain

‖ϕ‖2Γ0(Nϕ) =
D2
K

24π3
· 2πhK

wK
√
DK
· L(λ1−cψ1−c, 1).
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Noting that L(λ1−cψ1−c, 0) = L(λc−1ψc−1N−1, 0) and λc−1ψc−1N−1 has infinity type (2, 0), the
interpolation property in Theorem 2.1.1 can thus be rewritten as

Lp,c``′(λc−1ψc−1N−1) =

(
Ωp

Ω∞

)2

· 23π2

√
DK

3

×
(

1− λψ(p)

λψ(p̄)

)(
1− λψ(p)

pλψ(p̄)

)
· wK
hK
· ‖ϕ‖2Γ0(Nϕ)

= −
(

Ωp

Ω∞

)2

· π
2
√
−1

√
DK

3 · ΩϕQ0
· ηϕQ0

· wK
hK

,

using (3.6) for the second equality, and where c denotes the conductor of λc−1. By the functional
equation for Katz’s p-adic L-function (see Theorem 2.1.1) together with Lemma 3.3.1 this shows
that

(3.7)
1

Ω2
ϕQ0

=

(
Ωp

Ω∞

)4

· π
4

D3
K

,

where the equality is up to a p-adic unit independent ofQ1, Q2. Thus substituting (3.4), (3.5), (3.6)
and (3.7) into the interpolation formula for L ϕ

p (ϕ, g,h) we thus arrive at

L ϕ
p (ϕ, g,h)2(ζ1ζ2 − 1, ζ1ζ

−1
2 − 1) = D−3

K · L
−
p,λ−1ψc−1(ζ−1

1 − 1) · L−
p,λ−1(ζ1 − 1)

× L−
p,λ−1φc−1(ζ−1

2 − 1) · L−
p,λ−1ξc−1(ζ2 − 1),

for all non-trivial p-power roots of unity ζ1, ζ2, and the result follows. �

4. Selmer group decompositions

In this section we define different Selmer groups attached to Hecke characters and triple prod-
ucts of modular forms. Then, for the so-called unbalanced Selmer groups attached to the triple
product, we prove a decomposition mirroring the factorisation in Proposition 4.3.1.

4.1. Selmer groups for Hecke characters. Let ν be a Hecke character of K with values in
the ring of integers O of a finite extension Φ of Qp. Denote by Oν the free O-module of rank 1
on which GK acts via ν, and put

Tν = Oν , Vν = Tν ⊗O Φ, Aν = Vν/Tν = Tν ⊗O (Φ/O).

Let Σ be any finite set of places of K containing∞ and the primes dividing p or the conductor of
ν, and for any finite extension F/K denote by GF,Σ the Galois group of the maximal extension
of F unramified outside the places above Σ.

Definition 4.1.1. Let F/K be a finite extension, and for v|p a prime of F above p put

H1
∅(Fv, Vν) = H1(Fv, Vν), H1

0(Fv, Vν) = {0}.

For (Lp,Lp) ∈ {∅, 0}⊕2 define the Selmer group SelLp,Lp(F, Vν) by

SelLp,Lp(F, Vν) = ker

(
H1(GF,Σ, Vν)→

∏
v|p

H1(Fv, Vν)

H1
Lp(Fv, Vν)

×
∏
v|p

H1(Fv, Vν)

H1
Lp(Fv, Vν)

×
∏

v∈Σ,v-p∞

H1(Fv, Vν)

)
.
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Remark 4.1.2. In particular, if ν has infinity type (−1, 0), the Selmer group

Sel∅,0(F, Vν) = ker

(
H1(GF,Σ, Vν)→

∏
v|p

H1(Fv, Vν)×
∏

v∈Σ,v-p∞

H1(Fv, Vν)

)
agrees with the Bloch–Kato Selmer group of Vν (see e.g. [AH06, §1.1] or [Arn07, §1.2]). Similarly,
if ν has infinity type (0,−1) then Sel0,∅(F, Vν) agrees with the Bloch–Kato Selmer group of Vν .

For ? ∈ {∅, 0}, the local condition H1
?(Fv, Tν) and H1

?(Fv, Aν) are defined from the above by
propagation, and using these we define SelLp,Lp(F, Tν) and SelLp,Lp(F,Aν) by the same recipe as

before. Then, letting K∞/K denote the anticyclotomic Zp-extension of K, we set

(4.1)

SelLp,Lp(K∞, Tν) = lim←−
n

SelLp,Lp(Kn, Tν),

SelLp,Lp(K∞, Aν) = lim−→
n

SelLp,Lp(Kn, Aν).

Let Λ = OJΓ−K ' OJW K be the anticyclotomic Iwasawa algebra, and denote by ΨW : GK →
Λ× the universal character given g 7→ [g|K∞ ], where γ 7→ [γ] is the inclusion of Γ− intro Λ− as a
group-like element. Then we have isomorphisms

H1(K,Tν ⊗Ψ−1
W ) ' lim←−

n

H1(Kn, Tν), H1(K,Aν ⊗ΨW ) ' lim−→
n

H1(Kn, Aν)

by Shapiro’s lemma. In the following we let SelLp,Lp(K,Tν ⊗Ψ−1
W ) and SelLp,Lp(K,Aν ⊗ΨW ) be

the Selmer groups corresponding to (4.1) under these isomorphism, and let

XLp,Lp(K,Aν ⊗ΨW ) = HomZp(SelLp,Lp(K,Aν ⊗ΨW ),Qp/Zp)

denote the Pontryagin dual of SelLp,Lp(K,Aν ⊗ΨW ).

4.2. Selmer groups for triple products. Let (ϕ, g,h) be a triple as in Choice 3.2.2. As in the
proof of Proposition 3.4.1, suppose ϕ arising from the specialisation of ϕ at an arithmetic point
Q0, and denote by V† the triple product Galois representation associated to (ϕ, g,h) as in (2.2).

Definition 4.2.1. Put

F bal
p (V†) = F 2

p (V†) :=
(
V +
ϕ ⊗ V +

g ⊗ Vh + V +
ϕ ⊗ Vg ⊗ V +

h + Vϕ ⊗ V +
g ⊗ V +

h

)
⊗X−1

and define the balanced local condition H1
bal(Qp,V

†) by

H1
bal(Qp,V

†) := im
(
H1(Qp,F

bal
p (V†))→ H1(Qp,V

†)
)
.

Similarly, put Fϕ
p (V†) :=

(
V +
ϕ ⊗ Vg ⊗ Vh

)
⊗ X−1 and define the ϕ-unbalanced local condition

H1
ϕ(Qp,V

†) by

H1
ϕ(Qp,V

†) := im
(
H1(Qp,F

ϕ
p (V†))→ H1(Qp,V

†)
)
.

It is easy to see that the maps appearing in these definitions are injective, and in the following
we shall use this to identify H1

?(Qp,V
†) with H1(Qp,F ?

p (V†)) for ? ∈ {bal,ϕ}.

Definition 4.2.2. Let ? ∈ {bal,ϕ}, and define the Selmer group Sel?(Q,V†) by

Sel?(Q,V†) := ker

{
H1(Q,V†)→ H1(Qp,V

†)

H1
?(Qp,V†)

×
∏
v 6=p

H1(Qnr
v ,V

†)

}
.

We call Selbal(Q,V†) (resp. Selϕ(Q,V†)) the balanced (resp. ϕ-unbalanced) Selmer group.
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Let A† = HomZp(V†, µp∞) and for ? ∈ {bal,ϕ} define H1
?(Qp,A

†) ⊂ H1(Qp,A
†) to be the

orthogonal complement of H1
?(Qp,V

†) under the local Tate duality

H1(Qp,V
†)×H1(Qp,A

†)→ Qp/Zp.

Similarly as above, we then define the balanced and ϕ-unbalanced Selmer groups with coefficients
in A† by

Sel?(Q,A†) := ker

{
H1(Q,A†)→ H1(Qp,A

†)

H1
?(Qp,A†)

×
∏
v 6=p

H1(Qnr
v ,A

†)

}
,

and let X?(Q,A†) = HomZp(Sel?(Q,A†),Qp/Zp) denote the Pontryagin dual of Sel?(Q,A†).

4.3. Proof of the decompositions. Denoting by V†Q0
the image of V† under the specialisation

map (3.2) at Q0, we have an isomorphism

(4.2)
H1(Q,V†Q0

) ' H1(K,Tλ−1ψc−1 ⊗Ψ1−c
W1

)⊕H1(K,Tλ−1 ⊗Ψc−1
W1

)

⊕H1(K,Tλ−1φc−1 ⊗Ψ1−c
W2

)⊕H1(K,Tλ−1ξc−1 ⊗Ψc−1
W2

)

arising from (3.3) and Shapiro’s lemma.

Proposition 4.3.1. Under (4.2), the balanced Selmer group Selbal(Q,V†Q0
) decomposes as

Selbal(Q,V†Q0
) ' Sel∅,0(K,Tλ−1ψc−1 ⊗Ψ1−c

W1
)⊕ Sel0,∅(K,Tλ−1 ⊗Ψc−1

W1
)

⊕ Sel∅,0(K,Tλ−1φc−1 ⊗Ψ1−c
W2

)⊕ Sel∅,0(K,Tλ−1ξc−1 ⊗Ψc−1
W2

),

and the ϕ-unbalanced Selmer group Selϕ(K,V†Q0
) decomposes as

Selϕ(Q,V†Q0
) ' Sel∅,0(K,Tλ−1ψc−1 ⊗Ψ1−c

W1
)⊕ Sel∅,0(K,Tλ−1 ⊗Ψc−1

W1
)

⊕ Sel∅,0(K,Tλ−1φc−1 ⊗Ψ1−c
W2

)⊕ Sel∅,0(K,Tλ−1ξc−1 ⊗Ψc−1
W2

).

The proof will follow easily from the following lemma.

Lemma 4.3.2. Under (4.2), the Selmer group Selbal(Q,V†Q0
) corresponds to the submodule of

H1(K, (Tλ−1ψc−1 ⊗Ψ1−c
W1

)⊕ (Tλ−1 ⊗Ψc−1
W1

)⊕ (Tλ−1φc−1 ⊗Ψ1−c
W2

)⊕ (Tλ−1ξc−1 ⊗Ψc−1
W2

))

consisting of unramified-outside-p classes x with resv(x) belonging to{
H1(Kp, (Tλ−1ψc−1 ⊗Ψ1−c

W1
)⊕ (Tλ−1φc−1 ⊗Ψ1−c

W2
)⊕ (Tλ−1ξc−1 ⊗Ψc−1

W2
)) if v = p,

H1(Kp, Tλ−1 ⊗Ψc−1
W1

) if v = p,

and the Selmer group Selϕ(Q,V†Q0
) similarly corresponds to the submodule consisting of unramified-

outside-p classes x with resp(x) = 0 (and no condition at p).

Proof. Using (3.3) we see that the balanced local condition is given by

F bal
p (V†Q0

) = (Tλ−1ψc−1 ⊗Ψ1−c
W1

)⊕ (Tλ−c ⊗Ψ1−c
W1

)

⊕ (Tλ−1φc−1 ⊗Ψ1−c
W2

)⊕ (Tλ−1ξc−1 ⊗Ψc−1
W2

),

from where we obtain

(4.3)
F bal

p (V†Q0
) = (Tλ−1ψc−1 ⊗Ψ1−c

W1
)⊕ (Tλ−1φc−1 ⊗Ψ1−c

W2
)⊕ (Tλ−1ξc−1 ⊗Ψc−1

W2
),

F bal
p (V†Q0

) = Tλ−1 ⊗Ψc−1
W1

,
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yielding the stated descriptions of Selbal(K,V†Q0
). Similarly, we see that the ϕ-unbalanced local

condition is given by

Fϕ
p (V†Q0

) = (Tλ−1ψc−1 ⊗Ψ1−c
W1

)⊕ (Tλ−1 ⊗Ψc−1
W1

)

⊕ (Tλ−1φc−1 ⊗Ψ1−c
W2

)⊕ (Tλ−1ξc−1 ⊗Ψc−1
W2

),

and this immediately yields the stated description of Selϕ(Q,V†). �

Proof of Proposition 4.3.1. Put

(4.4)
Ṽ†Q0

:= (Tλ−1ψc−1 ⊗Ψ1−c
W1

)⊕ (Tλ−1 ⊗Ψc−1
W1

)

⊕ (Tλ−1φc−1 ⊗Ψ1−c
W2

)⊕ (Tλ−1ξc−1 ⊗Ψc−1
W2

),

so we have

H1(Q,V†Q0
) ' H1(K, Ṽ†Q0

).

Denoting by Sel{p}(K, Ṽ†Q0
) the submodule of H1(K, Ṽ†Q0

) consisting of unramified-outside-p
classes, it follows from Lemma 4.3.2 that under the above isomorphism the balanced Selmer group

Selbal(Q,V†Q0
) corresponds to the kernel of the restriction map from Sel{p}(K, Ṽ†Q0

) to

H1(Kp, Ṽ
†
Q0

)

H1(Kp, (Tλ−1ψc−1 ⊗Ψ1−c
W1

)⊕ (Tλ−1φc−1 ⊗Ψ1−c
W2

)⊕ (Tλ−1ξc−1 ⊗Ψc−1
W2

))

×
H1(Kp, Ṽ

†
Q0

)

H1(Kp, Tλ−1 ⊗Ψc−1
W1

)
,

and this kernel is isomorphic to

Sel∅,0(K,Tλ−1ψc−1 ⊗Ψ1−c
W1

)⊕ Sel∅,0(K,Tλ−1φc−1 ⊗Ψ1−c
W2

)

⊕ Sel∅,0(K,Tλ−1ξc−1 ⊗Ψc−1
W2

)⊕ Sel0,∅(K,Tλ−1 ⊗Ψc−1
W1

).

This shows the result for Selbal(K,V†Q0
), and the case of Selϕ(K,V†Q0

) follows from Lemma 4.3.2
in the same manner. �

As a consequence we also obtain the following decomposition for the Selmer groups with co-

efficients in A†Q0
= HomZp(V†Q0

, µp∞), mirroring in the case of Selϕ(K,A†Q0
) the factorisation of

p-adic L-functions in Proposition 3.4.1.

Corollary 4.3.3. The balanced Selmer group Selbal(Q,A†Q0
) decomposes as

Selbal(Q,A†Q0
) ' Sel0,∅(K,Aλ−cψ1−c ⊗Ψc−1

W1
)⊕ Sel∅,0(K,Aλ−c ⊗Ψ1−c

W1
)

⊕ Sel0,∅(K,Aλ−cφ1−c ⊗Ψc−1
W2

)⊕ Sel0,∅(K,Aλ−cξ1−c ⊗Ψ1−c
W2

),

and the ϕ-unbalanced Selmer group Selϕ(Q,A†Q0
) decomposes as

Selϕ(Q,A†Q0
) ' Sel0,∅(K,Aλ−cψ1−c ⊗Ψc−1

W1
)⊕ Sel0,∅(K,Aλ−c ⊗Ψ1−c

W1
)

⊕ Sel0,∅(K,Aλ−cφ1−c ⊗Ψc−1
W2

)⊕ Sel0,∅(K,Aλ−cξ1−c ⊗Ψ1−c
W2

).

Proof. This is immediate from Proposition 4.3.1 and local Tate duality. �
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Note that the only difference between Selbal(Q,A†Q0
) and Selϕ(Q,A†Q0

) as described in Corol-

lary 4.3.3 is their second direct summand: The direct summand Sel∅,0(K,Aλ−c ⊗ Ψ1−c
W1

) in the

former is replaced by Sel0,∅(K,Aλ−c⊗Ψ1−c
W1

) in the latter (i.e., their local conditions at the primes

above p are reversed).
Under some hypotheses, the Pontryagin dual of Sel0,∅(K,Aλ−c ⊗ Ψ1−c

W1
) will be Λ-torsion (see

Theorem 5.0.5), while Sel∅,0(K,Aλ−c ⊗Ψ1−c
W1

) will have Λ-corank one.

5. Iwasawa main conjectures

In this section we explain a variant of the Iwasawa main conjecture for triple products formu-
lated in [ACR21].

In the notations of §3.2 we now set S1 = S2, and call it S (i.e., the weights of g and h move in
tandem). Then the change of variables of Proposition 3.4.1 becomes (W1,W2) = (S, 0), and we
denote by

L ϕ
p (ϕ, gh) ∈ Λ := OJSK

the resulting restriction of L ϕ
p (ϕ, g,h). Similarly, we put V† = V†|S1=S2 and denote by

(5.1) κ(ϕ, gh) ∈ H1(Q,V†)
the resulting restriction of the three-variable big diagonal class κ(ϕ, g,h) constructed in [BSV21,
§8.1].

Remark 5.0.1. Directly from [BSV21, §8.1] one obtains a class in the cohomology of a represen-
tation non-canonically isomorphic to finitely many copies of V†; to obtain a class as in (5.1) one
further needs to pick a choice of level-N = lcm(Nϕ, Ng, Nh) test vectors for the triple (ϕ, g,h),
which we implictly take to be the one furnished by [Hsi21, Thm. A].

It follows from [BSV21, Cor. 8.2] that the class κ(ϕ, gh) lands in Selbal(K,V†). Put

F 3
p (V†) = V +

ϕ ⊗̂OV +
g ⊗̂OV +

h ⊗X
−1 ⊂ V†

and denote by F 3
p (V†) ⊂ V† the corresponding restriction to the line S1 = S2. Then we have

F bal
p (V†)/F 3

p (V†) ' Vgh
ϕ ⊕ Vϕh

g ⊕ Vϕg
h ,

where Vgh
ϕ is the restriction of Vgh

ϕ = V −ϕ ⊗̂OV +
g ⊗̂OV +

h ⊗X
−1 restricted to the line S1 = S2, and

similarly for the other two direct summands. In terms of the description given in the proof of
Lemma 4.3.2, we find that

F 3
p (V†) = Tλ−1ψc−1 ⊗Ψ1−c

S , F 3
p (V†) = {0},

and so together with (4.3) we obtain

(5.2) H1(Qp,Vgh
ϕ ) ' H1(Kp, Tλ−1 ⊗Ψc−1

S ),

and under this isomorphism the inclusion κ(ϕ, gh) ∈ Selbal(Q,V†) implies that

resp(κ(ϕ, gh)) ∈ H1(Kp, λ
−1Ψc−1

S ).

Put u := 1 + p and for any Λ-module M and integer k denote by Mk the specialisation of M
at S = uk−2 − 1. Then in particular we see that there are isomorphisms

(5.3)
logp : H1(Kp, Tλ−1 ⊗Ψc−1

S )k → Qp, k ≥ 3,

exp∗p : H1(Kp, Tλ−1 ⊗Ψc−1
S )k → Qp, k = 2,
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given by the Bloch–Kato logarithm and dual exponential maps.

Theorem 5.0.2 (Explicit reciprocity Law). There is an injective Λ-module homomorphism

Logϕ : H1(Kp, Tλ−1 ⊗Ψc−1
S )→ Λ

with pseudo-null cokernel satisfying for any z ∈ H1(Kp, Tλ−1 ⊗Ψc−1
S ) the interpolation property

Logϕ(z)k =

{
ck · logp(zk) if k ≥ 3,

ck · expp(zk) if k = 2,

where ck is an explicit nonzero constant, and such that

Logϕ
(
resp(κ(ϕ, gh))

)
= L ϕ

p (ϕ, gh).

Proof. In light of (5.2), the construction of Logϕ follows from specialising the three-variable p-adic
regulator map of [BSV21, §7.1] similarly as in the proof of [ACR21, Prop. 7.3]; the reciprocity
law then follows from [BSV21, Thm. A] (see also [DR21, Thm. 10]). �

As explained in more detail in Remark 5.0.4 below (see also [ACR21, §7.3]), the following can
be seen as the equivalence between two different formulations of the Iwasawa–Greenberg main
conjecture [Gre94] for V†.

Proposition 5.0.3. The following statements (1)-(2) are equivalent:

(1) κ(ϕ, gh) is not Λ-torsion, the modules Selbal(Q,V†) and Xbal(Q,A†) have both Λ-rank
one, and

charΛ

(
Xbal(Q,A†)tors

)
= charΛ

(
Selbal(Q,V†)
Λ · κ(ϕ, gh)

)2

in Λ⊗Qp, where the subscript tors denotes the Λ-torsion submodule.

(2) L ϕ
p (ϕ, gh) is nonzero, the modules Selϕ(Q,V†) and Xϕ(Q,A†) are both Λ-torsion, and

charΛ

(
Xϕ(Q,A†)

)
=
(
L ϕ
p (ϕ, gh)

)2
in Λ⊗Qp.

Proof. This follows from Theorem 5.0.2 and global duality in the same way as [ACR21, Thm. 7.15].
Since the required arguments are virtually the same, we omit the details. �

Remark 5.0.4. For any k ∈ Z and ζ ∈ µp∞ denote by Pk,ζ the height one prime of Λ given by

Pk,ζ = (S − γk−2ζ), and put

Cbal = {Pk,ζ : k ≥ 2, ζ ∈ µp∞}, Cϕ = {P1,ζ : ζ ∈ µp∞}.

Then the pairs (F bal
p (V†), Cbal) and (Fϕ

p (V†), Cϕ) both satisfy the Panchishkin condition for

V† introduced in [Gre94, p. 216], and statements (1) and (2) of Proposition 5.0.3 can be viewed
as instances of the corresponding Iwasawa main conjectures formulated in op. cit..

The results of Proposition 3.4.1, Proposition 4.3.1, and Corollary 4.3.3 reduce the study of the
Selmer groups Selbal(Q,A†), Selϕ(Q,A†) and their associated main conjectures to a corresponding
study for Selmer groups of twists of E.

The next result due to Agboola–Howard and Arnold (building on work of Greenberg, Yager,
and Rubin, among others) will therefore be useful.
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Theorem 5.0.5. Let E/Q be an elliptic curve with CM by the ring of integers of K having root
number w = +1. Let ν be a ring class character of K of conductor divisible only by primes ` - p
split in K. Then Sel∅,0(K,Tλ−1ν ⊗Ψ1−c

S ) = 0, X0,∅(K,Aλ−cν−1 ⊗Ψc−1
S ) is Λ-torsion, and

charΛ

(
X0,∅(K,Aλ−cν−1 ⊗Ψc−1

S )
)

=
(
L−
p,λ−1ν

(S)
)

as ideals in ΛW [1/p].

Proof. For ν = 1 this is [AH06, Thm. 2.4.17]; the general case follows from [Arn07, Thm. 2.1]. �

6. Proof of main result

In this section we assemble all the pieces to conclude the proof of Theorem A. The definition
of the generalised Kato class κp appearing in the statement is given in Definition 6.2.1 below.

6.1. Preliminaries. The link between one of the Selmer groups for characters appeared in §4.3
and the Selmer group of E arises from the following lemma, whose proof we learnt from [Agb07,
§6]. Denote by

locp : Sel(Q, VpE)→ H1(Qp, VpE)

the restriction map at p.

Lemma 6.1.1. Assume that Sel(Q, VpE) 6= ker(locp). Then

rankOK,p
Sel0,∅(K,Tλ−1) = rankOK,p

Sel(K,Tλ−1)− 1.

Proof. Put Dp = Kp/OK,p. By global duality we have the exact sequence

(6.1) 0→ Sel(K,Tλ−1)→ Selrel(K,Tλ−1)
α−→
∏
v|p

H1(Kv, Tλ−1)

E(Kv)⊗OK,p
β∨−−→ Sel(K,Aλ−c)∨,

where the last arrow is identified with Pontryagin dual of the restriction map

β : Sel(K,Aλ−c)→
∏
v|p

E(Kv)⊗Dp

via local duality. By assumption, the image of β has OK,p-rank one. By (6.1) this implies that the
map α has finite image (noting that its target hasOK,p-rank one), and so rankOK,p

Selrel(K,Tλ−1) =
rankOK,p

Sel(K,Tλ−1). In particular, this shows that

rankOK,p
Sel0,∅(K,Tλ−1) = rankOK,p

ker
(
locp : Sel(K,Tλ−1)→ E(Kp)⊗OK,p

)
.

Since the image of the restriction map locp has OK,p-rank one by our hypotheses, this implies the
result. �

For any OJSK-module M we denote by MS = M/SM the denote the cokernel of multiplication
by S. We shall also need the following variant of Mazur’s control theorem. (Note however that
the Selmer groups in the statement have reversed local conditions at the primes above p with
respect to the usual Selmer groups.)

Proposition 6.1.2. Multiplication by S induces natural maps

r∗ : Sel∅,0(K,Aλ−c)→ Sel∅,0(K,Aλ−c ⊗Ψ1−c
S )|S=0,

r : Sel0,∅(K,Tλ−1 ⊗Ψc−1
S )S → Sel0,∅(K,Tλ−1)

which are injective with finite cokernel.
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Proof. We only explain the case of r∗, as the case of r follows in the same manner. The map r∗

fits into the commutative diagram with exact rows

0 // Sel∅,0(K,Aλ−c) //

r∗

��

Sel{p}(K,Aλ−c) //

s∗

��

H1(Kp, Aλ−c)

t∗

��
0 // Sel∅,0(K,Aλ−c ⊗Ψ1−c

S )|S=0
// Sel{p}(K,Aλ−c ⊗Ψ1−c

S )|S=0
// H1(Kp, Aλ−c ⊗Ψ1−c

S )|S=0.

It follows from Lubin–Tate theory that the local field extension Kp(E[p])/Kp has degree p−1 (see
[dS87, Ch. I]), and so H0(K∞,p, E[p∞]) = 0 since Γ− is a pro-p group. By inflation-restriction,
it follows that the map t∗ is an isomorphism. On the other hand, letting Σ be any finite set of
places of K containing∞ and the primes dividing pN , the map s∗ above fits into the commutative
diagram with exact rows

0 // Sel{p}(K,Aλc) //

s∗

��

H1(KΣ/K,Aλ−c) //

u∗

��

⊕
w∈Σ,w-p H1(Kw, Aλ−c)

v∗

��
0 // Sel{p}(K,Aλ−c ⊗Ψ1−c

S )|S=0
// H1(KΣ/K,Aλ−c ⊗Ψ1−c

S )|S=0
//
⊕

w∈Σ,w-p H1(Kw, Aλ−c ⊗Ψ1−c
S )|S=0,

where KΣ is the Galois group of the maximal extension of K unramified outside Σ. The vanishing
of H0(K∞,p, E[p∞]) implies that u∗ is an isomorphism, and as shown in the proof of [dS87,
Lem. IV.3.5] as consequence of [Maz72, Cor. 4.4], the kernel of the map v∗ is finite. By the Snake
Lemma applied to the previous two commutative diagrams, the result follows. �

Specialised to (W1,W2) = (S, 0), the decomposition of Selbal(Q,V†Q0
) given in Proposition 4.3.1

becomes

(6.2)
Selbal(Q,V†) ' Sel∅,0(K,Tλ−1ψc−1 ⊗Ψ1−c

S )⊕ Sel0,∅(K,Tλ−1 ⊗Ψc−1
S )

⊕ Sel∅,0(K,Tλ−1φc−1 ⊗Ψ1−c
S )S ⊕ Sel∅,0(K,Tλ−1ξc−1 ⊗Ψc−1

S )S .

6.2. Generalised Kato class. We consider the following twisted variant of the generalised Kato
classes introduced by Darmon–Rotger [DR16] (note that it is crucial for us to take ϕ = θ(λψ) for
appropriate ψ as in §3.2, rather than the newform θ(λ) associated with E/Q as in loc. cit..)

Definition 6.2.1 (Generalised Kato class). Let κp be the image of κ(ϕ, gh) under the composi-
tion

Selbal(Q,V†)→ Sel0,∅(K,Tλ−1 ⊗Ψc−1
S )→ Sel0,∅(K,Tλ−1),

where the first arrow is given by the projection onto the second direct summand in (6.2), and the
second arrow is induced by the multiplication by S on Tλ−1 ⊗Ψc−1

S .

Using H1(K,Vλ−1) ' H1(Q, VpE), we shall also view κp in the latter group.

Lemma 6.2.2. Assume that L(E, 1) = 0. Then κp ∈ Sel(Q, VpE).

Proof. Viewing κp as a class in Sel0,∅(K,Tλ−1) it suffices to show that resp(κp) = 0 (and therefore

κp lies in the fine Selmer group of E). Since L(E, 1) = L(λ−1, 0), by Theorem 5.0.2, Proposi-
tion 4.3.1, and Theorem 2.1.1 we see that

L(E, 1) = 0 =⇒ exp∗p(resp(κp)) = 0,

where exp∗p is the Bloch–Kato dual exponential map in (5.3). Since for k = 2 (i.e., S = 0) this

map is an isomorphism, the result follows. �
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6.3. Proof of Theorem A.

Theorem 6.3.1. Assume that L(E, s) has sign +1 and L(E, 1) = 0. Then

rankOK,p
Sel0,∅(K,Tλ−1) = 1 =⇒ κp 6= 0,

where κp is any generalised Kato class associated with a triple (ϕ, g,h) as in Choice 3.2.2.

Proof. Specialised to (W1,W2) = (S, 0), the factorisation in Proposition 3.4.1 reads as the equality

L ϕ
p (ϕ, gh)2(S) = L−

p,λ−1ψc−1(S)ι · L−
p,λ−1(S) · L−

p,λ−1ψc−1(0) · L−
p,λ−1ξc−1(0)

up to a multiplication by a unit u ∈ W×. On the other hand, the decomposition in Corollary 4.3.3
for the unbalanced Selmer group becomes

Xϕ(Q,A†) ' X0,∅(K,Aλ−cψ1−c ⊗Ψc−1
S )⊕X0,∅(K,Aλ−c ⊗Ψ1−c

S )

⊕X0,∅(K,Aλ−cφ1−c ⊗Ψc−1
S )S ⊕X0,∅(K,Aλ−cξ1−c ⊗Ψ1−c

S )S .

Since clearly X0,∅(K,Aλ−cψ1−c ⊗ Ψc−1
S ) = X0,∅(K,Aλ−cψ1−c ⊗ Ψ1−c

S )ι, from Theorem 5.0.5 we

deduce that Xϕ(Q,A†) is Λ-torsion with

charΛ

(
Xϕ(Q,A†)

)
=
(
L ϕ
p (ϕ, gh)

)2
as ideals in ΛW ⊗Qp. By Proposition 5.0.3, it follows that

(6.3) rankΛ

(
Xbal(Q,A†)

)
= rankΛ

(
Selbal(Q,V†)

)
= 1,

and

(6.4) charΛ

(
Xbal(Q,A†)tors

)
= charΛ

(
Selbal(Q,V†)
Λ · κ(ϕ, gh)

)2

as ideals in ΛW ⊗Qp.
Now, from Theorem 2.1.1, Theorem 5.0.5, and Mazur’s control theorem (for the usual Selmer

groups) we have the implications

L(λ−1ψc−1, 0) 6= 0 =⇒ L−
p,λ−1ψc−1(0) 6= 0

=⇒
∣∣X0,∅(K,Aλ−cψ1−c ⊗Ψc−1

S )S
∣∣ <∞.

Similarly, the nonvanishing of L(λ−1φc−1, 0) and L(λ−1ξc−1, 0) implies that∣∣X0,∅(K,Aλ−cφ1−c ⊗Ψc−1
S )S

∣∣ <∞, ∣∣X0,∅(K,Aλ−cξ1−c ⊗Ψc−1
S )S

∣∣ <∞,
and so from the balanced Selmer group decomposition from Corollary 4.3.3:

Xbal(Q,A†) ' X0,∅(K,Aλ−cψ1−c ⊗Ψc−1
S )⊕X∅,0(K,Aλ−c ⊗Ψ1−c

S )

⊕X0,∅(K,Aλ−cφ1−c ⊗Ψc−1
S )S ⊕X0,∅(K,Aλ−cξ1−c ⊗Ψ1−c

S )S ,

we deduce that

(6.5) rankΛ

(
X∅,0(K,Aλ−c ⊗Ψ1−c

S )
)

= 1.

Moreover, by Proposition 6.1.2 we have

(6.6)

rankOK,p

(
X∅,0(K,Aλ−c ⊗Ψ1−c

S )S
)

= corankOK,p

(
Sel∅,0(K,Aλ−c)

)
= rankOK,p

(
Sel∅,0(K,Tλ−c)

)
= rankOK,p

(
Sel0,∅(K,Tλ−1)

)
,
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using the isomorphism Sel∅,0(K,Tλ−c) ' Sel0,∅(K,Tλ−1) given by the action of complex conjuga-
tion for the last equality.

On the other hand, denote by prλ(κ(ϕ, gh)) the projection of κ(ϕ, gh) onto the second direct
summand in the balanced Selmer groups decomposition from Proposition 4.3.1:

Selbal(Q,V†) ' Sel∅,0(K,Tλ−1ψc−1 ⊗Ψ1−c
S )⊕ Sel0,∅(K,Tλ−1 ⊗Ψc−1

S )

⊕ Sel∅,0(K,Tλ−1φc−1 ⊗Ψ1−c
S )S ⊕ Sel∅,0(K,Tλ−1ξc−1 ⊗Ψc−1

S )S .

From the above we see that (6.3) and (6.4) imply that Sel0,∅(K,Tλ−1 ⊗ Ψc−1
S ) has Λ-rank one,

and we have the following equality of ideals in ΛW ⊗Qp:

(6.7) charΛ

(
X∅,0(K,Aλ−c ⊗Ψ1−c

S )tors

)
= charΛ

(
Z
)2
,

where Z = Sel0,∅(K,Tλ−1 ⊗Ψc−1
S )/Λ · prλ(κ(ϕ, gh)).

The combination of (6.5), (6.6), and (6.7) shows that

rankOK,p

(
Sel0,∅(K,Tλ−1)

)
= 1 + 2 rankOK,p

(
ZS
)
.

Thus if Sel0,∅(K,Tλ−1) hasOK,p-rank one then ZS isOK,p-torsion, and so the image of prλ(κ(ϕ, gh))

in Sel0,∅(K,Tλ−1 ⊗Ψc−1
S )S is non-torsion. Since the injection

Sel0,∅(K,Tλ−1 ⊗Ψc−1
S )S → Sel0,∅(K,Tλ−1)

of Proposition 6.1.2 sends (prλ(κ(ϕ, gh)) mod S) into κp, this concludes the proof. �

The proof of Theorem A in the Introduction now follows:

Theorem 6.3.2. Assume that L(E, s) has sign +1 and L(E, 1) = 0. If Sel(Q, VpE) 6= ker(locp)
then the following implication holds:

dimQpSel(Q, VpE) = 2 =⇒ κp 6= 0,

where κp is any generalised Kato class associated with a triple (ϕ, g,h) as in Choice 3.2.2.

Proof. Since dimQpSel(Q, VpE) = rankOK,p
Sel(K,Tλ−1), this is immediate from Theorem 6.3.1

and Lemma 6.1.1. �

Remark 6.3.3. Of course, by the theorem of Coates–Wiles [CW77] and the p-parity conjecture
[Guo93], the first two conditions in Theorem 6.3.2 are superfluous.

Remark 6.3.4. The construction of κp depends on the choice of a triple (ϕ, g,h) as in Choice 3.2.2,
but it follows from Lemma 6.1.1 and the proof of Lemma 6.2.2 that under the hypotheses of The-
orem 6.3.2 they all differ by a nonzero scalar; in fact, under those hypotheses they all span the
1-dimensional subspace Sel0(Q, VpE) ' Sel0,∅(K,Vλ−1) inside the 2-dimensional Sel(Q, VpE).

7. Proof of Theorem C

We conclude with the proof of the rank 2 Kolyvagin theorem stated in the Introduction.

Theorem 7.0.1. Assume that L(E, s) has sign +1 and L(E, 1) = 0. If Sel(Q, VpE) 6= ker(locp)
then the following implication holds:

κp 6= 0 =⇒ dimQpSel(Q, VpE) = 2,

where κp is any generalised Kato class associated with a triple (ϕ, g,h) as in Choice 3.2.2.
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Proof. By Lemma 6.1.1, it suffices to prove the implication

(7.1) κp 6= 0 =⇒ rankOK,p
Sel0,∅(K,Tλ−1) = 1.

Let Ṽ†Q0
be as in (4.4). A straightforward modification of the constructions in [ACR21, §6]

building on the big diagonal cycle classes of [BSV21, §8.1] give rise to a collection of cohomology
classes

κ(ϕ, g,h) =
{
κ(ϕ, g,h)n ∈ Selbal(K[n], Ṽ†Q0

) : n ∈ S
}
,

where n runs over the set S of all squarefree products of primes q - p``′N split in K and K[n]
denotes the maximal p-extension inside the ring class field of K of conductor n, satisfying the
obvious extension of the norm-compatibility relations of [ACR21, Prop. 6.3]. Projecting these
classes to the cohomology of the direct summand Tλ−1⊗Ψc−1

W1
in (4.4) and specialising to W1 = 0

we obtain a collection of cohomology classes{
κ̃λ(ϕ, g, h)n ∈ Sel0,∅(K[n], Tλ−1) : n ∈ S

}
such that, for all nq ∈ S with q a prime, we have

corK[nq]/K[n] (κ̃λ(ϕ, g, h)nq) = Q(Fr−1
q ) κ̃λ(ϕ, g, h)n,

where Frq is the Frobenius element in Gal(K[n]/K) for any of the primes above q, and

Qq(Fr−1
q ) =

1

q2

{
χg(q)χh(q)q

(
λψ(q)

q
Fr−1

q

)2

− aq(g)aq(h)q

(
λψ(q)

q
Fr−1

q

)
+ χg(q)

−1aq(g)2q + χh(q)−1aq(h)2 − q2 + 1

q

− aq(g)aq(h)q

(
λψ(q)

q
Frq

)
+ χg(q)χh(q)q

(
ψ(q)

q
Frq

)2
}
.

Moreover, by definition the generalised Kato class κp is related to this construction via

corK[1]/K(κ̃λ(ϕ, g, h)1) = κp.

Denote by V†S the specialisation of Ṽ†Q0
at (W1,W2) = (0, 0) so by (4.4) we have

V†S = Tλ−1ψc−1 ⊕ Tλ−1 ⊕ Tλ−1φc−1 ⊕ Tλ−1ξc−1 .

Then as in [ACR21, Thm. 4.6] we find the congruence

P̃q(Fr−1
q )χg(q)χh(q)λψ(q)2Fr2

q ≡ Qq(Fr−1
q ) (mod q − 1),

where P̃q(X) = det(1− Fr−1
q X | (V†S)∨(1)). Thus by [Rub00, Lem. 9.6.1] and after restricting to

a subset S ′ ⊂ S consisting of all squarefree products of primes in a positive density set P ′ as in
[ACR22, §5.1], the classes κ̃λ(ϕ, g, h)n can be modified similarly as in Theorem 5.1 of op. cit. to
yield an anticyclotomic Euler system for Tλ−1 with base class κp, i.e., a collection of classes{

κλ(ϕ, g, h)n ∈ Sel0,∅(K[n], Tλ−1) : n ∈ S ′
}

satisfying, for all nq ∈ S ′ with q a prime,

corK[nq]/K[n] (κλ(ϕ, g, h)nq) = Pq(Fr−1
q )κλ(ϕ, g, h)n,

where Pq(X) = det(1− Fr−1
q X | (Tλ−1)∨(1)) and such that

corK[1]/K(κλ(ϕ, g, h)1) = κp.
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Therefore, by Kolyvagin’s methods in the form extended in [JNS] to general anticyclotomic Euler
systems (see also [ACR21, Thm. 8.3]), the proof of (7.1) follows and this gives the result. �
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ordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984,
pp. 17–22.

[BFH90] Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein, Nonvanishing theorems for L-functions of mod-
ular forms and their derivatives, Invent. Math. 102 (1990), no. 3, 543–618.

[BSV21] Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci, Reciprocity laws for balanced diagonal
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