ON THE NON-VANISHING OF GENERALIZED KATO CLASSES FOR
ELLIPTIC CURVES OF RANK TWO

FRANCESC CASTELLA AND MING-LUN HSIEH

Abstract. A conjecture of Darmon–Rotger predicts that a certain analogue of Kato’s classes for elliptic curves E/\mathbb{Q} generate a non-trivial subspace of the p-adic Selmer group of E if and only if the rank of E (either algebraic or analytic, by the Birch–Swinnerton-Dyer conjecture) is two. These generalized Kato classes are attached to the weight two eigenform f associated with E and two classical p-stabilized eigenforms g and h of weight one, with $g = h^*$. In this paper, we consider the case in which g is the theta series of an auxiliary imaginary quadratic field K in which p splits, and prove the following results about the corresponding generalized Kato class $\kappa_{E,K}$:

1. The non-triviality of $\kappa_{E,K}$ implies the p-adic Selmer group of E is two-dimensional.
2. If $\text{III}(E/\mathbb{Q})[p^\infty]$ is finite, then the converse to (1) holds.

The first result can be regarded as a rank two analogue of Kolyvagin’s theorem for Heegner points, although our proof also shows that $\kappa_{E,K}$ is not the base class of an Euler system in the usual sense. A key new ingredient in the proof of these results is a formula for the leading coefficient at $T = 0$ of the anticyclotomic p-adic L-function attached to E over K, with which we obtain an expression for $\kappa_{E,K}$ in terms of derived p-adic heights and an enhanced p-adic regulator.

1. Introduction

1.1. Motivating question. Let E/\mathbb{Q} be an elliptic curve, and let $L(E, s)$ be its Hasse–Weil L-series. After the pioneering work of Coates–Wiles [CW77] in the CM case, a major advance towards the Birch and Swinnerton-Dyer conjecture was the proof by Gross–Zagier [GZ86] and Kolyvagin [Kol88] of the implication

$$r_{an} := \text{ord}_{s=1} L(E, s) \in \{0, 1\} \implies \text{rank}_E \mathbb{Q} = r_{an}. \quad (1.1)$$

The proof of (1.1) resorts to choosing an imaginary quadratic field K for which Heegner points on E (over ring class extensions of K) becomes available and such that $\text{ord}_{s=1} L(E/K, s) = 1$.

Date: September 13, 2019.
2010 Mathematics Subject Classification. Primary 11G05; Secondary 11G40.
Key words and phrases. Elliptic curves, Birch and Swinnerton-Dyer conjecture, p-adic families of modular forms, p-adic L-functions, Euler systems.

The first author was partially supported by NSF grant DMS-1801385, 1946136.
The second author was partially supported by a MOST grant 108-2628-M-001-009-MY4.
By the Gross–Zagier formula, the basic Heegner point $y_K \in E(K)$ is then non-torsion, which by Kolyvagin’s work implies that $\text{rank}_z E(K) = 1$. Since y_K descends to $E(Q)$ precisely when $L(E, s)$ vanishes to odd order at $s = 1$, the conclusion of (1.1) follows.

Two more recent majors advances towards BSD are the works by Kato [Kat04] and Skinner–Urban [SU14] on the Iwasawa main conjecture and Skinner’s converse [Sk14] to the theorem of Gross–Zagier and Kolyvagin, which combined proved the implication

\[
\text{rank}_z E(K) = \text{rank}_z E(Q) = 2 \quad \text{and} \quad \# \text{III}(E/Q)[p^{\infty}] < \infty,
\]

for certain primes p of good ordinary reduction for E.

It is natural to ask about the extension of these results to elliptic curves E/Q of rank $r > 1$. As a first step in this direction, in this paper for good ordinary primes p and for the choice of a suitable imaginary quadratic field K such that

\[
\text{rank}_z E(K) = \text{rank}_z E(Q) = 2 \quad \text{and} \quad \# \text{III}(E/Q)[p^{\infty}] < \infty,
\]

we prove analogues in this setting of the implication

\[
y_K \notin E(Q)_{\text{tors}} \implies \dim_{Q_p} \text{Sel}(Q, V_p E) = 1
\]

and the implication

\[
\text{rank}_z E(K) = \text{rank}_z E(Q) = 1 \quad \# \text{III}(E/Q)[p^{\infty}] < \infty \implies y_K \notin E(Q)_{\text{tors}}
\]

appearing in the course of the proof of (1.1) and of (1.2), respectively, with the above Heegner point y_K replaced by certain generalized Kato classes introduced by Darmon–Rotger.

1.2. Darmon–Rotger conjecture for rank two elliptic curves. Following their groundbreaking work on the equivariant Birch–Swinnerton-Dyer conjecture, Darmon–Rotger [DR17a] formulated a conjectural non-vanishing criterion for the generalized Kato classes

\[
\kappa(f, g, h)
\]

introduced in [DR16]. The classes $\kappa(f, g, h)$ are associated to triples consisting of an eigenform f of weight 2 and classical p-stabilized eigenforms g and h of weight 1, corresponding to odd two-dimensional Artin representations ρ_g and ρ_h, and they are germane to the BSD conjecture for the Mordell–Weil group $A_f(H)$ of the abelian variety A_f/Q attached to f over the number field H cut out by $\rho_g \otimes \rho_h$. In this paper, we consider Darmon–Rotger’s conjecture in cases where the classes $\kappa(f, g, h)$ are predicted to have a bearing on the arithmetic of elliptic curves E/Q with rank $Z E(Q) = 2$.

Let E be an elliptic curve over Q of conductor N_E, and fix a prime $p > 2$ of good ordinary reduction for E. Let K be an imaginary quadratic field of discriminant prime to N_E in which $p = p\bar{p}$ splits, and let $\chi : G_K = \text{Gal}(Q/K) \to \mathbb{L}^\times$ be a ring class character of conductor prime to pN_E valued in a number field L. For simplicity, we assume here that the image of L under a fixed embedding $\bar{Q} \to \bar{Q}_p$ is contained in Q_p.

Let $f \in S_2(\Gamma_0(N_E))$ be the newform attached to E by modularity, so that $L(E, s) = L(f, s)$, and let g and h be the weight 1 theta series of χ and χ^{-1}, respectively. Suppose $\chi(p) \neq \pm 1$, and set $\alpha := \chi(\bar{p})$ and $\beta := \chi(p)$. As explained in [DR16], attached to the triple (f, g, h) one has four (a priori distinct) generalized Kato classes

\[
\kappa(f, g_\alpha, h_{\alpha^{-1}}), \ k(f, g_\alpha, h_{\beta^{-1}}), \ k(f, g_\beta, h_{\alpha^{-1}}), \ k(f, g_\beta, h_{\beta^{-1}}) \in H^1(Q, V_{fgh}),
\]

1In which g and h can be more general weight 1 eigenform with their p-th Hecke polynomials having distinct roots.
where $V_{fgh} \simeq V_p E \otimes V_q \otimes V_h$ is the tensor product of the p-adic representations associated to f, g, and h (so in particular V_q realized $q_g \otimes 1, \mathbb{Q}_p$, and similarly for h). The class $\kappa(f, g_\alpha, h_{\alpha-1})$ (and similarly the other three) arises as the p-adic limit

$$\kappa(f, g_\alpha, h_{\alpha-1}) = \lim_{\ell \to 1} \kappa(f, g_\ell, h_\ell)$$

as (g_ℓ, h_ℓ) runs over the classical weight $\ell \geq 2$ specializations of Hida families g and h passing through the p-stabilizations

$$g_\alpha := g(q) - \beta g(q^p), \quad h_{\alpha-1} := h(q) - \beta^{-1} h(q^p),$$

in weight 1, and where $\kappa(f, g_\ell, h_\ell)$ is obtained from the p-adic étale Abel–Jacobi image of certain higher-dimensional Gross–Kudla–Schoen diagonal cycles GK92, GS95 on triple products of modular curves. The construction of $\kappa(f, g_\ell, h_\ell)$ takes place at level $N := \text{lcm}(N_E, N_g, N_h)$, where N_g and N_h are the Artin conductors of q_g and q_h, respectively, and the construction of the classes in (1.3) further depends on the choice of a $G\mathbb{Q}$-equivariant projection

$$\pi : V_{fgh}(N) \to V_{fgh},$$

where $V_{fgh}(N)$ is isomorphic to several copies of V_{fgh}. Note that any choice of π amounts to a triplet $(\tilde{f}, \tilde{g}, \tilde{h})$ of Hecke eigenforms whose associated primitive forms are (f, g, h) (see [4.5]).

For a good choice of π, a key result in [DR17a] (see also [BSV19a]) is an explicit reciprocity law of the form

$$\exp^*(\text{res}_p(\kappa(f, g_\alpha, h_{\alpha-1}))) = (\text{nonzero constant}) \cdot L(f \otimes g \otimes h, 1)$$

whereby the classes in (1.3) land in the Bloch–Kato Selmer group $\text{Sel}(\mathbb{Q}, V_{fgh}) \subset H^1(\mathbb{Q}, V_{fgh})$ precisely when the triple product L-series $L(f \otimes g \otimes h, s)$ vanishes at $s = 1$. One of the main conjectures of [DR16] then went further to formulate the following non-vanishing criterion.

Conjecture 1.1 ([DR16, Conj. 3.2]). The generalized Kato classes in (1.3) generate a non-trivial subspace of $\text{Sel}(\mathbb{Q}, V_{fgh})$ for a suitable choice of π if and only if the following equivalent conditions are satisfied:

- (a) The L-series $L(f \otimes g \otimes h, s)$ has a double zero at $s = 1$.
- (b) The Mordell–Weil group $E(H)_L \otimes q_{gh} \mathbb{G}_m$ is two-dimensional over L, where $E(H)_L := E(H) \otimes \mathbb{Z} L$ and $q_{gh} := q_g \otimes q_h$.
- (c) The Selmer group $\text{Sel}(\mathbb{Q}, V_{fgh})$ is two-dimensional over \mathbb{Q}_p.

As noted in [DR17], Rem. 3.3], the equivalence of conditions (a), (b) and (c) is part of the equivariant BSD conjecture, the main novelty of Conjecture 1.1 being in providing a criterion for the non-triviality of the space generated by the generalized Kato classes. For the above g and h, the decomposition

$$V_{fgh} \simeq (V_p E \otimes \text{Ind}_K^Q 1) \oplus (V_p E \otimes \text{Ind}_K^Q \chi^2)$$

gives rise to the factorization

$$L(f \otimes g \otimes h, s) = L(E, s) \cdot L(E^K, s) \cdot L(E/K, \chi^2, s),$$

where E^K is the twist of E by the quadratic character associated with K. Thus Conjecture 1.1 specialized to the case in which E has rank 2 may be stated as follows, where we let

$$\kappa_{\alpha, \alpha^{-1}}, \kappa_{\alpha, \beta^{-1}}, \kappa_{\beta, \alpha^{-1}}, \kappa_{\beta, \beta^{-1}} \in H^1(\mathbb{Q}, V_p E)$$

be the natural image of the classes (1.3) under the projection $H^1(\mathbb{Q}, V_{fgh}) \to H^1(\mathbb{Q}, V_p E)$.

Conjecture 1.2 ([DR16, §4.5.3]). Assume that $L(E^K, s)$ and $L(E/K, \chi^2, s)$ are both nonzero at $s = 1$. Then the generalized Kato classes (1.3) generate a non-trivial subspace of $\text{Sel}(\mathbb{Q}, V_p E)$ for a suitable choice of π if and only if the following equivalent conditions are satisfied:

- (a) $\text{ord}_{s=1} L(E, s) = 2$.
(b) \(\text{rank}_Z E(\mathbb{Q}) = 2 \).
(c) \(\dim_{\mathbb{Q}_p} \text{Sel}(Q,V_p E) = 2 \).

Note that the non-vanishing assumptions in Conjecture 1.2 imply that \(E \) has root number +1. Also, here \(\text{Sel}(Q,V_p E) \) denotes the Selmer group fitting in the exact sequence

\[
0 \to E(\mathbb{Q}) \otimes_{\mathbb{Z}} \mathbb{Q}_p \to \text{Sel}(Q,V_p E) \to T_p \text{III}(E/\mathbb{Q}) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \to 0,
\]

and of course, the equivalence of condition (b) and (c) amounts to the finiteness of \(\text{III}(E/\mathbb{Q})[p^\infty] \), and the equivalence of (a) and (b) is the rank 2 case of the Birch–Swinnerton-Dyer conjecture.

1.3. Main result.

Let \(\bar{\rho}_{E,p} : G_\mathbb{Q} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{Aut}_{\mathbb{F}_p}(E[p]) \) be the residual Galois representation associated to \(E \), and write

\[
N_E = N^+N^-\n\]

with \(N^+ \) (resp. \(N^- \)) divisible only by primes which are split (resp. inert) in \(K \).

Theorem A. Assume that \(L(E^K,s) \) and \(L(E/K,\chi^2,s) \) are both nonzero at \(s = 1 \), and that:

- \(\bar{\rho}_{E,p} \) is irreducible,
- \(N^- \) is squarefree,
- \(\bar{\rho}_{E,p} \) is ramified at every prime \(q|N^- \).

Then \(\kappa_{\alpha,\alpha^{-1}} = \kappa_{\beta,\alpha^{-1}} = 0 \) for any choice of \(\pi \) and the following hold:

(i) If \(\text{rank}_Z E(\mathbb{Q}) = 2 \) and \(\text{III}(E/\mathbb{Q})[p^\infty] \) is finite, then \(\kappa_{\alpha,\alpha^{-1}} \neq 0 \) for a suitable choice of \(\pi \).

(ii) If \(\kappa_{\alpha,\alpha^{-1}} \) is a nonzero class in \(\text{Sel}(Q,V_p E) \), then \(\dim_{\mathbb{Q}_p} \text{Sel}(Q,V_p E) = 2 \).

In particular, if \(\text{III}(E/\mathbb{Q})[p^\infty] \) is finite, Conjecture 1.2 holds.

As before, note that the non-vanishing assumptions in Theorem A imply that \(E \) has root number +1 (and being squarefree, that \(N^- \) is the product of an odd number of primes), and either of the conditions in part (i) or (ii) imply that \(L(E,1) = 0 \) by [Kat04]. Thus the elliptic curves \(E \) in Theorem A all satisfy \(\text{ord}_{s=1} L(E,s) \geq 2 \). On the other hand, if the root number of \(E/\mathbb{Q} \) is +1 and \(\bar{\rho}_{E,p} \) is irreducible and ramified at some prime \(q \), by [BFH90] and [Vat03] there exist infinitely many imaginary quadratic fields \(K \) and ring class characters \(\chi \) of \(p \)-power conductor such that:

- \(p \) splits in \(K \),
- \(q \) is inert in \(K \),
- every prime factor of \(N/q \) splits in \(K \),
- \(L(E^K,1) \neq 0 \) and \(L(E/K,\chi^2,1) \neq 0 \).

Therefore, by Theorem A the generalized Kato classes in \([1,7]\) provide an explicit construction of non-trivial Selmer classes for rank 2 elliptic curves analogous to the construction of Heegner classes for rank 1 elliptic curves.

Moreover, our proof shows that up to multiplication by a nonzero scalar in \(\overline{\mathbb{Q}}^\times \), the classes \(\kappa_{\alpha,\alpha^{-1}} \) depend only on \(K \), not on the auxiliary choice of ring class character \(\chi \).

1.4. Outline of the proof.

We conclude this Introduction with a sketch of the proof of part (i) in Theorem A, establishing the non-vanishing of

\[
\kappa_{E,K} := \kappa_{\alpha,\alpha^{-1}} \in H^1(\mathbb{Q},V_p E)
\]

for a suitable choice of \(\pi \).

Let \(\Gamma \) be the Galois group of the anticyclotomic \(\mathbb{Z}_p \)-extension of \(K \). Building on Gross’s refinement of Waldspurger’s special value formula [Wal85, Gro87], one can construct a \(p \)-adic \(L \)-function \(\Theta_f/K \in \mathbb{Z}_p[\Gamma] \) interpolating “square-roots” of the central critical values \(L(E/K,\phi,1) \), as \(\phi \) runs over finite order characters of \(\Gamma \). Since its original construction [BD99], the element \(\Theta_f/K \) has been widely studied in the literature, but its place in Perrin-Riou’s influential vision
whereby p-adic L-functions arise as the image of p-adic families of special cohomology classes under generalized Coleman power series maps, remained mysterious.

Letting $\kappa(f, gh)$ be the p-adic family of diagonal cycle classes giving rise to $\kappa(f, g_\alpha, h_{\alpha^{-1}})$ at $\ell = 1$, in Section 4 we prove that, for a suitable choice of π,

$$\text{Col}^p(\text{loc}_p(\kappa(f, gh))) = \Theta_{f/K} \cdot (\text{explicit nonzero constant}),$$

where Col^p is a generalized Coleman power series map defined in terms of an anticyclotomic variant of Perrin-Riou’s big exponential map. Viewing (1.8) as an identity in the power series ring $\mathbb{Z}_p[[T]] \simeq \mathbb{Z}_p[[T]]$, we are led to study the leading coefficient of (1.8) at $T = 0$.

Consider the filtration

$$\text{Sel}(K, V_pE) = S^{(1)} \supset S^{(2)} \supset \cdots \supset S^{(r)} \supset \cdots \supset S^{(\infty)}$$

defined by Bertolini–Darmon [BD95] and Howard [How04], and the associated anticyclotomic derived p-adic height pairings

$$h^{(r)} : S^{(r)} \times S^{(r)} \to \mathbb{Q}_p.$$

From the properties of $h^{(r)}$, we deduce that under the assumption in part (i) of Theorem A the filtration (1.9) reduces to

$$\text{Sel}(\mathbb{Q}, V_pE) = S^{(1)} = S^{(2)} = \cdots = S^{(r)} = \cdots = S^{(\infty)} = \{0\}$$

for some $r \geq 2$. On the other hand, in Section 3 we establish a formula in the style of [Rnb94] for derived p-adic height pairings, which combined with (1.8) shows that

$$\kappa_{E,K} \in S^{(\rho)}, \quad \text{where } \rho := \text{ord}_{T=0} \Theta_{f/K}(T),$$

and that for every $x \in S^{(\rho)}$ we have

$$h^{(\rho)}(\kappa_{E,K}, x) = \left(\frac{d}{dt} \right)^\rho \Theta_{f/K}(T)|_{T=0} \cdot \log_p(x) \cdot (\text{nonzero constant in } \mathbb{Q}_p^\times),$$

from where the non-vanishing of $\kappa_{E,K}$ follows easily.

The proof of part (ii) of Theorem A follows from similar ideas, and in fact the above analysis yields the following stronger result.

Consider the strict Selmer group defined by

$$\text{Sel}_{\text{str}}(\mathbb{Q}, V_pE) := \ker (\log_p : \text{Sel}(\mathbb{Q}, V_pE) \to \mathbb{Q}_p)$$

where \log_p denotes the restriction map $\text{Sel}(\mathbb{Q}, V_pE) \to E(\mathbb{Q}_p) \hat{\otimes} \mathbb{Q}_p$ composed with the formal group logarithm $E(\mathbb{Q}_p) \hat{\otimes} \mathbb{Q}_p \to \mathbb{Q}_p$.

Theorem B. Assume that $L(E^K, s)$ and $L(E/K, \chi^2, s)$ are both nonzero at $s = 1$, and that:

- $\bar{\rho}_{E,p}$ is irreducible,
- N^- is square-free,
- $\bar{\rho}_{E,p}$ is ramified at every prime $q | N^-.$

Then $\kappa_{\alpha,\beta^{-1}} = 0$ for any choice of π and the following statements are equivalent:

(a) \text{The class } $\kappa_{\alpha,\beta^{-1}}$ \text{ is a non-trivial element in } $\text{Sel}(\mathbb{Q}, V_pE)$ \text{ for a suitable choice of } π.

(b) $\dim_{\mathbb{Q}_p} \text{Sel}_{\text{str}}(\mathbb{Q}, V_pE) = 1$.

Moreover, if $\text{rank}_\mathbb{Z} E(\mathbb{Q}) = 2$ and $\text{III}(E/\mathbb{Q})[p^\infty]$ is finite, then up to \mathbb{Q}_p^\times we have:

$$\kappa_{\alpha,\alpha^{-1}} = \log_p(Q) \cdot P - \log_p(P) \cdot Q, \quad \kappa_{\beta,\alpha^{-1}} = 0,$$

$$\kappa_{\beta,\beta^{-1}} = \log_p(Q) \cdot P - \log_p(P) \cdot Q,$$

where (P, Q) is any basis of $E(\mathbb{Q}) \otimes \mathbb{Q}_p$.

In addition to easily implying Theorem A (see [5.1]), this yields some evidence towards the refinement of the “elliptic Stark conjecture” in [DLR15] that was also formulated in [DR16].
Remark 1.3. Part (ii) of Theorem A (which follows easily from the implication (b) \(\implies\) (a) in Theorem B) can be regarded as a rank two analogue of Kolyvagin’s theorem for Heegner points. However, by [Rub00, Thm. 2.2.3] the conclusion that \(\Sel_{str}(K,V_pE)\) is one-dimensional (as opposed to trivial) implies that \(\kappa_{\alpha,\alpha^{-1}}\) does not into an Euler system for \(V_pE\).

Remark 1.4. Dealing with elliptic curves \(E/Q\) of rank 2, the finiteness assumption on \(\III(E/Q)\) in Theorems A and B seems very difficult to remove at present. In the Appendix we list elliptic curves \(E/Q\) of rank 2 satisfying the hypotheses of these theorems (for suitably chosen \(p, K\) and \(\chi\)) and for which the finiteness of \(\III(E/Q)[p^\infty]\) can be verified, thus providing by virtue of Theorem A the first instances (as far as we know) of such elliptic curves with non-vanishing generalized Kato classes (cf. [DR16, §4.5.3]).

Acknowledgements. We would like to thank John Coates, Dick Gross, and Barry Mazur for their comments on earlier drafts of this paper.

2. Derived \(p\)-adic heights

In this section, we review the definition of the sequence of “derived” \(p\)-adic height pairings given in [How04, §4.5.3], and Howard’s generalization of Rubin’s formula, which will be our starting point in Section 3.

2.1. Notation and definitions. Let \(p > 2\) be a prime, let \(K\) be a number field, and let \(\Sigma\) be a finite set of places of \(K\) containing all archimedean places and all primes above \(p\). Let \(K_\Sigma\) be the maximal algebraic extension of \(K\) unramified outside \(\Sigma\) and set \(G_{K,\Sigma} = \Gal(K_\Sigma/K)\). Let \(K_\infty/K\) be a \(\Z_p\)-extension in \(K_\Sigma\). Denote by \(K_n\) the subfield with of \(K_\infty\) with \([K_n : K] = p^n\), and set

\[
\Gamma_n = \Gal(K_n/K), \quad \Gamma_\infty = \Gal(K_\infty/K), \quad \Lambda = \Z_p[[\Gamma_\infty]].
\]

Let \(\kappa_\Lambda : G_{K,\Sigma} \to \Gal(K_\infty/K) \to \Lambda^\times\) be the tautological character given by \(\kappa_\Lambda(\sigma) = \sigma|_{K_\infty}\), and for \(k \in \Z\) and a \(\Lambda\)-module \(M\) on which \(G_{K,\Sigma}\) acts, let \(M\{k\}\) be the \(G_{K,\Sigma}\)-module \(M\) with the \(G_{K,\Sigma}\)-action twisted by \(\kappa_\Lambda^k\).

Let \(O\) be a local ring finitely generated over \(\Z_p\) with maximal ideal \(m\), and denote by \(\Mod_O\) the category of finite free \(O\)-modules equipped with continuous \(O\)-linear action of \(G_{K,\Sigma}\). Put \(\Lambda_O = \Lambda \otimes_{\Z_p} O\). For an object in \(\Mod_O\) we put

\[
\hat{H}^1(K_\infty, T) := \varprojlim_n H^1(K_n, T),
\]

where the limit is with respect to corestriction, and denote by \(\text{pr}_{K_n} : \hat{H}^1(K_\infty, T) \to H^1(K_n, T)\) the canonical projection map. By Shapiro’s lemma and [How04 Lem. 1.4], there is a canonical identification

\[
\hat{H}^1(K_\infty, T) \simeq H^1(K, T_\Lambda),
\]

where \(T_\Lambda = T \otimes_O \Lambda_O\{1\} - \{1\}\).

2.2. Derived \(p\)-adic heights. Suppose now that \(O\) is Artinian. Let \(K\) be the localization of \(\Lambda_O\) at the prime \(m\Lambda_O\), and define \(P\) by the exactness of the sequence

\[
0 \to \Lambda_O \to K \to P \to 0.
\]

For an object in \(\Mod_O\), define the \(G_{K,\Sigma}\)-modules \(T_K := T_\Lambda \otimes_{\Lambda_O} K\) and \(T_P := T_\Lambda \otimes_{\Lambda_O} P\). By [How04 Lem. 1.5], the choice of a topological generator \(\gamma\) of \(\Gamma_\infty\) determines an isomorphism

\[
\eta_\gamma : H^1(K, T_P) \simeq H^1(K_\infty, T)
\]

with the property that

\[
\eta_\gamma(z \otimes (\gamma - 1)^{-1}) = \text{pr}_K(z) \in H^1(K, T)
\]

for \(z \in H^1(K, T_\Lambda)\).
Let \mathcal{F} be a Selmer structure on T_K, i.e., a choice of K-submodule $H^1_{\mathcal{F}}(K_v, T_K) \subset H^1(K_v, T_K)$ for every $v \in \Sigma$, and define the Selmer module $H^1_{\mathcal{F}}(K, T_K)$ to be the kernel of the map

$$H^1(G_{K, \Sigma}, T_K) \to \prod_{v \in \Sigma} H^1(K_v, T_K)/H^1_{\mathcal{F}}(K_v, T_K).$$

The natural images of $H^1_{\mathcal{F}}(K_v, T_K)$ under the maps induced by (2.1) gives Selmer structures on T_λ and T_P, which we use to define the Selmer modules $H^1_{\mathcal{F}}(K, T_\lambda)$ and $H^1_{\mathcal{F}}(K, T_P)$, respectively. We then let $H^1_{\mathcal{F}}(K, T)$ be the module consisting of the classes $s \in H^1(K, T)$ whose image in $H^1(K_{\infty}, T)$ belongs to $\eta_\gamma(H^1_{\mathcal{F}}(K, T_P))$, and set

$$H^1_{\mathcal{F}}(K, T) = \lim_{\rightarrow} H^1_{\mathcal{F}}(K_n, T) = \eta_\gamma(H^1_{\mathcal{F}}(K, T_P)),$$

which does not depend on the choice of γ.

Let $T^* := \text{Hom}(T, \mathcal{O}(1)) \in \text{Mod}_\mathcal{O}$, and denote by $e: T \times T^* \to \mathcal{O}(1)$ the canonical $G_{K, \Sigma}$-equivariant perfect paring, which naturally extends to a perfect $G_{K, \Sigma}$-equivariant pairing $e_\lambda: T_\lambda \times T^*_\lambda \to \mathcal{O}(1)$ satisfying

$$e_\lambda(t \otimes \lambda_1, s \otimes \lambda_2) = \lambda_1 \lambda_2 e_\lambda(t, s),$$

for all $\lambda_1, \lambda_2 \in \mathcal{O}$, where ν is the involution of \mathcal{O} given by $\gamma \mapsto \gamma^{-1}$ on group-like elements. Tensoring e_λ with K we obtain the perfect pairing $e_K: T_K \times T_K \to K(1)$.

For any prime v of K, let $(\cdot, \cdot)_v: H^1(K_v, T) \times H^1(K_v, T^*) \to \mathcal{O}$ be the perfect paring given by $(z, w)_v := \text{inv}_v(e(z \cup w))$, where $\text{inv}_v : H^2(K_v, \mathcal{O}(1)) \simeq \mathcal{O}$ is the invariant map. Similarly, define the bilinear pairing

$$(\cdot, \cdot)_{K_\infty, v}: H^1(K_v, T_\lambda) \times H^1(K_v, T^*_\lambda) \to H^2(K_v, \mathcal{O}(1)) \simeq \mathcal{O},$$

by $\langle z, w \rangle_{K_\infty, v} = \text{inv}_v(e_\lambda(z \cup w))$.

Let \mathcal{F}^\perp be the Selmer structure on T_K with $H^1_{\mathcal{F}^\perp}(K_v, T_K^\perp)$ given for every v by the orthogonal complement of $H^1_{\mathcal{F}}(K_v, T_K)$ under local Tate pairing induced by e_K, and let

$$[-, -]_{\text{CT}}: H^1_{\mathcal{F}}(K, T_P) \times H^1_{\mathcal{F}^\perp}(K, T^*_P) \to P$$

be the generalized Cassels–Tate pairing constructed in [How04, Thm. 1.8].

Let J be the augmentation ideal of \mathcal{O}, i.e., the principal ideal of \mathcal{O} generated by $\gamma - 1$, and for $r > 0$ put

$$(2.4)\quad Y^{(r)}_T := H^1_{\mathcal{F}}(K_\infty, T)[J] \cap (\gamma - 1)^{r-1}H^1_{\mathcal{F}}(K_\infty, T)[J'],$$

which defines a decreasing filtration $H^1_{\mathcal{F}}(K_\infty, T)[J] = Y^{(1)}_T \supset Y^{(2)}_T \supset Y^{(3)}_T \supset \cdots$, and similarly for T^*.

Denote by ϕ_γ the composition

$$P \simeq \mathcal{O} \{1 \} \overset{\mathbb{Z}}{\longmapsto} \left(\lim_{\rightarrow} \text{Ind}_{K_n/K} \mathcal{O} \right) \{1\} \overset{\text{ev}}{\longrightarrow} \mathcal{O},$$

where the last arrow is given by evaluation at the identity element of $G_{K, \Sigma}$. By construction, for any $\lambda \in \Lambda$ one has

$$(2.5)\quad \phi_\gamma((\lambda \otimes (\gamma - 1)^{-1})^\ell) = \phi_\gamma(-\lambda^\ell \otimes (\gamma - 1)^{-1}) = \text{ev}(-\lambda^\ell) = -\text{ev}(\lambda)$$

(see [How04, p. 1324]).

Definition 2.1. The height pairing $h_\mathcal{O}: H^1_{\mathcal{F}}(K_\infty, T) \times H^1_{\mathcal{F}^\perp}(K_\infty, T^*) \to J/J^2$ is defined by $h_\mathcal{O}(z, w) := (\gamma - 1) \cdot \phi_\gamma([\eta_\gamma^{-1}(z), \eta_\gamma^{-1}(w)]_{\text{CT}}),$
and the r-th derived height pairing $h_{O}^{(r)}(-,-): Y_{T}^{(r)} \times Y_{T}^{(r)} \to J'/J'^{+1}$ is defined by
\[
h_{O}^{(r)}(z, w) := (\gamma - 1)^{-r} \cdot h_{O}(u, w),
\]
where $u \in H^{1}_{F}(K_{\infty}, T)[J']$ is any class such that $z = (\gamma - 1)^{-r}u$.

In particular, $h_{O}^{(1)}$ is the restriction of h_{O} to $Y_{T}^{(1)} \times Y_{T}^{(1)}$. It is easy to see that these pairings are independent of the choice of γ.

The following result is a restatement of part (c) of Theorem 2.5 in [How04], which generalizes a formula of Rubin [Rub94] (cf. [Nek06, Prop. 11.5.11]).

Proposition 2.2. Let $z \in Y_{T}^{(r)}$ and $w \in Y_{T}^{(r)}$. Suppose that there exist a class $z \in H^{1}(K, T_{\Lambda})$ and a semi-local class $w_{\Sigma} = (w_{v}) \in \bigoplus_{v \in \Sigma} H^{1}_{F_{v}}(K_{v}, T_{\Lambda}^{1})$ such that $pr_{K}(z) = z$ and $pr_{K_{v}}(w_{v}) = loc_{v}(w)$ for all $v \in \Sigma$. Then
\[
h_{O}^{(r)}(z, w) = \sum_{v \in \Sigma} \langle z, w_{v} \rangle_{K_{\infty}, v} \pmod{J'^{+1}}.
\]

Proof. Write $z = (\gamma - 1)^{-r}u$ with $u \in H^{1}_{F}(K_{\infty}, T)$, and let s and t be cocycles representing $\eta_{\gamma}^{-1}(u) \in H^{1}_{F}(K, T_{P})$ and $\eta_{\gamma}^{-1}(w) \in H^{1}_{F_{p}}(K, T_{P})$, respectively. Choose cochains
\[
\tilde{s} \in C^{1}(G_{K}, \Sigma, T_{K}), \quad \tilde{t} \in C^{1}(G_{K}, \Sigma, T_{K}^{*})
\]
lifting s and t under the maps induced by the projections $T_{K} \to T_{P}$ and $T_{K}^{*} \to T_{P}^{*}$, respectively. The image of $\tilde{s} \cup \tilde{t}$ in $C^{3}(G_{K}, \Sigma, P(1))$ is then easily seen to be expressible as de_{0} for some $e_{0} \in C^{2}(G_{K}, \Sigma, P(1))$. After choosing a class $\tilde{t}_{\Sigma} \in \bigoplus_{v \in \Sigma} H^{1}_{F_{v}}(K_{v}, T_{\Lambda})$ lifting $loc_{\Sigma}(t)$, according to the definition of the generalized Cassels–Tate pairing in [How04] (2), page 1321, we have
\[
h_{O}^{(r)}(z, w) = (\gamma - 1)^{r} \cdot \phi_{\gamma}(\text{inv}_{\Sigma}(loc_{\Sigma}(\tilde{s}) \cup \tilde{t}_{\Sigma} - loc_{\Sigma}(e_{0}))),
\]
where
\[
\text{inv}_{\Sigma} : \bigoplus_{v \in \Sigma} H^{2}(K_{v}, P(1)) \to P
\]
is the sum of the local invariants. Now let $\tilde{z} \in C^{1}(G_{K}, \Sigma, T_{\Lambda})$ and $\tilde{w}_{\Sigma} \in \bigoplus_{v \in \Sigma} C^{1}(G_{K_{v}}, T_{\Lambda}^{*})$ be cocycles representing z and w_{Σ}. Then [2.3] shows that $\tilde{z} \otimes (\gamma - 1)^{-r}t$ and $\tilde{w}_{\Sigma} \otimes (\gamma - 1)^{-r}$ are liftings of s and $loc_{\Sigma}(t)$, respectively, and with these choices of \tilde{s} and \tilde{t}_{Σ} in (2.6) (with $e_{0} = 0$, since $d\tilde{z} = 0$), we obtain
\[
h_{O}^{(r)}(z, w) = (\gamma - 1)^{r} \cdot \phi_{\gamma}(\text{inv}_{\Sigma}(\tilde{z}((\gamma - 1)^{r}) \cup \tilde{w}_{\Sigma}((\gamma - 1)^{r}))) \in J'/J'^{+1}
\]
\[
= -\text{inv}_{\Sigma}(e_{0}(loc_{\Sigma}(\tilde{z}))) - \sum_{v \in \Sigma} \langle z, w_{v} \rangle_{K_{\infty}, v} \pmod{J'^{+1}},
\]
using (2.5) for the second equality. This completes the proof. \qed

2.3. Derived p-adic heights for ordinary elliptic curves. Let E be an elliptic curve over the number field K with good ordinary reduction at all primes of K above p and $T = T_{p}E$ be the p-adic Tate module of E, and assume that Σ contains the archimedean places, the primes of K above p, and the primes at which E has bad reduction.

Let $T_{k} = E[p^{k}]$, and consider the modules $Y_{T_{k}}^{(r)}$ in (2.4) equipped with the ordinary Selmer structure F in [How04, Def. 3.2]. The Weil pairing $(,)_{\text{Weil}} : T_{k} \times T_{k} \to \mu_{p^{k}}$ yields an identification $T_{k}^{*} \simeq T_{k}$ under which F is its own orthogonal complement. The discussion of [2.2] thus yields derived p-adic height pairings $h_{Z/p^{k}Z}^{(r)}$ on $Y_{T_{k}}^{(r)}$. The constructions are compatible under the natural maps and $Z/p^{k+1}Z \to Z/p^{k}Z$ and $T_{k+1} \to T_{k}$, and in the limit they define
\[
h^{(r)} := \lim_{\leftarrow} h_{Z/p^{k}Z}^{(r)}, \quad Y^{(r)} := \lim_{\leftarrow} Y_{T_{k}}^{(r)}.
\]
Let \(\text{Sel}(K, V_p E) = (\lim \text{Sel}_p(E/K)) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \) be the usual pro-\(p \) Selmer group with \(p \) inverted. As shown in [How04, Lem. 4.1], there is canonical isomorphism

\[
Y_T^{(1)} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \simeq \text{Sel}(K, V_p E).
\]

Letting \(S_p^{(r)}(E/K) \) be the subspace of \(\text{Sel}(K, V_p E) \) spanned by the image of \(Y_T^{(r)} \subset Y_T^{(1)} \) under the isomorphism \((2.7)\), we thus obtain derived \(p \)-adic height pairings

\[
h^{(r)} : S_p^{(r)}(E/K) \times S_p^{(r)}(E/K) \to (J^r/J^{r+1}) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p,
\]

where \(J \) is the augmentation ideal of \(\Lambda = \mathbb{Z}_p[[\Gamma_\infty]] \).

Corollary 2.3. Let \(z, w \in S_p^{(r)}(E/K) \). Suppose that there exist a class \(z \in \hat{H}^1(K_\infty, T) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \) and classes \((w_v) \in \bigoplus_v \hat{H}^1(K_{\infty,v}, T) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \) such that \(\text{pr}_K(z) = z \) and \(\text{pr}_{K_v}(w_v) = \text{loc}_v(w) \). Then

\[
h^{(r)}(z, w) = - \sum_{v | p} \langle \text{loc}_v(z), w_v \rangle_{K_{\infty,v}} \quad \text{(mod } J^{r+1})\text{.}
\]

Proof. This follows from Proposition 2.2 and the fact that \(H^1(K_{\infty,v}, T) \otimes \mathbb{Q}_p = 0 \) for \(v \nmid p \). \(\square \)

We conclude this section with Theorem 2.4 below, relating the degeneracies of \(h^{(r)} \) to the \(\Lambda \)-module structure of

\[
X_\infty := \text{Hom}_{\mathbb{Z}_p}(\text{Sel}_{p\infty}(E/K_\infty), \mathbb{Q}_p/\mathbb{Z}_p)),
\]

where \(\text{Sel}_{p\infty}(E/K_\infty) \subset H^1(E/\mathbb{Q}[p^{\infty}]) \) is the usual \(p^{\infty} \)-Selmer group.

From now on, we assume that \(p \) is unramified in \(K \) and that the primes of \(K \) above \(p \) ramify in the \(\mathbb{Z}_p \)-extension \(K_{\infty}/K \). Let

\[
\hat{\rho}_{E,p} : G_K \to \text{Aut}_{\mathbb{F}_p}(E[p])
\]

be the two-dimensional Galois representation on the \(p \)-torsion of \(E \).

Theorem 2.4. There is a filtration

\[
\text{Sel}(K, V_p E) = S_p^{(1)}(E/K) \supset S_p^{(2)}(E/K) \supset \cdots
\]

and a sequence of height pairings

\[
h^{(r)} : S_p^{(r)}(E/K) \times S_p^{(r)}(E/K) \to (J^r/J^{r+1}) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p
\]

with the following properties:

1. \(S_p^{(r+1)}(E/K) \) is the null-space of \(h^{(r)} \).
2. \(S_p^{(\infty)}(E/K) := \bigcap_{r=1}^{\infty} S_p^{(r)}(E/K) \) is the subspace of universal norms for \(K_\infty/K \).
3. \(h^{(r)}(x, y) = (-1)^{r+1} h^{(r)}(y, x) \).
4. If \(K' \) is a subextension of \(K \) with \(K_{\infty}/K \) and the \(G_K \)-action on \(T = T_p E \) extends to an action of \(G_{K'} \), then

\[
h^{(r)}(x^\tau, y^\tau) = \omega(\tau)^r h^{(r)}(x, y)
\]

for all \(\tau \in \text{Gal}(K/K') \), where \(\omega \) is the \(\mathbb{Z}_p^{\times} \)-valued character defined by \(\tau \gamma \tau^{-1} = \gamma^{\omega(\tau)} \) for \(\gamma \in \Gamma_\infty \) and \(\tau \in \text{Gal}(K_{\infty}/K') \).

Moreover, assume that for every prime \(v \) of \(K \) such that:

- \(E \) has bad reduction at \(v \), and
- \(v \) is infinitely decomposed in \(K_{\infty}/K \),
the reduction type of E at v is multiplicative, and $\hat{\rho}_{E,p}$ is ramified at v. Then, fixing a Λ-module pseudo-isomorphism
\[X_\infty \sim \Lambda^{\mathbb{F}_p} \oplus M \oplus M' \]
with M' a torsion Λ-module with characteristic ideal prime to M, and writing M in the form
\[M \simeq (\Lambda/J)^{\mathbb{F}_p} \oplus (\Lambda/J^2)^{\mathbb{F}_p} \oplus \cdots, \]
we have
\[(5) \ e_\infty = \dim_{\mathbb{F}_p} S_p^{(\infty)} (E/K) \quad \text{and} \quad e_r = \dim_{\mathbb{F}_p} (S_p^{(r)} (E/K) / S_p^{(r+1)} (E/K)) \quad \text{for all} \ r \geq 1. \]

Proof. Assuming that the primes of bad reduction of E are finitely decomposed in K_∞ (but no conditions on $\hat{\rho}_{E,p}$), the result is shown in [How04] Thm. 4.2, Cor. 4.3. Since for our purposes we need to allow primes of bad reduction that split completely in K_∞, we explain how to adapt the arguments in [How04] under the above hypothesis on $\hat{\rho}_{E,p}$. For notational simplicity, we assume below that the primes of bad reduction of E that are infinitely decomposed in K_∞ split completely in K_∞ (an assumption that on the other hand will hold in our application).

Following the notations in [How04] p. 1331, let
\[S := \lim_{\rightarrow k} \lim_{\rightarrow n} \text{Ind}_{K_n/K} E[p^k], \]
so by Shapiro’s lemma $H^1(K, S) \simeq H^1(K_\infty, E[p^\infty])$ and
\[H^1(K_v, S[p^k]) \simeq \bigoplus_{n, w | v} H^1(K_n, w, E[p^k]) \]
for any place v of K, where w runs over the primes of K_n lying above v.

Let $Y_k = H^1_\infty(K_\infty, E[p^k])$ be as in [How04] p. 1334, so $Y_k[J] = Y_k^{(1)}$ in the notations above. The assumption made in [How04] Thm. 4.2, Cor. 4.3 that the primes of bad reduction of E are finitely decomposed in K_∞ is only used to show that the natural map
\[Y_k \rightarrow \text{Sel}_{p,\infty} (E/K_\infty)[p^k] \]
has finite kernel and cokernel bounded independently of k, which follows from Propositions 3.4 and 3.5 of [How04], as shown in [loc.cit., p. 1334]. Let v be a prime of bad reduction of E (so in particular, $v \nmid p$ is inert in K) which splits completely in K_∞ and let
\[(2.8) \ H^1_{\text{ord}}(K_v, S[p^k]) = H^1_{\text{ur}}(K_v, S[p^k]) := \ker(H^1(K_v, S[p^k]) \rightarrow H^1(K_{\text{ur}}, S[p^k])). \]
To adapt the proof of those propositions for such v, it suffices to show that the module $H^1_{\text{ord}}(K_v, S) := \lim_{\twoheadrightarrow} H^1_{\text{ord}}(K_v, S[p^k])$ vanishes, and that the kernel of the natural map
\[(2.9) \ H^1(K_v, S[p^k]) / H^1_{\text{ord}}(K_v, S[p^k]) \rightarrow H^1(K_v, S) / H^1_{\text{ord}}(K_v, S) \]
is bounded independently of k. (Assuming v is finitely decomposed in K_∞, Howard shows that both (2.8) and the kernel of (2.9) are trivial using [How04] Lem. 1.7.) By Shapiro’s lemma and inflation-restriction, we have identifications
\[H^1_{\text{ur}}(K_v, S[p^k]) \simeq \ker(H^1(K_v, E[p^k]) \otimes \Lambda^\vee \rightarrow H^1(K_{\text{ur}}, E[p^k]) \otimes \Lambda^\vee) \]
\[\simeq H^1(F_v, E[p^k]^{I_v}) \otimes \Lambda^\vee \]
\[= (E[p^k]^{I_v} / (F_v - 1) E[p^k]^{I_v}) \otimes \Lambda^\vee, \]
where F_v is the residue field of K_v, F_v is a Frobenius element at v, and $\Lambda^\vee = \text{Hom}_{\mathbb{Z}_p}(\Lambda, \mathbb{Q}_p / \mathbb{Z}_p)$. Since we assume that any v as above is a prime of multiplicative reduction for E, by Tate’s uniformization we have
\[E[p^\infty] \sim \begin{pmatrix} \varepsilon_{\text{cyc}} & * \\ 0 & 1 \end{pmatrix} \]
as G_{K_v}-modules, where ε_{cyc} is the p-adic cyclotomic character. Since we also assume that $\bar{\rho}_{E,p}$ is ramified at v, the image of \ast^v in the above matrix generates Q_p/\mathbb{Z}_p. Thus we see that

$$E[p^\infty]^I_v/(Fr_v - 1)E[p^\infty]^I_v = 0,$$

which by (2.10) implies the vanishing of $H^1_{\text{ord}}(K_v, S)$.

On the other hand, from the preceding calculation we see that to obtain the desired bound on the kernel of (2.9) it suffices to show that the natural map $H^1(K_{ur}^w, S[p^k]) \to H^1(K_v^w, S)$ is injective. A similar argument as before shows that this map is identified with the natural map

$$H^1(K_{ur}^w, E[p^k]) \otimes \Lambda^v \to H^1(K_v^w, E[p^\infty]) \otimes \Lambda^v = E[p^\infty]^I_v \otimes \Lambda^v,$$

where $E[p^k]^I_v \simeq p^{-k} \mathbb{Z}_p/\mathbb{Z}_p$ is the I_v-coinvariants of $E[p^k]$ for $k \leq \infty$. It follows that the map (2.9) is injective. □

3. Rubin’s formula for derived p-adic heights

In this section we explicitly compute the derived p-adic height pairings for p-ordinary elliptic curves via Perrin-Riou’s big exponential maps. The main result of this section is Theorem 3.7.

3.1. Preliminaries

We begin by reviewing the generalization of Perrin-Riou’s theory [PR94] to Lubin–Tate formal groups developed in [Kob18]. Fix a completed algebraic closure C_p of Q_p. Let $Q_{ur} \subset C_p$ be the maximal unramified extension of Q_p, and let $Fr \in \text{Gal}(Q_{ur}/Q_p)$ be the absolute Frobenius. Let $F \subset Q_{ur}$ be a finite unramified extension of Q with valuation ring $\mathcal{O} = \mathcal{O}_F$ and set

$$R = \mathcal{O}[X].$$

Let $\mathcal{F} = \text{Spf } R$ be a relative Lubin–Tate formal group of height one defined over \mathcal{O}, and for each $n \in \mathbb{Z}$ set

$$\mathcal{F}^{(n)} := \mathcal{F} \times_{\text{Spec } \mathcal{O}_F - n \text{ Spec } \mathcal{O}} \text{Spec } \mathcal{O}.$$

The Frobenius morphism $\varphi_{\mathcal{F}} \in \text{Hom}(\mathcal{F}, \mathcal{F}^{(-1)})$ induces a homomorphism $\varphi_{\mathcal{F}} : R \to R$ defined by

$$\varphi_{\mathcal{F}}(f) := f^{Fr} \circ \varphi_{\mathcal{F}},$$

where f^{Fr} is the conjugate of f by Fr. Let $\psi_{\mathcal{F}}$ be the left inverse of $\varphi_{\mathcal{F}}$ satisfying

$$\varphi_{\mathcal{F}} \circ \psi_{\mathcal{F}}(f) = p^{-1} \sum_{x \in F[p]} f(X) \psi_{\mathcal{F}}(X).$$

Let $F_\infty = \bigcup_{n \geqslant -1} F(F[p^n])$ be the Lubin–Tate \mathbb{Z}_p^{\times}-extension associated with \mathcal{F}, and for every $n \geqslant -1$, let F_n be the subfield of F_∞ with $\text{Gal}(F_n/F) \simeq (\mathbb{Z}/p^{n+1}\mathbb{Z})^{\times}$ (so $F_{-1} = F$). Letting $G_\infty = \text{Gal}(F_\infty/F)$, there is a unique decomposition $G_\infty = \Delta \times \Gamma_\infty^F$, where $\Delta \simeq \text{Gal}(F_0/F)$ is the torsion subgroup of G_∞ and $\Gamma_\infty^F \simeq \mathbb{Z}_p$.

For every $a \in \mathbb{Z}_p^\times$, there is a unique formal power series $[a] \in R$ such that

$$[a]^{Fr} \circ \varphi_{\mathcal{F}} = \varphi_{\mathcal{F}} \circ [a] \quad \text{and} \quad [a](X) \equiv aX \pmod{X^2}.$$

Letting $\varepsilon_{\mathcal{F}} : G_\infty \to \mathbb{Z}_p^\times$ be the Lubin–Tate character, we let $\sigma \in G_\infty$ act on $f \in R$ by

$$\sigma.f(X) := f([\varepsilon_{\mathcal{F}}(\sigma)](X)),$$

thus making R into an $\mathcal{O}[G_{\infty}]$-module.

Lemma 3.1. $R^{\psi_{\mathcal{F}} = 0}$ is free of rank one over $\mathcal{O}[G_{\infty}]$.

Proof. This is a standard fact. See [Kob18, Prop. 5.4]. □
Let L be a finite extension of \mathbb{Q}_p, and V be a crystalline representation of $G_{\mathbb{Q}_p}$ defined over L. Let $D(V) = D_{\text{cris}} \mathbb{Q}_p(V)$ be the filtered φ-module associated with V over \mathbb{Q}_p, and set

$$\mathcal{D}_\infty(V) := D(V) \otimes_{\mathbb{Z}_p} R_{\varphi=0} \simeq D(V) \otimes_{\mathbb{Z}_p} \mathcal{O}[G_\infty].$$

Fix an invariant differential $\omega_F \in \Omega_R$, and let $\log_F \in R \otimes \mathbb{Q}_p$ be the logarithm map satisfying

$$\log_F(0) = 0 \quad \text{and} \quad d \log_F = \omega_F,$$

where $d : R \to \Omega_R$ be the standard derivation. Let $\partial : R \to R$ be defined by $df = \partial f \cdot \omega_F$.

Let $\epsilon = (\epsilon_n) \in T_p \mathcal{F} = \lim_{\leftarrow} \mathcal{F}^{(n+1)}[p^{n+1}]$ be a basis of the p-adic Tate module of \mathcal{F}, where the limit is with respect to the maps $\varphi^{\text{Fr}-(n+1)} : \mathcal{F}^{(n+1)}[p^{n+1}] \to \mathcal{F}^{(n)}[p^n]$. As in [Kob18, p. 42], we associate to ϵ and ω_F a p-adic period $t_\epsilon \in B^+_{\text{cris}}$ as follows. For each n, there exists a unique isomorphism $\varphi_n^\epsilon : \mathcal{F}^{(n)} \to \mathcal{F}$ such that

$$\varphi^{\text{Fr}^{-1}} \circ \cdots \circ \varphi^{\text{Fr}-(n-1)} \circ \varphi^{\text{Fr}^{-n}} = [p^n] \circ \varphi_n^\epsilon.$$

Put $w_n := \varphi_n^\epsilon(\epsilon_n-1) \in \mathcal{F}[p^n]$, so that $[p](w_n) = w_n-1$ by definition. Let $A_{\text{inf}} = A_{\text{inf}}(\mathcal{O}_{\mathbb{C}_p}/\mathcal{O}_F)$ and $\theta : A_{\text{inf}} \to \mathcal{O}_{\mathbb{C}_p}$ be as defined in [Fon91]. It is not difficult to show that there is a unique sequence (\tilde{w}_n) of elements in $\mathcal{F}(A_{\text{inf}})$ such that $[p](\tilde{w}_n) = \tilde{w}_n-1$ and $\theta(\tilde{w}_n) = w_n$, and we set $t_\epsilon := \log_F(\tilde{w}_0) \in B^+_{\text{cris}}$. This satisfies

$$\log_F(0) = 0 \quad \text{and} \quad \varphi_{t_\epsilon} = \omega_F t_\epsilon,$$

where ω is the uniformizer in F such that $\varphi^* (\omega_F^2) = \omega \cdot \omega_F$.

Fix an extension $\tilde{\epsilon}_F : \text{Gal}(F_{\text{cyc}}/\mathbb{Q}_p) \to L^\times$ of the Lubin–Tate character ϵ_F, and for each $j \in \mathbb{Z}$ let $V(j) := V \otimes_L \tilde{\epsilon}_F^j$ denote the j-th Lubin–Tate twist of V. Then

$$D_{\text{cris}}(V(j)) = D(V) \otimes_{\mathbb{Q}_p} F t_\epsilon^{-j}.$$

Define the derivation $d_\epsilon : \mathcal{D}_\infty(V(j)) \to \mathcal{D}_\infty(V(j-1))$ by

$$d_\epsilon f := \eta t_\epsilon \otimes \partial g,$$

writing $f = \eta \otimes g \in D_{\text{cris}}(V(j)) \otimes \mathcal{O} R_{\varphi=0}^{\psi=0}$, and the map

$$\tilde{\Delta} : \mathcal{D}_\infty(V) \to \bigoplus_{j \in \mathbb{Z}} \mathcal{D}_{\text{cris}}(V(-j)) / \mathcal{O}$$

by $f \mapsto (\partial^j f(0)t_\epsilon^j \mod (1-\varphi))$.

Remark 3.2. If $\mathcal{F} = \hat{G}_m$, then $F_{\text{cyc}} = F(\zeta_{p^\infty})$, ϵ_F is the cyclotomic character $\epsilon_{\text{cyc}} : G_{\mathbb{Q}_p} \to \mathbb{Z}_p^\times$, $\varphi_F(f) = f^{\text{Fr}}((1+X)p^{-1})$, and $\psi_F(f)$ is given by the unique power series such that

$$\varphi_{\hat{G}_m} \circ \psi_{\hat{G}_m}(f) = p^{-1} \sum_{\zeta_{p^n} - 1} f(\zeta(1+X)-1).$$

If we take $\omega_{\hat{G}_m}$ to be the invariant differential $(1+X)^{-1}dX$, then $\partial = (1+X)^{-d}$ and $\log_{\hat{G}_m}$ is the usual logarithm $\log(1+X)$.

In the following, we fix a sequence $\{\zeta_{p^n}\}_{n=1,2,3,\ldots}$ of primitive p^n-th roots of unity with $\zeta_{p^{n+1}} = \zeta_{p^n}$, and let $t \in B^+_{\text{cris}}$ be the period t_ϵ corresponding to $\omega_{\hat{G}_m}$ and the basis $(\zeta_{p^{n+1}}-1) \in T_p \hat{G}_m$.

3.2. Perrin-Riou’s big exponential map and the Coleman map. For a finite extension \(K \) over \(\mathbb{Q}_p \), let
\[
\exp_{K,V} : D(V) \otimes_{\mathbb{Q}_p} K \to H^1(K,V)
\]
be Bloch–Kato’s exponential map [BK90, §3]. In this subsection, we recall the main properties of Perrin-Riou’s map \(\Omega_{V,h} \) interpolating \(\exp_{K,V(j)} \) as \(j \) runs over non-negative integers \(j \).

Let \(V^* := \text{Hom}_L(V, L(1)) \) be the Kummer dual of \(V \) and denote by
\[
[-,-]_V : D(V^*) \otimes K \times D(V) \otimes K \to L \otimes K
\]
the \(K \)-linear extension of the de Rham pairing
\[
\langle , \rangle_{dR} : D(V^*) \times D(V) \to L.
\]
Let \(\exp_{K,V}^* : H^1(K,V) \to D(V) \otimes K \) be the Bloch–Kato dual exponential map, which characterized uniquely by
\[
\text{Tr}_{K/Q_p}([x, \exp_{K,V}^*(y)]_V) = \langle \exp_{K,V}(x), y \rangle_{dR},
\]
for all \(x \in D(V^*) \otimes K, y \in H^1(K,V) \).

Choose a \(G_{Q_p} \)-stable \(\mathcal{O}_L \)-lattice \(T \subset V \), and set \(\hat{H}^1(F_{\infty}, T) = \lim_{\leftarrow} H^1(F_n, T) \) and
\[
\hat{H}^1(F_{\infty}, V) = \hat{H}^1(F_{\infty}, T) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p.
\]
(This does not depend on the choice of \(T \).) Denote by
\[
\text{Tw}_j : \hat{H}^1(F_{\infty}, V) \simeq \hat{H}^1(F_{\infty}, V(j))
\]
the twisting map by \(\tilde{e}_F^j \). For a non-negative real number \(r \), put
\[
\mathcal{H}_{r,K}(X) = \left\{ \sum_{n \geq 0, \tau \in \Delta} c_{n,\tau} \cdot \tau \cdot X^n \in K[\Delta][X] \mid \sup_n |c_{n,\tau}|_p n^{-\tau} < \infty \text{ for all } \tau \in \Delta \right\},
\]
where \(\cdot |_p \) is the normalized valuation of \(K \) with \(|p|_p = p^{-1} \). Let \(\gamma \) be a topological generator of \(\Gamma_F^\infty \), and denote by \(\mathcal{H}_{r,K}(G_{\infty}) \) the ring of elements \(\{ f(\gamma - 1) : f \in \mathcal{H}_{r,K}(X) \} \), so in particular \(\mathcal{H}_{0,K}(G_{\infty}) = \mathcal{O}_K [G_{\infty}] \otimes \mathbb{Q}_p \).

Put
\[
\mathcal{H}_{\infty,K}(G_{\infty}) = \bigcup_{r > 0} \mathcal{H}_{r,K}(G_{\infty}).
\]

Let \(F \subset F_n \subset F_{\infty} \) be as in [3.1] and define a map
\[
\Xi_{n,V} : D(V) \otimes_{\mathbb{Q}_p} \mathcal{H}_{\infty,F}(X) \to D(V) \otimes_{\mathbb{Q}_p} F_n
\]
by
\[
\Xi_{n,V}(G) := \begin{cases} p^{-(n+1)} \varphi^{-(n+1)}(G F^{-(n+1)}(\epsilon_n)) & \text{if } n \geq 0, \\ (1 - p^{-1} \varphi^{-1})(G(0)) & \text{if } n = -1. \end{cases}
\]

Let \(h \) be a positive integer such that \(D(V) = \text{Fil}^{-h} D(V) \) and assume that \(H^0(F_{\infty}, V) = 0 \).

Theorem 3.3 (Perrin-Riou, Colmez, Kobayashi, Shaowei Zhang). Let \(\tilde{\Lambda} := \mathbb{Z}_p [G_{\infty}] \). There exists a big exponential map
\[
\Omega_{V,h} : \mathcal{D}_\infty(V)_{\tilde{\Lambda}=0} \to \hat{H}^1(F_{\infty}, T) \otimes_{\tilde{\Lambda}} \mathcal{H}_{\infty,F}(G_{\infty})
\]
which is \(\tilde{\Lambda} \)-linear and characterized by the following interpolation property. Let \(g \in \mathcal{D}_\infty(V)_{\tilde{\Lambda}=0} \). If \(j \geq 1 - h \), then
\[
\text{pr}_{F_n}(\text{Tw}_j \circ \Omega_{V,h}(g)) = (-1)^{h+j-1}(h+j-1)! \cdot \exp_{F_n,V(j)}(\Xi_{n,V}(j)(d_{\epsilon}^{-j}G)) \in H^1(F_n, V(j)),
\]
and if \(j \leq -h \), then
\[
\exp_{F_n,V(j)}^*(pr_{F_n}(Tw_j \circ \Omega_{V,j}^*(g))) = \frac{1}{(-h - j)!} : \Xi_n \cdot V_{j}(d_{e,j}^{-1}G) \in D(V(j)) \otimes \mathbb{Q}_p F_n,
\]
where \(G \in D(V) \otimes \mathbb{Q}_p, \mathcal{H}_{h,F}(X) \) is a solution of the equation
\[
(1 - \varphi \otimes \varphi_F)G = g.
\]
Moreover, if \(D_{[s]} \subset D(V) \) is a \(\varphi \)-invariant in which all eigenvalues of \(\varphi \) have \(p \)-adic valuation \(s \), then \(\Omega_{V,j}^*(\mathcal{H}_{h,F}(G)) = \hat{H}^1(F_{\infty},T) \otimes \mathcal{H}_{s+h,F}(G_{\infty}) \)
\[
\square
\]
Proof. For \(\mathcal{F} = \hat{G}_m \), the construction of \(\Omega_{V,j}^* \) and the proof of its interpolation property for \(j \geq 1 - h \) is due to Perrin-Riou \([PR94, \S 3.2.3 \text{ Théorème}, \S 3.2.4(i)] \), while the interpolation formula for \(j \leq -h \) is a consequence of the proof of Perrin-Riou’s “explicit reciprocity law” by Colmez \([Col98 \text{ Théorème IX.4.5}] \). The extension of these results to general relative Lubin–Tate formal groups of height one is well understood. For example, the details for the construction of \(\Omega_{V,j}^* \) and the interpolation property at \(j \geq 1 - h \) are given in \([Kob18, \text{ Appendix}] \), and the extension of Colmez’s proof of the explicit reciprocity law is given in \([Zha04 \text{ Theorem 6.2}] \).

To introduce the Coleman map, we further assume the following hypothesis:
\[
\mathcal{D}_\infty(V) \hat{\Delta} = \mathcal{D}_\infty(V).
\]
For simplicity, we shall write \(\mathcal{H}_K \) for \(\mathcal{D}_\infty(K(G_\infty)) \) in the sequel. We let \([-,-]|_V : D(V^*) \otimes \mathbb{Q}_p \mathcal{H}_F \times D(V) \otimes \mathbb{Q}_p \mathcal{H}_F \to L \otimes \mathbb{Q}_p \mathcal{H}_F\)
\[
\text{be the pairing defined by}
\]
\[
[\eta_1 \otimes \lambda_1, \eta_2 \otimes \lambda_2]|_V = \langle \eta_1, \eta_2 \rangle_{dR} \otimes \lambda_1 \lambda_2
\]
for all \(\lambda_1, \lambda_2 \in \mathcal{H}_F \). For any \(e \in R^{\psi = 0} \) and \(\psi \) a generator of \(T_p \mathcal{F} \), there is unique \(\mathcal{O}_L[\mathcal{G}_\infty] \)-linear \(\text{Coleman map} \) \(\text{Col}_e^*: \hat{H}^1(F_\infty, V^*) \to D(V^*) \otimes \mathbb{Q}_p \mathcal{H}_F \) characterized by
\[
\text{Tr}_{F/Q_p}((\text{Col}_e^*(\mathcal{L}), \eta)|_V) = \langle \mathcal{L}, \Omega_{V,j}^*(\eta \circ e) \rangle_{F_\infty} \in L \otimes \mathbb{Q}_p \mathcal{H}_F
\]
for all \(\eta \in D(V) \).

Let \(\mathcal{Q} \) be the completion of \(\mathbb{Q}_p^{ur} \) in \(\mathbb{C}_p \), with ring of integers \(\mathcal{W} \), and set \(\mathbb{F}_n^{ur} = \mathbb{F}_n \mathbb{Q}_p^{ur} \) for \(-1 \leq n \leq \infty \) (so \(\mathbb{F}_1^{ur} = \mathbb{F}_p^{ur} \)). Let \(\sigma_0 \in \text{Gal}(\mathbb{F}_\infty^{ur}/\mathbb{Q}_p) \) be such that \(\sigma_0|_{\mathbb{Q}_p^{ur}} = \text{Fr} \) is the absolute Frobenius. Fix an isomorphism \(\rho : \hat{G}_m = \mathcal{F} \) defined over \(\mathcal{O} \) and let \(\rho : \mathcal{W}[T] \approx R \otimes \mathcal{O} \mathcal{B} \) be the map defined by \(\rho(f) = f \circ \rho^{-1} \), so \(\varphi F \circ \rho = \rho \circ \varphi_{G_m} \).

Let \(e \in R^{\psi = 0} \) be a generator over \(\mathcal{O}[\mathcal{G}_\infty] \) and write \(\rho(1+X) = h_e \cdot e \) for some \(h_e \in \mathcal{W}[\mathcal{G}_\infty] \).

This implies that \(\epsilon(0) \in O^\times \). Let \(\epsilon = (\epsilon_n)_{n=0,1,2,...} \) be the generator of \(T_p \mathcal{F} \) given by
\[
\epsilon_n = \rho\text{Fr}^{-(n+1)}(\zeta_{p,n+1} - 1) \in \mathcal{F}(n+1)[p^{n+1}].
\]

Let \(\eta \in D(V) \) be such that \(\varphi \eta = \alpha \eta \) and of slope \(s \) (i.e. \(\alpha|_p = p^{-s} \)). For every \(\mathcal{L} \in \hat{H}^1(F_\infty, V^*) \), we define
\[
\text{Col}^s(\mathcal{L}) := \sum_{j=1}^{[F:Q_p]} \text{Col}_e^*(\zeta^\sigma_j^{ \epsilon}), \eta \cdot h_e \cdot \sigma_0^i \in \mathcal{H}_{s+h,LQ}(\hat{G}_\infty), \quad \hat{G}_\infty := \text{Gal}(\mathcal{F}/\mathbb{Q}_p),
\]
where \([-,-] : D(V^*) \otimes \mathcal{H}_Q \times D(V) \otimes \mathcal{H}_Q \to \mathcal{H}_{LQ} \) is the image of \([-,-]|_V \) under the natural map \(L \otimes \mathbb{Q}_p \mathcal{H}_Q \to \mathcal{H}_{LQ} \).

For any integer \(j \), put
\[
z_{-j,n} := pr_{F_n}(Tw_{-j}(z)) \in H_1(F_n, V^*_{-j}).
We say that a finite order character \(\chi \) of \(\tilde{G}_\infty \) has conductor \(p^{n+1} \) if \(n \) is the smallest integer \(\geq -1 \) such that \(\chi \) factors through \(\text{Gal}(F_n/Q_p) \).

Theorem 3.4. Suppose that \(\text{Fil}^{-1}D(V) = D(V) \) and take \(h = 1 \). Let \(\psi \) be a \(p \)-adic character of \(G_\infty \) such that \(\psi = \chi^{\varepsilon_f} \) with \(\chi \) a finite order character of conductor \(p^{n+1} \). If \(j < 0 \), then

\[
\text{Col}^j(\mathfrak{z})(\psi) = \frac{(-1)^{j-1}}{(-j-1)!} \times \sum_{\tau \in \text{Gal}(F_n/Q_p)} \chi^{-1}(\tau) \left[\log_{F_n,V}(\zeta) \right] \]

\[
\times \left\{ \begin{array}{ll}
\log_{F_n,V}(\zeta) z_j \otimes t^{-j}, (1 - p^{-1}, \varphi(1)(1 - p^{-1})^{-1} \eta) & \text{if } n = -1, \\
p^{(n+1)(j-1)} \tau(\psi) \sum_{\tau \in \text{Gal}(F_n/Q_p)} \chi^{-1}(\tau) \left[\log_{F_n,V}(\zeta) z_j \otimes t^{-j}, \varphi(1) \eta \right] & \text{if } n \geq 0.
\end{array} \right.
\]

If \(j \geq 0 \), then

\[
\text{Col}^j(\mathfrak{z})(\psi) = \frac{j!(-1)^j}{\text{Gal}(F_n/Q_p)} \times \sum_{\tau \in \text{Gal}(F_n/Q_p)} \chi^{-1}(\tau) \left[\log_{F_n,V}(\zeta) z_j \otimes t^{-j}, (1 - p^{-1}, \varphi(1)(1 - p^{-1})^{-1} \eta) \right] \]

\[
\times \left\{ \begin{array}{ll}
\exp_{F_n,V}(\zeta) z_j \otimes t^{-j}, (1 - p^{-1}, \varphi(1)(1 - p^{-1})^{-1} \eta) & \text{if } n = -1, \\
p^{(n+1)(j-1)} \tau(\psi) \sum_{\tau \in \text{Gal}(F_n/Q_p)} \chi^{-1}(\tau) \left[\exp_{F_n,V}(\zeta) z_j \otimes t^{-j}, \varphi(1) \eta \right] & \text{if } n \geq 0.
\end{array} \right.
\]

Here \(\tau(\psi) \) is the Gauss sum defined by

\[
\tau(\psi) := \sum_{\tau \in \text{Gal}(F_n/Q_p)} \psi^{\varepsilon_f}(\tau \varsigma)^{n+1} \varsigma^{n+1}.
\]

Proof. This follows from Theorem 3.3 and the explicit computation in [Kob18, Thm. 5.10]. \(\square \)

3.3. Rubin’s formula for derived \(p \)-adic heights

Let \(E \) be an elliptic curve over \(Q \) with good ordinary reduction at \(p \), and let \(V = T_pE \otimes_{Z_p} Q_p \), so \(\text{Fil}^{-1}D(V) = D(V) \) and \(V \) has good ordinary reduction at \(p \). Let \(\omega_E \) be the Neron differential of \(E \), regarded as an element in \(D(\Gamma_\infty) \). Fix an embedding \(\eta\mathbb{Q} \hookrightarrow \mathbb{C} \), and let \(\mathfrak{P} \) be the prime of \(\mathbb{Q} \) induced by \(\eta\mathbb{Q} \). For any subfield \(H \subset \mathbb{Q} \), denote by \(\mathbb{H} = \mathbb{H}_\mathfrak{P} \) the completion of \(H \) with respect to \(\mathfrak{P} \).

Let \(K \) be an imaginary quadratic field such that \(p = \mathfrak{P} \) splits in \(K \), with \(\mathfrak{P} \) inducing the prime \(p \). Let \(K_\infty \) be the anticyclotomic \(\mathfrak{P} \)-extension of \(K \), and set

\[
\Gamma_\infty = \text{Gal}(K_\infty/K), \quad \hat{\Gamma}_\infty = \text{Gal}(\hat{K}_\infty/Q_p).
\]

Then \(\hat{\Gamma}_\infty \subset \Gamma_\infty \) is the decomposition group of \(\mathfrak{P} \).

Let \(H_\mathfrak{P} \) be the ring class field of \(K \) of conductor \(c \), and put \(F = H_\mathfrak{P} \) for a fixed \(c \) prime to \(p \). Let \(\xi \in K \) be a generator of \(p^{[F:Q_p]} \) and let \(F_\infty/F \) be the Lubin–Tate \(\mathfrak{P} \)-extension associated with the uniformizer \(\xi/\xi \in \mathcal{O}_F \) (see [Kob18, §3.1]). As is well-known (c.f. [Shn16, Prop. 8.3]), we have \(F_\infty = \bigcup_{n=0} F_{\mathfrak{P}^n} \), and hence \(F_\infty \) is a finite extension of \(K_\infty \). Moreover, hypothesis (3.2) holds since \(D(V)/\rho(\mathfrak{P}) = \{\xi/\xi \} \) is a \(1 \)-Weil number.

Let \(\alpha_p \in \mathfrak{Z}_p^\times \) be the \(p \)-adic unit eigenvalue of the Frobenius map \(\varphi \) acting on \(D(V) \), and let \(\eta \in D(V) = D(H_\mathfrak{P}(E/Q_p)) \otimes D(Q_p(1)) \) be a \(\varphi \)-eigenvector of slope \(-1\) such that

\[
\varphi \eta = p^{-1} \alpha_p \cdot \eta \quad \text{and} \quad \langle \eta, \omega_E \otimes t^{-1} \rangle_{\mathfrak{P}} = 1.
\]

Let \(e \in R^{[F:Q_p]} \) be a generator over \(\mathcal{O}_F[\mathfrak{P}] \) such that \(e(0) = 1 \). Applying the big exponential map \(\Omega_{V,1} \) in Theorem 3.3, we define

\[
\omega^\eta = \Omega_{V,1}(\eta \otimes e) \in \hat{H}(F_\infty, V).
\]
Lemma 3.5. We have

$$\text{pr}_F(w^\eta) = \exp_{F,V} \left(\frac{1-p^{-1} \varphi^{-1}}{1-\varphi} \right) \in \text{H}^1(F,V).$$

Proof. Let $g = \eta \otimes e$ and let $G(X) \in D(V) \otimes \mathcal{H}_{1,Q}(X)$ such that $(1-\varphi \otimes \varphi X)G = g$. Then we have

$$G(\epsilon_0) = \eta \otimes e(\epsilon_0) - \eta + (1-\varphi)^{-1}\eta.$$

The equation $\psi_x e(X) = 0$ implies

$$\sum_{\zeta \in H^{pr-1}[F]} e^{Fr^{-1}}(X \oplus F \zeta) = 0.$$

It follows that

$$\text{Tr}_{F_0/F}(G^{Fr^{-1}}(\epsilon_0)) = \sum_{\tau \in \text{Gal}(F_0/F)} \eta \otimes e(\epsilon_0) - \eta + (1-\varphi)^{-1}\eta = \frac{p^r-1}{1-\varphi} \eta,$$

and hence

$$\text{pr}_F(w^\eta) = \text{cor}_{F_0/F}(\Xi_0,V(G)) = \exp_{F,V} \text{Tr}_{F_0/F} \left(\frac{p^{-1} \varphi^{-1}}{1-\varphi} \right) \exp_{F,V} \left((1-p^{-1} \varphi^{-1})(1-\varphi)^{-1}\eta \right).$$

This completes the proof. \square

Lemma 3.6. Let Q_p^{cyc} be the cyclotomic Z_p^{cyc}-extension of Q_p. Let $\sigma_{cyc} \in \text{Gal}(F_\infty^\text{ur}/Q_p)$ be the Frobenius such that $\sigma_{cyc}|Q_p^{cyc} = 1$ and $\sigma_{cyc}|Q_p^\text{ur} = Fr$. For each $z \in \hat{H}^1(K_\infty,V)$, we have

$$\langle z, \text{cor}_{F_{\infty}/K_{\infty}}(w^\eta) \rangle_{K_{\infty}} = \text{pr}_{K_{\infty}} \left(\text{Col}_e(z) \right) \left[\frac{F_{\infty}}{[F_{\infty} : K_{\infty}]} \cdot h_{Fr} \right] \in \text{W}[\hat{\Gamma}_\infty] \otimes Q_p.$$

Proof. We first recall that for every $e \in (R \otimes \mathcal{O} W)^{Fr=0}$, the big exponential map $\Omega_{V,1}(\eta \otimes e)$ in Theorem 3.3 is given by

$$\Omega_{V,1}(\eta \otimes e) = (\exp_{F_{n,V}}(\Xi_{n,V}(G_e)))_{n=0,1,2,\ldots},$$

where $G_e \in D(V) \otimes \mathcal{H}_{1,Q}(X)$ is a solution of $(1-\varphi \otimes \varphi X)G_e = \eta \otimes e$. By the definition of G_e, we verify that

$$\Xi_{n,V}(G_e) = p^{-(n+1)}(\varphi^{-(n+1)} \otimes \epsilon_{n+1}) \text{Fr}^{-(n+1)}(\epsilon_n)$$

$$= \sum_{m=0}^{\infty} (p^r)^{-n+1} \varphi^m \eta \otimes e_{F_{n-m-n}^{-1}}(\epsilon_{n-m})$$

$$= \sum_{m=0}^{n+1} (p^r)^{-n+1} \varphi^m \eta \otimes e_{F_{n-m-n}^{-1}}(\epsilon_{n-m}) + p^{-(n+1)}(1-\varphi \otimes Fr)^{-1}(\eta \otimes e(0)).$$

Put $z_n = \text{pr}_{K_{n}}(z)$ and $G_n = \text{Gal}(F_n/F)$. Following the computation in [Kob18 Thm. 5.10], we find that $\left[\text{pr}_{K_n}(\text{Col}_e(z)), \eta \right]$ is given by

$$\sum_{\gamma \in G_n} \left[\sum_{r \in G_n} \exp_{F_{n,V}}(\gamma \eta_0 \sigma_0^{+m-1}) \gamma, \sum_{\tau \in G_n} (p^r)^{-n+1} \varphi^m \eta \otimes e_{F_{n-m-n}^{-1}}(\epsilon_{n-m}) \sigma_0^{+m-1} \tau |_{K_n} \right].$$
On the other hand,

\[\text{pr}_{K_n}(\langle z, \text{cor}_{F_n/K_n}(w) \rangle|_{K_n}) = \frac{1}{[F_n : K_n]} \sum_{j=1}^{[F_n:Q_p]} \text{pr}_{K_n}(\langle z^{\sigma_j^{-1}}, w \rangle|_{F_n}) \sigma_0^j |_{K_n}, \]

and \(\text{pr}_{K_n}(\langle z^{\sigma_j^{-1}}, w \rangle|_{F_n}) \) equals

\[\sum_{\gamma \in G_n} \langle z_n^{\sigma_j^{-1} \gamma^{-1}}, \exp_{F_n,V}(\Xi_n,V(G_E))|F_n \rangle \gamma |_{K_n} = \text{Tr}_{F_n/Q_p} \left(\left[\sum_{\gamma \in G_n} \exp_{K_n,V}(z_n^{\sigma_j^{-1} \gamma^{-1}}) \gamma |_{K_n}, \Xi_n,V(G_E) \right] \right) \]

\[= \sum_{m=0}^{[F_n:Q_p]} \left[\sum_{\gamma \in G_n} \exp_{K_n,V}(z_n^{\sigma_j^{-1} \gamma^{-1}}) \gamma, \sum_{\tau \in G_n} (p \varphi)^{-(n+1)} \epsilon \eta \otimes e^{F_n} \epsilon^{-(n+1)} (\epsilon_{n-m}) \tau |_{K_n} \right] \]

\[= \sum_{i=1}^{[F_n:Q_p]} \left[\text{pr}_{K_n}(\text{Col}_e(z^{\sigma_j^{-1}}) \sigma_0^i), \eta \right]. \]

From this, it follows immediately that

\[\text{pr}_{K_n}(\langle z, \text{cor}_{F_n/K_n}(w) \rangle|_{K_n}) = \frac{1}{[F_n : K_n]} \sum_{j=1}^{[F_n:Q_p]} \sum_{i=1}^{[F_n:Q_p]} \left[\text{pr}_{K_n}(\text{Col}_e(z^{\sigma_j^{-1}}) \sigma_0^i), \eta \right] \sigma_0^j \]

(3.6)

\[= \frac{1}{[F_n : K_n]} \sum_{i=1}^{[F_n:Q_p]} (\text{Col}_p(z)) \sigma_0^i \cdot \frac{1}{h_e^i} \cdot \sigma_0^j. \]

On the other hand, by definition,

\[\text{Col}_p(z) = \sum_{j=1}^{[F_n:Q_p]} \left[\text{Col}_g_p(z^{\sigma_j^{-1}}), \eta \right] \sigma_0^j \]

with \(g_p = \rho(1 + X) \). From [3.5] with \(e = g_p \) and the fact that \(g_p^{\sigma_0^m - n - 1} (\epsilon_{n-m}) = \zeta_p^{n+1-m} \in Q_p^c \), we deduce that

\[\left[\text{Col}_g_p(z^{\sigma_j^{-1}}), \eta \right] = \left[\text{Col}_g_p(z^{\sigma_j^{-1}}), \sigma_0^i \right], \]

so \((\text{Col}_p(z))^\sigma_0^i = \text{Col}_p(z) \cdot \sigma_0^i \). Now the lemma follows from (3.6).

For every prime \(v \) above \(p \), let \(H^1_{\text{lin}}(K_v, V) \subset H^1(K_v, V) \) be the Bloch–Kato finite subspace, and set

\[\log_{\omega_E,v} = \langle \log_{K_v,V}(-), \omega_E \otimes t^{-1} \rangle_{dR} : H^1_{\text{lin}}(K_v, V) \to Q_p. \]

Since \(p \) is a prime of good reduction for \(E \), we have \(H^1_{\text{exp}}(K_v, V) = H^1_{\text{lin}}(K_v, V) \) by [BK90, Cor. 3.8.4], where \(H^1_{\text{exp}}(K_v, V) \subset H^1(K_v, V) \) is the image of \(\exp_{K_v,V} \).

The following result gives a formula for the derived \(p \)-adic height pairing

\[h^{(r)} : S^{(r)}_p(E/K) \times S^{(r)}_p(E/K) \to (J^r/J^{r+1}) \otimes \mathbb{Z}_p Q_p \]

of Theorem 2.4, where \(J \) is the augmentation ideal of \(\mathbb{Z}_p[\Gamma], \) in terms of the Coleman map. For a global Iwasawa cohomology class \(z \in H^1(K_v, V) \), we put

\[(3.8) \quad \text{Col}_p(\text{loc}_p(z)) := \sum_{\sigma \in \Gamma_v / \Gamma_v} \text{pr}_{K_v}(\text{Col}_p(\text{loc}_p(z^{\sigma^{-1}}))) \sigma \in \mathcal{W}[\Gamma_v]. \]
Theorem 3.7. Let \(z \in \hat{H}^1(K_\infty, V) \) and \(z = \text{pr}_K(z) \). Suppose that \(\text{Col}^0(\text{loc}_p(z)) \) and \(\text{Col}^0(\text{loc}_p(z)) \) both belong to \(J^r \mathcal{W}[\Gamma_\infty] \otimes \mathbb{Q}_p \). Then \(z \in S_p^{(r)}(E/K) \) and for any \(x \in S_p^{(r)}(E/K) \) we have
\[
\sum_{1 \leq \gamma \leq (\mathbb{Q}/\mathbb{Z})^*} \text{log}_E(x) \cdot \langle \text{loc}_p(z^{-1}), w_\gamma \rangle_{K_\infty} \sigma + \log_{\text{loc}_p(z)}(\mathbb{Q}_p) \cdot \langle \text{loc}_p(z^{-1}), \omega_\eta \rangle_{K_\infty} \sigma \quad (\mod J^{r+1})
\]
where \(\sigma \) and \(\tilde{\sigma} \) are the complex conjugates of \(\sigma \) and \(\tilde{\sigma} \).

Proof. Suppose first that \(z = \text{pr}_K(z) \in S_p^{(r)}(E/K) \) and fix \(x \in S_p^{(r)}(E/K) \). Let
\[
\omega_\eta := \text{cor}_{F_{\infty}/\hat{K}_\infty}(w_\eta) \in \hat{H}^1_{\text{fin}}(\hat{K}_\infty, V) := (\lim_{\chi} H^1_{\text{fin}}(\hat{K}_n, T)) \otimes \mathbb{Q}_p.
\]
Since \(\dim_{\mathbb{Q}_p} H^1_{\text{fin}}(Q_p, V) = 1 \), we can write
\[
\langle \text{loc}_p(x), \omega_\eta \rangle_{F_\infty} \otimes t^{-1}) dR = c[F : Q_p] \cdot \left(\frac{1 - p^{-1} \varphi^{-1} \eta, \omega_\eta \otimes t^{-1}}{1 - \varphi} \right) dR.
\]
Since \(\varphi \eta = p^{-1} \alpha_p \cdot \eta \), this shows that
\[
c = \frac{1 - p^{-1} \alpha_p}{1 - \alpha_p} \cdot [F : Q_p]^{-1} \cdot \log_{\text{loc}_p(x)}(\mathbb{Q}_p).
\]
Applying Corollary 2.3 we find that that
\[
h^{(r)}(z, x) = -(1 - p^{-1} \alpha_p)(1 - \alpha_p)^{-1} [F : Q_p]^{-1}
\]
\[
\times \left(\sum_{\gamma \in \Gamma_{\infty}/F_\infty} \text{log}_E(x) \cdot \langle \text{loc}_p(z^{-1}), w_\gamma \rangle_{\hat{K}_\infty} \sigma + \log_{\text{loc}_p(z^{-1})} \cdot \langle \text{loc}_p(z^{-1}), \omega_\eta \rangle_{\hat{K}_\infty} \sigma \right) \quad (\mod J^{r+1}).
\]
Since \(\rho(1 + X) = h_\text{x} \cdot e \) and \(e(0) = 1 \), we find that \(1 = e(0) \cdot (h_\text{x} |_{\gamma = 1}) \) and hence \(h_\text{x} \equiv 1 \) \((\mod J) \). The assertion now follows from the above equation, Lemma 3.6 and the definition 3.8.

To conclude the proof of the result it remains to show that \(z \in S_p^{(r)}(E/K) \), which with the formula 3.9 for \(h^{(r)}(z, x) \) at hand follows easily by induction on \(r \), using that by Theorem 2.4 \(S_p^{(r)}(E/K) \) is the left kernel of \(h^{(r-1)} \) (see [How04, p. 1329]).

4. Diagonal cycles and theta elements

In this section we prove Theorem 4.7 recovering the square-root anticyclotomic \(p \)-adic \(L \)-functions of Bertolini–Darmon [BD96] (in the definite case) as the image of a \(p \)-adic family of diagonal cycles [DR17a] under the Coleman map constructed in 3.2.

4.1. Ordinary \(\Lambda \)-adic forms. Fix a prime \(p > 2 \). Let \(\mathbb{B} \) be a normal domain finite flat over \(\Lambda := \mathcal{O}\left[1 + p\mathbb{Z}_p\right] \), where \(\mathcal{O} \) is the ring of integers of a finite extension \(L/Q_p \). We say that a point \(x \in \text{Spec} \left[\mathbb{B}(\mathbb{Q}_p^\infty)\right] \) is locally algebraic if its restriction to \(1 + p\mathbb{Z}_p \) is given by \(x(\gamma) = \gamma^k \cdot \epsilon_x(\gamma) \) for some integer \(k_x \), called the weight of \(x \), and some finite order character \(\epsilon_x : 1 + p\mathbb{Z}_p \to \mu_{p^\infty} \); we say that \(x \) is arithmetic if it has weight \(k_x \geq 2 \). Let \(\mathbb{X}_+^r \) be the set of arithmetic points.

Fix a positive integer \(N \) prime to \(p \), and let \(\chi : (\mathbb{Z}/N\mathbb{Z})^\times \to \mathbb{O}^\times \) be a Dirichlet character modulo \(Np \). Let \(S^0(N, \chi, \mathbb{B}) \) be the space of ordinary \(\mathbb{B} \)-adic cusp forms of tame level \(N \) and
branch character \(\chi\), consisting of formal power series
 \[f(q) = \sum_{n=1}^{\infty} a_n(f)q^n \in \mathbb{Z}[q] \]

such that for every \(x \in \mathcal{X}_+^1\) the specialization \(f_x(q)\) is the \(q\)-expansion of a \(p\)-ordinary cusp form \(f_x \in S_k(S(N) \otimes \chi)\), \(\chi = \chi_{p^{2-k+\epsilon}}\). Here \(r_x \geq 0\) is such that \(\epsilon_x(1+p)\) has exact order \(p^r_x\), and \(\omega : (\mathbb{Z}/p\mathbb{Z})^\times \to \mu_{p-1}\) is the Teichmüller character.

We say that \(f \in S^0(N,\chi,\mathfrak{1})\) is a \emph{primitive Hida family} if for every \(x \in \mathcal{X}_+^1\) we have that \(f_x\) is an ordinary \(p\)-stabilized newform (in the sense of [Hid86 Def. 2.4]) of tame level \(N\). Given a primitive Hida family \(f \in S^0(N,\chi,\mathfrak{1})\), and writing \(\chi = \chi'\chi_p\) with \(\chi'\) (resp. \(\chi_p\)) a Dirichlet modulo \(N\) (resp. \(p\)), there is a primitive \(f' \in S^0(N,\chi_p\mathfrak{1},\mathfrak{1})\) with Fourier coefficients

\[a_{\ell}(f') = \begin{cases} \chi(\ell)a_{\ell}(f) & \text{if } \ell \nmid N, \\ a_{\ell}(f) \chi(\ell) & \text{if } \ell | N, \end{cases} \]

having the property that for every \(x \in \mathcal{X}_+^1\) the specialization \(f_x'\) is the \(p\)-stabilized newform attached to the character twist \(f_x \otimes \chi'_\ell\).

By [Hid86] (cf. [Wil88 Thm. 2.2.1]), attached to every primitive Hida family \(f \in S^0(N,\chi,\mathfrak{1})\) there is a continuous \(\mathbb{Z}\)-adic representation \(\rho_f : G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{F}_p)\) which is unramified outside \(Np\) and such that for every prime \(\ell \nmid Np\)

\[\mathrm{tr} \rho_f(\mathrm{Frob}_\ell) = a_{\ell}(f), \quad \det \rho_f(\mathrm{Frob}_\ell) = \chi(\ell) \ell^{-1}, \]

where \((\ell)\) is the image of \(\ell \mathbb{Z}/\mathbb{Z}\) under the natural map \(1+p\mathbb{Z}/(1+p\mathbb{Z})\). In particular, letting \(\langle \epsilon_{\text{cyc}} \rangle : G_{\mathbb{Q}} \to \mathbb{Z}\) be defined by \(\langle \epsilon_{\text{cyc}} \rangle(\sigma) = \langle \epsilon_{\text{cyc}}(\sigma) \rangle_1\), it follows that \(\rho_f\) has determinant \(\chi_1 \epsilon_{\text{cyc}}\), where \(\chi_1 : G_{\mathbb{Q}} \to \mathbb{Z}\) is given by \(\chi_1 := \sigma \langle \epsilon_{\text{cyc}} \rangle^{-2}\langle \epsilon_{\text{cyc}} \rangle_2\), with \(\sigma\) the Galois character sending \(\mathrm{Frob}_\ell \mapsto \chi(\ell)\). Moreover, by [Wil88 Thm. 2.2.2] the restriction of \(\rho_f\) to \(G_{\mathbb{Q}_p}\) is given by

\[\rho_f|_{G_{\mathbb{Q}_p}} \sim \begin{pmatrix} \psi_f & 0 \\ 0 & \psi_f^{-1} \chi_1^{-1} \epsilon_{\text{cyc}}^{-1} \end{pmatrix}, \]

where \(\psi_f : G_{\mathbb{Q}_p} \to \mathbb{Z}\) is the unramified character with \(\psi_f(\mathrm{Frob}_p) = a_p(f)\).

4.2. Triple product \(p\)-adic \(L\)-function.

Let

\[(f, g, h) \in S^0(N_f, \chi_f, \mathfrak{1}_f) \times S^0(N_g, \chi_g, \mathfrak{1}_g) \times S^0(N_h, \chi_h, \mathfrak{1}_h) \]

be a triple of primitive Hida families. Set

\[\mathcal{R} := \mathfrak{I}_f \otimes \mathfrak{I}_g \otimes \mathfrak{I}_h, \]

which is a finite extension of the three-variable Iwasawa algebra \(\mathcal{R}_0 := \Lambda \otimes \mathcal{O}_\Lambda \otimes \mathcal{O}_\Lambda\), and define the weight space \(\mathcal{X}_R^0\) for the triple \((f, g, h)\) in the \emph{\(f\)-dominated unbalanced range} by

\[\mathcal{X}_R^0 := \left\{ (x, y, z) \in \mathcal{X}_R^1 : x^{\mathfrak{1}}_y \times x^{\mathfrak{1}}_h \in \mathcal{X}_x^{k_x} : k_x > k_y + k_z \text{ and } k_x \equiv k_y + k_z \pmod{2} \right\}, \]

where \(\mathcal{X}_x^{k} \supset \mathcal{X}_y^{k} \) (and similarly \(\mathcal{X}_x^{k}\)) is the set of locally algebraic points in \(\mathfrak{I}_g(\mathcal{Q}_{\mathbb{Q}})\) for which \(g_x(q)\) is the \(q\)-expansion of a classical modular form.

For \(\phi \in \{ f, g, h \}\) a positive integer \(N\) prime to \(p\) and divisible by \(N_\phi\), define the space of \(\Lambda\)-adic test vectors \(S^0(N, \chi_\phi, \mathfrak{1}_\phi)|\phi\) to be the \(\mathfrak{I}_\phi\)-submodule of \(S^0(N, \chi_\phi, \mathfrak{1}_\phi)\) generated by \(\{\phi(q^d)\}\), as \(d\) ranges over the positive divisors of \(N/N_\phi\).

For the next result, set \(N := \text{lcm}(N_f, N_g, N_h)\), and consider the following hypothesis:

\[(\Sigma^-) \quad \text{for some } (x, y, z) \in \mathcal{X}_R^0, \text{ we have } \epsilon_q(f_x^q, g_y^q, h_z^q) = +1 \text{ for all } q \mid N. \]

Here \(\epsilon_q(f_x^q, g_y^q, h_z^q)\) denotes the local root number of the Kummer self-dual twist of the Galois representations attached to the newforms \(f_x, g_y, h_z\).
Theorem 4.1. Assume that the residual representation $\bar{\rho}_f$ satisfies

- (CR) $\bar{\rho}_f$ is absolutely irreducible and p-distinguished,
- and that, in addition to (Σ^-), the triple (f, g, h) satisfies

 - (ev) $\chi_f \chi_g \chi_h = \omega^{2a}$ for some $a \in \mathbb{Z}$,
 - (sq) $\gcd(N_f, N_g, N_h)$ is squarefree.

Then there exist Λ-adic test vectors $(\tilde{f}^*, \tilde{g}^*, \tilde{h}^*)$ and an element

$$\mathcal{L}_p^f(\tilde{f}^*, \tilde{g}^*, \tilde{h}^*) \in \mathcal{R}$$

such that for all $(x, y, z) \in \mathcal{X}_p^f$ of weight (k, ℓ, m):

$$\nu(x, y, z)(\mathcal{L}_p^f(\tilde{f}^*, \tilde{g}^*, \tilde{h}^*))^2 = \frac{\Gamma(k, \ell, m)}{2^n(k, \ell, m)} \cdot \frac{\mathcal{E}(f_x, g_y, h_z)^2}{\mathcal{E}_0(f_x)^2 \cdot \mathcal{E}_1(f_x)^2} \cdot \prod_{q \mid N} c_q \cdot \frac{L(f_x^\sigma \otimes g_y \otimes h_z^\sigma, c)}{\pi^{2(k-2)} \cdot \|f_x^\sigma\|^2},$$

where:

- $c = (k + \ell + m - 2)/2$,
- $\Gamma(k, \ell, m) = (c - 1)! \cdot (c - m)! \cdot (c - \ell)! \cdot (c + 1 - \ell - m)!$,
- $\alpha(k, \ell, m) \in \mathcal{R}$ is a linear form in the variables k, ℓ, m,
- $\mathcal{E}(f_x, g_y, h_z) = (1 - \frac{\beta f_x \alpha_g \alpha_h}{p}) (1 - \frac{\beta f_x \alpha_g \alpha_h}{p}) (1 - \frac{\beta f_x \alpha_g \alpha_h}{p}) (1 - \frac{\beta f_x \alpha_g \alpha_h}{p})$,
- $\mathcal{E}_0(f_x) = (1 - \frac{\beta f_x}{\alpha f_x})$, $\mathcal{E}_1(f_x) = (1 - \frac{\beta f_x}{\alpha f_x})$,

and $\|f_x^\sigma\|^2$ is the Petersson norm of f_x^σ on $\Gamma_0(N_f)$.

Proof. See [Hsi19] Thm. A. More specifically, the construction of $\mathcal{L}_p^f(\tilde{f}^*, \tilde{g}^*, \tilde{h}^*)$ under hypotheses (CR), (ev), and (sq) is given in [Hsi19] §3.6 (where it is denoted \mathcal{L}_p^f), and the proof of its interpolation property assuming (Σ^-) is contained in [Hsi19] §7. □

4.3. Triple tensor product of big Galois representations. Let (f, g, h) be a triple of primitive Hida families with $\chi_f \chi_g \chi_h = \omega^{2a}$ for some $a \in \mathbb{Z}$. For $\phi \in \{f, g, h\}$, let V_{ϕ} be the natural lattice in $(\text{Frac} \, \mathbb{I}_p)^2$ realizing the Galois representation ρ_{ϕ} in the étale cohomology of modular curves (see [Oht00]), and set

$$\forall_{fgh} := V_f \otimes V_g \otimes V_h.$$

This has rank 8 over \mathcal{R}, and by hypothesis its determinant can be written as $\det \forall_{fgh} = X^2 \varepsilon_{\text{cyc}}$ for a p-ramified Galois character χ taking the value $(-1)^a$ at complex conjugation. Similarly as in [How07] Def. 2.1.3], we define the critical twist

$$\forall_{fgh}^\dagger := \forall_{fgh} \otimes X^{-1}.$$

More generally, for any multiple N of N_ϕ one can define Galois modules $V_{\phi}(N)$ by working in tame level N; these split non-canonically into a finite direct sum of the \mathbb{I}_p-adic representations V_{ϕ} (see [DR17a] §1.5.3]), and they define $\forall_{fgh}^N(N)$ for any N divisible by $\text{lcm}(N_f, N_g, N_h)$.

If f is a classical specialization of ϕ with associated p-adic Galois representation V_f, we let $\forall_{f, gh}$ be the quotient of \forall_{fgh} given by

$$\forall_{f, gh} := V_f \otimes V_g \otimes V_h.$$

Denote by $\forall_{f, gh}^\dagger$ the corresponding quotient of \forall_{fgh}^\dagger, and by $\forall_{f, gh}^\dagger(N)$ its level N counterpart.
4.4. Theta elements and factorization. We recall the factorization proven in [Hsi19 §8]. Let $f \in S_2(pN_f)$ be a p-stabilized newform of tame level N_f defined over \mathcal{O}, let $f^o \in S_2(N_f)$ be the associated newform, and let $\alpha_p = \alpha_p(f) \in \mathcal{O}^\times$ be the U_p-eigenvalue of f. Let K be an imaginary quadratic field of discriminant D_K prime to N_f. Write

$$N_f = N^+N^-$$

with N^+ (resp. N^-) divisible only by primes which are split (resp. inert) in K, and choose an ideal $\mathfrak{N}^+ \subset \mathcal{O}_K$ with $\mathcal{O}_K/\mathfrak{N}^+ \simeq \mathbb{Z}/N^+\mathbb{Z}$.

Assume that $p = p\mathfrak{N}^+$ splits in K, with our fixed embedding $i_p : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_p$ inducing the prime p. Let Γ_{∞} be the Galois group of the anticyclotomic \mathbb{Z}_p-extension of K_{∞}/K, fix a topological generator $\gamma \in \Gamma_{\infty}$, and identity $\mathcal{O}[\Gamma_{\infty}]$ with the power series ring $\mathcal{O}[T]$ via $\gamma \mapsto 1 + T$. For any prime-to-p ideal \mathfrak{a} of K, let $\sigma_{\mathfrak{a}}$ be the image of \mathfrak{a} in the Galois group of the ray class field $K(p^\infty)/K$ of conductor p^∞ under the geometrically normalized reciprocity law map.

Theorem 4.2. Let χ be a ring class character of K of conductor $c\mathcal{O}_K$ with values in \mathcal{O}, and assume that:

(i) $(pN_f,cD_K) = 1$,

(ii) N^- is the squarefree product of an odd number of primes,

(iii) $\widehat{\rho}_p$ is absolutely irreducible and p-distinguished,

(iv) if $q | N^+$ is a prime with $q \equiv 1 \pmod{p}$, then $\widehat{\rho}_p$ is ramified at q.

There exists a unique element $\Theta_{f/K,\chi}(T) \in \mathcal{O}[T]$ such that for every p-power root of unity ζ:

$$\Theta_{f/K,\chi}(\zeta - 1)^2 = \frac{p^n}{\alpha_p^n} \cdot \varepsilon_p(f,\chi,\zeta)^2 \cdot \frac{L(f^o/K \otimes \chi_{\zeta},1)}{(2\pi)^2} \cdot \Omega_{f^o,N^-} \cdot \varepsilon_p^{\zeta} \cdot \varepsilon_p,$$

where:

- $n \geq 0$ is such that ζ has exact order p^n,
- $\epsilon : \Gamma_{\infty} \rightarrow \mu_{p^n}$ be the character defined by $\epsilon_\chi(\gamma) = \zeta$,
- $\varepsilon_p(f,\chi,\zeta) = \begin{cases} (1 - \alpha_p^{-1}\chi(p))(1 - \alpha_p\chi(\overline{p})) & \text{if } n = 0, \\ 1 & \text{if } n > 0, \end{cases}$
- $\Omega_{f^o,N^-} = 4 \cdot \|f^o\|_{\Gamma_0(N_f)}^2 \cdot \eta_{f^o,N^-}^{-1}$ is the Gross period of f^o,
- $\sigma_{\mathfrak{a}^+} \in \Gamma_{\infty}$ is the image of \mathfrak{N}^+ under the geometrically normalized Artin’s reciprocity map,
- $\mu_K = |\mathcal{O}_K^\times|/2$, and $\varepsilon_p \in \{\pm 1\}$ is the local root number of f^o at p.

Proof. See [BD96] for the first construction, and [CH18] Thm. A] for the stated interpolation property. \hfill \square

When χ is the trivial character, we write $\Theta_{f/K,\chi}(T)$ simply as $\Theta_{f/K}(T)$. Suppose now that f is the specialization of a primitive Hida family $f \in S^o(N_f,\mathbb{I})$ with branch character $\chi_f = 1$ at an arithmetic point $x_1 \in \mathbb{X}_K^+$ of weight 2. Let $\ell \nmid pN = \Gamma_{\infty}$ be a prime split in K, and let χ be a ring class character of K of conductor $\ell^m\mathcal{O}_K$ for some even $m > 0$. Set $C = D_K\ell^{2m}$ and let

$$g = \theta_{\chi}(S_2) \in S^o(C,\omega^{-1}\eta_{K/Q},\mathcal{O}[S_2]), \quad h = \theta_{\chi^{-1}}(S_3) \in S^o(C,\omega^{-1}\eta_{K/Q},\mathcal{O}[S_3]).$$

be the primitive CM Hida families constructed in [Hsi19 §8.3], where $\eta_{K/Q}$ is the quadratic character associated to K. The p-adic triple product L-function of Theorem 4.1 for this triple (f,g,h) is an element in $\mathcal{R} = \mathbb{I}[S_2,S_3]$; in the following we let

$$\mathcal{L}_p^f(\tilde{\ell}^*,\tilde{g}^*,\tilde{h}^*) \in \mathcal{O}[S]$$

denote the restriction to the “line” $S = S_2 = S_3$ of its image under the specialization map at x_1.
Let \mathbb{K}_∞ be the \mathbb{Z}_p^2-extension of K, and let K_p^∞ denote the p-ramified \mathbb{Z}_p^e-extension in \mathbb{K}_∞, with Galois group $\Gamma_{p,\infty} = \text{Gal}(K_p^\infty/K)$. Let $\gamma_p \in \Gamma_{p,\infty}$ be a topological generator, and for the formal variable T let $\Psi_T : \text{Gal}(\mathbb{K}_\infty/K) \to \mathcal{O}[T]^\times$ be the universal character defined by

\[
\Psi_T(\sigma) = (1 + T)^{l(\sigma)}, \quad \text{where } \sigma|_{K_p^\infty} = \gamma_p^{l(\sigma)}.
\]

Denoting by the superscript τ the action of the non-trivial automorphism of K/\mathbb{Q}, the character $\Psi_{1-\tau}$ factors through Γ_∞ and yields an identification $\mathcal{O}[\Gamma_\infty] \cong \mathcal{O}[T]$ corresponding to the topological generator $\gamma_p^{-1} \in \Gamma_\infty$. Let p^b be the order of the p-part of the class number of K. Hereafter, we shall fix $v \in \mathbb{Z}_p^\times$ such that $\nu = \varepsilon_{\text{cyc}}(\gamma_p^b) \in 1 + p\mathbb{Z}_p$. Let $K(\chi, \alpha_p)/K$ (resp. $K(\chi)/K$) be the finite extension obtained by adjoining to K the values of χ and α_p (resp. the values of χ).

Proposition 4.3. Set $T = v^{-1}(1 + S) - 1$. Then

\[
\mathcal{L}_p^I(f^*, \hat{g}^* \hat{h}^*) = \pm \Psi_{1-\tau}^{-1}(\sigma_{\mathcal{R}^+}) \cdot \Theta_{f/K}(T) \cdot C_{f, \chi} \cdot \sqrt{L_{\text{alg}}(f/K \otimes \chi^2, 1)},
\]

where $C_{f, \chi} \in K(\chi, \alpha_p)^\times$ and

\[
L_{\text{alg}}(f/K \otimes \chi^2, 1) := \frac{L(f/K \otimes \chi^2, 1)}{\pi^2 \Omega_{f^*, \mathcal{R}^-}} \in K(\chi).
\]

Proof. This is the factorization formula of [Hsi19, Prop. 8.1] specialized to $S = S_2 = S_3$, using the interpolation property of $\Theta_{f/K, \chi^2}(T)$ at $\zeta = 1$. \hfill \square

Remark 4.4. The factorization of Proposition 4.3 reflects the decomposition of Galois representations

\[
\nu_{f, gh}^I = (V_f(1) \otimes \text{Ind}_{\mathbb{K}}^\mathbb{Q} \psi_{1-\tau}^{-1}) \oplus (V_f(1) \otimes \text{Ind}_K^\mathbb{Q} \chi^2).
\]

4.5. **Diagonal cycles and theta elements.** Assume that $f, g = \theta_{\chi}(S)$, and $h = \theta_{\chi^{-1}}(S)$ are as in §4.4 viewing the latter two in $S^3(C, \omega^{-1} \eta_{K/\mathbb{Q}}, \mathcal{O}[S])$. Keeping the notations from §4.3 by [DR16, §1] there exists a class

\[
\kappa(f, gh) \in H^1(\mathbb{Q}, V_{f, gh}^I(N))
\]

constructed from twisted diagonal cycles on the triple product of modular curves of tame level N (we shall briefly recall the construction of this class in Theorem 4.6 below), where we may take $N = \text{lcm}(N_f, C)$.

Every triple of test vectors $\tilde{F} = (\tilde{f}, \tilde{g}, \tilde{h})$ defines a \mathbb{Q}-equivariant projection $V_{f, gh}^I(N) \to V_{f, gh}^I$, and hence a map on cohomology

\[
\text{pr}_F : H^1(\mathbb{Q}, V_{f, gh}^I(N)) \to H^1(\mathbb{Q}, V_{f, gh}^I),
\]

and we let

\[
\kappa(\tilde{f}, \tilde{g}, \tilde{h}) := \text{pr}_F(\kappa(f, gh)) \in H^1(\mathbb{Q}, V_{f, gh}^I).
\]

Since $\psi_{1-\tau}$ gives the universal character of $\Gamma_\infty = \text{Gal}(K_\infty/K)$, by [4.4] and Shapiro’s lemma we have the identifications

\[
H^1(\mathbb{Q}, V_{f, gh}^I) \simeq H^1(\mathbb{Q}, V_f(1) \otimes \text{Ind}_{\mathbb{K}}^\mathbb{Q} \psi_{1-\tau}^{-1}) \oplus H^1(\mathbb{Q}, V_f(1) \otimes \text{Ind}_K^\mathbb{Q} \chi^2)
\]

\[
\simeq \hat{H}^1(K_\infty, V_f(1)) \oplus H^1(K, V_f(1) \otimes \chi^2).
\]

Let g and h be the weight 1 eigenform θ_{χ} and $\theta_{\chi^{-1}}$, respectively, so that the specialization of (\tilde{g}, \tilde{h}) at $T = 0$ (or equivalently, $S = v - 1$) is a p-stabilization of the pair (g, h).

Lemma 4.5. Assume that $L(f \otimes g \otimes h, 1) = 0$ and that $L(f/K \otimes \chi^2, 1) \neq 0$. Then for every choice of test vectors $\tilde{F} = (\tilde{f}, \tilde{g}, \tilde{h})$ we have:
We thus conclude that loc_\text{\textit{p}}(\kappa(f, g\hat{h})) = 0 \in H^1(K, \mathbb{Z}_p(1)).

Proof. Let $\kappa = \kappa(f, g\hat{h})$ and for every $? \in \{f, g, h\}$, let F^0V_f be the rank one subspace of V_f fixed by the inertia group at p. By (4.7), in order to prove (1) it suffices to show that some specialization of κ has trivial image in $H^1(K, V_f(1) \otimes \chi^2)$. Let

$$\kappa_{g\hat{h}} := \kappa|_{s = -1} \in H^1(Q, V_f) = H^1(K, V_f(1) \oplus 1, V_f(1) \otimes \chi^2),$$

where $V_f := V_f(1) \otimes V_g \otimes V_h$. As noted in [DR17a, p. 634], the Selmer group $\text{Sel}(Q) \subset V_f(1)$ is given by

$$\text{Sel}(Q, V_f) = \ker \left(\text{H}^1(Q, V_f) \to \text{H}^1(Q, V_f)^{-1} \otimes V_g \otimes V_h \right),$$

where ∂_p is the natural map induced by the projection $V_f \to V_f^+ := V_f/F^0V_f$, and so

$$\text{Sel}(Q, V_f) = \text{Sel}(K, V_f(1)) \oplus \text{Sel}(K, V_f(1) \otimes \chi^2).

The implications $L(f \otimes g \otimes h, 1) = 0 \implies \kappa_{g\hat{h}} \in \text{Sel}(Q, V_f)$ and $L(f/K \otimes \chi^2, 1) \neq 0 \implies \text{Sel}(K, V_f(1) \otimes \chi^2) = 0$, which follow from [DR17a, Thm. C] and [CH15, Thm. 1], respectively, thus yield assertion (1).

We proceed to prove (2). We know that the local class $\text{loc}_p(\kappa)$ belongs to $\text{H}^1(Q, p, F^+V_f)$, where

$$F^+V_f := (F^0V_f(1) \otimes F^0V_g \otimes V_h + F^0V_f(1) \otimes V_g \otimes F^0V_h + V_f(1) \otimes F^0V_g \otimes F^0V_h) \otimes \chi^{-1}$$

is a rank four subspace of V_f (see [DR17a, Cor. 2.3]). In our case where $(g, h) = (\theta, \theta^{-1})$, we have

$$F^+V_f = V_f(1) \otimes \Psi^{-1}_T + F^0V_f(1) \otimes (\chi^2 \otimes \chi^{-2}),$$

where Ψ_T is viewed as a character of $G_\mathbb{Q}$ via the embedding $K \hookrightarrow Q$ induced by p. From part (1) of the lemma, it follows that

$$\text{loc}_p(\kappa) = (\text{loc}_p(\kappa), \text{loc}_p(\kappa)) \in \text{H}^1(K_p, V_f(1) \otimes \Psi^{-1}_T) \oplus 0 \oplus \text{H}^1(K_p, V_f(1) \otimes \Psi^{-1}_T) = H^1(Q, V_f(1) \otimes \text{Im}_K \Psi^{-1}_T).$$

We thus conclude that $\text{loc}_p(\kappa) = 0$, and hence $\text{loc}_p(\kappa) = 0$.

From now on, assume that $f^o \in S_2(N_f)$ is the newform corresponding to an elliptic curve E/\mathbb{Q} with good ordinary reduction at p. In particular, $V_f(1) \simeq V_pE$, and under the conditions in Lemma 4.3, we have the class

$$\kappa(f, g\hat{h}) \in \hat{H}^1(K, \mathbb{Z}_p(1) \otimes \mathbb{L}).$$

The following key theorem recasts [DR17a, Thm. 5.3] in terms of the Coleman map of (4.2).

Theorem 4.6 (Darmon–Rotger). Assume that $L(f \otimes g \otimes h, 1) = 0$ and that $L(f/K \otimes \chi^2, 1) \neq 0$. Then $\text{loc}_p(\kappa(f, g\hat{h})) = 0$ and

$$L_p^f(f, g\hat{h}) = \alpha_p/2 \cdot (1 - \alpha_p^{-1}a_p(g)a_p(h)^{-1}) \cdot \text{Col}^p(\text{loc}_p(\kappa(f, g\hat{h}))),$$

where $\mathcal{F}^* = (\mathcal{F}^*, \mathcal{G}^*, \mathcal{H}^*)$ is the triple of test vectors from Theorem 4.1.

Proof. The first claim is contained Lemma 4.5. For the proof of the second, we begin by briefly recalling from [DR17a, §1] the construction of the class $\kappa(f, gh)$ in (4.5). In the following, all references are to [DR17a] unless otherwise stated.

Consider the triple product of modular curves over \mathbb{Q}:

$$W_{s,s} := X_0(Np) \times X_s \times X_s,$$
where $X_0(Np)$ and X_s are the classical modular curves attached to the congruence subgroups $\Gamma_0(Np)$ and $\Gamma_1(Np^s)$, respectively, and the model for the latter is the one for which the cusp ∞ is defined over \mathbb{Q}. The group $G_s^{(N)} := (\mathbb{Z}/Np^s\mathbb{Z})^\times$ acts on X_s by the diamond operators $\langle a; b \rangle$ ($a \in (\mathbb{Z}/N\mathbb{Z})^\times$, $b \in (\mathbb{Z}/p^s\mathbb{Z})^\times$), and we let

$$W_s := W_{s,s}/D_s$$

be the quotient of $W_{s,s}$ by the action of the subgroup $D_s \subset G_s^{(N)} \times G_s^{(N)}$ consisting of elements of the form $(\langle a; b \rangle, \langle a; b^{-1} \rangle)$. Let $^b\Delta_{s,s} \in \text{CH}^2(W_{s,s})(\mathbb{Q}(\zeta_s))$ be the class in the Chow group defined by the “twisted diagonal cycle” defined in (41), and let $^b\Delta_s \in \text{CH}^2(W_s)(\mathbb{Q}(\zeta_s))$ denote its natural image under the projection $\text{pr}_s : W_s \to W_s$. By Proposition 1.4, after applying the correspondence $\varepsilon_{s,s}$ in (47) the cycle $\Delta_{s,s}$ becomes null-homologous, and so

$$\Delta_s := \varepsilon_{s,s}(^b\Delta_s) \in \text{CH}^2(W_s)_0(\mathbb{Q}(\zeta_s)),$$

letting $\varepsilon_{s,s}$ still denote the linear endomorphism of $\text{CH}^2(W_s)$ defined by the above correspondence. Let $\varepsilon_s : G_Q \to (\mathbb{Z}/p^s\mathbb{Z})^\times$ be the mod p^s cyclotomic character, and let X_s^\dagger be the twist of X_s by the cocycle $\sigma \in G_Q \to \langle 1; \varepsilon_s(\sigma) \rangle$. By Proposition 1.6, we may alternatively view

$$\Delta_s \in \text{CH}^2(W_s)_0(\mathbb{Q}),$$

where W_s^\dagger the quotient of $W_{s,s} := X_0(Np) \times X_s \times X_s^\dagger$ be a diamond action defined as before. Consider the p-adic étale Abel–Jacobi map

$$\text{AJ}_{et} : \text{CH}^2(W_s)_0(\mathbb{Q}) \to H^1(\mathbb{Q}, H^3_{et}(W_s/\overline{\mathbb{Q}}, \mathbb{Z}_p)(2)).$$

Let $e_{ord} = \lim_n U_p^n$ be Hida’s ordinary projector. Set

$$V_{s,s}^{\text{ord}} := H^1_{et}(X_0(Np)/\overline{\mathbb{Q}}, \mathbb{Z}_p) \otimes e_{ord}(H^1(X_s/\overline{\mathbb{Q}}, \mathbb{Z}_p)(1)) \otimes e_{ord}(H^1(X_s^\dagger/\overline{\mathbb{Q}}, \mathbb{Z}_p)(1)),$$

and let $V_{s,s}^{\text{ord}} := (V_{s,s}^{\text{ord}})_{D_s}$ denote the D_s-coinvariants. Let $\varpi_2 : X_{s+1}^\dagger \to X_s$ be the degeneracy map given by $z \mapsto pz$ on the complex upper half plane, which naturally defines

$$\varpi_{2,s} : (1, \varpi_2, \varpi_2)_s : V_{s+1,s+1}^{\text{ord}} \to V_{s,s}^{\text{ord}}.$$

Let $\kappa_s \in H^1(\mathbb{Q}, V_{s,s}^{\text{ord}})$ denote the image of $\text{AJ}_{et}(\Delta_s)$ under the composite map

$$H^1(\mathbb{Q}, H^3_{et}(W_s/\overline{\mathbb{Q}}, \mathbb{Z}_p)(2)) \xrightarrow{\varepsilon_s \cdot \varpi_{2,s}^{\ast} \cdot e_{ord}} H^1(\mathbb{Q}, H^3_{et}(W_s/\overline{\mathbb{Q}}, \mathbb{Z}_p)(2)) \xrightarrow{(1, e_{ord}, e_{ord})_{pr_1,1,1}} H^1(\mathbb{Q}, (V_{s,s}^{\text{ord}})_{D_s}) = H^1(\mathbb{Q}, V_{s,s}^{\text{ord}}),$$

where the first arrow is defined by Lemma 1.8, and $pr_{1,1,1}$ is the projection onto the $(1, 1, 1)$-component in the Künneth decomposition for $H^3_{et}(W_s/\overline{\mathbb{Q}}, \mathbb{Z}_p)$. By Proposition 1.9, we have $(\varpi_{2,s})_{s}(\kappa_{s+1}) = (1, U_p, 1)(\kappa_s)$, and hence we obtain the compatible family

$$\kappa_\infty := \lim_s (1, U_p, 1)^{-s}(\kappa_s) \in H^1(\mathbb{Q}, V_{s,s}^{\text{ord}}), \quad \text{where } V_{s,s}^{\text{ord}} := \lim_s V_{s,s}^{\text{ord}},$$

with limit with respect to the maps induced by (4.11). The triple (f, g, h) defines a natural projection $\varpi_{f,g,h : V_{s,s}^{\text{ord}} \to V_{s,s}^{f,g,h}(N)}$, and following Definition 1.15 one sets

$$\kappa(f, g, h) := \varpi_{f,g,h}(\kappa_\infty) \in H^1(\mathbb{Q}, V_{s,s}^{f,g,h}(N)),$$

this is the class in (4.15). Now, to prove the equality (4.19) in the theorem, it suffices to show that both sides agree at infinitely many points. Let $x \in X_s^\dagger$ have weight 2 with $\zeta := \varepsilon_x(1+p) \in \mu_{p^n}$ a primitive p^n-th root of unity, and set

$$\kappa(f, g, h_x) := \kappa(f, gh)|_{x = \zeta = -1}.$$
Directly from the definitions (cf. Proposition 2.5), we have
\begin{equation}
\kappa(f, g, h_x) = a_p(g_x)^{-s} \cdot \varpi_{f, g, h_x}(\text{AJ}_{et}(\Delta_x)) \in H^1(Q, V_{fg, h_x}(N)),
\end{equation}
where $V_{fg, h_x}(N)$ is the (f, g, h_x)-isotypic component of $\left(4.10\right)$, and ϖ_{f, g, h_x} is the projection to that component. By Corollary 2.3 and (77), the image of $\kappa(f, g, h_x)$ in the local cohomology group $H^1(Q_p, V_{fg, h_x}(N))$ lands in the Bloch–Kato finite subspace $H^1_{\text{fin}}(Q_p, V_{fg, h_x}(N)) \subset H^1(Q, V_{fg, h_x}(N))$, and so we may consider the image $\log_p(\kappa(f, g, h_x))$ of this restriction under the Bloch–Kato logarithm map
\[
\log_p : H^1_{\text{fin}}(Q_p, V_{fg, h_x}(N)) \to (\text{Fil}^0D_{fg, h_x}(N))^\vee,
\]
where $D_{fg, h_x}(N) := (B_{\text{cris}} \otimes V_{fg, h_x}(N))G_{Q_p}(\xi)$, and the dual is with respect to the de Rham pairing $\langle \ , \rangle_{\text{dR}}$. By the de Rham comparison isomorphism, we have
\[
D_{fg, h_x}(N) \simeq H^1_{\text{dR}}(X_0(Np)/Q_p)[f] \times H^1_{\text{dR}}(X_1(Q_p)(\xi))(1)[g_x] \times H^1_{\text{dR}}(X_0(Q_p)(\xi))(1)[h_x].
\]
As in p. 639, attached to the test vectors $(\tilde{f}, \tilde{g}, \tilde{h}_x)$ one has the de Rham classes $(\eta_f \otimes \omega_{g, h_x}^\circ, \omega_{g, h_x}^\circ)$, and comparing Proposition 2.10 and Corollary 2.11 we deduce from (4.12) that
\[
\langle \log_p(\kappa(f, g, h_x)), \eta_f \otimes \omega_{g, h_x}^\circ \rangle_{\text{dR}} = \langle \mathcal{E}(f, g, h_x) \cdot \mathfrak{g}(\epsilon_x) \cdot \alpha_p^{-1}a_p(g_x)^{-s}a_p(h_x)^{-s} \cdot \tilde{f}^*(\tilde{g}, \tilde{H}_x'),
\]
where $\tilde{H}_x' = d^{-1}\tilde{h}_x'$ is the primitive of \tilde{h}_x' given by part (3) of Corollary 4.5, and $\mathcal{E}(f, g, h_x) = -2(1 - \alpha_p^{-1}a_p(g_x)a_p(h_x)^{-1})^{-1}$. Consider the formal q-expansion
\[
\mathcal{H}^*(q) := \sum_{p \mid n}(n^{-1})a_n(h)q^n.
\]
Taking $(\tilde{f}, \tilde{g}, \tilde{h})$ to be the test vectors \tilde{F}^* from Theorem 4.1 above, the construction in [Hsi19, §3.6] yields $\mathcal{L}_p'(\tilde{f}, \tilde{g}, \tilde{h}) = \tilde{f}^*(\tilde{g}, \tilde{H}^*)$. Since by construction \tilde{H}^* specializes at x to \tilde{H}_x', we thus see as in the proof of Proposition 4.16 that
\begin{equation}
\langle \log_p(\kappa(f, g, h_x)), \eta_f \otimes \omega_{g, h_x}^\circ \rangle_{\text{dR}} = \mathcal{E}(f, g, h_x) \cdot \mathfrak{g}(\epsilon_x) \cdot \alpha_p^{-1}a_p(g_x)^{-s}a_p(h_x)^{-s} \cdot \mathcal{L}_p'(\tilde{f}, \tilde{g}, \tilde{h})(x).
\end{equation}

On the other hand, letting $\psi_\T := \Psi_T|_{T = \psi^{-1}}$, we obtain that (g_x, h_x) is a pair of theta series attached to the character $(\chi \psi^{-1}, \chi \psi^{-1})$ of G_K with $a_p(g_x) = \chi \psi^{-1}(\sigma_\T)$ and $a_p(h_x) = \chi \psi^{-1}(\sigma_\T)$. Moreover, we have
\[
\epsilon_x|_{G_{Q_p}} = \psi_\T^{1+s}\cdot \psi^{-1}, \quad \psi_\T^{-1} = \phi \epsilon^{-1}
\]
for some finite order character ϕ of Gal(F_{∞}/Q_p), viewing the character in the left-hand side of this equality as character on Gal(F_{∞}/Q_p) by composition with Gal(F_{∞}/Q_p) \rightarrow Gal($K_{\infty}, Q_p/K_p$) $\subset \Gamma_\infty$. Setting $\eta = \eta_f \otimes t^{-1}$ and $z_x = \log_p(\kappa(\tilde{f}^*, \tilde{g}^* h^*))_x$, we thus see that
\begin{equation}
\langle \log_p(\kappa(f, g, h_x)), \eta_f \otimes \omega_{g, h_x}^\circ \rangle_{\text{dR}} = \langle \log_p(z_x) \otimes t, \eta \rangle_{\text{dR}}
\end{equation}
\[
= \mathfrak{g}(\epsilon_x) \cdot \alpha_p a_p(g_x)^{-s}a_p(h_x)^{-s} \cdot \text{Col}_p(z_x)(\psi^{-1})
\]
using Theorem 3.4 with $j = -1$ for the last equality. Comparing (4.13) with (4.14) and letting s vary, the result follows. \hfill \qed

We can now immediately deduce the following key cohomological construction of $\Theta_{f/K}$:

Theorem 4.7. With notations and assumptions as in Theorem 2.6, we have
\[
\text{Col}_p(\log_p(\kappa(\tilde{f}_*^*, \tilde{g}_*^* h^*))) = \pm \Psi_T^{1+s}(\sigma_\T) \cdot \Theta_{f/K}(T) \cdot \sqrt{L_{\text{alg}}(E/K \otimes \chi^2, 1)} \cdot \frac{2C_f \chi}{\alpha_p(1 - \alpha_p) \chi(-\bar{p})^2},
\]
Proof. Note that \(a_p(g) a_p(h)^{-1} = \chi(\bar{\mathfrak{p}})^2 \). The theorem thus follows immediately from Proposition 4.3 and Theorem 4.6. \(\square \)

4.6. Generalized Kato classes.

Set \(\alpha = \chi(\bar{\mathfrak{p}}) \), and denote by \((g_\alpha, h_{\alpha^{-1}})\) the weight 1 forms obtained by specializing the Hida families \((g, h)\) at \(S = v - 1 \). Thus \(g_\alpha \) (resp. \(h_{\alpha^{-1}} \)) is the \(p \)-stabilization of the theta series \(g = \theta_\chi \) (resp. \(h = \theta_{\chi^{-1}} \)) having \(U_p \)-eigenvalue \(\alpha \) (resp. \(\alpha^{-1} \)).

By specialization, for every the choice of a triple of test vectors \((f, \tilde{g}, \tilde{h})\) the \(\mathcal{O}[S] \)-adic class \(\kappa(f, \tilde{g}, \tilde{h}) \) in \((4.6)\) yields the generalized Kato class

\[
\kappa(f, g_\alpha, h_{\alpha^{-1}}) := \kappa(f, \tilde{g}, \tilde{h})|_{S=v-1} \in H^1(\mathbb{Q}, V_{fgh}),
\]

where \(V_{fgh} := V_f \otimes V_g \otimes V_h \). Setting \(\beta = \chi(\mathfrak{p}) \) and alternatively changing the roles of \(\mathfrak{p} \) and \(\overline{\mathfrak{p}} \) in the construction \(g \) and \(h \) we thus obtain the four generalized Kato classes

\[
(4.15) \quad \kappa(f, g_\alpha, h_{\alpha^{-1}}), \; \kappa(f, g_\beta, h_{\beta^{-1}}), \; \kappa(f, g_\beta, h_{\alpha^{-1}}), \; \kappa(f, g_\beta, h_{\beta^{-1}}) \in H^1(\mathbb{Q}, V_{fgh}).
\]

If we assume that \(\chi(\overline{\mathfrak{p}}) \neq \pm 1 \), as we shall do from now one, then the four classes \((4.15)\) are a priori distinct. We also assume now that \(f \) is the \(p \)-stabilization of the newform associated to an elliptic curve \(E/\mathbb{Q} \), so that \(V_f(1) \simeq V_p E \), and let

\[
\kappa_{\alpha, \alpha^{-1}}, \kappa_{\alpha, \beta^{-1}}, \kappa_{\beta, \alpha^{-1}}, \kappa_{\beta, \beta^{-1}} \in H^1(K, V_p E \otimes L)
\]

be the image of the classes in \((4.15)\) under the natural map \(H^1(\mathbb{Q}, V_{fgh}) \to H^1(K, V_p E \otimes L) \) (see \((1.5)\)).

Corollary 4.8. Assume that \(L(E/K, 1) = 0 \) and that \(L(f/K \otimes \chi^2, 1) \neq 0 \). Then:

1. \(\kappa_{\alpha, \alpha^{-1}}, \kappa_{\beta, \beta^{-1}} \in \text{Sel}(K, V_p E \otimes L) \).
2. \(\kappa_{\alpha, \beta^{-1}} = \kappa_{\beta, \alpha^{-1}} = 0 \).

Proof. By the factorization \((1.6)\), the inclusions in part (1) follow from the proof of Lemma 4.5. To see part (2), we make use of the three-variable generalized Kato class

\[
\kappa := \kappa(f, g, h')(S_1, S_2, S_3) \in H^1(\mathbb{Q}, \mathbb{V}_{fgh}')
\]

defined in [DR17b, §3.7 (119)] (see also [BSV19b, Thm. A]) attached to the triple \(f = f(S_1), g = \theta_\chi(S_2) \) and \(h' = \theta_\chi(S_3) \). Thus \(\kappa(f, g_\alpha, h_{\beta^{-1}}) = \kappa((1+p)^2-1, v-1, v-1) \). Let

\[
\kappa' := \kappa((1+p)^2-1, v(1+T)-1, v(1+T)^{-1}-1) \in H^1(\mathbb{Q}, \mathbb{V}_{fgh}'),
\]

where \(\mathbb{V}_{fgh}' \simeq V_p E \otimes (\text{Ind}_K^Q \chi^2 \oplus \text{Ind}_K^Q \Psi_{T}^{1-\tau}) \). As in Lemma 4.5 by [DR17b, Prop. 3.28] the class \(\text{loc}_p(\kappa') \) belongs to \(H^1(Q_p, F^{+\mathbb{V}_{fgh}'}) \), where

\[
F^{+\mathbb{V}_{fgh}'} = V_p E \otimes \chi^{-2} + F^0 V_p E \otimes (\Psi_{T}^{1-\tau} \oplus \Psi_{T}^{1-\tau}).
\]

It follows that the projection \(\kappa'_V \) of \(\kappa' \) to \(\hat{H}^1(K\infty, V_p E \otimes L) \) is crystalline at \(p \), and hence \(\kappa'_V \) is a Selmer class for \(V_p E \otimes L \) over the anticyclotomic \(Z_p \)-extension \(K_{\infty}/K \). Since the space of such universal norms is trivial by Cornut–Vatsal [CV05] (the sign of \(E/K \) is \(+1 \) in our case), this shows that \(\kappa'_V = 0 \) and therefore \(\kappa(f, g_\alpha, h_{\beta^{-1}}) = \kappa_{\alpha, \beta^{-1}} = 0 \). The vanishing of \(\kappa_{\beta, \alpha^{-1}} \) is shown in the same manner. \(\square \)
5. Proof of the Main Result

5.1. Theorem B implies Theorem A. Suppose first that \(\text{rank}_\Z E(Q) = 2 \) and \(\text{III}(E/Q)[p^\infty] \) is finite, so in particular \(\text{Sel}(Q, V_p E) \) is two-dimensional. Since \(E(Q) \) injects into \(E(Q_p) \), we have \(\text{Sel}(Q, V_p E) \neq \ker(\log_p) \), and so \(\text{dim}_{Q_p} \text{Sel}_{str}(Q, V_p E) = 1 \). Part (i) of Theorem A thus follows from the implication (b) \(\Longrightarrow \) (a) in Theorem B.

On the other hand, suppose \(\kappa_{\alpha, \alpha^{-1}} \) is a nonzero class in \(\text{Sel}(Q, V_p E) \). Since the hypotheses in Theorem A imply that \(E/Q \) has root number +1, by the \(p \)-parity conjecture \(\text{Nek01} \). As a result, letting \(V = V_p E \otimes_{Q_p} L \), the composite map

\[
\log_{\omega_{E,p}} : \text{Sel}(K, V) \to H^1_{\text{fin}}(K_p, V) \to L
\]

is nonzero, where the second arrow is given by the logarithm map in (5.7). Since by Kolyvagin’s work \(\text{Koi88} \) (or Kato’s \(\text{Kat04} \)) the non-vanishing \(L(E^K, 1) \) implies that \(\text{Sel}(Q, V_p E^K) = \{0\} \), we conclude that

\[
(5.1) \quad \text{dim}_L \text{Sel}(K, V) = \text{dim}_L \text{Sel}(Q, V). = 2.
\]

Consider the filtration

\[
(5.2) \quad \text{Sel}(K, V) = S^{(1)} \supset S^{(2)} \supset \cdots \supset S^{(r)} \supset S^{(r+1)} \supset \cdots \supset S^{(\infty)}
\]

deduced from that of Theorem B. i.e., \(S^{(r)} := S_p^{(r)}(E/K) \otimes_{Q_p} L \), and continue to denote by \(h^{(r)} \) the induced derived \(p \)-adic height pairings

\[
h^{(r)} : S^{(r)} \times S^{(r)} \to (J^r/J^{r+1}) \otimes_{Z_p} L.
\]

Since the non-trivial element \(\tau \in \text{Gal}(K/Q) \) acts on \(J/J^2 \cong \Gamma \) as multiplication by \(-1\), by part (4) Theorem 2.4 we have

\[
(5.3) \quad h^{(r)}(x^\tau, y^\tau) = (-1)^r h^{(r)}(x, y).
\]

The non-vanishing in the statement of Theorem B also imply that \(E/K \) has root number +1 (so \(N^- \) is the squarefree product of an odd number of primes), and hence \(S^{(\infty)} = \bigcap_{n=1}^{\infty} S^{(n)} \) vanishes by part (5) of Theorem 2.4 and \(\text{CV05} \). Thus there are only two possibilities for the filtration (5.2):

(i) there are exactly two jumps, each of rank 1;

(ii) there is exactly one jump, of rank 2.

We argue that case (i) is impossible. By (5.3) for \(r = 1 \), the \(\tau \)-eigenspaces of \(\text{Sel}(K, V) = S^{(1)} \) are isotropic under \(h^{(1)} \). Letting \(r^\pm \) be the \(L \)-dimension of the \(\pm \)-eigenspace of \(S^{(1)} \) under the action of \(\tau \), we thus have

\[
\text{dim}_L S^{(2)} \geq |r^+ - r^-|,
\]

since \(S^{(2)} \) is the null-space of \(h^{(1)} \) by part (1) of Theorem 2.4. But (5.1) shows that \(r^+ = 2 \) and \(r^- = 0 \), and so

\[
S^{(1)} = S^{(2)}.
\]

By the same argument, if \(r \) is odd and \(S^{(r)} \) is two-dimensional, then \(S^{(r)} = S^{(r+1)} \). On the other hand, since by part (3) of Theorem 2.4 the jumps in the filtration (5.2) for even \(r \) are
of dimension $e_0 \equiv 0 \pmod{2}$ (since then $h^{(r)}$ induces a non-degenerate alternating pairing on $S^{(r)} / S^{(r+1)}$), this shows that only case (ii) is possible, and hence \[(5.2)\]

$$\text{Sel}(K, V) = S^{(1)} = S^{(2)} = \cdots = S^{(r)} \supseteq S^{(r+1)} = \cdots = S^{(\infty)} = \{0\}$$

for some (even) $r \geq 2$; in particular, the r-th derived p-adic height $h^{(r)}$ is a non-degenerate pairing on $S^{(r)} = \text{Sel}(K, V)$.

Letting X_∞ be the Pontryagin dual of Sel$_{p, \infty}(E/K_\infty)$, by part (5) of Theorem \[2.4\] this shows that

$$X_\infty \sim (\Lambda/J')^\oplus 2 \oplus M',$$

where M' is a torsion Λ-module with characteristic ideal prime to J, and so letting $L_p \in \Lambda$ be a generator of the characteristic ideal of X_∞, we have

$$\text{ord}_J(L_p) = 2r.$$

On the other hand, let $\rho := \text{ord}_J(\Theta_{f/K})$ (which is finite integer by [Yat03]), and denote by $\bar{\theta}$ the image of $\Theta_{f/K}$ in J^r/J^{r+1}. Note that $\bar{\theta} \neq 0$ by definition. Letting $\kappa_{\alpha, -1} \in H^1(K, V)$ be the generalized Kato class constructed as in \[4.6\] taking the triple of test vectors $(\bar{f}, \bar{g}, \bar{h})$ coming from the triple $(\bar{f}^*, \bar{g}^*, \bar{h}^*)$ in Theorem \[4.1\] by part (2) of Lemma \[4.5\] Theorem \[4.7\] and Theorem \[3.7\] we conclude that

\[(5.5)\] $$\kappa_{\alpha, -1} \in S^{(\rho)},$$

and for every for every $x \in S^{(\rho)}$ we have

\[(5.6)\] $$h^{(\rho)}(\kappa_{\alpha, -1}, x) = \frac{1 - p^{-1} \alpha_p \cdot \bar{\theta} \cdot \log_{\omega_{E, p}}(x) \cdot C,}$$

where α_p is the p-adic unit root of $X^2 - \alpha_p(E)X + p = 0$ and C is a non-zero algebraic number with $C^2 \in K(\chi, \alpha_p)^\times$. By [SU14] §3.6.3 we have the divisibility $(\Theta^2_{f/K}) \supset (L_p)$, which implies $\rho \leq r$, and so $S^{(\rho)} = \text{Sel}(K, V)$ by \[5.4\]. Since as noted above the map $\log_{\omega_{E, p}}$ is non-zero on $\text{Sel}(K, V)$ the non-vanishing of $\kappa_{\alpha, -1}$ follows from \[5.6\].

Now we prove the implication (a) \implies (b). Thus we keep the above notations and assume that $\kappa_{\alpha, -1} \neq 0$. By part (2) of Lemma \[4.5\] Theorem \[4.7\] and Theorem \[3.7\] we conclude that the inclusion \[5.5\] holds. In particular, $S^{(\rho)} \neq \{0\}$, so also $\text{Sel}(K, V) = \text{Sel}(Q, V) \neq \{0\}$, where the equality follows from the non-vanishing of $L(E^K, 1)$ as before.

We next note that the non-trivial jumps in \[5.2\] can only occur at even values of r. Indeed, for odd r the same argument as before shows that the null-space of $h^{(r)}$ (that is, $S^{(r+1)}$) has dimension at least $|d^+ - d^-|$, where d^\pm is the dimension of the \pm-eigenspace of $S^{(r)}$ under the action of τ; but $d^- = 0$, since $\text{Sel}(K, V)^- \simeq \text{Sel}(Q, V_\rho E^K) \otimes_{Q_\rho} L = \{0\}$, and so $S^{(r+1)} = S^{(r)}$.

Thus letting r_0 be the last non-trivial jump in \[5.2\] (and using that $S^{(\infty)} = \{0\}$) we have

\[(5.7)\] $$e_{r_0} = \dim_L(S^{(r_0)}) \geq 2$$

by parts (3) and (5) of Theorem \[2.4\]. Now, by [BD05] (and its refinement in [PW11]) we have the divisibility $(\Theta^2_{f/K}) \subset (L_p)$, which by part (5) of Theorem \[2.4\] implies that

$$2\rho \geq e_1 + 2e_2 + \cdots + r_0 e_{r_0} \geq 2r_0,$$

using \[5.7\] for the second inequality. Since $\rho \leq r_0$ by the non-vanishing of $S^{(\rho)}$ shown above, we conclude that $\rho = r_0$ and

$$e_r = \begin{cases} 2 & \text{if } r = \rho, \\ 0 & \text{if } r \neq \rho. \end{cases}$$
In particular, by part (5) of Theorem 2.4 this shows that $S^{(1)} = \text{Sel}(K, V)$ is two-dimensional, and so also $\dim \text{Sel}(\mathbb{Q}, V) = 2$, and that $h^{(p)}$ is a non-degenerate pairing on $S^{(p)} = \text{Sel}(\mathbb{Q}, V)$ which is alternating. Hence by (5.6) we conclude that the map $\log_{\omega_{E,p}}$ is nonzero, so
$$
\dim_{\mathbb{Q}} \text{Sel}_{\text{str}}(\mathbb{Q}, V_p E) = 1,
$$
and taking $x = \kappa_{\alpha,\alpha - 1}$ if follows that $\log_{\omega_{E,p}}(\kappa_{\alpha,\alpha - 1}) = 0$, so $\kappa_{\alpha,\alpha - 1} \in \text{Sel}_{\text{str}}(\mathbb{Q}, V_p E) \otimes_{\mathbb{Q}} L$.

Since on the other hand the vanishing of $\kappa_{\alpha,\beta - 1}$ and $\kappa_{\beta,\alpha - 1}$ follows from Corollary 4.8, this concludes the proof of Theorem B.

5.3. Application to the refined elliptic Stark conjecture. The following is an immediate consequence of the height formula (5.6):

Corollary 5.1. The class $\kappa_{\alpha,\alpha - 1}$ (mod $\overline{\mathbb{Q}}^\times$) depends only on K, not on the auxiliary choice of ring class character χ. Moreover, as elements in $E(\mathbb{Q}) \otimes_{\mathbb{Z}} L$, we have
$$
\kappa_{\alpha,\alpha - 1} = C \cdot \frac{1 - p - \alpha_p}{1 - \alpha_p} \cdot \frac{\hat{\theta}}{h^{(p)}(P,Q)} \cdot (P \otimes \log_p Q - Q \otimes \log_p P)
$$
for any basis (P,Q) of $E(\mathbb{Q}) \otimes_{\mathbb{Z}} Q$, where C is nonzero and such that $C^2 \in K(\chi, \alpha_p)^\times$.

Remark 5.2. Given the expected equivalence between the derived p-adic height pairings constructed by Bertolini–Darmon [BD95] and Howard [How04], Corollary 5.1 shows that (in the cases considered in this paper) the refinement of the “elliptic Stark conjecture” [DLR15] given by [DR16], Conj. 3.12] follows from the expression for $\hat{\theta}$ predicted by [BD96 Conj. 4.3].

APPENDIX. Numerical examples

In this section, we exhibit the first examples of elliptic curves of rank 2 having non-vanishing generalized Kato classes. We consider elliptic curves E/\mathbb{Q} with
$$
\text{ord}_{s=1} L(E, s) = \text{rank}_\mathbb{Z} E(\mathbb{Q}) = 2
$$
and conductor $N \in \{ q, 2q \}$ with q an odd prime. We take a squarefree integer $-\Delta < 0$ such that $K = \mathbb{Q}(\sqrt{-\Delta})$ has class number one, q is inert in K, and $L(E^K, 1) \neq 0$, and take a prime $p > 3$ of good ordinary prime for E which splits in K and such that $E[p]$ is irreducible as $G_\mathbb{Q}$-module. For every triple $(E, p, -\Delta)$, letting $f \in S_2(\Gamma_0(N))$ be the newform associated to E, we give numerical examples where the associated theta element
$$
\Theta_{E/K}(T) = \Theta_{f/K}(T) \in \mathbb{Z}_p [[T]]
$$
vanishes to order exactly 2 at $T = 0$.

Then, by the work of Bertolini–Darmon [BD95, BD05] on the anticyclotomic Iwasawa main conjecture (see [BD05] Cor. 3)), it follows that $\text{III}(E/K)[p^\infty]$ is finite. Moreover, the residual representation $E[p]$ must ramify at $N^- = q$ by [Rib90, Thm. 1.1] and for each of the examples we checked that $E[p]$ is irreducible, either by [Maz78] when $p \gg 11$ or by checking that E does not admit any rational m-isogenies for $m > 3$ according to Cremona’s tables. Thus for every ring class character χ of p-power conductor with $L(E/K, \chi^2, 1) \neq 0$ (as always exist in these examples by virtue of [Vat03 Thm. 1.4], as extended in [CH18 Thm. D]), the examples below provide triples (E, p, K) for which the generalized Kato class
$$
\kappa_{E, K} \in \text{Sel}(\mathbb{Q}, V_p E) \simeq E(\mathbb{Q}) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p
$$
is non-vanishing by virtue of Theorem A in the Introduction.

To further explain these examples, we need some more notation. Let B/\mathbb{Q} be the definite quaternion algebra of discriminant q. Let R be an Eichler order of level N/q and let $\text{Cl}(R)$ be the class group of R. Let $f_E : \text{Cl}(R) \rightarrow \mathbb{Z}$ be the $(p$-adically normalized) Hecke eigenfunction

2As extended by Pollack–Weston [PW11] to allow for weaker hypotheses.
associated to f by the Jacquet–Langlands correspondence. Fix an optimal embedding $\mathcal{O}_K \hookrightarrow R$ and an isomorphism $i_p : R \otimes \mathbb{Z}_p \simeq M_2(\mathbb{Z}_p)$ such that $i_p(K)$ lies in the subspace of diagonal matrices. For $a \in \mathbb{Z}_p^\times$ and an integer n, put

$$r_n(a) = i_p^{-1}\left(\begin{pmatrix} ap^{-n} \\ 1 \end{pmatrix} \right) \in \hat{B}^\times, \quad \hat{B} := B \otimes \mathbb{Z} \hat{\mathbb{Z}}.$$

Consider the sequence $\{P_n^a\}_{n=0,1,\ldots}$ of right R-ideals defined by $P_n^a := (r_n(a)\hat{R}) \cap B$. (The images of these ideals P_n^a in $\text{Cl}(R)$ are usually referred to as Gross points of level p^n.) Letting $u = 1 + p$, we define the n-th theta element $\Theta_{E/K,n}(T) \in \mathbb{Z}_p[T]$ by

$$\Theta_{E/K,n}(T) := \frac{1}{\alpha_p^{n+1}} \sum_{i=0}^{p^n-1} \sum_{a \in \mathbb{Z}_p} \left(\alpha_p \cdot f_E(P_n^{au}) - f_E(P_n^{au^i}) \right) (1 + T)^i.$$

By the definition of theta elements in [BD99 §2.7], if K has class number one, we then have

$$\Theta_{E/K}(T) = \Theta_{E/K,n}(T) \pmod{(1 + T)^{p^n} - 1}.$$

Since $(p^n, (1 + T)^{p^n} - 1) \subset (p^n, T^p)$ and $p > 2$, to check the vanishing $\Theta_{E/K}(T)$ to exact order 2 at $T = 0$, it suffices to compute $\Theta_{E/K,n}(T)$ for sufficiently large n. The following examples were obtained by implementing the Brandt module package in SAGE.

<table>
<thead>
<tr>
<th>E</th>
<th>p</th>
<th>$-\Delta$</th>
<th>$\Theta_{E,K,2}(T) \pmod{(p^2, T^p)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>389a1</td>
<td>11</td>
<td>-2</td>
<td>$107^2 + 69T^3 + T^4 + 103T^5 + 106T^6 + 66T^7 + 11T^8 + 55T^9 + 110T^{10}$</td>
</tr>
<tr>
<td>433a1</td>
<td>11</td>
<td>-7</td>
<td>$88T^2 + 22T^3 + 86T^4 + 7T^5 + 10T^6 + 12T^7 + 29T^8 + 88T^9 + 48T^{10}$</td>
</tr>
<tr>
<td>446c1</td>
<td>7</td>
<td>-3</td>
<td>$22T^2 + 2T^3 + 3T^4 + 16T^5 + 11T^6$</td>
</tr>
<tr>
<td>563a1</td>
<td>5</td>
<td>-1</td>
<td>$18T^2 + 9T^3 + 5T^4$</td>
</tr>
<tr>
<td>643a1</td>
<td>5</td>
<td>-1</td>
<td>$T^2 + 21T^4$</td>
</tr>
<tr>
<td>709a1</td>
<td>11</td>
<td>-2</td>
<td>$27T^2 + 114T^3 + 3T^4 + 14T^5 + 36T^6 + 15T^7 + 42T^8 + 44T^9 + 91T^{10}$</td>
</tr>
<tr>
<td>718b1</td>
<td>5</td>
<td>-19</td>
<td>$3T^2 + 20T^3 + 12T^4$</td>
</tr>
<tr>
<td>794a1</td>
<td>7</td>
<td>-3</td>
<td>$47T^2 + 223T^3 + 8T^4 + 24T^5 + 7T^6$</td>
</tr>
<tr>
<td>997b1</td>
<td>11</td>
<td>-2</td>
<td>$71T^2 + 41T^3 + 83T^4 + 19T^5 + 114T^6 + 111T^7 + 101T^8 + 46T^9 + 102T^{10}$</td>
</tr>
<tr>
<td>997c1</td>
<td>11</td>
<td>-2</td>
<td>$54T^2 + 38T^3 + 3T^4 + 81T^5 + 82T^6 + 18T^7 + 72T^8 + 95T^9 + 4T^{10}$</td>
</tr>
<tr>
<td>1034a1</td>
<td>5</td>
<td>-19</td>
<td>$22T^2 + 4T^3 + 6T^4$</td>
</tr>
<tr>
<td>1171a1</td>
<td>5</td>
<td>-1</td>
<td>$6T^2 + 6T^3 + 20T^4$</td>
</tr>
<tr>
<td>1483a1</td>
<td>13</td>
<td>-1</td>
<td>$128T^2 + 148T^3 + 127T^4 + 162T^5 + 30T^6 + 149T^7 + 141T^8 + 97T^9 + 49T^{10} + 13T^{11} + 29T^{12}$</td>
</tr>
<tr>
<td>1531a1</td>
<td>5</td>
<td>-1</td>
<td>$16T^2 + 7T^3 + 21T^4$</td>
</tr>
<tr>
<td>1613a1</td>
<td>17</td>
<td>-2</td>
<td>$128T^2 + 165T^3 + 224T^4 + 287T^5 + 140T^6 + 211T^7 + 147T^8 + 160T^9 + 59T^{10} + 122T^{11} + 195T^{12} + 43T^{13} + 207T^{14} + 214T^{15} + 285T^{16}$</td>
</tr>
<tr>
<td>1627a1</td>
<td>13</td>
<td>-1</td>
<td>$101T^2 + 151T^3 + 58T^4 + 104T^5 + 3T^6 + 165T^7 + 128T^8 + 63T^9 + 17T^{10} + 55T^{11} + 166T^{12}$</td>
</tr>
<tr>
<td>1907a1</td>
<td>13</td>
<td>-1</td>
<td>$72T^2 + 131T^3 + 32T^4 + 142T^5 + 84T^6 + 104T^7 + 90T^8 + 105T^9 + 38T^{10} + 92T^{11} + 116T^{12}$</td>
</tr>
<tr>
<td>1913a1</td>
<td>7</td>
<td>-3</td>
<td>$41T^2 + 16T^3 + 28T^4 + 23T^5 + 14T^6$</td>
</tr>
<tr>
<td>2027a1</td>
<td>13</td>
<td>-1</td>
<td>$54T^2 + 128T^3 + 65T^4 + 93T^5 + 83T^6 + 161T^7 + 113T^8 + 133T^9 + 49T^{10} + 151T^{11} + 13T^{12}$</td>
</tr>
<tr>
<td>E</td>
<td>p</td>
<td>$\Theta_{E/K,3}(T) \mod (p^3, T^p)$</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>571b1</td>
<td>5</td>
<td>$-1 \quad 100T^2 + 100T^3 + 15T^4$</td>
<td></td>
</tr>
<tr>
<td>1621a</td>
<td>11</td>
<td>$-2 \quad 1089T^2 + 807T^3 + 986T^5 + 586T^6 + 1098T^7 + 772T^8 + 228T^9 + 1296T^{10}$</td>
<td></td>
</tr>
</tbody>
</table>

References

Department of Mathematics, University of California Santa Barbara, CA 93106, USA
Email address: castella@ucsb.edu

Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan
Email address: mlhsieh@math.sinica.edu.tw