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Abstract. Let E/F be an elliptic curve defined over a number field F with complex multiplication
by the ring of integers of an imaginary quadratic field K such that the torsion points of E generate
over F an abelian extension of K. In this paper we prove the p-part of the Birch–Swinnerton-Dyer
formula for E/F in analytic rank 1 for primes p > 3 split in K. This was previously known for F = Q
by work of Rubin [Rub91] as a consequence of his proof of Mazur’s Main Conjecture for rational CM
elliptic curves, but the problem for [F : Q] > 1 remained wide open.

The approach introduced in this paper also yields a proof of similar results for CM abelian varieties
A/K and for CM modular forms, as well as an analogue in this setting of Skinner’s p-converse to the
theorem of Gross–Zagier and Kolyvagin.
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1. Introduction

1.1. Statement of the main results. In this paper we prove the following result towards the Birch
and Swinnerton-Dyer conjecture for elliptic curves with complex multiplication.

Theorem A. Let E be an elliptic curve over a number field F with complex multiplication by the ring
of integers of an imaginary quadratic field K such that F (Etors)/K is abelian. Let ψE : F×\A×

F → C×

be the Hecke character associated to E/F . Suppose

ords=1L(ψE , s) = 1,

and let p ∤ 6hK be a prime split in K, where hK := #Pic(OK) is the class number of K. Assume the
conductor fψ of ψ is prime to p and satisfies dK∥NF/K(fψ), where dK := (

√
−DK). Then

rankZE(F ) = ords=1L(E/F, s).

Moreover, for all primes ℘ | p in K we have #W(E/F )[℘∞] <∞, with

ord℘

(
L∗(E/F, 1)

Reg(E) · Ω(E)

)
= ord℘

(
#W(E/F )[℘∞] · Tam(E/F )

#(E(F )tors)2

)
,

where L∗(E/F, 1) is the leading Taylor coefficient of the Hasse–Weil L-function for E/F at s = 1.

Remark 1.1.1.

(1) Classical results of Deuring [Deu53] (see also [Sil94, Thm. 10.5]) show that

L(E/F, s) = L(ψE , s) · L(ψE , s)
if K is contained in F , where ψE is the complex conjugate of ψE , while

L(E/F, s) = L(ψE , s) = L(ψE , s)

otherwise. Hence the first assertion in Theorem A is that rankZE(F ) = 2 in the former case,
and rankZE(F ) = 1 in the latter.

(2) The relevance of the condition that the extension F (Etors)/K be abelian for the application of
Iwasawa theory of K to the arithmetic of elliptic curves with CM by K was first highlighted
in work of Arthaud [Art78] generalizing Coates–Wiles [CW77] (see also [Rub81, GS81]).

For F = Q (which forces K to have class number one), Theorem A was obtained by Rubin [Rub91]
as a consequence of his proof of the Iwasawa Main Conjecture forK, the Gross–Zagier formula [GZ86],
and Perrin-Riou’s work [PR87a, PR87b]. The restriction to F = Q seems essential to Rubin’s result,
as it relies on a link with Mazur’s Main Conjecture [Maz72, MSD74] for rational elliptic curves.

Our proof of Theorem A also gives a new proof of Rubin’s result in the case F = Q, circumventing
the use of p-adic heights and Bertrand’s transcendence results [Ber84] (which appear to be unknown in
higher dimensions). The method also yields a similar result on the Birch–Swinnerton-Dyer conjecture
for higher-dimensional CM abelian varieties A/K.

Theorem B. Let A/K be an abelian variety with EndK(A) ≃ OL for a CM field L with [L : K] =
dim(A), and let λ : K×\A×

K → C× be the associated Hecke character of conductor c. Suppose

ords=1L(λ, s) = 1,

and let p ∤ 6hK be a prime split in K. Assume c is prime to p and satisfies dK∥c. Then

rankZA(K) = ords=1L(A/K, s).
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Moreover, for all primes P | p in L we have #W(A/K)[P∞] <∞, with

ordP

(
L∗(A/K, 1)

Reg(A) · Ω(A)

)
= ordP

(
#W(A/K)[P∞] · Tam(A/K)

#(A(K)tors) ·#(A∨(K)tors)

)
,

where A∨/K is the abelian variety dual to A/K.

The periods Ω(A) and Ω(E) in the above results are as defined in [FS22, Def. 30], which as explained
in [BF24, §1] agree with the periods in the conjecture of Birch Swinnerton-Dyer for abelian varieties
over number fields.

1.2. About the proofs. The starting point in the proof of our main results is an idea introduced by
Bertolini–Darmon–Prasanna [BDP12] in their proof of (a generalization of) Rubin’s formula [Rub92]
expressing the p-adic logarithm of Heegner points in terms of special values of Katz p-adic L-functions.
In Rubin’s original proof of the formula, the arithmetic of CM elliptic curves E/Q is studied using
Heegner points for an auxiliary imaginary quadratic fieldK ′ satisfying the Heegner hypothesis relative
to the conductor of E. In particular, one is forced to take K ′ ̸= K, as the L-function

L(E/K, s) = L(E, s)2

has always sign +1. Letting λ be the Hecke character of K attached to E/Q, the ingenious idea of
[BDP12] is to write

λ = ψχ

as the product of a suitable Hecke character ψ of infinity type (−1, 0) and a ray class character χ,
so that L(E, s) = L(λ, s) appears as a factor of the Rankin–Selberg convolution

L(g/K, χ, s) = L(λ, s) · L(ψτχ, s)

for g = θψ, where ψ
τ denotes the composition of ψ with the action of the non-trivial automorphism of

K/Q, and exploit Heegner cycles for the pair (g, χ), as featured in the general Gross–Zagier formula
[YZZ13], to study the arithmetic of λ.

Towards the application of this idea to our problem, the first part of the paper is devoted to the
study of the anticyclotomic Iwasawa Main Conjecture for “self-dual pairs” (g, χ) of the form

(g, χ) = (θψ, χ)

with ψ a Hecke a character of K of infinity type (1− 2r, 0) for any r ≥ 1 and χ a finite order Hecke
character with central character εχ = ε−1

g , where εg is the nebentypus of g. Expanding on the work of
Agboola–Howard [AH06] and Arnold [Arn07], incorporating key ideas and results from Kato [Kat04]
and Johnson-Leung–Kings [JLK11], we prove the Main Conjecture for (g, χ) in this setting, both

• in terms of the p-adic L-function Lw(g, χ) of Bertolini–Darmon–Prasanna (Theorem 4.1.1),
• in terms of the ΛO -adic Heegner classes zg,χ of [CH18] (Corollary 4.6.1).

After inverting p and for r = 1, the “lower bound” divisibility predicted by these Main Conjectures
was obtained in earlier work of the author with Burungale, Skinner, and Tian in [BCST22]; here
we further develop the method to prove the equality predicted by the Main Conjecture without any
ambiguity by powers of p (as is essential for results such as Theorem A).

The next step is to deduce from the equality of characteristic ideals in the Iwasawa Main Conjec-
tures, a formula for the order of the Bloch–Kato Tate–Shafarevich group attached o the pair (g, χ).
In our rank 1 case, the formula we obtain is in terms of the index of a Heegner class zg,χ (introduced
Theorem 3.2.1) inside the Bloch–Kato Selmer group SelBK(K,Tg,χ).

With future arithmetic applications in mind (see Remark 1.2.2), this result also applies in arbitrary
weights 2r ≥ 2. For the statement, let Lv(λN

−r) denote the anticyclotomic Katz p-adic L-function
introduced in §2.2.2, which has the trivial character 1 outside the range of interpolation.
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Theorem C. Let λ be a Hecke character of infinity type (1− 2r, 0) for some r ≥ 1 and conductor c
prime to p such that dK∥c. Suppose Lv(λN

−r)(1) ̸= 0 and λN−r has root number −1. Let (ψ, χ) be
a good pair for λ in the sense of Definition 5.1.1, and let

zg,χ ∈ SelBK(K,Tg,χ)

be the Heegner class associated to the self-dual pair (g, χ) = (θψ, χ). Then rankO SelBK(K,Tg,χ) = 1,
zg,χ is non-torsion, and

#
(
SelBK(K,Tg,χ)/O · zg,χ

)2
=

#WBK(Wg,χ/K)

#H0(K,Wg,χ) ·#H0(K,W τ
g,χ)

·
∏

w∈Σ,v∤p

cw(Wg,χ/K),

where cw(Wg,χ/K) is the Tamagawa number of Wg,χ at w.

Remark 1.2.1. When r = 1, the assumption Lv(λN
−r)(1) ̸= 0 follows from ords=rL(λ, s) = 1 (see

Remark 5.2.2); the same implication is expected to hold for r > 1, but this is not known at present.

Let Γ = Gal(K∞/K) denote the Galois group of the anticyclotomic Zp-extension of K. The proof
of Theorem C is based on a new calculation of the Γ-Euler characteristic (in the sense of [Gre99, §4])
of a certain Selmer group Xv(g, χ). The starting point is the decomposition

(1.1) Xv(g, χ) ≃ Xv(λN−r)⊕Xv(ψτχN−r)

of Proposition 3.5.1, where Xv(ψτχN−r) interpolates the Bloch–Kato Selmer group of ψτχN−r over
K∞/K, while Xv(λN−r) is seen to agree with the Selmer group obtained by reversing the local con-
ditions at the primes above p defining the Bloch–Kato Selmer group of λN−r over the anticyclotomic
tower. After computing the Γ-Euler characteristic for each of the summands in (1.1), the expressions
we obtain combine quite pleasantly into the formula of Theorem C.

The proof of Theorem A is easily deduced from an application of Theorem B to (the isogeny factors
of) B = ResF/K(E), so it remains to explain how to go from Theorem C to Theorem B, for which we
rely on the general Gross–Zagier formula [YZZ13] (in its explicit form in [CST14]). Letting Bg,χ/K
be the Serre tensor attached to the pair (g, χ), the deduction relies on the factorization

L(Bg,χ/K, s) =
∏

σ:L↪→C
L(gσ/K, χσ, s)

and the explicit description of the motivic structure attached to Hecke characters in the work of Kato
[Kat04] and Burungale–Flach [BF24]. The existence of strong good pairs in the sense introduced in
Definition 5.1.1 (whose existence is established in Lemma 5.1.3 building on Finis’ mod p non-vanishing
results [Fin06]) is also used at this point to address a certain period comparison building on work
of Hida–Tilouine [HT93, HT94], as completed by Hida [Hid06], on the anticyclotomic Iwasawa Main
Conjecture for CM fields.

Remark 1.2.2. Granted a Gross–Zagier type formula for the generalized Heegner cycles of [BDP13]
in the style of S.-W. Zhang [Zha97]1, Theorem C should yield a proof of the p-part of the equivariant
Tamagawa number conjecture of Burns–Flach [BF01] for CM motives in analytic rank 1 under stan-
dard hypotheses2. (See [LV23] for results in this direction in the non-CM case building on [Zha97].)

Remark 1.2.3. In the course of proving Theorem C, we show the implication

(1.2) zg,χ ̸= 0 =⇒ rankO SelBK(K,Tg,χ) = 1.

This extends [CH18, Thm.B] to the case of newforms with CM by K (note that this case is excluded
by the Heegner hypothesis in op. cit.). For the proof, we build on the Euler system of elliptic units.

On the other hand, as a consequence of our results on the Main Conjecture for (g, χ), we also deduce
a proof of a converse implication to (1.2), which together with the expected Gross–Zagier formula for

1See recent work of Lilienfeldt–Shnidman [LS24] for progress in this direction.
2That is, injectivity of the p-adic Abel–Jacobi map and non-degeneracy of a (Gillet–Soulé) height pairing.
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zg,χ yields an analogue of Skinner’s converse to the theorem of Gross–Zagier and Kolyvagin [Ski20]
for higher weight CM modular forms (see Theorem 5.3.1).

1.3. About the hypotheses. The restriction on the conductor in our results arises from the Heegner
hypothesis present in [CH18, JLZ21], and could be removed by a suitable refinement of the results in
[LZZ18]. Our second additional hypothesis that p ∤ hK would also become superfluous with a better
understanding of the relation between modular degrees and congruence numbers studied in [ARS12].
Removing the hypotheses that p > 3 and p be split in K would seem to require new ideas. We hope
to come back to this in future work.

1.4. Acknowledgements. It is a pleasure to thank Chris Skinner for stimulating exchanges related
to this work. We would also like to thank Ashay Burungale, Henri Darmon, Giada Grossi, Ye Tian,
and Xin Wan for interesting conversations related to the topics in this paper. We also thank Matthias
Flach, Dick Gross, and Haruzo Hida for comments on an earlier draft.

We would like to dedicate this work to the memory of the late Jan Nekovář, whose encouragement
was heartfelt and instrumental to us, specially in the early career stages.

2. p-adic L-functions

In this section we describe the p-adic L-functions needed for our arguments. The key result is the
factorization of Proposition 2.3.1. The discussion in this section parallels [BCST22, §4], but here we
need to pay more attention to integrality properties.

2.1. p-adic L-functions for self-dual pairs.

2.1.1. Self-dual pairs. Let g ∈ S2r(Γ0(Ng), εg) be a newform of even weight k = 2r ≥ 2, and let K/Q
be an imaginary quadratic field of discriminant −DK < 0 satisfying the Heegner hypothesis:

(Heeg) there exists an ideal Ng with OK/Ng ≃ Z/NgZ.

We also fix once and for all embedding ı∞ : Q ↪→ C and ıp : Q ↪→ Qp, and assume that

(spl) (p) = vv splits in K,

with v the prime of K above p induced by ıp.
As in [BCST22, §2.1], we say that a Hecke character ψ = (ψw)w : K×\A×

K → C× has infinity type

(a, b) ∈ Z2 if ψ∞(z) = zazb for all z ∈ (K ⊗Q R)× ≃ C× under the identification induced by ı∞. In
particular, the norm character N given by a 7→ #(OK/a) on ideals of OK , has infinity type (−1,−1).
Then the central character of ψ is the Dirichlet character εψ defined by

ψ|A× = εψ · | |−a−bA× .

We say that ψ is anticyclotomic if ψ|A× = 1; in particular, such ψ has trivial central character and
its infinity type is of the form (n,−n).

Definition 2.1.1. Let χ be a finite order character of K. We say that (g, χ) is a self-dual pair if

εχ = ε−1
g .

Then the Rankin–Selberg L-function L(g/K, χ, s) is self-dual, with a functional equation relating its
values at s and 2r− s. The sign ϵ(g, χ) ∈ {±1} in the functional equation is a product of local signs:

ϵ(g, χ) =
∏
q

ϵq(g, χ),

where q runs over all places of Q.
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Let K̂× denote group of finite idèles of K. Attached to a character ψ of K of infinity type (a, b)

is its p-adic avatar ψ̂ : K×\K̂× → C×
p defined by

ψ̂(x) = ıp ◦ ı−1
∞ (ψ(x))σ(xp)

aσ(xp)
b

for all x ∈ K̂×, where σ : K ⊗Q Qp → Cp is the map induced by ıp, and σ := σ ◦ τ for the non-trivial

automorphism τ of K/Q. Via the (geometrically normalized) reciprocity map recK : K×\K̂× → Gab
K ,

we shall view ψ̂ as a Galois character. Since it should not lead to confusion, in the following we shall
still use ψ to denote its p-adic avatar ψ̂ (except for ψ = N, whose p-adic avatar is ε−1

cyc for the p-adic

cyclotomic character εcyc : GK → Z×
p ).

For O the ring of integers of a finite extension Φ of Qp, we say that the pair (g, χ) is defined over
O if (under our fixed embeddings ı∞, ıp) the Fourier coefficients of g and the values of χ are all in O.

Definition 2.1.2. For a positive integer c prime to Ng, we let Σcc(c,Ng, εg) denote the set of finite
order characters χ such that (g, χ) is a self-dual pair and moreover:

(i) The conductor of χ is

fχ = (c)Nεg ,

where Nεg is the unique divisor of Ng with norm equal to the conductor of εg;
(ii) ϵq(g, χ) = +1 for all finite primes q.

In particular, for χ ∈ Σcc(c,Ng, εg) and ξ any anticyclotomic Hecke character of K of infinity type
(n,−n) and conductor divisible only by primes that split in K, the L-series L(g/K, χξ, s) is self-dual
with center at s = r and sign

ϵ(g, χξ) =

{
+1 if |n| ≥ r,

−1 if |n| < r.

The p-adic L-functions in this section interpolate the central L-values L(g/K, χξ, r) for |n| ≥ r.

2.1.2. CM periods. Fix an elliptic curve A0/F defined over a number field F with complex multipli-
cation by OK , and let (ΩK ,Ωp) ∈ C× ×O×

Cp be the complex and p-adic CM periods in [CH18, §2.5]
(with A0 corresponding to the CM elliptic curve denoted A in loc. cit.). Put also

Ω := 2πi · ΩK ,

and note that this recovers (up to F×) the complex CM period appearing in [dS87, II.4.2]. For any
embedding σ : F → C, we define Ωσ ∈ C× by replacing A0 by Aσ0 in the above definition.

2.1.3. p-adic interpolation. For any abelian extension K ′/K, let ΛO(K
′) denote the Iwasawa algebra

O[[Gal(K ′/K)]] := lim←−−O[Gal(K ′′/K)], where K ′′ runs over the finite extensions of K contained in
K ′, and the inverse limit is with respect to the natural projection maps. We also put

Λur
O (K ′) := ΛO(K

′)⊗̂ZpZur
p ,

where Zur
p denotes the completion of the ring of integers of the maximal unramified extension of Qp.

Let Hp∞ be the union of the ring class fields of K of p-power conductor; the maximal torsion-free

quotient of Γ̃ := Gal(Hp∞/K) is by definition the Galois group

Γ := Gal(K∞/K)

of the anticyclotomic Zp-extension ofK. Since anticyclotomic Iwasawa algebras will play a prominent
role in the paper, we set

ΛO := ΛO(K∞), Λur
O := Λur

O (K∞)

for the ease of notation.
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Theorem 2.1.3. Let (g, χ) ∈ S2r(Γ1(Ng))×Σcc(c,Ng, εg) be a self-dual pair for some positive integer
c prime to pNg defined over O. There exists a “square-root” p-adic L-function

Lv(g, χ) ∈ Λur
O (Hp∞)

characterized by the property that for every character ξ of Γ̃ crystalline at both v and v corresponding
to a Hecke character of K of infinity type (n,−n) with n ≥ r and n ≡ 0 (mod p− 1), we have

Lv(g, χ)
2(ξ) =

Ω4n
p

Ω4n
· Γ(r + n)Γ(n+ 1− r) ·

(
2π√
DK

)2n−1

×
(
1− ap(g)χξ(v)p

−r + εg(p)χξ(v)
2p−1

)2 · L(g/K, χξ, r).
Proof. This follows from the results of [CH18, §3] as in [BCST22, Thm. 4.1]. (Note that in the above
interpolation property we have replaced the CM period ΩK from [CH18] by the above Ω, and have
omitted terms interpolated by a unit in Λur

O (Hp∞)
×.) □

Remark 2.1.4. Reversing the roles of v and v in Theorem 2.1.3, we obtain an element Lv(g, χ) ∈
Λur

O (Hp∞) interpolating the central critical values L(g/K, χξ, r) for ξ of infinity type (−n, n) with
n ≥ r and n ≡ 0 (mod p− 1). We shall use both Lv(g, χ) and Lv(g, χ) in the following.

With a slight abuse of notation, we also denote by Lv(g, χ) its image under the natural projection
Λur

O (Hp∞) → Λur
O , and similarly for Lv(g, χ).

2.2. Katz p-adic L-functions. The construction of p-adic L-functions in the next result is originally
due to Katz [Kat78], but the alternative construction by de Shalit [dS87], whose exposition we follow,
will be most convenient for our purposes.

2.2.1. Two-variable p-adic L-functions. For an integral ideal c of K, let K(cp∞) be the union of the
ray class fields of K conductor cpn for n ≥ 0, and put

Gc := Gal(K(cp∞)/K).

For a character ξ of Gc, let ξ
τ denote the composition of ξ with action of the non-trivial automor-

phism of K/Q, and put ξ−τ := (ξτ )−1.

Theorem 2.2.1. Let c be an integral ideal of K prime to p. There exists an element

Lv,c ∈ Λur
O (K(cp∞))

characterized by the property that for every character ξ of Gc crystalline at both v and v corresponding
to a Hecke character of infinity type (a, b) with a > 0 and b ≤ 0 we have

Lv,c(ξ) =
Ωa−bp

Ωa−b
· Γ(a) ·

(√
DK

2π

)b
· (1− ξ−1(v)p−1)(1− ξ(v)) · Lc(ξ, 0),

where Lc(ξ, s) denotes the Hecke L-function of ξ with the Euler factors at the primes w | c removed.
Similarly, there exists an element Lv,c ∈ Λur

O (K(cp∞)) such that for every character ξ of Gc crystalline
at both v and v corresponding to a Hecke character of infinity type (b, a) with a > 0 and b ≤ 0 we
have

Lv,c(ξ) =
Ωa−bp

Ωa−b
· Γ(a) ·

(√
DK

2π

)b
· (1− ξ−1(v)p−1)(1− ξ(v)) · Lc(ξ, 0).

Moreover, we have the functional equation

Lv,c(ξ) = Lv,c(ξ
−τN−1),

where the equality is up to a p-adic unit, and similarly for Lv,c.
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Proof. The first assertion follows from [dS87, Thm. II.4.14]: Lv,c (resp. Lv,c) corresponds the p-adic
measure µ(cv∞) (resp. µ(cv∞)) on Gc constructed in loc. cit.. The functional equation is proved in
[dS87, Thm. II.6.4], which implies that the interpolation formulae extend from the range 0 ≤ −b < a
to the range a > 0 and b ≤ 0 (see [dS87, Cor. II.6.7]). □

2.2.2. Anticyclotomic projection. We shall be particularly interested in the anticyclotomic projection
of Katz’s p-adic L-functions twisted by characters that are self-dual in the following sense.

Definition 2.2.2. We say that a Hecke character ϕ of K is self-dual if it satisfies

ϕτ = ϕ−1N−1 and εϕ = ηK ,

where ηK is the quadratic Dirichlet character corresponding to K/Q.

In particular, if ϕ is self-dual then its p-adic avatar is a conjugate self-dual character of GK , i.e.

ϕτ = εcycϕ
−1.

Note that for self-dual ϕ, the Hecke L-function L(ϕ, s) is self-dual, with a functional equation relating
its values at s and −s. Moreover, the infinity type of such ϕ is of the form (1− r, r) for some r ∈ Z
and its conductor is invariant under complex conjugation.

Let F/K be an abelian extension contained in K(cp∞). For a character ϕ of Gal(F/K) valued in
O and having c as the prime-to-p part of its conductor, we denote by Lv(ϕ) the image of Lv,c under
the composite map

Λur
O (K(cp∞))

Twϕ−−−→ Λur
O (K(cp∞)) ↠ Λur

O ,

where Twϕ is the O-linear isomorphism given by γ 7→ ϕ(γ)γ for γ ∈ Gc and the second arrow is the
natural projection (noting that K(cp∞) contains Hp∞ , and hence also K∞).

Remark 2.2.3. Although not reflected in the notation for simplicity, when we write Lv(ψ) (resp.
Lv(ψ)) it will be tacitly understood that this is obtained from Lv,c (resp. Lv,c) with c the prime-to-p
part of the conductor of ϕ.

2.3. Factorization. Recall that if ψ is a Hecke character of infinity type (1−2r, 0) and conductor fψ,
then the theta series g = θψ is an eigenform in S2r(Γ0(Ng), εg) with Ng = DKN(fψ) and εg = εψηK .

Proposition 2.3.1. Let ψ be a Hecke character of K of infinity type (1− 2r, 0) for some r ≥ 1 and
conductor a cyclic ideal fψ of norm prime to pDK . Let

(g, χ) = (θψ, χ) ∈ S2r(Γ0(Ng), εg)× Σcc(c,Ng, εg)

be a self-dual pair for some positive integer c prime to pNg defined over O. Then for every w ∈ {v, v}
we have

Lw(g, χ)
2 = u · Lw(ψχN

−r) · Lw(ψ
τχN−r),

where u is a unit in Λur,×
O .

Proof. We only explain the proof in the case w = v; the argument for w = v is of course the
same. By our assumption on fψ, the imaginary quadratic field K satisfies (Heeg) relative to Ng with
Ng = dK · fψ. Let ξ be a character as in the statement of Theorem 2.1.3, corresponding to a Hecke
character of K of infinity type (n,−n) with n ≥ r, and assume that ξ factors through Γ. Then the
central L-value L(θψ/K, χξ, r) factors as

L(θψ/K, χξ, r) = L(ψχξ, r) · L(ψτχξ, r) = L(ψχN−rξ, 0) · L(ψτχN−rξ, 0).

The Hecke characters ψχN−rξ and ψτχN−rξ have infinity type (1−r+n, r−n) and (n+r, 1−n−r),
and one easily checks (see [BDP12, Lem. 3.16]) that they are both self-dual, with prime-to-p conductor
(c)dK and (cM)dK , respectively, where dK := (

√
−DK) andM := N(fψ); thus they are in the range of
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interpolation of Lv,(c)dK and Lv,(cM)dK , respectively. From the self-duality of ψχN−rξ and ψτχN−rξ
we immediately get the relations

(1− ψ−1χ−1ξ−1(v)pr−1) = (1− ψχξ(v)p−r), (1− ψ−τχ−1ξ−1(v)pr−1) = (1− ψτχξ(v)p−r),

and so from the interpolation formula in Theorem 2.2.1 we obtain

(2.1)

Lv,(c)dK (ψχN
−rξ) · Lv,(c)dKM (ψτχN−rξ) =

Ω2n−2r+1
p

Ω2n−2r+1
·
Ω2n+2r−1
p

Ω2n+2r−1
· Γ(n− r + 1) · Γ(n+ r)

×
(

2π√
DK

)n−r
·
(

2π√
DK

)n+r−1

·
(
1− ψχξ(v)p−r

)2 · (1− ψτχξ(v)p−r
)2

× L(ψχN−rξ, 0) · L(ψτχN−rξ, 0),

using that the prime-to-p conductors of ψχN−rξ and ψτχN−rξ are (c)dK and (cM)dK , respectively,
to equivalently write the primitive Hecke L-values. Noting that

(1− ψχξ(v̄)p−r
)
·
(
1− ψτχξ(v̄)p−r

)
= (1− ap(g)χξ(v)p

−r + εg(p)χξ(v)
2p−1),

comparing (2.1) with the interpolation property of Theorem 2.1.3, the result follows. □

3. Selmer groups and Main Conjectures

Throughout this section, we fix a prime p > 3 and integer Ng ≥ 1 with p ∤ Ng, and let

(g, χ) ∈ S2r(Γ1(Ng))× Σcc(c,Ng, εg)

be a self-dual pair defined over O for some positive integer c prime to pNg and an imaginary quadratic
field K satisfying (Heeg) and (spl).

3.1. Selmer groups for self-dual pairs. Let Vg denote the p-adic Galois representation associated
to g by Deligne, and put

Vg,χ := Vg(r)|GK ⊗ χ.

Definition 3.1.1. Let w ∈ {v, v} be a prime of K above p, and let F/K be a finite extension. For
η a prime of F above w, define the local condition H1

w(Fη, Vg,χ) by

H1
w(Fη, Vg,χ) :=

{
H1(Fη, Vg,χ) if η | w,
0 if η | w,

and let H1
f (Fη, Vg,χ) denote the Bloch–Kato finite subspace, i.e.

H1
f (Fη, Vg,χ) := ker

{
H1(Fη, Vg,χ) → H1(Fη, Vg,χ ⊗Bcris)

}
,

where Bcris is Fontaine’s ring of crystalline periods. For a finite prime η ∤ p of F , let

H1
ur(Fη, Vg,χ) := ker

{
H1(Fη, Vg,χ) → H1(Iη, Vg,χ)

}
be the unramified subspace.

• The w-Selmer group of Vg,χ is

Selw(F, Vg,χ) := ker

{
H1(F, Vg,χ) →

∏
η|p

H1(Fη, Vg,χ)

H1
w(Fη, Vg,χ)

×
∏
η∤p

H1(Fη, Vg,χ)

H1
ur(Fη, Vg,χ)

}
.

• The Bloch–Kato Selmer group of Vg,χ is

SelBK(F, Vg,χ) := ker

{
H1(F, Vg,χ) →

∏
η|p

H1(Fη, Vg,χ)

H1
f (Fη, Vg,χ)

×
∏
w∤p

H1(Fη, Vg,χ)

H1
ur(Fη, Vg,χ)

}
.

(Note that since p is odd, for η | ∞ the groups H1(Fη, Vg,χ) all vanish.)
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Let Tg,χ ⊂ Vg,χ be a GK-stable O-lattice, and define Wg,χ by the exact sequence

(3.1) 0 → Tg,χ → Vg,χ →Wg,χ → 0.

Then we define the Selmer groups Selw(F, Tg,χ), Selw(F,Wg,χ),SelBK(F, Tg,χ),SelBK(F,Wg,χ) as above,
with the corresponding local conditions obtained from those of Vg,χ by propagating via (3.1).

Finally, for ⋆ ∈ {v, v,BK}, we define the Λ-adic Selmer groups

Š⋆(g, χ) := lim←−−
F

Sel⋆(F, Tg,χ), S⋆(g, χ) := lim−−→
F

Sel⋆(F,Wg,χ),

where F runs over the finite extensions of K contained in K∞, and the limits are with respect to the
corestriction and restriction maps, respectively, and put

X⋆(g, χ) := Homcts(S⋆(g, χ),Qp/Zp)
for the Pontryagin dual of S⋆(g, χ).

3.2. Generalized Heegner cycles. We recall the construction of ΛO -adic classes zg,χ interpolating
the generalized Heegner cycles of Bertolini–Darmon–Prasanna [BDP13] over the anticyclotomic tower
K∞/K, as well as their link with the p-adic L-functions Lw(g, χ).

We begin by recalling an important formula from [BDP13] for the value of Lw(g, χ) at the trivial
character ξ = 1 of Γ (outside the range of p-adic interpolation in Theorem 2.1.3). For w ∈ {v, v} a
prime of K above p, denote by

logVg,χ : H1
f (Kw, Vg,χ) →

DdR(Vg,χ)

Fil0DdR(Vg,χ)
≃ Fil0DdR(V

∗
g,χ(1))

∨

the Bloch–Kato logarithm map, and recall the CM elliptic curve A0/F used for the definition of the
CM periods in §2.1.2.

Theorem 3.2.1 (Bertolini–Darmon–Prasanna). There exists a class zg,χ ∈ SelBK(K,Vg,χ) such that

Lw(g, χ)(1) =
c−r

Γ(r)
·
(
1− ap(g)χ(w)p

−r + εg(p)χ(w)
2p−1

)
·
〈
logVg,χ(locw(zg,χ)), ω

′
g ∧ ωr−1

A0
ηr−1
A0

〉
,

where ω′
g ∈ DdR(V

∗
g ) is a differential attached to g as in [KLZ20], and ωA0 and ηA0 are differentials

attached to A0 as in [BDP13, §1.4].

Proof. This is [BDP13, Thm. 5.13], as reformulated in [JLZ21, Thm. 7.2.4]. □

By interpolating p-power conductor variants of the classes zg,χ into a ΛO -adic class zg,χ ∈ ŠBK(g, χ),
a generalization of Theorem 3.2.1 allows one to recover Lv(g, χ) as the image of zg,χ under a gener-
alized Coleman power series map. This was first done in a joint work of the author with M.-L.Hsieh
[CH18] for χ = 1, and later in [JLZ21] in the level of generality required for this paper.

To state the result, given a class z ∈ ŠBK(g, χ), we let z(1) denote the image of z under the natural
projection

ŠBK(g, χ) → SelBK(K,Vg,χ).

Let α be the p-adic unit root of x2 − ap(g)x+ εg(p)p
2r−1, and let ϖ ∈ O be a uniformizer.

Theorem 3.2.2. Let w ∈ {v, v} be a prime of K above p. There exits a class zg,χ ∈ ŠBK(g, χ) with

zg,χ(1) = Ep(g, χ) · zg,χ,

where Ep(g, χ) =
(
1− χ(v)pr−1

α

)(
1− χ(v)pr−1

α

)
, and an injective Λur

O -module homomorphism

Colw : lim←−−
F⊂K∞

∏
η|w

H1
f (Fη, Tg,χ)⊗̂OΛ

ur
O → Λur

O

with finite cokernel for which we have the “explicit reciprocity law”

Colw
(
locw(zg,χ)

)
= Lw(g, χ).
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Proof. The construction of zg,χ is given in [CH18, §5.2] in the case εg = 1 and in [JLZ21, Thm. 5.4.1]3

in general. Similarly, the construction of Colw and the proof of the explicit reciprocity law is given
in [CH18, §5.3] in the case εg = 1, and in [JLZ21, §8] in general. □

3.3. Main Conjectures for self-dual pairs. We now state the anticyclotomic Main Conjectures
that will be studied in this paper.

Conjecture 3.3.1 (Iwasawa–Greenberg Main Conjecture). Let w ∈ {v, v} be a prime of K above
p, and assume that Lw(g, χ) ̸= 0. Then:

(i) rankΛO

(
Šw(g, χ)

)
= rankΛO

(
Xw(g, χ)

)
= 0;

(ii) We have

charΛO

(
Xw(g, χ)

)
=

(
Lw(g, χ)

2
)

as ideals in Λur
O .

Remark 3.3.2. It follows from Perrin-Riou’s results [PR89] that the characteristic ideal of Xw(g, χ)
is independent of the choice of GK-stable O-lattice Tg,χ in Vg,χ used in the definition of Xw(g, χ) (see
[KO20, Prop. 2.9]). Note that this is consistent with Conjecture 3.3.1(ii), since the periods used in
the construction of Lw(g, χ) depend only on K.

The following is a natural higher weight extension of the Heegner point Main Conjecture of [BT20]
and [BCST22] (see also [LV19] for an analogous higher weight extension of the original Heegner point
main conjecture by Perrin-Riou [PR87a]).

Conjecture 3.3.3 (Heegner cycle Main Conjecture). The following hold:

(i) zg,χ is not ΛO -torsion;

(ii) rankΛO

(
ŠBK(g, χ)

)
= rankΛO

(
XBK(g, χ)

)
= 1;

(iii) We have

charΛO

(
XBK(g, χ)tors

)
= charΛO

(
ŠBK(g, χ)/ΛO · zg,χ

)2
,

where the subscript tors denotes the maximal ΛO -torsion submodule.

Remark 3.3.4. It follows from Nekovář’s results [Nek06] that there is a ΛO -module pseudo-isomorphism

XBK(g, χ)tors ∼ M ⊕M

for a torsion ΛO -module M with charΛO
(M)ι = charΛO

(M), where ι denotes the involution on ΛO

given by γ 7→ γ−1 for γ ∈ Γ (see also [How04, p. 1464]). Thus we see that the equality of characteristic
ideals in Conjecture 3.3.3 can alternatively be written as

charΛO

(
XBK(g, χ)tors

)
= charΛO

(
ŠBK(g, χ)/ΛO · zg,χ

)
· charΛO

(
ŠBK(g, χ)/ΛO · zg,χ

)ι
.

3.4. Selmer groups for Hecke characters. In this subsection, the imaginary quadratic field K is
only required to satisfy (spl) for our fixed prime p > 3.

Let ξ be a Hecke character of K of infinity type (a, b) ∈ Z2 with p-adic avatar valued in the ring
of integers O of a finite extension Φ/Qp. Put

Vξ = Φ(ξ),

where Φ(ξ) denotes the one-dimensional Φ-vector space on which GK act via ξ.

Definition 3.4.1. Let w ∈ {v, v} be a prime of K above p, and let F/K be a finite extension. For
η a prime of F above p, put

H1
f (Fη, Vξ) := ker

{
H1(Fη, Vξ) → H1(Fη, Vξ ⊗Bcris)

}
3Note that this theorem achieves more, also interpolating zg,χ along a “weight” variable for g, vastly generalizing the

results of [How07, Cas13, Cas20, Ota20] in the p-ordinary case; cf. [Dis22, BL21]. Here we only need the interpolation
result in the anticyclotomic direction.
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and

H1
w(Fη, Vξ) :=

{
H1(Fη, Vξ) if η | w,
0 if η | w;

and for η a finite prime of F not dividing p, let H1
ur(Fη, Vξ) = ker{H1(Fη, Vξ) → H1(Iη, Vξ)} be the

unramified subspace.

• The Bloch–Kato Selmer group of Vξ is

SelBK(F, Vξ) := ker

{
H1(F, Vξ) →

∏
η|p

H1(Fη, Vξ)

H1
f (Fη, Vξ)

×
∏
η∤p

H1(Fη, Vξ)

H1
ur(Fη, Vξ)

}
.

• The w-Selmer group of Vξ is

Selw(F, Vξ) := ker

{
H1(F, Vξ) →

∏
η|p

H1(Fη, Vξ)

H1
w(Fη, Vξ)

×
∏
η∤p

H1(Fη, Vξ)

H1
ur(Fη, Vξ)

}
.

Let Tξ denote the free rank 1 O-module on which GK acts via ξ, and put Wξ = Vξ/Tξ. Similarly
as above, for ⋆ ∈ {BK, v, v}, we define Sel⋆(F, Tξ) and Sel⋆(F,Wξ) by propagation via 0 → Tξ →
Vξ →Wξ → 0, define the ΛO -adic Selmer groups

Š⋆(ξ) := lim←−−
F⊂K∞

Sel⋆(F, Tξ), S⋆(ξ) := lim−−→
F⊂K∞

Sel⋆(F,Wξ),

with F running over the finite extensions of K contained in K∞, and let

X⋆(ξ) := Homcts(S⋆(ξ),Qp/Zp)

be the Pontryagin dual of S⋆(ξ).

Lemma 3.4.2. Suppose ξ has infinity type (a, b). Let F/K be a finite extension and let η be a prime
of F above p. Then

H1
f (Fη, Vξ) =

{
H1(Fη, Vξ) if η | v and a > 0, or η | v and b > 0,

0 else.

In particular,

XBK(ξ) =

{
Xv(ξ) if a > 0 and b ≤ 0,

Xv(ξ) if b > 0 and a ≤ 0.

Proof. With the convention that the p-adic cyclotomic character εcyc : GQ → Z×
p has Hodge–Tate

weight +1, our convention on infinity types implies that the p-adic avatar ξ : GK → O has Hodge–
Tate weight a (resp. b) at v (resp. v). In view of [BK90, Thm. 4.1(ii)], this implies the result. □

3.5. Decompositions. When g is the theta series of a Hecke character ψ of K, then Vg ≃ IndQKVψ
and so

(3.2) Vg,χ ≃ Vψχ(r)⊕ Vψτχ(r).

We fix an isomorphism as above, and let Tg,χ ⊂ Vg,χ be the GK-stable O-lattice with Tg,χ ≃ Tψχ(r)⊕
Tψτχ(r) under that isomorphism, so that

Wg,χ := Vg,χ/Tg,χ ≃Wψχ(r)⊕Wψτχ(r)

as GK-modules.
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Proposition 3.5.1. Suppose g = θψ ∈ S2r(Γ1(Ng)) is the theta series of a Hecke character ψ of K,
and χ is a finite order character with χ ∈ Σcc(c,Ng, εg). Then there are ΛO-module isomorphisms

Šv(g, χ) ≃ Šv(ψχN−r)⊕ Šv(ψτχN−r),

ŠBK(g, χ) ≃ Šv(ψχN−r)⊕ Šv(ψτχN−r),

and similarly

Xv(g, χ) ≃ Xv(ψχN−r)⊕Xv(ψτχN−r),

XBK(g, χ) ≃ Xv(ψχN−r)⊕Xv(ψτχN−r).

Proof. The first and third isomorphisms are immediate from (3.2) and the definitions. On the other
hand, note that the character ψχεrcyc has Hodge–Tate weight 1− r and r above v and v, respectively,
while ψτχεrcyc has Hodge–Tate weight r and 1−r above v and v, respectively. In view of Lemma 3.4.2,
the second and fourth isomorphisms thus follow the decomposition

H1
f (Fη, Vg,χ) = H1

f (Fη, Vψχ(r))⊕H1
f (Fη, Vψτχ(r))

induced by (3.2) for any η | p. □

Remark 3.5.2. In the situation of Proposition 3.5.1, the local conditions defining the Selmer groups
Šv(ψχN−r) and Xv(ψχN−r) at the primes above p are reversed with respect to those defining the cor-
responding Bloch–Kato Selmer groups ŠBK(ψχN

−r) = Šv(ψχN−r) and XBK(ψχN
−r) = Xv(ψχN−r).

3.6. Equivalence between the Main Conjectures. In the case where Vg,χ|GK is irreducible, one
can show that Lw(g, χ) ̸= 0 for both values of w ∈ {v, v} (see [CH18, Thm. 3.9]), and Conjecture 3.3.3
can be shown to be equivalent to either version (v or v) of Conjecture 3.3.1. In the weight 2 case, the
argument for this appears in several places in the literature (see e.g. [Wan21, §3] or [BCK21, §5]).

In Theorem 4.5.1 below, we shall see that when g = θψ has CM by K (and so Vg,χ|GK is reducible),
the vanishing or not of Lw(g, χ) depends on the value of the root number

w(ψχN−r) ∈ {±1}
in the functional equation relating L(ψχ, s) and L(ψχ, 2r− s). In fact, in this case we shall see that
Lw(g, χ) vanishes for one value of w(ψχN−r), and it is nonzero for the other (see Remark 4.5.2).
Thus in this section we carefully explain the relation between Conjecture 3.3.3 and Conjecture 3.3.1.

Lemma 3.6.1. For any prime w of K above p, the quotient

Hw := lim←−−
F⊂K∞

∏
η|w

H1(Fη, Tg,χ)

H1
f (Fη, Tg,χ)

is ΛO-torsion-free.

Proof. From Lemma 3.4.2 we immediately see that

Hv ≃ lim←−−
F⊂K∞

∏
η|v

H1(Fη, Tψχ(r)), Hv ≃ lim←−−
F⊂K∞

∏
η|v

H1(Fη, Tψτχ(r)).

The result thus follows from [PR92, Prop. 2.1.6] as in [Arn07, Lem. 2.8]. (Note that [Arn07, Lem. 2.5]
also applies in our case, since neither of the characters ψχN−r and ψτχN−r has infinity type of the
form (a, b) with a = −b.) □

Proposition 3.6.2. Suppose zg,χ is non-torsion, and the localization map

(3.3) locv : ŠBK(g, χ) → lim←−−
F⊂K∞

∏
η|v

H1
f (Fη, Tg,χ)

is nonzero. Then the following are equivalent:

(i+) rankΛO

(
Xv(g, χ)

)
= rankΛO

(
Šv(g, χ)

)
= 0;
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(i−) rankΛO

(
XBK(g, χ)

)
= rankΛO

(
ŠBK(g, χ)

)
= 1,

and in that case, the following are equivalent:

(ii+) charΛO

(
Xv(g, χ)

)
⊂

(
Lv(g, χ)

2
)
in Λur

O ;

(ii−) charΛO

(
XBK(g, χ)tors

)
⊂ charΛO

(
ŠBK(g, χ)/ΛO · zg,χ

)2
in ΛO ,

and the same holds true for the opposite divisibilities. In particular, Conjecture 3.3.1 for w = v and
Conjecture 3.3.3 are equivalent.

Proof. For ◦, • ∈ {str, f, rel}, let Š◦,•(g, χ) and X◦,•(g, χ) denote the Selmer groups defined as in §3.1
by with the local conditions ◦ and • at the primes above v and v, respectively. Thus, for instance,
Xrel,str(g, χ) and Xf,f (g, χ) are the previously defined Xv(g, χ) and XBK(g, χ), respectively.

By global duality, coker(locv) is the same4 as the kernel of the projection Xrel,f (g, χ) → XBK(g, χ).
Similarly, by global duality the cokernel of the localization map

loc′v : Šrel,f (g, χ) → lim←−−
F⊂K∞

∏
η|v

H1
f (Fη, Tg,χ)

is identified with the kernel of the projection Xv(g, χ) → Xf,str(g, χ). Since the same argument as in
[Cas17, Lem. 2.3] shows that rankΛO

(Xrel,f (g, χ)) = 1 + rankΛO
(Xf,str(g, χ)), under the assumption

on locv in the statement we thus conclude that

rankΛO
(XBK(g, χ)) = 1 + rankΛO

(Xv(g, χ)),

whence the equivalence (i+) ⇐⇒ (i−).
Now assume that (i+) (and therefore also (i−)) holds. As above, from global duality we have the

short exact sequences

(3.4)
0 → coker(locv) → Xrel,f (g, χ) → XBK(g, χ) → 0,

0 → coker(loc′v) → Xv(g, χ) → Xf,str(g, χ) → 0.

Since the target of loc′v has ΛO -rank 1, and rankΛO
(Šv(g, χ)) = 0, the quotient Šrel,f (g, χ)/ŠBK(g, χ)

is ΛO -torsion; since this quotient injects via locv into Hv, which is ΛO -torsion-free by Lemma 3.6.1,
we conclude that Šrel,f (g, χ) = ŠBK(g, χ), so in particular locv = loc′v. From (3.4) we thus obtain

(3.5)

charΛO
(Xv(g, χ)) = charΛO

(Xf,str(g, χ)) · charΛO
(coker(locv))

= charΛO
(Xrel,f (g, χ)tors) · charΛO

(coker(locv))

= charΛO
(XBK(g, χ)tors) · charΛO

(coker(locv))
2,

using a variant of [Cas17, Lem. 2.3(3)] for the second equality. On the other hand, since lim←−−F H1(F, Tg,χ)
is ΛO -torsion–free, the map locv defines the short exact sequence

0 → ŠBK(g, χ)/ΛO · zg,χ → lim←−−
F⊂K∞

⊕η|vH
1
f (Fη, Tg,χ)/ΛO · locv(zg,χ) → coker(locv) → 0,

which together with Theorem 3.2.2 yields the equality

(3.6) charΛO

(
ŠBK(g, χ)/ΛO · zg,χ

)
· charΛO

(coker(locv)) =
(
Lv(g, χ)

)
in Λur

O . Combining (3.5) and (3.6) we deduce

charΛO
(Xv(g, χ)) · charΛO

(
ŠBK(g, χ)/ΛO · zg,χ

)2
= charΛO

(Xv(g, χ)tors) ·
(
Lv(g, χ)

2
)
,

which readily yields the equivalence (ii+) ⇐⇒ (ii−). □

4Using the fact that the representation Vg,χ is conjugate self-dual, so the Selmer group dual to Šf,str(g, χ) = ker(locv)
is identified with Xrel,f (g, χ).
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Remark 3.6.3. Theorem 3.2.2 also relates the image of zg,χ under the localization map

locv : ŠBK(g, χ) → lim←−−
F⊂K∞

∏
η|v

H1
f (Fη, Tg,χ)

to the p-adic L-function Lv(g, χ). The same argument as in Proposition 3.6.2 shows that, assuming
the non-vanishing of both zg,χ and locv(ŠBK(g, χ)), Conjecture 3.3.1 for w = v and Conjecture 3.3.3
are equivalent.

4. Proof of the Iwasawa Main Conjectures

In this section we prove Conjecture 3.3.1 and Conjecture 3.3.3 for self-dual pairs (g, χ) in the case
where g = θψ is the theta series of a Hecke character ψ. In the course of the proof we shall establish
the non-triviality of zg,χ in this case (which in weights 2r > 2 appears to be new).

4.1. Statement of the main result. Let K be an imaginary quadratic field satisfying (spl) for a
prime p > 3. For a self-dual character ϕ, denote by w(ϕ) ∈ {±1} the sign in the functional equation

L(ϕ, s) = w(ϕ)L(ϕ,−s).
The main result of this section is the following.

Theorem 4.1.1. Let ψ be a Hecke character of infinity type (1−2r, 0) for some r ≥ 1 and conductor
a cyclic ideal fψ of norm prime to pDK . Set

g = θψ, Ng = DK ·N(fψ), Ng = dK · fψ.
Let c be a positive integer prime to pNg, let χ be a finite order character in Σcc(c,Ng, εg), and suppose
(g, χ) is defined over O.

(i) If w(ψχN−r) = −1, then Šv(g, χ) = 0 and Xv(g, χ) is ΛO-torsion, with

charΛO

(
Xv(g, χ)

)
= charΛO

(
Lv(g, χ)

2
)

in Λur
O .

(ii) If w(ψχN−r) = +1, the same results hold with v replaced by v.

Hence Conjecture 3.3.1 holds for (g, χ).

Remark 4.1.2. The above assumption on fψ implies that OK/Ng ≃ Z/NgZ, i.e. K satisfies (Heeg)
relative to Ng. Moreover, it is easy to see that in the setting of Theorem 4.1.1, the character ψχN−r

(and hence also ψτχN−r) is self-dual (see [BDP12, Lem. 3.16]).

By Proposition 2.3.1 and Proposition 3.5.1, the proof of Theorem 4.1.1 is reduced to the study
of the relation between the ΛO -adic Selmer groups attached to the self-dual characters ψχN−r and
ψτχN−r and the p-adic L-functions Lw(ψχN

−r) and Lw(ψ
τχN−r), respectively. The main difficulty

arises from the fact that the Selmer group Xv(ψχN−r) is different from the Bloch–Kato Selmer group
over K∞/K (see Remark 3.5.2), and so a relation between the characteristic ideal of Xv(ψχN−r)
and the p-adic l-function Lv(ψχN

−r) is not immediate from the Main Conjecture.
The proof of Theorem 4.1.1 is concluded in §4.6, where we also deduce a similar result on Conjec-

ture 3.3.3.

4.2. Explicit reciprocity law. For an ideal c ⊂ OK prime to p and a non-trivial ideal a prime to
6cp, let ca(K(cpk)) ∈ H1(K(cpk),Zp(1)) be the elliptic unit denoted ϑa(cpk) in [AH06, §2.3] and azcpk
in [Kat04, §15.5]; these are norm-compatible at k varies.

As a piece of notation, for an infinite abelian extensionK ′/K and a Zp-module T with a continuous
linear GK-action, put

H1
Iw(K

′, T ) := lim←−−
K′′⊂K′

H1(K ′′, T ),
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with K ′′ running over the finite extensions of K contained in K ′, and limit with respect to corestric-

tion. For a character ϕ : Gal(K(cp∞)/K) → O×, we put ϕ∗ = εcycϕ
−1 and let ca(K(cp∞))ϕ

−1
denote

the image of lim←−−k ca(K(cpk)) under the twisting homomorphism

H1
Iw(K(cp∞),Zp(1))

⊗ϕ−1

−−−→ H1
Iw(K(cp∞), Tϕ∗).

For any subextension L of K(cp∞) (not necessarily finite over K), we define ca(L)
ϕ−1

to be the image

of ca(K(cp∞))ϕ
−1

under the corestriction map H1
Iw(K(cp∞), Tϕ∗) → H1

Iw(L, Tϕ∗).
Here we give a refinement of Yager’s work [Yag82] (restricted to the anticyclotomic line) building

on Kato’s explicit reciprocity law [Kat04].

Theorem 4.2.1. Let w ∈ {v, v} be a prime of K above p, and let ϕ be a self-dual Hecke character
of K with values in O. Then there is an injective Λur

O -module homomorphism

Colw : lim←−−
F⊂K∞

∏
η|w

H1(Fη, Tϕτ )⊗̂ZpZur
p → Λur

O

with finite cokernel, and a “twisted elliptic unit” cϕτ ∈ H1
Iw(K∞, Tϕτ ), such that

Colw
(
locw(cϕτ )

)
= Lw(ϕ).

Proof. We first explain the construction of the map Colw for w = v. For any field F ⊂ Q over K, let
Fv denote the completion of F at the prime above p induced by ıp. Then Hp∞,v contains K∞,v, and it
follows by local Class Field Theory that Hp∞,v is obtained by adjoining to Hv the torsion points of a
height 1 Lubin–Tate formal group relative to the extension Hv/Kv (see [Shn16, Prop. 39]). Thus, as
explained in [CH22, §3], from the Perrin-Riou big exponential map for Hp∞/Hv (see [PR94, Kob23])
we have a Zp[[Γv]]-linear map

Colv : lim←−−
F⊂K∞

H1(Fv, Tϕτ )⊗̂ZpZur
p → O[[Γv]]⊗̂ZpZur

p

interpolating the Bloch–Kato logarithm and dual exponential maps for varying specializations (see
[CH22, Thm. 3.4]) which gives the map Colv in the statement after tensoring with Zp[[Γ]] over Zp[[Γv]].
The maps Colv is constructed in the same manner, replacing ıp by ıp◦τ , where τ ∈ GQ is the complex
conjugation induced by ı∞; the claim that both maps Colw are injective with finite cokernel follows
form the theory of Coleman power series as in [Kat04, §17.10].

On the other hand, letting c be the prime-to-p part of the conductor of ϕ, we can find a coprime
to 6cp with σa − ϕτ (σa) invertible in Λur

O (cf. [dS87, p. 77]), and setting

cϕτ := (σa − ϕτ (σa))
−1 · ca(K∞)ϕ

−1

(which is independent of a by [Kat04, (15.4.4] and belongs to H1
Iw(K∞, Tϕ∗) = H1

Iw(K∞, Tϕτ ) by the
self-duality of ϕ), the last assertion follows directly from the interpolations properties of Lw(ϕ) and
Colw together with Kato’s explicit reciprocity law [Kat04, Prop. 15.9]. □

Remark 4.2.2. Specializing Yager’s result [Yag82] to the anticyclotomic line as in [AH06, Prop. 2.3.4]
and [Arn07, Prop. 2.6] yields an analogue of Theorem 4.2.1 under the assumption that p ∤ [K(c) : K]
and ϕ|GKw ̸≡ 1 (mod ϖ) (i.e. ϕ is “non-anomalous” at w). Indeed, following the argument in loc. cit.,
by local Tate duality one can show that under these additional hypotheses the corestriction map(

lim←−−
F⊂K(cp∞)

∏
η|w

H1(Fη, Tϕ∗)

)
⊗ΛO(K(cp∞)) ΛO → lim←−−

F⊂K∞

∏
η|w

H1(Fη, Tϕ∗)

is an isomorphism.
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4.3. Main Conjectures for characters. The Iwasawa Main Conjecture forK was proved by Rubin
[Rub91] under mild hypotheses on the prime p, and by Johnson-Leung–Kings [JLK11] in general.

The problem of deducing from the 2-variable Main Conjecture a proof of the anticyclotomic Main
Conjecture for self-dual Hecke characters ϕ was first studied in detail by Agboola–Howard [AH06] in
the case of CM elliptic curves E/Q, and by Arnold [Arn07] for higher weight CM forms. The main
result of this section is Theorem 4.3.1 below, which we deduce from an adaptation of their methods.

4.3.1. The case of λ = ψχ.

Theorem 4.3.1. Let λ be a Hecke character of infinity type (1−2r, 0) for some r ≥ 1 with ελ = ηK ,
conductor c prime to p. Suppose

w(λN−r) = −1.

Then Šv(λN−r) = 0 and Xv(λN−r) is ΛO-torsion, with

charΛO

(
Xv(λN−r)

)
=

(
Lv(λN

−r)
)

as ideals in Λur.

Following the method of [AH06] and [Arn07], by anticyclotomic descent, the proof of Theorem 4.3.1
will be based on a twisted variant of the results by Rubin [Rub91] (and Johnson-Leung–Kings [JLK11]
more generally) on the 2-variable Iwasawa Main Conjecture for K. The starting point is the following
key consequence of Greenberg’s nonvanishing results [Gre85].

Proposition 4.3.2. Let w(λN−r) ∈ {±1} be the root number of λN−r. Then

Lv(λN
−r) ̸= 0 ⇐⇒ w(λN−r) = −1.

Proof. We adapt the argument in the proof of [Arn07, Prop. 2.3]. Put ϕ0 = λ/λ, and take m > 0 (to
be possibly enlarged later) large enough so that ϕ := ϕm0 factors through Γ and has trivial conductor.
Then for n ≫ 0, the character λN−rϕn is in the range of interpolation of Lv,c (indeed, its infinity
type (1− r +mn(2r − 1), r +mn(1− 2r))) and so from Theorem 2.2.1 and the functional equation
for Hecke L-functions5 we immediately obtain

Lv(λN
−r)(ϕn)

.
= L(λ2mn−1, c),

where c = mn(2r − 1) − r + 1 is the center of the functional equation. Applying Weil’s formula for
root numbers as stated in [AH06, Prop. 2.1.6], arguing as in [Arn07, p. 51] we see that (after possibly
replacing m by 2m) w(λ2mn−1) = −w(λN−r), and the result follows from [Gre85, Thm. 1]. □

Proposition 4.3.3. If w(λN−r) = −1, then Xv(λN−r) is ΛO-torsion.

Proof. By Theorem 4.2.1 (with ϕ = λN−r) and Proposition 4.3.2, if w(λN−r) = −1 then the map

locv : Šrel(λ
τN−r) → lim←−−

F⊂K∞

∏
η|v

H1(Fη, Tλτ (r))

is nonzero6. On the other hand, by [Arn07, Thm. 2.14] (an application of the Euler system machinery,
[Rub00, Thm. 2.3.3]), the ΛO -module Xstr(λN

−r) is torsion. By the global duality exact sequence

Šrel(λ
τN−r) → lim←−−

F⊂K∞

∏
η|v

H1(Fη, Tλτ (r)) → Xv(λN−r) → Xstr(λN
−r) → 0,

this yields the result. □

Proposition 4.3.4. Suppose w(λN−r) = −1. Then

charΛO

(
Xv(λN−r)

)
=

(
Lv(λN

−r)
)

as ideals in Λur
O .

5See e.g. [dS87, p. 37], whose conventions on infinity type are opposite to ours.
6Note that the implicit inclusion cλτN−r ∈ Šrel(λ

τN−r) follows from [AH06, Lem. 2.4.2].
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Proof. Denote by CλτN−r(K∞) the ΛO -submodule of Šrel(λ
τN−r) generated by cλτN−r . By The-

orem 4.2.1 (with ϕ = λN−r) and Proposition 4.3.2, CλτN−r(K∞) is not ΛO -torsion, and by Theo-
rem 2.14 in [Arn07] we know that Šrel(λ

τN−r) is torsion-free of ΛO -rank 1, Xstr(λN
−r) is ΛO -torsion,

and we have the divisibility

charΛO

(
Xstr(λN

−r)
)
⊃ charΛO

(
Šrel(λ

τN−r)/CλτN−r(K∞)
)
.

Note that this divisibility is independent of the value of w(λN−r), and in loc. cit. the result is stated
for Tλ(r) and Wλτ (r) in our notations (corresponding to T and W ∗ in loc. cit.), rather than for our
Tλτ (r) and Wλ(r) as above.

On the other hand, if w(λN−r) = −1, in view of Proposition 4.3.3 the arguments in [Arn07, §3]7
leading to the proof of Proposition 3.8 in loc. cit. apply verbatim with Tλ(r) and Wλτ (r) replaced by
Tλτ (r) and Wλ(r), hence yielding a proof of the converse divisibility, and so

(4.1) charΛO

(
Xstr(λN

−r)
)
= charΛO

(
Šrel(λ

τN−r)/CλτN−r(K∞)
)
.

Now, from Poitou–Tate duality we have the exact sequence
(4.2)

0 → Šv(λτN−r) → Šrel(λ
τN−r)

locv−−→ lim←−−
F⊂K∞

∏
η|v

H1(Fη, Tλτ (r)) → Xv(λN−r) → Xstr(λN
−r) → 0,

which from the above it implies that Šv(λτN−r) is ΛO -torsion, and so being also ΛO -torsion-free, it
vanishes. Thus from (4.2) we obtain the exact sequence

0 → Šrel(λ
τN−r)/CλτN−r(K∞)

locv−−→ lim←−−
F⊂K∞

∏
η|v

H1(Fη, Tλτ (r))/locv(CλτN−r(K∞))

→ Xv(λN−r) → Xstr(λN
−r) → 0.

Since by Theorem 4.2.1 the map Colv defines a Λur
O -module pseudo-isomorphism(

lim←−−
F⊂K∞

∏
η|v

H1(Fη, Tλτ (r))/locv(CλτN−r(K∞))

)
⊗̂OZur

p → Λur
O /(Lv(λN

−r))

together with (4.1) this concludes the proof. □

Proof of Theorem 4.3.1. This is the combination of Proposition 4.3.3 and Proposition 4.3.4. □

4.3.2. The case of ψτχ.

Theorem 4.3.5. Let ψ be a Hecke character of infinity type (1− 2r, 0) for some r ≥ 1 and let χ be
a finite order character such that ψτχN−r is self-dual with root number

w(ψτχN−r) = +1

and conductor prime to p. Then Šv(ψτχN−r) = 0 and Xv(ψτχN−r) is ΛO-torsion, with

charΛO

(
Xv(ψτχN−r)

)
=

(
Lv(ψ

τχN−r)
)
.

as ideals in Λur
O .

Proof. We being by noting that L(ψτχ, s) = L(ψχτ , s), and by our assumption the self-dual character
ψχτN−r has root number w(ψχτN−r) = +1. Since XBK(ψχ

τN−r) = Xv(ψχτN−r) by Lemma 3.4.2
(indeed, the infinity type of ψχτN−r is (1 − r, r)), by the same argument as in the proof of [AH06,
Thm. 2.4.17(1)] and [Arn07, Thm. 3.9], but replacing the use of [AH06, Prop. 2.3.4] and [Arn07,
Prop. 2.6] by an appeal to Theorem 4.2.1 above, we deduce that Šv(ψτχN−r) = 0 and Xv(ψχτN−r)
is ΛO -torsion, with

charΛO

(
Xv(ψχτN−r)

)
=

(
Lv(ψχ

τN−r)
)

7Using [JLK11, Thm. 5.2], which proves an extension of Rubin’s result on the 2-variable Iwasawa Main Conjecture
for K used in [Arn07, Thm. 3.2] under weaker hypotheses on p.
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as ideals in Λur
O .

Let ι denote the involution of ΛO given by γ 7→ γ−1 for γ ∈ Γ. Since by [Arn07, Prop. 4.1], and as a
direct consequence of the interpolation property of Theorem 2.2.1 (see e.g. [BCG+20, Lem. 3.3.2(a)]),
we have the equalities

charΛO

(
Xv(ψχτN−r)

)
= charΛO

(
Xv(ψτχN−r)ι

)
,(

Lv(ψχ
τN−r)

)
=

(
Lv(ψ

τχN−r)ι
)
,

the result follows. □

4.4. p-parity conjecture. By Nekovář’s methods, we can deduce a proof of the p-parity conjecture
for CM forms of higher weight (see [Guo93] for earlier results in this context).

Corollary 4.4.1. Let λ be a Hecke character of infinity type (1−2r, 0) for some r ≥ 1 with ελ = ηK
and conductor c coprime to p and such that dK∥c. Then

ords=r L(λ, s) ≡ dimΦ SelBK(K,Vλ(r)) (mod 2),

and hence the p-parity conjecture holds for λ.

Proof. By an application of Nekovář’s general result [Nek07, Cor. (5.3.2)] (see also [Nek09]), it suffices
to show that if w(λN−r) = −1 (resp. w(λN−r) = +1), there exists a finite order character ϕ of Γ
such that dimΦ SelBK(K,Vλϕ(r)) = 1 (resp. SelBK(K,Vλϕ(r)) = 0).

Suppose first that w(λN−r) = −1. In view of Proposition 4.3.2, we can take a finite order character
ϕ of Γ such that Lv(λN

−r)(ϕ) ̸= 0. By Theorem 4.3.1 and a variant of Mazur’s control theorem for
Xv(λϕN−r) (see [Cas23, Prop. 6.2.1]), it follows that Selv(K,Vλϕ(r)) = 0, and by Theorem 4.2.1 it
follows that the localization map

(4.3) locv : Selv(K,Vλτϕτ (r)) → H1(Kv, Vλτϕτ (r))

is nonzero8. From the Poitou–Tate exact sequence

Selv(K,Vλτϕτ (r)) → H1(Kv, Vλτϕτ (r)) → Selrel(K,Vλϕ(r))
∗ → Selv(K,Vλϕ(r))

∗ → 0,

it follows that

(4.4) Selrel(K,Vλϕ(r)) = Selv(K,Vλϕ(r)) = SelBK(K,Vλϕ(r)),

using Lemma 3.4.2 for the last equality. Since the nonvanishing of (4.3) gives locv(Selv(K,Vλϕ(r))) ̸=
0, from the tautological exact sequence

Selv(K,Vλϕ(r)) → Selrel(K,Vλϕ(r)) → H1(Kv, Vλϕ(r))

and (4.4) we obtain dimΦ SelBK(K,Vλϕ(r)) = dimΦ Selv(K,Vλϕ(r)) + 1 = 1, as desired.
The case w(λN−r) = +1 is easier: By [Arn07, Prop. 2.3], we can take a finite order character ϕ of Γ

such that Lv(λN
−r)(ϕ) ̸= 0, and then by Theorem 3.9 in op. cit. it follows that Selv(K,Vλϕ(r)) = 0,

so by Lemma 3.4.2 the Bloch–Kato Selmer group SelBK(K,Vλϕ(r)) vanishes as desired. □

4.5. Non-triviality of zg,χ. For g of weight k = 2, the non-triviality of zg,χ follows from the work of
Cornut–Vatsal [CV05, CV07]. For g of even weight k > 2, assuming that the residual representation
attached to Vg|GK is absolutely irreducible, the non-triviality of zg,χ follows from the combination of
Theorem 3.9 and Theorem 5.7 in [CH18], and also from [Bur20, Thm. 4.3]; in both cases, the result
is deduced from Hida’s methods [Hid10, Hid04], showing the non-vanishing of Lv(g, χ), and a form
of Theorem 3.2.2.

Here we are interested in the case where g = θψ has CM by K, so in particular Vg|GK is reducible.
In the weight 2 case, an alternative proof of Cornut–Vatsal’s nonvanishing result in this setting was

8Indeed, letting cλτN−r (ϕτ ) denote the specialization of cλτN−r at ϕτ , the inclusion cλτN−r (ϕτ ) ∈ Selv(K,Vλτϕτ (r))
follows from Theorem 4.2.1, the interpolation property in Theorem 2.2.1, and the fact that L(λ, r) = 0.
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given in [BD20] building on the ΛO -adic Gross–Zagier formula of [Dis17] and the nonvanishing result
of [Bur15]. Here we prove the non-triviality of zg,χ for g = θψ of even weight by a different approach.

Theorem 4.5.1. Let ψ be a Hecke character of infinity type (1−2r, 0) for some r ≥ 1 and conductor
a cyclic ideal fψ of norm prime to pDK . Let

(g, χ) = (θψ, χ) ∈ S2r(Γ1(Ng))× Σcc(c,Ng, εg)

be a self-dual pair for some positive integer c prime to pNg. Then:

(i) If w(ψχN−r) = −1, then Lv(g, χ) ̸= 0 and locv(ŠBK(g, χ)) ̸= 0.
(ii) If w(ψχN−r) = +1, then Lv(g, χ) ̸= 0 and locv(ŠBK(g, χ)) ̸= 0.

In particular, zg,χ ̸= 0 regardless of the sign of w(ψχN−r).

Proof. Since Lv(g, χ) is a unit multiple of Lv(ψχN
−r)Lv(ψ

τχN−r) by Proposition 2.3.1, in the case
w(ψχN−r) = −1 the nonvanishing of Lv(g, χ) follows from Proposition 4.3.2 and Theorem 4.3.5; the
nonvanishing of locv(ŠBK(g, χ)) then follows from Theorem 3.2.2.

In the case w(ψχN−r) = +1, the same argument as in Proposition 2.3.1 shows that Lv(g, χ) is a
unit multiple of Lv(ψχN

−r)Lv(ψ
τχN−r). Directly from Theorem 2.2.1 (see [BCG+20, Lem. 3.3.2(a)]),

we have the relations(
Lv(ψχN

−r)
)
=

(
Lv(ψ

τχτN−r)ι
)
,

(
Lv(ψ

τχN−r)
)
=

(
Lv(ψχ

τN−r)ι
)
.

Note that the character ψτχτN−r lies inside the range of p-adic interpolation for Lv,c, while ψχ
τN−r

lies outside this range. As in Theorem 4.3.5 and Proposition 4.3.2, we see that

w(ψτχτN−r) = +1 =⇒ Lv(ψ
τχτN−r) ̸= 0,

w(ψχτN−r) = −1 =⇒ Lv(ψχ
τN−r) ̸= 0,

respectively, which together with Theorem 3.2.2 yields the result. □

Remark 4.5.2. It is interesting to note that the preceding results show in fact the equivalences

locv(ŠBK(g, χ)) ̸= 0 ⇐⇒ Lv(g, χ) ̸= 0 ⇐⇒ w(ψχN−r) = −1,

locv(ŠBK(g, χ)) ̸= 0 ⇐⇒ Lv(g, χ) ̸= 0 ⇐⇒ w(ψχN−r) = +1.

Indeed, the right pair of equivalences and the backward direction for the left pair directly follow from
the proof of Theorem 4.5.1. For the left pair of implications =⇒, note that by [AH06, Thm. 2.4.17]
(as extended in [Arn07, Thm. 3.9]) we have the implications

w(ψχN−r) = +1 =⇒ ŠBK(ψχN
−r) = 0,

w(ψχN−r) = −1 =⇒ ŠBK(ψ
τχN−r) = 0,

using w(ψτχN−r) = −w(ψχN−r) for the second implication. Since by Proposition 3.5.1 we have

locv(ŠBK(ψχN
−r)) = locv(ŠBK(g, χ)), locv(ŠBK(ψ

τχN−r)) = locv(ŠBK(g, χ)),

this yields the claim.

4.6. Proof of Theorem 4.1.1 and Heegner cycle Main Conjecture.

Proof of Theorem 4.1.1. Since (g, χ) = (θψ, χ) is a self-dual pair, the L-function L(g/K, χ, s) is self-
dual with sign −1 and center at s = r, and the decomposition (3.2) gives

L(g/K, χ, s) = L(ψχ, s) · L(ψτχ, s).

The L-functions in the right-hand side of this factorization are self-dual with opposite signs,

w(ψχN−r) = −w(ψτχN−r).
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Suppose first that w(ψχN−r) = −1. By Proposition 3.5.1, the assertions that Šv(g, χ) vanishes and
Xv(g, χ) is ΛO -torsion follow from Theorem 4.3.1 and Theorem 4.3.5. Together with the factorization
in Proposition 2.3.1, the same theorems give the equalities

(4.5)

charΛO

(
Xv(g, χ)

)
= charΛO

(
Xv(ψχN−r)

)
· charΛO

(
Xv(ψτχN−r)

)
=

(
Lv(ψχN

−r) · Lv(ψ
τχN−r)

)
=

(
Lv(g, χ)

2
)

in Λur
O , yielding the result in this case.

In the case w(ψχN−r) = +1, we apply the result of Theorem 4.3.1 and Theorem 4.3.5 to ψχτN−r

(which has w(ψχτN−r) = −1) and ψτχτN−r (which has w(ψτχτN−r) = +1), respectively, to obtain

Šv(ψχτN−r) = Šv(ψτχτN−r) = 0

and that Xv(ψχτN−r) and Xv(ψτχτN−r) are both ΛO -torsion, with

charΛO

(
Xv(ψχτN−r)

)
=

(
Lv(ψχ

τN−r)
)
, charΛO

(
Xv(ψτχτN−r)

)
=

(
Lv(ψ

τχτN−r)
)

as ideals in Λur
O . As in the proof of Theorem 4.3.5, by the action of complex conjugation this gives

Šv(ψτχN−r) = Šv(ψχN−r) = 0 and that Xv(ψτχN−r) and Xv(ψχN−r) are both ΛO -torsion, with

charΛO

(
Xv(ψτχN−r)

)
=

(
Lv(ψ

τχN−r)
)
, charΛO

(
Xv(ψχN−r)

)
=

(
Lv(ψχN

−r)
)
,

which by the v-versions of Proposition 2.3.1 and Proposition 3.5.1 yields the result as above. □

By the nonvanishing results established in the course of proving Theorem 4.1.1, we can deduce the
following result on Conjecture 3.3.3.

Corollary 4.6.1. Let (g, χ) be a self-dual pair as in Theorem 4.1.1. Then ŠBK(g, χ) and XBK(g, χ)
both have ΛO-rank one, and

charΛO

(
XBK(g, χ)tors

)
= charΛO

(
ŠBK(g, χ)/ΛO · zg,χ

)2
.

In other words, Conjecture 3.3.3 holds for (g, χ).

Proof. By Theorem 4.5.1, zg,χ is not ΛO -torsion, and locv(ŠBK(g, χ)) ̸= 0 (resp. locv(ŠBK(g, χ)) ̸= 0)
when w(ψχN−r) = −1 (resp. w(ψχN−r) = +1). Hence by Proposition 3.6.2 (see also Remark 3.6.3)
the result follows from Theorem 4.1.1. □

5. Formula for the Bloch–Kato WBK(Wg,χ/K)

LetK be an imaginary quadratic field satisfying (spl) for a prime p > 3. Let λ be a Hecke character
of K of infinity type (1− 2r, 0) for some r ≥ 1 and central character

(sd) ελ = ηK .

In particular, λN−r is self-dual in the sense of Definition 2.2.2, and the conductor c of λ is divisible
by dK := (

√
−DK). Throughout this section we assume that

(div) p ∤ c and dK∥c.

By self-duality, c is invariant under complex conjugation, and so by (div) can write

(5.1) c = (c)dK

for a unique positive integer c prime to pDK .
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5.1. Strong good pairs. The following definition is a natural higher weight extension (and strength-
ening) of the notion of “good pair” for λ introduced in [BDP12].

Definition 5.1.1. Suppose the self-dual character λN−r has root number w(λN−r) = −1. We say
that a pair of Hecke characters (ψ, χ) is a good pair for λ if it satisfies

(S1) ψ has infinity type (1− 2r, 0) and conductor a cyclic ideal fψ of norm prime to pDK .
(S2) χ is a finite order character such that

(g, χ) = (θψ, χ) ∈ S2r(Γ1(Ng))× Σcc(c,Ng, εg),

where Ng := dK · fψ and Ng = DKN(fψ).
(S3) λ = ψχ.
(S4) L(ψτχ, r) ̸= 0.

If r = 1, we say that (ψ, χ) is a strong good pair for λ if in addition

(S5) ψ− := ψτ/ψ has order prime to p, and p ∤ fψ− .
(S6) Every prime l | fψ− splits in K.

(S7) ψ−|Gv ̸= 1, where Gv ⊂ GK is a decomposition group at v.
(S8) ψ− has order ≥ 3.
(S9) The value

Lalg(ψ−, 0) :=

(
2π√
DK

)
· (1− ψ−(v))(1− ψ−(v)p−1) · L(ψ

−, 0)

Ω

is a p-adic unit.

Remark 5.1.2. By Theorem 2.2.1 the normalized L-value Lalg(ψ−, 0) is the same as the value
Lv,c(ψ

−) of Lv,c for c = fψ− (indeed, ψ− lies within the range of p-adic interpolation of Lc,v, as its
infinity type (1,−1)). In particular, by the functional equation of Theorem 2.2.1, if (ψ, χ) is a strong
good pair for λ, then the p-adic L-function Lv(ψ

−N−1) ∈ Λur
O is invertible.

For r = 1, the existence of good pairs for λ is shown in [BDP12, Prop. 3.28] building on Greenberg
[Gre85] and Rohrlich [Roh84] nonvanishing results. Adapting their argument, and building on Finis’
mod p non-vanishing results [Fin06], we can prove the following.

Lemma 5.1.3. Suppose λN−r has root number −1. Then there exist good pairs for λ. Moreover, if
r = 1, then there exist strong good pairs for λ.

Proof. Take ψ a Hecke character of infinity type (1− 2r, 0) and conductor a cyclic ideal fψ of norm
coprime to pc, and put

χ := ψ−1λ.

By (5.1), ψ satisfies (S1), and by construction, the pair (ψ, χ) satisfies (S3). By [BDP12, Rem. 3.20],
it follows that χ satisfies (S2), so it remains to verify the much subtler condition (S4).

We begin by noting (as used in the proof of Theorem 4.1.1) the sign in the functional equation
for L(ψτχ, s) relating its values at s and 2r− s has sign w(ψτχN−r) = +1. Indeed, by the inclusion
χ ∈ Σcc(c,Ng, εg), the sign in the functional equation for L(g/K, χ, s) = L(θψ/K, χ, s) is ϵ(g, χ) = −1,
and so the claim follow from the factorization

(5.2) L(θψ/K, χ, s) = L(λ, s) · L(ψτχ, s)

and the assumption w(λN−r) = −1. Let ℓ = λλ be a prime split in K, with ℓ ̸= p and prime to
the conductors of ψ and χ. Given a pair (ψ, χ) satisfying conditions (S1)–(S3), for any finite order
character α of conductor dividing λ∞, the pair (ψ′, χ′) := (ψα, χα−1) satisfies the same conditions
(with fψ replaced by fψλ

m for some m ≥ 0), while (5.2) becomes

L(θψ′/K, χ
′, s) = L(λ, s) · L(ψτχα−, s),
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where α− := ατ/α. Since α− is anticyclotomic of ℓ-power conductor, by [Fin06, Thm. 1.1] all but
finitely many of the values L(ψτχα−, r) are nonzero9 (even nonzero modulo ϖ) as α varies, whence
the first assertion. Moreover, when r = 1 noting that

L((ψ′)−, 0) = L(ψ−α−, 0),

the same [Fin06, Thm. 1.1] ensures we can find α as above so that further Lalg(ψ−α−, 0) is a p-adic
unit and conditions (S5)–(S8) hold for (ψ′)−, whence the result. □

Remark 5.1.4. In the proof of Lemma 5.1.3, the use of the main result of [Fin06] could alternatively
be replaced by an appeal to Hsieh’s mod p nonvanishing result [Hsi12, Thm. A].

5.2. CM analogue of Nekovář’s theorem. Let f ∈ S2r(Γ0(Nf )) be an eigenform of weight 2r ≥ 2
and level Nf prime to p. Granted the expected injectivity of a certain p-adic Abel–Jacobi map, the
works of Nekovář [Nek92] and S.-W. Zhang [Zha97] (extending to weights 2r > 2 landmark results
of Kolyvagin [Kol88] and Gross–Zagier [GZ86]) yield a proof of the implication

(5.3) ords=rL(f, s) = 1 =⇒ dimΦ SelBK(Q, Vf (r)) = 1.

Key to the proof of this result are Heegner cycles attached to an auxiliary imaginary quadratic field
K ′ satisfying the Heegner hypothesis (Heeg) relative to Nf .

Here we are interested in the case where f = θλ is the theta series of a Hecke character λ of infinity
type (1− 2r, 0), so ελ = ηK . In particular, the conductor c of λ is divisible by dK , and so K does not
satisfy the Heegner hypothesis (Heeg) relative to Nf = DKN(c).

For later use, here we prove the following analogue of (5.3) for f = θλ with CM by K using only
arithmetic over K.

Theorem 5.2.1. Let λ be a Hecke character of K of infinity type (1−2r, 0) for some r ≥ 1, conductor
c prime to p, and central character ελ = ηK . Then

Lv(λN
−r)(0) ̸= 0 =⇒ dimΦ SelBK(K,Vλ(r)) = 1.

Equivalently, if Lv(λN
−r)(0) ̸= 0 then SelBK(Q, Vf (r)) is 1-dimensional, where f = θλ.

Remark 5.2.2. When r = 1 and dK∥c, the assumption Lv(λN
−r)(0) ̸= 0 follows from ords=1L(λ, s) =

1. Indeed, letting (ψ, χ) be a good pair for λ (as they exist by Lemma 5.1.3; note that w(λN−1) = −1
by the assumption that ords=1L(λ, s) = 1), putting g = θψ and letting zg,χ ∈ SelBK(K,Tg,χ) be the
Heegner class of Theorem 3.2.1, which in this case arises as the image under the Kummer map

(5.4) Bg,χ(K)⊗OL O → SelBK(K,Tg,χ)

of a Heegner cycle on a certain CM abelian variety Bg,χ/K, we have

ords=1L(λ, s) = 1 =⇒ ords=1L(g/K, χ, s) = 1(by (5.2))

=⇒ zg,χ ̸= 0(by [YZZ13])

=⇒ Lv(g, χ)(0) ̸= 0(by Theorem 3.2.1)

=⇒ Lv(λN
−1)(0) ̸= 0.(by Proposition 2.3.1)

Note that the second implication relies on the injectivity (5.4), and the third on the non-triviality of
the localization map

locv : SelBK(K,Tg,χ) → H1
f (Kv, Tg,χ),

both of which are expected—but not known—to continue to hold in weight 2r > 2, with (5.4) replaced
by the p-adic étale Abel–Jacobi map on generalized Kuga–Sato varieties studied in [BDP13].

9Reversing the roles of ℓ and p. Note that ψτχα−N−r has infinity type (r, 1− r), and our conventions are opposite
to those in [Fin06].
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Proof of Theorem 5.2.1. Let cλN−r ∈ H1
Iw(K∞, Tλ(r)) be the ΛO -adic class (of twisted elliptic units)

of Theorem 4.2.1, and denote by cλN−r(1) its image under the projection

H1
Iw(K∞, Tλ(r)) → H1(K,Tλ(r)).

As a consequence of Theorem 4.2.1, we have

Lv(λN
−r)(0) ̸= 0 =⇒ locv(cλN−r(1)) ̸= 0.

We claim that cλN−r(1) lands in SelBK(K,Tλ(r)). Indeed, since λN
−r has infinity type (1− r, r), by

Lemma 3.4.2 the claim amounts to the assertion that

(5.5) locv(cλN−r(1)) = 0,

which by Theorem 4.2.1 for w = v amounts to the assertion that Lv(λ
τN−r)(0) = 0. Since λτN−r is

within the range of interpolation of Lv,c (as its infinity type is (r, 1− r)), by Theorem 2.2.1 we have

Lv(λ
τN−r)(0) = 0 ⇐⇒ L(λτ , r) = L(λ, r) = 0,

whence the claim. In particular, this shows that the map

(5.6) locv : SelBK(K,Tλ(r)) → H1
f (Kv, Tλ(r)) = H1(Kv, Tλ(r))

is nonzero, using Lemma 3.4.2 for the last equality.
It follows from the discussion in §3.3 and Theorem 6.4.1 in [Rub00] that the class cλN−r(1) extends

to an anticyclotomic Euler system for Tλ(r); since the above shows that this Euler system is non-
trivial, by [Rub00, Thm. 2.2.3] (see also [loc. cit., §9.3]) it follows that rankO Selrel(K,Tλ(r)) = 1.
From the global duality exact sequence

SelBK(K,Tλτ (r))
locv−−→ H1(Kv, Tλτ (r)) → Selrel(K,Wλ(r))

∨ → SelBK(K,Wλ(r))
∨ → 0,

noting that the non-vanishing of (5.6) implies the non-vanishing of the map locv in this sequence, we
conclude that corankO SelBK(K,Wλ(r)) = corankO Selrel(K,Wλ(r)) = 1, whence the result. □

5.3. CM analogue of Skinner’s p-converse theorem in higher weights. As in the preceding
section, let f = θλ ∈ S2r(Γ0(Nf )). If (g, χ) is any good pair for λ, we denote by zf ∈ SelBK(Q, Vf (r))
the projection of the Heegner class zg,χ of Theorem 3.2.1 onto the first factor in the decomposition

(5.7) SelBK(K,Vg,χ) ≃ SelBK(Q, Vf (r))⊕ Selv(K,Vψτχ)

arising from (3.2) as in Proposition 3.5.1. (Note that here we used the identifications Selv(K,Vλ) =
SelBK(K,Vλ) ≃ SelBK(Q, Vf (r)) arising from Lemma 3.4.2 and Shapiro’s lemma.)

Theorem 5.3.1. Let f = θλ ∈ S2r(Γ0(Nf )) be an eigenform of weight 2r ≥ 2 with CM by K, with
associated Hecke character λ of infinity type (1− 2r, 0), conductor c, and central character ελ = ηK .
Suppose dK∥c. Then

dimΦ SelBK(Q, Vf (r)) = 1 =⇒ zf ̸= 0.

In particular, if locv(SelBK(Q, Vf (r))) ̸= 0, then the converse to Theorem 5.2.1 holds.

Proof. By Corollary 4.4.1, if SelBK(Q, Vf (r)) is 1-dimensional then λ has root number w(λN−r) = −1.

Let (g, χ) be a strong good pair for λ (see Lemma 5.1.3). As in Proposition 3.5.110, we then have
the decomposition

(5.8) XBK(g, χ) ≃ Xv(λ)⊕Xv(ψτχ),

Let γ ∈ Γ denote a topological generator. By Mazur’s control theorem11, the natural map

(5.9) Xv(ψτχ)/(γ − 1)Xv(ψτχ) → HomZp(Selv(K,Aψτχ),Qp/Zp)

10Noting that by Remark 3.3.2 we may assume that Tg,χ ≃ Tλ ⊕ Tψτχ.
11See e.g. [Arn07, Prop. 4.3] for the case at hand.
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has finite kernel and cokernel, and so from Theorem 2.2.1 and Theorem 4.3.5, we find

(5.10)
L(ψτχ, r) ̸= 0 =⇒ Lv(ψ

τχN−r)(1) ̸= 0 =⇒ #
(
Xv(ψτχ)/(γ − 1)Xv(ψτχ)

)
<∞

=⇒ Selv(K,Vψτχ) = 0.

In view of (5.7), the problem now amounts to showing the implication

dimΦ SelBK(K,Vg,χ) = 1 =⇒ zf ̸= 0.

By Corollary 4.6.1 and Mazur’s control theorem for XBK(g, χ) (as follows from e.g. [Arn07, Prop. 4.3]
applied to each of the direct summands in (5.8)), we see that if ŠelBK(K,Vg,χ) is 1-dimensional then
charΛ(SBK(g, χ)/Λ · zg,χ) is not divisible by (γ − 1), and therefore zg,χ has non-torsion image in the

quotient ŠBK(g, χ)/(γ − 1)ŠBK(g, χ). Since by another application of Mazur’s control theorem and
(5.10), the composite map

ŠBK(g, χ)/(γ − 1)ŠBK(g, χ) → SelBK(K,Tg,χ) → SelBK(Q, Vf (r))

has finite kernel, and by Theorem 3.2.2 it sends zg,χ to a nonzero multiple of zf , the first assertion
follows. The second assertion then follows from Theorem 3.2.1. □

5.4. Proof of Theorem C. We begin by noting that by the assumption that λN−r has root number
−1, Lemma 5.1.3 ensures the existence of good pairs for λ. We fix once and for all a good pair (ψ, χ)
for λ, and put g = θψ. Exploiting the decomposition

Xv(g, χ) ≃ Xv(λN−r)⊕Xv(ψτχN−r)

from Proposition 3.5.1, the formula for #WBK(Wg,χ/K) of Theorem C will be obtained by computing
the Γ-Euler characteristic for the constituent Selmer groups in this decomposition and combining the
resulting formulae. Note that some of the intermediate results will be obtained in greater generality
than needed for the proof of Theorem C.

For a finite extension Φ of Qp with ring of integers O, and a Φ-linear GK-representation V with a
fixed GK-stable O-lattice T ⊂ V , recall that the Bloch–Kato Tate–Shafarevich group WBK(W/K),
where W = V/T , is defined by

WBK(W/K) := SelBK(K,W )/SelBK(K,W )div,

where SelBK(K,W )div denotes the maximal divisible submodule of SelBK(K,W ); and for a finite
prime w ∤ p of K, the Tamagawa number of W at w is defined by

cw(W/K) := #
(
H1

ur(Kw,W )/H1
f (Kw,W )

)
,

where H1
ur(Kw,W ) := ker{H1(Kw,W ) → H1(Iw,W )} is the unramified submodule, and H1

f (Kw,W )

is the image of the unramified subspace H1
ur(K,V ) under the natural map H1(Kw, V ) → H1(Kw,W )

(which is thus contained in H1
ur(Kw,W )).

5.4.1. Formula for ψτχ.

Proposition 5.4.1. Let (ψ, χ) be as in Theorem 4.3.5, and let Fv(ψ
τχN−r) ∈ ΛO be a generator

of the characteristic ideal of Xv(ψτχN−r). If SelBK(K,Wψτχ(r)) is finite, then Fv(ψ
τχN−r)(0) ̸= 0

with

Fv(ψ
τχN−r)(0) ∼p #H0(Kv,Wψτχ(r))

2 ·
#WBK(Wψτχ(r)/K)

#H0(K,Wψτχ(r))2
·

∏
w∈Σ,w∤p

cw(Wψτχ(r)/K).

Proof. By Lemma 3.4.2, Xv(ψτχN−r) interpolates Selmer groups SelBK(F,Wψτχ(r)) as F varies over
the finite extensions of K contained in K∞. Therefore, by the control theorem of [Arn07, Prop. 4.3]
the natural restriction map

SelBK(K,Wψτχ(r)) = Selv(K,Wψτχ(r)) → Sv(ψτχN−r)Γ
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has finite kernel and cokernel, and so the finiteness of SelBK(K,Wψτχ(r)) gives #Sv(ψτχN−r)Γ <∞.
Letting Fv(ψ

τχN−r) ∈ ΛO be any generator of charΛO
(Xv(ψτχN−r)), it is then easily checked that

the Γ-coinvariants Sv(ψτχN−r)Γ are also finite, that Fv(ψ
τχN−r)(0) ̸= 0, and that

(5.11) Fv(ψ
τχN−r)(0) ∼p

#Sv(ψτχN−r)Γ

#Sv(ψτχN−r)Γ

(see [Gre99, Lem. 4.2] for example). For the proof of the formula in the Proposition, we shall adapt
the methods of [Gre99, §4] and [JSW17, §3].

First we set up some notations. Fix Σ a finite set of primes ofK containing the archimedean prime,
the primes above p, the primes dividing the conductor of ψτ or χ and their complex conjugates, and
let KΣ denote the maximal extension of K unramified outside Σ. Put

PΣ(K) :=
H1(Kv,Wψτχ(r))

H1(Kv,Wψτχ(r))div
×H1(Kv,Wψτχ(r))×

∏
w∈Σ,w∤p

H1(Kw,Wψτχ(r)).

Similarly, consider the ΛO -module Wψτχ(r) :=Wψτχ(r)⊗O Λ∨
O with diagonal GK-action, letting GK

act on the second factor through the inverse of the tautological character GK ↠ Γ ↪→ Λ×
O , and put

PΣ(K∞) := {0} ×H1(Kv,Wψτχ(r))×
∏

w∈Σ,w∤p

H1(Kw,Wψτχ(r)),

thinking of {0} as a subspace of H1(Kv,Wψτχ(r)). Then from the definitions and Shapiro’s lemma
we have exact sequences

(5.12) 0 → SelBK(K,Wψτχ(r)) → H1(KΣ/K,Wψτχ(r)) → PΣ(K),

(5.13) 0 → Sv(ψτχN−r) → H1(KΣ/K,Wψτχ(r)) → PΣ(K∞).

Denote by GΣ(K) ⊂ PΣ(K) and GΣ(K∞) ⊂ PΣ(K∞) the image of the right maps in the above exact
sequence, whose Γ-invariants then fit into the commutative diagram

(5.14)

0 // SelBK(K,Wψτχ(r)) //

r∗

��

H1(KΣ/K,Wψτχ(r)) //

s∗

��

GΣ(K) //

t∗

��

0

0 // Sv(ψτχN−r)Γ // H1(KΣ/K,Wψτχ(r))
Γ // GΣ(K∞)Γ.

The surjectivity of s∗ follows from the fact that Γ has p-cohomological dimension 1, while the kernel
of s∗ is given by

H1(Γ,H0(K,Wψτχ(r))) = H1(Γ,H0(K∞,Wψτχ(r))),

whose order is the same as H0(K,Wψτχ(r)) (using that #H1(K∞,Wψτχ(r)) <∞ by [Arn07, Lem. 2.5]).
Hence from the Snake Lemma applied to (5.14) we immediately get the relation

(5.15) #Sv(ψτχN−r)Γ = #SelBK(K,Wψτχ(r)) ·
#ker(t∗)

#H0(K,Wψτχ(r))
.

To compute the order of ker(t∗), we first the order of the kernel of the map

τ∗ = (τ∗w)w∈Σ,w∤p : PΣ(K) → PΣ(K∞)Γ.

For w = v we find

(5.16)

ker(τ∗v ) =
H1(Kv,Wψτχ(r))

H1(Kv,Wψτχ(r))div
≃ H1(Kv, Tψχτ (r))tors

= ker
(
H1(Kv, Tψχτ (r)) → H1(Kv, Vψχτ (r))

)
= coker

(
H0(Kv, Vψχτ (r)) → H0(Kv,Wψχτ (r))

)
= H0(Kv,Wψχτ (r)),
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using local Tate duality, the cohomology long exact sequence associated to 0 → Tψχτ (r) → Vψχτ (r) →
Wψχτ (r) → 0, and the vanishing of H0(Kv, Vψχτ (r)) (as follows from [Arn07, Lem. 2.5]). Similarly,
we find

(5.17) #ker(τ∗v ) = #H1(Γ,H0(Kv,Wψτχ(r))) = #H0(Kv,Wψτχ(r)),

using the finiteness of H0(Kv,Wψτχ(r)) (a consequence of [Arn07, Lem. 2.5]) for the last equality. On
the other hand, consider a prime w ∈ Σ with w ∤ p. If Wψτχ is unramified at w, then ker(τ∗w) = 0 by
the same argument as in [JSW17, p. 389]; if Wψτχ is ramified at w, then the group H0(Kw,Wψτχ(r))
is finite (see [Arn07, Lem. 3.4]), and as in (5.17) we find #ker(τ∗w) = #H0(Kw,Wψτχ(r)). Together
with [BK90, Lem. 5.10] and the discussion in [op. cit., p. 373], this shows

(5.18) #ker(τ∗w) = cw(Wψτχ(r)/K)

for all w ∈ Σ with w ∤ p.
Next, the relation between #ker(t∗) and #ker(τ∗) can be found similarly as in [Gre99, Lem. 4.7].

Indeed, by [PW11, Prop. A.2] (extending and generalizing [GV00, Prop. 2.1] to the anticyclotomic
setting), the ΛO -torsionness of Xv(ψτχN−r) (as shown in Theorem 4.3.5) implies surjectivity of the
right arrow in (5.13), i.e. GΣ(K∞) = PΣ(K∞). On the other hand, from Poitou–Tate duality we
have the exact sequence

0 → SelBK(K,Wψτχ(r)) → H1(K,Wψτχ(r)) → PΣ(K) → Selv(K,Tψχτ (r))
∨ → H2(K,Wψτχ(r))

∨ → 0,

using that Hom(Wψτχ(r), µp∞) ≃ Tψχτ (r) by the self-duality of ψτχN−r. Since #SelBK(K,Wψτχ(r)) <

∞ by assumption, the generalization of Cassels’ theorem in [Gre99, Prop. 4.13] gives12

PΣ(K)/GΣ(K) ≃ H0(K,Wψχτ (r))
∨,

and with this isomorphism, the argument in [Gre99, Prop. 4.7] gives

#ker(t∗) = #ker(τ∗) · #Sv(ψτχN−r)Γ
#H0(K,Wψχτ (r))

.

Substituting (5.16), (5.17), and (5.18) into this, and the resulting formula for ker(t∗) into (5.15), we
obtain

#Sv(ψτχN−r)Γ = #WBK(K,Wψτχ(r))·#H0(Kv,Wψτχ(r))
2· Sv(ψτχN−r)Γ
#H0(K,Wψτχ(r))2

·
∏

w∈Σ,w∤p

cw(Wψτχ(r)/K),

using H0(Kv,Wψχτ (r)) ≃ H0(Kv,Wψτχ(r)) and H0(K,Wψχτ (r)) ≃ H0(K,Wψτχ(r)) by the action of
complex conjugation and the equality WBK(K,Wψτχ(r)) = SelBK(K,Wψτχ(r)) that follows from the
finiteness of the latter. Together with (5.11) this concludes the proof. □

5.4.2. Interlude: p-part of TNC in rank 0. Combined with Theorem 4.3.5, the preceding proposition
yields a result on the Tamagawa number conjecture of Bloch–Kato [BK90] that will play an important
role in the proof of Theorem B.

Recall that a Hecke character ξ : K\A×
K → C× of infinity type (a, b) ∈ Z2 in the sense of §2.1 can

alternatively be viewed as homomorphism

ξ : A×
K/U → C×

trivial on an open subgroup U of A×
K (that can be described explicitly in terms of the conductor of

ξ) satisfying ξ(α) = α−a(ατ )−b for all α ∈ K×. Under our fixed embedding ı∞, ξ then takes values
in a number field L, and for every embedding σ ∈ Hom(L,C) we obtain the character

ξσ : A×
K/U

ξ−→ L× σ−→ C×

12Taking M = Wψτχ(r) in the notations of loc. cit.. Note also that the hypothesis in loc. cit. that H0(Kw,M) is
finite for some finite w ∈ Σ holds in our case taking w = v thanks to [Arn07, Lem. 2.5].
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by composition. Combining their associated Hecke L-functions, can consider the LC := L⊗QC-valued
L-function

(L(ξσ, s))σ:L↪→C,

with L(ξ, s) corresponding to σ : L ⊂ Q ı∞−−→ C.

Theorem 5.4.2. Let (ψ, χ) be as in Theorem 4.3.5, with values in a number field L, and suppose
that L(ψτχ, r) ̸= 0. Then (

L((ψτχ)σ, r)

Ωσ

)
∈ L× ⊂ L×

C ,

and for all primes P of L above p we have

ordP

(
L(ψτχ, r)

Ω

)
= ordP

(
#WBK(Wψτχ(r)/K)

#H0(K,Wψτχ(r))2

)
+

∑
w∈Σ,w∤p

ordP(cw(Wψτχ(r)/K)).

In other words, the p-part of the Tamagawa number conjecture holds for ψτχ.

Proof. The first assertion is proved in [GS81] and (more generally) in [Bla86] (cf. [BDP12, Thm. 2.12]),
and the second is immediate from the combination of Theorem 2.2.1, Theorem 4.3.5, and Proposi-
tion 5.4.1. □

5.4.3. Formula for λ.

Proposition 5.4.3. Let λ be as in Theorem 4.3.1, and suppose Lv(λN
−r)(0) ̸= 0. Then the map

(5.19) locv : SelBK(K,Tλ(r)) → H1
f (Kv, Tλ(r))

is nonzero, and letting Fv(λN
−r) ∈ ΛO be any generator of the characteristic ideal of Xv(λN−r) we

have

Fv(λN
−r)(0) ∼p #H0(Kv,Wλ(r))

2 · #WBK(Wλ(r)/K)

#H0(K,Wλ(r))2
·#coker(locv/tors)

2 ·
∏

w∈Σ,w∤p

cw(Wλ(r)/K),

where locv/tors is the composition of locv with H1
f (Kv, Tλ(r)) → H1

f (Kv, Tλ(r))/H
1
f (Kv, Tλ(r))tors.

Proof. By Theorem 4.3.1 we know that Xv(λN−r) is ΛO -torsion and the nonvanishing of Lv(λN
−r)(0)

implies that Fv(λN
−r)(0) ̸= 0. Since by [Cas23, Prop. 6.2.1] the natural restriction map

Selv(K,Wλ(r)) → Sv(λN−r)Γ

has finite kernel and cokernel, it follows that Selv(K,Wλ(r)) if finite. The same argument as in
Proposition 5.4.1 then gives

(5.20) Fv(λN
−r)(0) ∼p #H0(Kv,Wλ(r))

2 · #Selv(K,Wλ(r))

#H0(K,Wλ(r))2
·

∏
w∈Σ,w∤p

cw(Wλ(r)/K).

Thus it remains to show the nonvanishing of (5.19) and to relate the orders of Selv(K,Wλ(r)) and
WBK(K,Wλ(r)).

By Theorem 4.2.1, letting cλN−r(1) ∈ H1(K,Tλ(r)) denote the image of cλN−r under the projection
H1

Iw(K∞, Tλ(r)) → H1(K,Tλ(r)), the nonvanishing of Lv(λN
−r)(0) implies that locv(cλN−r(1)) ̸= 0.

Thus to show the nonvanishing of (5.19), it suffices to show the inclusion cλN−r(1) ∈ SelBK(K,Tλ(r));
but this was shown in the proof of Theorem 5.2.1 under the present hypotheses. Hence locv/tors has

finite cokernel, and from the global duality argument in the proof of [JSW17, Prop. 3.2.1]13 we find

#Selv(K,Wλ(r)) = #WBK(Wλ(r)/K) ·#coker(locv/tors)
2,

which together with (5.20) yields the result. □

13Note that the irreducibility assumption (irredK) in loc. cit. is only used to deduce that W ∗ ≃ T τ , which is
automatic in our case.
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5.4.4. A consequence of the explicit reciprocity law. Building on the explicit reciprocity law for zg,χ,
we can obtain a useful expression for the order of the cokernel of the map locv/tors in Proposition 5.4.3.

Proposition 5.4.4. Let λ be as in Theorem 4.3.1 with dK∥c, and let (ψ, χ) be a good pair for λ. If
Lv(λN

−r)(0) ̸= 0 then the following hold:

(1) Lv(g, χ)(0) ̸= 0.
(2) zg,χ is non-torsion.
(3) rankO SelBK(K,Tg,χ) = 1.
(4) The map locv/tors of Proposition 5.4.3 satisfies

#coker(locv/tors) =
#
(
O/Lv(g, χ)(0)

)
#
(
SelBK(K,Tg,χ)/O · zg,χ)

· 1

#H0(Kv,Wλ(r))
· 1

#H0(Kv,Wψτχ(r))
.

Proof. Part (1) follows from the factorization of Proposition 2.3.1, the fact that Lv(ψ
τχN−r)(0) is a

nonzero multiple of L(ψτχ, r) by Theorem 2.2.1, and the Definition 5.1.1 of good pair; part (2) then
follows from Theorem 3.2.1. Part (3) follows from Theorem 5.2.1, so it remains to prove (4).

Note that by Lemma 3.4.2 we have

H1
f (Kv, Tλ(r)) = H1(Kv, Tλ(r)), H1

f (Kv, Tψτχ(r)) = H1(Kv, Tψτχ(r))tors,

and so from the decomposition Tg,χ ≃ Tλ(r)⊕Tψτχ(r) we see that the map locv/tors of Proposition 5.4.3
is the same as the composite

loc′v/tors : SelBK(K,Tg,χ)
locv−−→ H1

f (Kv, Tg,χ) → H1
f (Kv, Tg,χ)/tors,

where H1
f (Kv, Tg,χ)/tors := H1

f (Kv, Tg,χ)/H
1
f (Kv, Tg,χ)tors. As a consequence of Theorem 3.2.2, the

argument in Lemma 1.2.3 in [BCGS23] (using Remark 1.2.4 in loc. cit.) shows that

#coker(loc′v/tors) =
#
(
O/Lv(g, χ)(0)

)
#
(
SelBK(K,Tg,χ)/O · zg,χ)

· 1

#H0(Kv,Wg,χ)
.

Since #H0(Kv,Wg,χ) = #H0(Kv,Wλ(r)) ·#H0(Kv,Wψτχ(r)), the proof of part (4) follows. □

Corollary 5.4.5. Let λ be as in Theorem 4.3.1 with dK∥c and Lv(λN
−r)(0) ̸= 0. Then for any

generator Fv(λN
−r) ∈ ΛO of charΛO

(Xv(λN−r)) we have

Fv(λN
−r)(0) ∼p

#WBK(Wλ(r)/K)

#H0(K,Wλ(r))2
·

#
(
O/Lv(g, χ)(0)

)2
#
(
SelBK(K,Tg,χ)/O · zg,χ)2

× 1

#H0(Kv,Wψτχ(r))2
·

∏
w∈Σ,w∤p

cw(Wλ(r)/K).

Proof. This is the combination of Proposition 5.4.3 and Proposition 5.4.4. Note that the contribution
from #H0(Kv,Wλ(r)) in the two formulae cancel each other. □

Proof of Theorem C. Multiplying the formulas (up to a unit) for Fv(ψ
τχN−r)(0) and Fv(λN

−r)(0)
in Proposition 5.4.1 and Corollary 5.4.5, and using Proposition 2.3.1 and Proposition 3.5.1, we obtain

#
(
O/Fv(g, χ)(0)

)
=

#WBK(Wg,χ/K)

#H0(K,Wg,χ)2
·

#
(
O/Lv(g, χ)(0)

)2
#
(
SelBK(K,Tg,χ)/O · zg,χ)2

·
∏

w∈Σ,w∤p

cw(Wg,χ/K).

Since Theorem 4.1.1 gives

#
(
O/Fv(g, χ)(0)

)
= #

(
O/Lv(g, χ)(0)

)2
,

and this is nonzero by part (1) of Proposition 5.4.3, this concludes the proof of Theorem C. □
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6. The p-part of the Birch–Swinnerton-Dyer formula

In this section we deduce our main results on the p-part of the Birch and Swinnerton-Dyer formula
in analytic rank 1. After a period comparison (responsible for our assumption that p ∤ hK), the result
is obtained by specializing Theorem C to the weight 2 case and combining it with the general Gross–
Zagier formula [YZZ13, CST14].

6.1. Periods and heights of Heegner points. Fix a prime p, and let g ∈ S2(Γ1(Ng)) be a newform
of weight 2 and level Ng with p ∤ Ng.

Definition 6.1.1. The canonical period of g is

Ωcan
g :=

8π2⟨g, g⟩Γ
ηg

,

where ⟨g, g⟩Γ =
∫
Γ1(Ng)\H g(z)g(z)

dxdy
y2

is the Petersson norm of g, and ηg is congruence number of g

relative to S2(Γ1(Ng)) (see [Hid81, §7]).

We are interested in the case where g = θψ is the theta series of a Hecke character ψ of an imaginary
quadratic field K satisfying (spl). Suppose L is a number field containing the Fourier coefficients of
g, and let Φ be the completion of L at a fixed prime above p, with ring of integers O.

From now on, we also suppose p > 3.

Proposition 6.1.2. Let ψ be a Hecke character of K of infinity type (−1, 0), put g = θψ, and suppose
ψ− := ψτ/ψ satisfies conditions (S5)–(S9) of Definition 5.1.1. Then

Ωcan
g = Ω2

up to a unit in O×
L .

Proof. Let g be the Hida family passing through the ordinary p-stabilization

gα := g(q)− εg(p)pψ(v)
−1g(qp),

and let ηg be its associated congruence power series, normalized so that its specialization at the trivial
character gives the congruence number ηgα of gα. Under conditions (S5)–(S8) of Definition 5.1.1, it
follows from the proof of the anticyclotomic Iwasawa main conjecture for CM fields by Hida–Tilouine
[HT93, HT94] and Hida [Hid06] that

(6.1) ηg = hK · Lv(ψ
−N−1)

up to a p-adic unit, where hK = #Pic(OK) is the class number of K. (Note that in (6.1) we have
used the functional equation of Theorem 2.2.1 to write Lv(ψ

−N−1) in place of Lv(ψ
−).)

Having infinity type (2, 0), the character ψ−N−1 is in the range of interpolation of the Katz v-adic
L-function of Theorem 2.2.1, and from there we obtain

(6.2) hK · Lv(ψ
−N−1)(1)

Ω2
p

= Ep(ψ−) · hK · L(ψ
−, 1)

Ω2
,

where Ep(ψ−) := (1−ψ−(v))(1−ψ−(v)p−1). By Hida’s formula (see [HT93, Thm. 7.1]) and Dirichlet’s
class number formula, we have

⟨g, g⟩Γ =
D2
K

23π2
· hK

wK
√
DK

· L(ψ−, 1),

where wK = #O×
K , and so together with (6.1), equality (6.2) can be rewritten as the equality

(6.3)
ηgα
Ω2
p

· u = Ep(ψ−) · 8π
2⟨g, g⟩Γ
Ω2
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for some u ∈ O×
Cp . Since the right-hand side of (6.2) is in L× as a consequence of the proof of Deligne’s

conjecture for Hecke characters (see [GS81] and [Bla86]), it follows that u/Ω2
p ∈ O×

L , and hence (6.3)

together with the well-known relation ηgα = Ep(ψ−)ηg (following from [KLZ17, Prop. 7.3.1]) yields
the result. □

Using Proposition 6.1.2, we can now rewrite the general Gross–Zagier formula for modular curves
in a form that will be convenient for us.

Let Bg,χ/K be the abelian variety (up to K-isogeny) associated to (g, χ). Letting Bψ/K be a CM
abelian variety in the isogeny class of such abelian varieties associated to ψ by Casselman’s theorem
(see [Shi71, Thm. 6]), it can be described as the Serre tensor Bg,χ := Bψ ⊗ χ, and satisfies

L(Bg,χ/K, s) =
∏

σ:L↪→C
L(gσ/K, χσ, s).

After possibly changing Bg,χ it within its K-isogeny class, we have an embedding OL ↪→ EndK(Bg,χ).
The Néron–Tate height pairing gives a Q-bilinear non-degenerate pairing

⟨·, ·⟩NT : Bg,χ(K)Q ×B∨
g,χ(K)Q → R,

where we put (·)Q = (·)⊗ZQ and B∨
g,χ/K is the dual abelian variety. As explained in [YZZ13, §1.2.4],

⟨·, ·⟩NT induces an L-linear pairing

(6.4) ⟨·, ·⟩L : Bg,χ(K)Q ⊗L B
∨
g,χ(K)Q → LR := L⊗Q R.

In the next result we view L(Bg,χ/K, s) as valued in LC := L⊗Q C.

Theorem 6.1.3. Let ψ be as in Proposition 6.1.2, put g = θψ, and let χ be a finite order character
such that (g, χ) ∈ S2(Γ0(Ng), εg)× Σcc(c,Ng, εg) for some positive integer c prime to Ng. If p ∤ hK ,
there exist Heegner points yg,χ ∈ Bg,χ(K) and y′g,χ ∈ B∨

g,χ(K) such that

L′(Bg,χ/K, 1)

Ωcan
g

= ⟨yg,χ, y′g,χ⟩L,

where the equality is up to a p-adic unit.

Proof. The general Gross–Zagier formula of [YZZ13], as made explicit in [CST14, Thm. 1.5], reads

L′(Bg,χ/K, 1) =
8π2⟨g, g⟩Γ
u2c ·

√
DK · c

·
⟨yg,χ, y′g,χ⟩L
deg(πg)

,

where uc :=
1
2#O×

c and πg : X1(Ng) → Ag is an optimal quotient. Hence it suffices to show that the
congruence number ηg and deg(πg) differ by a p-adic unit. As shown in the proof of Proposition 6.1.2,
we have the equality up to a p-adic unit

Ep(ψ−) · ηg = hK · Lv(ψ
−N−1)(1).

In particular, if p ∤ hK , by (S9) in Definition 5.1.1 (which ψ− is assumed to satisfy) and Remark 5.1.2,
this shows that ηg is a p-adic unit. Since [ARS12, Thm. 3.6(a)] shows that deg(πg) divides ηg, the
result follows. □

Remark 6.1.4. Let P be a prime of L above p and denote by O the ring of integers of the completion
of L at P. Then Tg,χ ≃ lim←−−mBg,χ[P

m] as GK-modules, and the Heegner point yg,χ of Theorem 6.1.3
can be taken so that its image under the Kummer map

Bg,χ ⊗OL O → lim←−−
m

SelPm(Bg,χ/K) ≃ SelBK(K,Tg,χ)

agrees with the Heegner class zg,χ of Theorem 3.2.1. and y′g,χ so that its Kummer image agrees with
image of zg,χ under the isomorphism SelBK(K,Tg,χ) ≃ SelBK(K,T

τ
g,χ) given by the action of complex

conjugation.
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6.2. Theorem B implies Theorem A. As is well-known (see e.g. [GS81, Thm. 4.1]), the assump-
tion that the field extension F (Etors)/K is abelian implies that the Weil restriction B := ResF/K(E)
is an abelian variety with complex multiplication by an order in a product of CM fields

L = L1 × · · · × Lr

containing K with [L : K] =
∑r

i=1[Li : K] = dim(B). Moreover, for each i there is an abelian variety
Bi/K with CM by an order in Li which combine to an isogeny

B →
r∏
i=1

Bi

defined overK. By invariance of the Birch Swinnerton-Dyer conjecture under isogenies and restriction
of scalars, Theorem A thus follows from Theorem B applied to each of the isogeny factors Bi.

6.3. Proof of Theorem B.

Proof of Theorem B(i). Let L be a number field containing the values of ψ and χ (so L contains the
field L of values of λ = ψχ). Since ords=1L(λ, s) = 1, λN−1 has root number w(λN−1) = −1, and
by Lemma 5.1.3 we can fix a good pair (ψ, χ) for λ, and let Bg,χ/K be the associated abelian variety.
By Theorem 6.1.3, the nonvanishing of L′(g/K, χ, 1) also gives yg,χ /∈ Bg,χ(K)tors, and so

rankOLBg,χ(K) ≥ 1.

On the other hand, let P be a prime of L above p, and denote by OP and Tλ,P(1) the completion
of OL at P and the associated OP-module of rank 1 with GK-action via the P-adic avatar of λ,
and define Tψτχ,P(1), Tg,χ,P, Wψτχ,P(1), etc. similarly. By Theorem 5.2.1 and Remark 5.2.2, the
assumption that ords=1L(λ, s) = 1 implies that rankOP

SelBK(K,Tλ,P) = 1; since by Theorem 4.3.5
the nonvanishing of L(ψτχ, 1) gives #SelBK(K,Tψτχ,P(1)) <∞, by the decomposition

SelBK(K,Tg,χ,P) ≃ SelBK(K,Tλ,P(1))⊕ SelBK(K,Tψτχ,P(1))

it follows that rankOP
SelBK(K,Tg,χ,P) = 1, and hence

rankOLBg,χ(K) ≤ 1.

Thus rankOLBg,χ(K) = 1 and #W(Bg,χ/K)[P∞] <∞; in particular, rankZBg,χ(K) = [L : Q]. Since
up to isogeny the CM abelian variety A is the CM abelian variety Bλ attached to K by Casselman’s
theorem, there is an isogeny defined over K

iλ : Bg,χ → A⊗OL OL

compatible with the action of OL by endomorphisms on both sides (cf. [BDP12, Lem. 2.9]), so the
above shows that

rankZA(K) = [L : Q].

Since L(A/K, s) =
∏
σ:L↪→C L(λ

σ, s), this gives

ords=1L(A/K, s) = rankZA(K).

Moreover, since we have also shown that

rankOP
SelBK(K,Tλ,P(1)) = rankOP

SelBK(K,Tg,χ,P) = 1,

the conclusion #W(A/K)[P∞] <∞ also follows. □

Proof of Theorem B(ii). Put LC = L ⊗Q C ≃
∏
σ C, where σ runs over all field embeddings L ↪→ C,

and write the L-linear pairing ⟨·, ·⟩L in (6.4) as (⟨·, ·⟩L,σ)σ according to this decomposition, and write
the associated regulator Reg(Bg,χ) as (Reg

σ(Bg,χ))σ. Similar remarks apply to the L-linear pairing

⟨·, ·⟩L : A(K)Q ⊗L A
∨(K)Q → LR.
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Then by Theorem 6.1.3 we have

(6.5)

(
L′(gσ/K, χσ, 1)

Ωcan
gσ · ⟨yg,χ, y′g,χ⟩L,σ

)
σ

∈ L× ⊂ L×
C .

Recall the K-isogeny iλ : Bg,χ → A⊗OL OL. Put

yλ := iλ(yg,χ) ∈ A(K),

and define y′λ ∈ A∨(K) by i∨λ(y
′
λ) = y′g,χ. Then from the factorization L(g/K, χ, s) = L(λ, s)L(ψτχ, s),

Proposition 6.1.2, and the projection formula for heights (see [MT83, (3.4.3)]), we have

(6.6) (6.5) =

(
L′(λσ, 1)

Ωσ · ⟨yλ, y′λ⟩L,σ
· L((ψ

τχ)σ, 1)

Ωσ

)
σ

up to multiplication by an element in L×. Combining the first assertion of Theorem 5.4.2, (6.5) and
(6.6), we conclude that (

L′(λσ, 1)

Ωσ · ⟨yλ, y′λ⟩L,σ

)
σ

∈ L× ⊂ L×
C .

Since rankOLA(K) = 1 by part (i) and yλ /∈ A(K)tors (given that yg,χ /∈ Bg,χ(K)tors by Theorem 6.1.3
and the fact that ords=1L(g/K, χ, s) = 1), we deduce that(

L′(λσ, 1)

Ωσ · Regσ(A)

)
σ

∈ L× ⊂ L×
C ,

which together with the equalities L(A/K) =
∏
σ L(λ

σ, s) and Ω(A) =
∏
σ Ωσ (see[BF24, Prop. 3.3])

yields the result. □

Proof of Theorem B(iii). Since rankOLBg,χ(K) = 1 and yg,χ /∈ Bg,χ(K)tors, the definition of Reg(Bg,χ)
gives

⟨yg,χ, y′g,χ⟩L = Reg(Bg,χ) · [Bg,χ(K) : OL · yg,χ] · [B∨
g,χ(K) : OL · y′g,χ].

Thus letting P be any prime of L above p, by Theorem 6.1.3 we have

(6.7) ordP

(
L′(g/K, χ, 1)

Ωcan
g · Reg(Bg,χ)

)
= ordP

(
[Bg,χ(K)⊗OL OP : OP · yg,χ] · [B∨

g,χ(K)⊗OL OP : OP · y′g,χ]
)
.

Since #W(Bg,χ/K)[P∞] <∞ as shown in the proof of part (i), the Kummer map gives isomorphisms

Bg,χ(K)⊗OL OP → SelBK(K,Tg,χ,P(1)), B∨
g,χ(K)⊗OL OP → SelBK(K,T

τ
g,χ,P(1)).

By the isomorphism SelBK(K,T
τ
g,χ,P(1)) ≃ SelBK(K,Tg,χ,P(1)) given by the action of complex con-

jugation, (6.7) can therefore be rewritten as

ordP

(
L′(g/K, χ, 1)

Ωcan
g · Reg(Bg,χ)

)
= 2 · lengthOP

(
SelBK(K,Tg,χ,P(1))/OP · zg,χ

)
,

which by Theorem C becomes the equality

(6.8) ordP

(
L′(g/K, χ, 1)

Ωcan
g · Reg(Bg,χ)

)
= ordP

(
#WBK(Wg,χ,P(1)/K)

#H0(K,Wg,χ,P(1))2

)
+

∑
w∈Σ,w∤p

ordP(cw(Wg,χ,P(1)/K)).
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On the other hand, in the same manner as in the proof of part (ii), from the factorization L(g/K, χ, s) =
L(λ, s)L(ψτχ, s) and Proposition 6.1.2, and using Theorem 5.4.2 for the second equality, we obtain
(6.9)

ordP

(
L′(g/K, χ, 1)

Ωcan
g · Reg(Bg,χ)

)
= ordP

(
L′(λ, 1)

Ω · Reg(A)

)
+ ordP

(
L(ψτχ, 1)

Ω

)
= ordP

(
L′(λ, 1)

Ω · Reg(A)

)
+ ordP

(
#WBK(Wψτχ,P(1)/K)

#H0(K,Wψτχ,P(1))2

)
+

∑
w∈Σ,w∤p

ordP(cw(Wψτχ,P(1)/K)).

Combining (6.8) and (6.9) and using the decomposition Wg,χ ≃Wλ(1)⊕Wψτχ(1) we thus arrive at

(6.10) ordP

(
L′(λ, 1)

Ω · Reg(A)

)
= ordP

(
#WBK(Wλ,P(1)/K)

#H0(K,Wλ,P(1))2

)
+

∑
w∈Σ,w∤p

ordP(cw(Wλ,P(1)/K)).

Noting that the right-hand side of (6.10) can be rewritten as

ordP

(
#W(A/K)[P∞]

#A(K)tors ·#A∨(K)tors

)
+

∑
w∈Σ,w∤p

ordP(Tam(A/K)),

this concludes the proof of Theorem B. □
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ordwijkerhout 1983 (Noordwijkerhout, 1983), volume 1068 of Lecture Notes in Math., pages 17–22. Springer,
Berlin, 1984.

[BF01] D. Burns and M. Flach. Tamagawa numbers for motives with (non-commutative) coefficients. Doc. Math.,
6:501–570, 2001.

[BF24] Ashay Burungale and Matthias Flach. The conjecture of Birch and Swinnerton-Dyer for certain elliptic
curves with complex multiplication. Camb. J. Math., 12(2):357–415, 2024.

[BK90] Spencer Bloch and Kazuya Kato. L-functions and Tamagawa numbers of motives. In The Grothendieck
Festschrift, Vol. I, volume 86 of Progr. Math., pages 333–400. Birkhäuser Boston, Boston, MA, 1990.
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Ann. Math. Qué., 47(1):73–116, 2023.

[Kol88] Victor Kolyvagin. The Mordell-Weil and Shafarevich-Tate groups for Weil elliptic curves (Russian). Izvestiya
Akademii Nauk SSSR. Seriya Matematicheskaya, 52(6):1154–1180, 1327, 1988. translation in Mathematics
of the USSR-Izvestiya 33 (1989), no. 3, 473–499.

[LS24] David T.-B. Lilienfeldt and Ari Shnidman. Derivatives of Rankin-Selberg L-functions and heights of gener-
alized Heegner cycles. 2024. preprint, arXiv:2408.04375.

[LV19] Matteo Longo and Stefano Vigni. Kolyvagin systems and Iwasawa theory of generalized Heegner cycles.
Kyoto J. Math., 59(3):717–746, 2019.

[LV23] Matteo Longo and Stefano Vigni. The Tamagawa number conjecture and Kolyvagin’s conjecture for motives
of modular forms. 2023. preprint, arXiv:2211.04907.

[LZZ18] Yifeng Liu, Shouwu Zhang, and Wei Zhang. A p-adic Waldspurger formula. Duke Math. J., 167(4):743–833,
2018.

[Maz72] Barry Mazur. Rational points of abelian varieties with values in towers of number fields. Invent. Math.,
18:183–266, 1972.

[MSD74] B. Mazur and P. Swinnerton-Dyer. Arithmetic of Weil curves. Invent. Math., 25:1–61, 1974.
[MT83] B. Mazur and J. Tate. Canonical height pairings via biextensions. In Arithmetic and geometry, Vol. I,

volume 35 of Progr. Math., pages 195–237. Birkhäuser Boston, Boston, MA, 1983.
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