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Abstract. We prove under mild hypotheses the three-variable Iwasawa Main Conjecture for
p-ordinary modular forms base changed to an imaginary quadratic field K in which p splits in
the indefinite setting (in the definite setting this is a result due to Skinner–Urban). Being in
a setting encompassing Heegner points and their variation in p-adic families, our main result
has new applications to Greenberg’s nonvanishing conjecture for central derivatives of p-adic
L-functions of Hida families with root number −1.
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1. Introduction

Fix a positive integer N and a prime p - 6N . Let f =
∑∞

n=1 anq
n ∈ IJqK be a Hida family of

tame level N , where I is a finite flat extension of the one-variable Iwasawa algebra OLJT K with
coefficients in the ring of integers OL of a finite extension L of Qp. Let

ρf : GQ := Gal(Q/Q) −→ AutFI(Vf ) ' GL2(FI),

where FI denotes the fraction field of I, be the Galois representation associated to f (which we
take to be the contragredient of the Galois representation first constructed in [Hid86]), and let
ρ̄f : GQ → GL2(κI), where κI = I/mI is the residue field of I, be the associated semi-simple
residual representation. By work of Mazur and Wiles [MW86, Wil88], upon restriction to a
decomposition group Dp ⊂ GQ at p we have

ρ̄f |Dp ∼
(
ε̄ ∗

δ̄

)
where the character δ̄ is unramified. We assume that

(irred) ρ̄f is absolutely irreducible,

and fix a GQ-stable lattice Tf ⊂ Vf which is free of rank two over I. Denote by F−Tf the
Ip-coinvariants of Tf , where Ip ⊂ Dp is the inertia subgroup, and set

Af := Tf ⊗I I∨, F−Af := (F−Tf )⊗I I∨,
where I∨ = Homcts(I,Qp/Zp) is the Pontryagin dual of I.

Let K be an imaginary quadratic field of discriminant prime to Np, and let ΓK = Gal(K∞/K)
be the Galois group of the maximal Z2

p-extension of K unramified outside p. The Greenberg
Selmer group of Af over K∞ is defined by

(1.1) SelGr(K∞, Af ) := ker

{
H1(K∞, Af ) −→

∏
w-p

H1(Iw, Af )×
∏
w|p

H1(K∞,w,F−Af )

}
,

where w runs over the corresponding places of K∞. The Pontryagin dual

XGr(K∞, Af ) := Homcts(SelGr(K∞, Af ),Qp/Zp)

is well-known to be a finitely generated IJΓKK-module.
Assume also that

(dist) ρ̄f is p-distinguished, i.e., ε̄ 6= δ̄.

Thanks to [Wil95], it follows that F−Tf is I-free of rank one. Moreover, from the work of Hida
[Hid88b] there exists a 3-variable p-adic L-function LHi

p (f/K) ∈ IJΓKK uniquely characterized by
the interpolation of the critical values for the Rankin–Selberg L-function L(fφ/K, χ, s) attached
to the classical specializations fφ (base changed to K) of f twisted by finite order characters
χ : ΓK → µp∞ .

An instance of the Iwasawa–Greenberg main conjectures formulated in [Gre94b] then predicts
the following. From now on in this Introduction and in our main results we shall assume that I
is regular.

Iwasawa–Greenberg Main Conjecture. The module XGr(K∞, Af ) is IJΓKK-torsion, and

CharIJΓKK(XGr(K∞, Af )) = (LHi
p (f/K))

as ideals in IJΓKK.
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Many cases of this conjecture are known by the work of Skinner–Urban [SU14] and Kato
[Kat04]. As we shall explain below, in this paper we place ourselves in a setting complementary
to that in [SU14]. Write

N = N+N−

with N− being the largest factor of N divisible only by primes inert in K. The following is our
main result towards the Iwasawa–Greenberg Main Conjecture.

Theorem A. In addition to (irred) and (dist), assume that:

• N is squarefree,
• some specialization fφ is the p-stabilization of a newform f ∈ S2(Γ0(N)),

• N− is the product of a positive even number of primes,
• ρ̄f is ramified at every prime q|N−,
• p splits in K.

Then XGr(K∞, Af ) is IJΓKK-torsion, and

CharIJΓKK(XGr(K∞, Af )) = (LHi
p (f/K))

as ideals in IJΓKK⊗Zp Qp.

As in [SU14], the fact that XGr(K∞, Af ) is IJΓKK-torsion follows easily from Kato’s work
[Kat04], and the proof of Theorem A is reduced to establishing the divisibility “⊆” as ideals in
IJΓKK predicted by the main conjecture. For the proof of this divisibility, in [SU14] the authors
study congruences between p-adic families of cuspidal automorphic forms and Eisenstein series
on GU(2, 2), and their method (in particular, their application of Vatsal’s nonvanishing results
[Vat03]) relies crucially on their hypothesis that N− is the squarefree product of an odd number
of primes. In contrast, when N− is divisible by an even number of primes as in Theorem A, the
central L-values studied in [Vat03] all vanish for sign reasons, and another approach is needed.

Our main idea for the proof of Theorem A is to use Beilinson–Flach classes and their explicit
reciprocity laws [LLZ14, KLZ17] to link the Iwasawa–Greenberg Main Conjecture for LHi

p (f/K)
to the main conjecture for a different p-adic L-function Lp(f/K) studied by the second-named
author [Wan20] using Eisenstein congruences on GU(3, 1), and then exploit our assumption on
N− to prove the latter main conjecture using Heegner points and their variation in p-adic families
[How07, Fou13, Cas17, Cas20].

As a consequence of our approach, we also obtain an application to Greenberg’s conjecture
(see [NP00, §0] and [Gre94a]) on the generic order of vanishing at the center of the p-adic L-
functions attached to cusp form in Hida families. To state this, assume for simplicity that I is
just OLJT K, and for each k ∈ Z>2 let fk be the p-stabilized newform on Γ0(Np) obtained by
setting T = (1+p)k−2−1 in f . One can show that the p-adic L-functions LMTT

p (fk, s) of [MTT86]
satisfy a functional equation

LMTT
p (fk, s) = −wLMTT

p (fk, k − s)

with a sign w = ±1 independent of k ∈ Z>2 with k ≡ 2 (mod p− 1).

Greenberg’s novanishing conjecture. Let e ∈ {0, 1} be such that −w = (−1)e. Then

LMTT
p (fk, s)

(s− k/2)e

∣∣∣∣
s=k/2

6= 0,

for all but finitely many k ∈ Z>2 with k ≡ 2 (mod p− 1).
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In other words, for all but finitely many k as above, the order of vanishing of LMTT
p (fk, s) at

the center should be the least allowed by the sign in the functional equation.
To state our result in the direction of this conjecture, let

T †f := Tf ⊗Θ−1

be the self-dual twist of Tf . By work of Plater [Pla97] (and more generally, Nekovář [Nek06])
there is a cyclotomic I-adic height pairing

(1.2) 〈−,−〉cyc
K,I : SelGr(K, T †f )× SelGr(K, T †f ) −→ FI

interpolating the p-adic height pairings for the classical specialization of f as constructed by
Perrin-Riou [PR92]. It is expected that 〈−,−〉cyc

K,I is non-degenerate, in the sense that its kernel

on either side should reduce to I-torsion submodule of SelGr(K, T †f ).

Theorem B. In addition to (irred) and (dist), assume that:

• N is squarefree,
• f2 is old at p,
• there are at least two primes `‖N at which ρ̄f is ramified.

If SelGr(Q, T
†
f ) has I-rank one and 〈−,−〉cyc

K,I is non-degenerate, then

d

ds
LMTT
p (fk, s)

∣∣∣∣
s=k/2

6= 0,

for all but finitely many k ∈ Z>2 with k ≡ 2 (mod p− 1).

Remark 1.1. The counterpart to Theorem B in rank zero, i.e., the implication

(1.3) rankI SelGr(Q, T
†
f ) = 0 =⇒ LMTT

p (fk, k/2) 6= 0,

for all but finitely many k as above, follows easily from [SU14] (see Theorem 5.10).

Remark 1.2. By the control theorem for SelGr(Q, T
†
f ) (see e.g. [Nek06, Prop. 12.7.13.4(i)]) and

the p-parity conjecture for classical Selmer groups, the hypothesis that SelGr(Q, T
†
f ) has I-rank

e ∈ {0, 1} implies that −w = (−1)e. Conversely, it is expected that

rankI SelGr(Q, T
†
f )

?
=

{
1 if w = 1,

0 if w = −1,

and this is known to follow from Howard’s “horizontal nonvanishing conjecture” (see [How07,
Cor. 3.4.3]).

Remark 1.3. For certain Hida families f with CM (a case that is excluded by our hypotheses),
the analogue of Theorem B is due to Agboola–Howard and Rubin [AH06, Thm. B]. (See also
[Arn07] and [BD20] for more general CM cases.) In this case, the analogue of the rank one
and the non-degeneracy assumptions in Theorem B follow from Greenberg’s nonvanishing results
[Gre83] and a transcendence result of Bertrand [Ber84]. In rank zero, the analogue of (1.3) in the
CM case follows from [Gre83] and Rubin’s proof of the Iwasawa main conjecture for imaginary
quadratic fields [Rub91].

We conclude this Introduction with some more details on the ingredients that go into the proofs
of the above results.
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Denote by Ẑur
p the completion of the ring of integers of the maximal unramified extension of Qp.

The proof of Theorem A builds on the link that we establish in §3 between different instances of
the Iwasawa–Greenberg main conjectures involving Selmer groups with different local conditions
above p. In particular, letting p be the prime of K above p determined by a fixed embedding
Q ↪→ Qp, a central role is played by the Selmer group defined by

Sel∅,0(K∞, Af ) := ker

{
H1(K∞, Af ) −→

∏
w-p

H1(Iw, Af )×
∏
w|p

H1(K∞,w, Af )

}
.

The Pontryagin dual of Sel∅,0(K∞, Af ) is conjectured to be IJΓKK-torsion, with characteristic
ideal generated by a p-adic L-function

Lp(f/K) ∈ IurJΓKK, where Iur := I⊗̂ZpẐ
ur
p ,

interpolating the critical values of the Rankin–Selberg L-function L(fφ/K, χ, s) with χ running
over characters of ΓK corresponding to theta series of weight higher than the weight of fφ.
This second instance of the main conjecture can be related on the one hand to the Iwasawa–
Greenberg Main Conjecture for LHi

p (f/K) by building on the explicit reciprocity laws for the
Rankin–Eisenstein classes of Kings–Loeffler–Zerbes [KLZ17], and on the other hand (after anti-
cyclotomic descent) its specialization in weight two is directly related to the main conjecture of
the p-adic L-function of Bertolini–Darmon–Prasanna [BDP13], allowing us to take the results of
[Wan20] and [Cas17] towards the proof of those different main conjectures to bring to bear on
the Iwasawa–Greenberg Main Conjecture for LHi

p (f/K).
On the other hand, a key ingredient in the proof of Theorem B is the Birch and Swinnerton-

Dyer type formula for LHi
p (f/K) along the anticyclotomic Iwasawa algebra IJΓac

K K that we obtain
in Theorem 5.8 by building on the earlier results of the paper, leading to a Gross–Zagier type
formula for Howard’s system of big Heegner points Z∞ that we then apply for a suitably chosen
imaginary quadratic field K.

Acknowledgements. It is a pleasure to thank Chris Skinner for several helpful conversations,
and Olivier Fouquet for his interest in this work. Different parts of this paper were written during
the visits of the first-named author to Fudan University in January 2019, the Morningside Center
of Mathematics in June 2019, and Academia Sinica in December 2019, and he would like to thank
these institutions, as well as Shanwen Wang, Ye Tian and Ming-Lun Hsieh, for their hospitality.
Finally, we sincerely thank the anonymous referee for several helpful comments and suggestions
that helped us improve the exposition of this paper.

During the preparation of this paper, F.C. was partially supported by the NSF grants DMS-
1801385, DMS-1946136, and DMS-2101458; X.W. was partially supported by National Key R&D
Program of China 2020YFA0712600 and NSFC grants 11688101, 11621061.

2. p-adic L-functions

2.1. Hida families. Let I be a local reduced normal extension of OLJT K, where OL is the ring of
integers of a finite extension L of Qp, and denote by Xa(I) ⊂ Homcts(I,Qp) the set of continuous

OL-algebra homomorphisms φ : I→ Qp satisfying

φ(1 + T ) = ζ(1 + p)k−2
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for some p-power root of unity ζ = ζφ and some integer k = kφ ∈ Z>2 called the weight of φ.
We shall refer to the elements of Xa(I) as arithmetic primes of I, and let X oa (I) denote the set
consisting of arithmetic primes φ with ζφ = 1 and weight kφ ≡ 2 (mod p− 1).

Let N be a positive integer prime to p, let χ be an even Dirichlet character modulo Np taking
values in L, and let f =

∑∞
n=1 anq

n ∈ IJqK be an ordinary I-adic cusp eigenform of tame level N
and character χ, as defined in [SU14, §3.3.9]. In particular, for every φ ∈ Xa(I) of weight k we
have

fφ :=

∞∑
n=1

φ(an)qn ∈ Sk(Γ0(ptN), χω2−kψζ),

where

• t > 1 is such that ζ is a primitive pt−1-st root of unity,
• ω is the Teichmüller character, and

• ψζ : (Z/ptZ)× → Q
×
p is determined by ψζ(1 + p) = ζ.

Denote by Sord(N,χ; I) the space of such I-adic eigenforms f . If in addition fφ is N -new for all
φ ∈ Xa(I), we say that f is a Hida family of tame level N and character χ.

We refer to fφ as the specialization of f at φ. More generally, if φ ∈ Homcts(I,Qp) is such
that fφ is a classical eigenform, we say that fφ is a classical specialization of f ; this includes the

specializations of f ∈ Sord(N,χ; I) at φ ∈ Xa(I), but possibly also specializations in weight 1, for
example.

2.2. Congruence modules. We recall the notion of congruence modules following the treatment
of [SU14, §12.2] and [Hsi21, §3.3]. Let f be a Hida family of tame level N and character χ defined
over I. Letting T(N,χ, I) be the Hecke algebra acting Sord(N,χ; I), the Hida family f defined an
algebra homomorphism λf : T(N,χ, I)→ I which factors through a local component of T(N,χ, I)
denoted Tmf

. Then, since f is N -new, upon extension of scalars to the fraction field FI of I there
is an algebra direct sum decomposition

λ : Tmf
⊗I FI ' FI × T′

with the projection onto the first factor given by λf . The congruence ideal C(f) ⊂ I is defined
by

C(f) := λf
(
Tmf
∩ λ−1(FI × {0}

)
.

As in [KLZ17, §7.7], we shall also consider the fractional ideal Jf := C(f)−1 ⊂ FI. As noted in
loc. cit., if follows from [Hid88b, Thm. 4.2] that elements of Jf define meromorphic functions on
Spec(I) which are regular at all arithmetic points.

2.3. Rankin–Selberg p-adic L-functions. Let Γ be Galois group of the cyclotomic Z×p -extension
of Q, and set

ΛΓ = ZpJΓK.
Note that if j ∈ Z and χ is a Dirichlet character of p-power conductor, there is a unique φ ∈
Homcts(ΛΓ,Q

×
p ) extending the character z 7→ zjχ(z) on Z×p .

Theorem 2.1. Let f1,f2 be Hida families of tame levels N1, N2, respectively, and let N =
lcm(N1, N2). Then there is an element

Lp(f1,f2) ∈
(
Jf1
⊗̂ZpIf2

⊗̂ZpΛΓ

)
⊗Z Z[µN ]

uniquely characterized by the following interpolation property. Let f1, f2 be classical specializa-
tions of f1, f2 of weights k1, k2, respectively, with k1 > k2 > 1, let j be an integer in the range
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k2 6 j 6 k1 − 1, and let χ be a Dirichlet character of p-power conductor. Suppose that the local
component at p of the automorphic representation πf1 is a principal series representation π(η1, η

′
1)

with η1 unramified and η1(p) a p-adic unit. Then the value of Lp(f1,f2) at the corresponding
specialization φ ∈ Spec(If1

⊗̂ZpIf2
⊗̂ZpΛΓ) is given by

φ(Lp(f1,f2)) =
E(f1, f2, χ, j)

E(f1)E∗(f1)
· Γ(j)Γ(j − k2 + 1)

π2j+1−k2(−i)k1−k222j+k1−k2

〈
f1, f c1 |k1

( −1
pt1N1

)〉
Γ0(pt1N1)

× L(f1, f2, χ
−1, j),

where

• αi and βi are the roots of the Hecke polynomial of fi at p, with αi a p-adic unit,
• denoting by pt the conductor of χ,

E(f1, f2, χ, j) =


(

1− pj−1

α1α2

)(
1− pj−1

α1β2

)(
1− β1α2

pj
)(1− β1β2

pj

)
if t = 0,

G(χ)2 ·
(

p2j−2

α2
1α2β2

)t
if t > 1,

with G(χ) is the Gauss sum of χ,
• denoting by pt1 the p-part of the conductor of η′1, then

E(f1)E∗(f1) =

{(
1− β1

pα1

)(
1− β1

α1

)
if t1 = 0,

G(χ1) · η′1η
−1
1 (pt1)p−t1 if t1 > 1,

where χ1 is the nebentypus of f1.

Proof. This follows from [Hid88b, Thm. 5.1], which we have stated adopting the formulation in
[KLZ17, Thm. 7.7.2] (slightly extended to include more general specializations of the dominant
Hida family f1). �

We shall consider the p-adic L-functions Lp(f1,f2) of Theorem 2.1 in the cases where either
f1 or f2 has CM. Thus we let f be a fixed Hida family of tame level N and trivial tame character
defined over I, which we assume contains all the N -th root of unity, and assume that ρ̄f satisfies
hypotheses (irred) and (dist) from the Introduction. On the other hand, let K be an imaginary
quadratic field of discriminant −DK < 0 prime to pN such that

p = pp splits in K,

with p the prime above p induced by our fixed embedding ıp : Q ↪→ Cp. Let K∞ be Z2
p-extension

of K as in the Introduction, and denote by Γp ' Zp the Galois group over K of the maximal
subfield of K∞ unramified outside p. We then let

(2.1) g =

∞∑
n=1

bnq
n ∈ IgJqK

be the canonical Hida family of CM forms constructed in [JSW17, §5.2], where Ig = ZpJΓpK.
Specifically, denoting by θp : A×K → Γp the composition of the Artin reciprocity map recK : A×K →
Gab
K with the natural projection Gab

K � Γp, we have

bn =
∑

N(a)=n,(a,p)=1

θp(xa),
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where the sum is over integral ideals a ⊂ OK, and xa ∈ A∞,×K is any finite idèle of K with
ordw(xa,w) = ordw(a) for all finite places w of K.

2.4. Non-dominant CM: (f1,f2) = (f , g). Since ρ̄f satisfies hypotheses (irred) and (dist), by
[Wil95], the local ring Tmf

introduced in §2.2 is known to be Gorenstein, and by Hida’s results
[Hid88a] it follows that the congruence ideal C(f) is principal.

Denote by Γcyc the Galois group of the cyclotomic Zp-extension of Q.

Definition 2.2. Let cf ∈ C(f) be a generator, and set

LHi
p (f/K) := cf · e1Lp(f , g).

where e1Lp(f , g) ∈ If ⊗̂ZpIgJΓcycK is the natural projection of Lp(f , g) via Γ� Γcyc.

We will often identify Γcyc with the Galois group Γcyc
K of the cyclotomic Zp-extension of K.

Letting ΓK be the Galois group Gal(K∞/K), note that the canonical projections to Γp and Γcyc
K

induce an isomorphism

ΓK ' Γp × Γcyc
K .

Since Ig = ZpJΓpK, we may thus consider LHi
p (f/K) as an element in IJΓKK.

On the other hand, the action of complex conjugation yields a decomposition

ΓK ' Γac
K × Γcyc

K ,

where Γac
K denotes the Galois group of the anticyclotomic Zp-extension of K. We next study the

projections of LHi
p (f/K) to IJΓac

K K and IJΓcyc
K K.

2.4.1. Anticyclotomic restriction of LHi
p (f/K). Assume that f has trivial tame character, and

following [How07, Def. 2.1.3] define the critical character Θ : GQ → I× by

(2.2) Θ := [〈εcyc〉1/2],

where εcyc : GQ → Z×p is the cyclotomic character, 〈−〉 : Z×p → 1 + pZp is the natural projection,
and

[−] : 1 + pZp ↪−→ ZpJ1 + pZpK× ' ZpJT K× −→ I×

is the composition of the obvious maps. This induces the I-linear twist map

(2.3) twΘ−1 : IJΓKK −→ IJΓKK

defined by γ 7→ Θ−1(γ)γ for γ ∈ ΓK. (This map, which will appear repeatedly throughout the
paper, will be used to restrict to the “central critical line” in the weight-cyclotomic space.)

Write N as the product

N = N+N−

with N+ (resp. N−) divisible only by primes which are split (resp. inert) in K, and consider the
following generalized Heegner hypothesis:

(gen-H) N− is the squarefree product of an even number of primes.

Whenever we assume that K satisfies (gen-H), we fix an integral ideal N+ ⊂ OK with OK/N+ '
Z/N+Z.

Proposition 2.3. Let LHi
p (f †/K)ac be the image of twΘ−1(LHi

p (f/K)) under the natural projection

IJΓKK→ IJΓac
K K. If K satisfies (gen-H), then LHi

p (f †/K)ac is identically zero.
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Proof. Let φ ∈ Spec(If ⊗̂ZpIg⊗̂ZpZpJΓcycK) = Spec(IJΓKK) be a specialization in the range spec-
ified in Theorem 2.1, with f1 = fφ the p-stabilization of a newform f ∈ Sk(Γ0(N)) of weight
k > 2 and f2 = gφ a classical weight 1 specialization. By the interpolation property, the value

φ(LHi
p (f/K)) is a multiple of

L(f1, f2, χ
−1, j) = L(f/K, ψ, j),

with ψ a finite order character of ΓK and 1 6 j 6 k − 1, and so φ(twΘ−1(LHi
p (f/K))) is also

a multiple of L(f/K, ψ′, k/2) for a finite order character ψ′ of ΓK. If ψ′ factors through the
projection ΓK � Γac

K , then the L-function L(f/K, ψ′, s) is self-dual, with a functional equation
relating its values at s and k − s, and if K satisfies the hypothesis (gen-H), then the sign in this
functional equation is −1 (see e.g. [CV07, §1]). Thus L(f/K, ψ′, k/2) = 0, and letting φ vary,
the result follows. �

2.4.2. Cyclotomic restriction of LHi
p (f/K). As above, we denote by Γcyc

K the Galois group of the
cyclotomic Zp-extension of K, which we shall identify with Γcyc, and let γ ∈ Γcyc be a topological
generator.

For f = fφ the specialization of f at some φ ∈ X oa (I) of weight k > 2 defined over a finite
extension L/Qp with ring of integers OL, and ε a primitive (in our application, quadratic) L-valued
Dirichlet character of conductor C prime to p, we let LMTT

p (f⊗ε) ∈ OLJΓK be the cyclotomic p-adic
L-function attached to f ⊗ ε in [MTT86]. This is characterized by the following interpolation
property. If φ′ ∈ X oa (OLJΓcycK) is given by φ′(γ) = ζ(1 + m)m with 0 6 m 6 k − 2 and ζ a
primitive pt−1-st root of unity, then

(2.4)

LMTT
p (f ⊗ ε)(φ′) = φ(ap)

−t

(
1−

ω−mψ−1
ζ ε(p)pk−2−m

φ(ap)

)(
1− ωmψζ ε̄(p)pm

φ(ap)

)
× (pt

′
C)m+1 · Γ(m+ 1)

(−2πi)m ·G(εω−mψ−1
ζ ) · Ω(−1)mε(−1)

f

· L(f ⊗ ε, ω−mψ−1
ζ ,m+ 1),

where ω is the Teichmüller character, ψζ is as in §2.1, t′ = max{1, t}, and Ω±f ∈ C× are Shimura’s

periods, normalized up to a unit in O×L as in [SU14, §3.3.3].

Theorem 2.4. Let LHi
p (f/K)cyc be the image of LHi

p (f/K) under the natural projection IJΓKK→
IJΓcyc
K K. Then for every φ ∈ X oa (I), we have

φ(LHi
p (f/K)cyc) = LMTT

p (fφ) · LMTT
p (fφ ⊗ εK)

up to a unit, where εK is the quadratic character associated to K.

Proof. Since we assume that ρ̄f satisfies hypotheses (irred) and (dist) from the Introduction, by
[Hid88a, Thm. 0.1] (see also [SU14, Lem. 12.1]) for every φ ∈ X oa (I) of weight k > 2 (hence of
trivial nebentypus) we have the period relation

φ(cf ) = u · pk/2−1 ·
2−3(2i)k+1〈fφ,fφ〉Γ0(N)

Ω+
fφ
· Ω−fφ

where u ∈ φ(I)×. Moreover, we have that Ω±fφ
= Ω∓fφ⊗εK

up to a unit (see [SZ14, Lem. 9.6] for

example). In light of the factorization

L(fφ/K, ψ−1
ζ , 1) = L(fφ, ψ

−1
ζ , 1) · L(fφ ⊗ εK, ψ−1

ζ , 1),
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the result thus follows from a direct comparison of the interpolation properties in Theorem 2.1
(with k1 = k and j = k2 = 1) and (2.4) with m = 0. �

2.5. Dominant CM: (f1,f2) = (g,f). As in §2.4, we let f ∈ IJqK be a fixed Hida family of
tame level N , and g be the CM Hida family in (2.1).

Let Ẑur
p be the completion of the ring of integers of the maximal unramified extension of Qp,

and set
Iur := I⊗̂ZpẐ

ur
p .

By [Kat78, §5.3.0] (see also [dS87, Thm. II.4.14]) there exists a p-adic L-function Lp(K) ∈ Ẑur
p JΓKK

such that if ψ is a character of ΓK corresponding to an algebraic Hecke character of K crystalline
at the primes above p and infinity type (a, b) with 0 6 −b < a, then

(2.5) Lp(K)(ψ) =

(√
DK
2π

)b
· Γ(b) · (1− ψ(p)) · (1− p−1ψ−1(p)) ·

Ωb−a
p

Ωb−a
K
· L(ψ, 0),

where ΩK ∈ C× and Ωp ∈ C×p are certain CM periods (as defined in e.g. [CH18, §2.5]).

Definition 2.5. Let hK be the class number of K, and set

(2.6) Lp(f/K) :=
(
hK ·Lp(K)ac

)
· Lp(g,f),

where Lp(K)ac is the anticyclotomic projection of Lp(K).

Remark 2.6. As in [HT94] here we view Lp(K)ac as an element in Ẑnr
p JΓKK via the map sending

γ ∈ Γac
K to γ̃c−1, where γ̃ ∈ ΓK is any lift of γ, and c denotes the action of complex conjugation.

Note that a priori Lp(f/K) is an element in Jg ⊗I IurJΓKK.

Proposition 2.7. The p-adic L-function in (2.6) is integral, i.e., Lp(f/K) ∈ IurJΓKK.

Proof. By construction, if H(g) ∈ Ig is a congruence power series for g (i.e., a generator of the
principal ideal C(g) ⊂ Ig), then the product H(g) ·Lp(g,f) is integral, so it suffices to show that
hK ·Lp(K)ac is divisible by H(g). By [HT94, Thm. 0.3] and Rubin’s proof [Rub91] of the Iwasawa
main conjecture for K, one has that such divisibility holds up to powers of the augmentation ideal
(γp − 1) ⊂ Ig; since by [BDP21, Thm. A(i)] one knows that H(g) is not divisible by γp − 1, the
result follows. �

The later arguments in this paper will exploit the close link between Lp(f/K) and the 3-
variable p-adic L-function constructed in [Wan20] and that we now recall. Fix a finite set Σ of
places K outside p and containing all the places dividing NDK. Then by the results in [op. cit.,
§7.5] there exists an element

LΣ
p (f/K) ∈ IurJΓKK

characterized by the following interpolation property. For a Zariski dense set of points φ ∈
Spec(IJΓKK), corresponding to pairs (fφ,ψφ) with fφ of weight 2 and conductor ptN generating
a unitary automorphic representation πfφ whose component at p is isomorphic to π(χ1,p, χ2,p)

with vp(χ1,p(p)) = −1
2 and vp(χ2,p(p)) = 1

2 , and ψφ a Hecke character of K of infinity type (−n, 0)

for some n > 3 and conductor pt, we have

(2.7)

φ(LΣ
p (f/K)) = p(n−3)tψ2

φ,pχ
−1
1,pχ

−1
2,p(p

−t)G(ψφ,pχ
−1
1,p)G(ψφ,pχ

−1
2,p)Γ(n)Γ(n− 1)Ω2n

p

×
LΣ(fφ, χ

−1
φ ψφ, 0)

(2πi)2n−1Ω2n
K

,
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where χφ is the nebentypus of fφ and LΣ(fφ, χ
−1
φ ψφ, 0) is the Σ-imprimitive Rankin–Selberg

L-value.

Proposition 2.8. Let

(2.8) Lp(f/K) := LΣ
p (f/K)×

∏
w∈Σ

Pw(ΨK(Frobw))−1,

where Pw is the Euler factor at w and ΨK : GK � ΓK is the natural projection. Then Lp(f/K) =
Lp(f/K) up to a unit.

Proof. We begin by noting that Lp(f/K) satisfies the same interpolation property as in (2.7)

but with LΣ(fφ, χ
−1
φ ψφ, 0) replaced by the primitive counterpart L(fφ, χ

−1
φ ψφ, 0). Now, any

character ψφ as above can be written as the product ψ′φ ·ψ′′φ, with ψ′φ cyclotomic (i.e., factoring

through ΓK � Γcyc
K ), and ψ′′φ corresponding to a Hecke character unramified at p and of infinity

type (−n, 0). We then have that χ−1
φ ψ

′
φ (resp. the theta series of ψ′′φ) corresponds to χ| · |j (resp.

f1 = gφ) in the notation of Theorem 2.1, and

L(fφ, χ
−1
φ ψφ, 0) = L(f1, f2, χ

−1, j)

with f2 = fφ. Letting ptDK be the conductor of gφ, by [HT93, Thm. 7.1] a direct calculation
shows that the product

E(gφ)E∗(gφ) ·
〈
gφ, gφ|2

(
−1

ptDK

)〉
Γ0(ptDK)

in Theorem 2.1 agrees, up to a p-adic unit independent of φ, with

(2.9)
Γ(n)G(ψ′′−1

φ,p̄ )L(ψ′′φ(ψ′′φ)−c, 1)

(−2πi)n
· L(εK, 1)

−2πi
,

where εK is the quadratic character associated withK/Q. By the class number formula, the second
factor in this product is given by hK up to a p-adic unit, while by the interpolation property of
the Katz p-adic L-function, the first factor multiplied by (Ωp/ΩK)2n is interpolated by Lp(K)ac

for varying φ. Comparing the interpolation formulas in Theorem 2.1 and (2.7) therefore yields
the result. �

We conclude this section by discussing the anticyclotomic restriction of Lp(f/K).

Theorem 2.9. Assume that K satisfies (gen-H), and if N− > 1 assume in addition that N is
squarefree. Then there exists an element L BDP

p (f/K) ∈ IurJΓac
K K such that for every φ ∈ X oa (I)

of weight k > 2, and every crystalline character ψ of Γac
K corresponding to a Hecke character of

infinity type (n,−n) with n > 0, we have

φ(L BDP
p (f/K)2)(ψ) = Ep(fφ, ψ)2 · ψ(N+)−1 · 23 · ε(fφ) · w2

K
√
DK · Γ(k + n)Γ(n+ 1)Ω2k+4n

p

×
L(fφ/K, ψ, k/2) · α(fφ,f

B
φ )−1

(2π)k+2n+1 · (Im θ)k+2n · Ω2k+4n
K

,

where Ep(fφ, ψ) = (1−φ(ap)ψp(p)p
−k/2)(1−φ(ap)

−1ψp(p)p
k/2−1), ε(fφ) is the global root number

of fφ, wK := |O×K |, Ωp ∈ C×p and ΩK ∈ C× are CM periods attached to K as [CH18, §2.5], θ ∈ K
is as in (4.1) below, and

α(fφ,f
B
φ ) =

〈fφ,fφ〉
〈fBφ ,fBφ 〉
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is a ratio of Petersson norms of fφ and its transfer fBφ to a quaternion algebra B, normalized
as in [Pra06, §2.2].

Proof. When N− = 1, this is [Cas20, Thm. 2.11] (in which case α(fφ,f
B
φ ) = 1). In the following

we sketch how to extend that result to include the more general Heegner hypothesis (gen-H).
Some of the notations used here will be introduced later in §4.

Let OB be a maximal order of B, and let IgN+,N− be the Igusa scheme over Z(p) classifying
abelian surfaces with OB-multiplication and U∞-level structure (here U∞ is the open compact

Ur ⊂ R̂×r in §4.1 with r =∞). For any valuation ring W finite flat over Zp, denote by Vp(W ) the
module of formal functions on IgN+,N− (i.e., p-adic modular forms) defined over W , and set

Vp(I) := Vp(W0)⊗̂W0I,

where W0 = W (κI) is the ring of Witt vectors of the residue field of I. For every OK-ideal

a prime to N+p, the construction of ς(s) (for arbitrary s > 0) in §4.2 determines CM points
x(a) ∈ IgN+,N− , and the argument in [Hid00, Thm. 3.2.16] with the use of q-expansions and the
q-expansion principle replaced by Serre–Tate-expansions and the resulting t-expansion principle
around any such x(a) (see e.g [Hid10, p. 107]) shows that every element fB ∈ Vp(I) defines a
p-adic family (in fact, finite collections of such, since I is finite over W0JT K) of p-adic modular
forms fBz = fB(uz − 1) ∈ Vp(W0), where u = 1 + p, indexed by z ∈ Zp.

The Hida family f corresponds to minimal prime in the localized universal p-ordinary Hecke
algebra Tord

∞,m, and by the integral Jacquet–Langlands correspondence (see the discussion in [LV11,
§5.3] for example), there exists a p-adic family fB as above corresponding to f , which we nor-
malize by requiring that some Serre–Tate expansion fBz (t) does not vanish modulo p.

There are U - and V -operators acting on fB defined as in [HB15, §3.6], and we set

f [B := fB|(V U − UV ).

With these, once can define Iur-valued measures µfB ,x(a) and µf[B,a
on Zp (with the latter sup-

ported on Z×p by [HB15, Prop. 4.17]) as in [Cas20, §2.7], and an Iur-valued measure Lp,ξ(f/K)
on Gal(Hp∞/K) by

Lp,ξ(f/K)(φ) =
∑

[a]∈Pic(OK)

ξχ−1(a)N(a)−1

∫
Z×p

(φ|[a])(z)dµf[B,a
(z)

for all φ : Gal(Hp∞/K) → O×Cp , where, if σa corresponds to a under the Artin reciprocity map,

φ|[a] is the character on z ∈ Z×p given by φ(σarecp(z)) for the local reciprocity map recp : K×p →
Gab
K → Γac

K , χ : K×\A×K → I× is the character given by x 7→ Θ(recQ(NK/Q(x))) for the reciprocity

map recQ : Q×\A× → Gab
Q , and ξ is the auxiliary anticyclotomic I-adic character constructed in

[Cas20, Def. 2.8].
Still denoting by Lp,ξ(f/K) its image under the natural projection IurJGal(Hp∞/K)K →

IurJΓac
K K, and setting

L BDP
p (f/K) = twξ−1(Lp,ξ(f/K)),

one then readily checks as in the proof of [Cas20, Thm. 2.11] that for every φ ∈ X oa (I), the
specialization φ(Lp(f/K)) agrees with the measure constructed in [HB15, §8.4] (in a formulation
germane to that in [Bur17, §5.2]) for the newform associated with fφ, from where the stated
interpolation property follows from [HB15, Prop. 8.9]. �
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Corollary 2.10. With hypotheses as in Theorem 2.9, denote by

Lp(f
†/K)ac ∈ IurJΓac

K K

the image of twΘ−1(Lp(f/K)) under the natural projection IurJΓKK→ IurJΓac
K K. Then

(2.10) Lp(f
†/K)ac = L BDP

p (f/K)2

up to a unit in IurJΓac
K K[1/p]×. In particular, Lp(f

†/K)ac is nonzero.

Proof. In light of Proposition 2.8, the claimed equality up to a unit follows from a direct compar-
ison of the respective interpolation formulas (cf. [JSW17, §3.3]). On the other hand, for every
φ ∈ X oa (I) the p-adic L-function L BDP

p (f/K) specializes at φ to the p-adic L-functions constructed

in [CH18, §3.3] (for N− = 1), and in [Bur17, §5.2] and [HB15, §8] (for N− > 1); since the latter
are nonzero by [CH18, Thm. 3.9] and [Bur17, Thm. 5.7], the last claim in the theorem follows. �

3. Iwasawa theory

Throughout this section, we fix a positive integer N and a prime p - 6N , and let f =∑∞
n=1 anq

n ∈ IJqK be a Hida family of tame level N and trivial tame character, and let K
be an imaginary quadratic field of discriminant prime of Np in which p = pp splits.

3.1. Selmer groups. Let Tf be the big Galois representation associated to f , for which we shall
take the geometric realization denoted M(f)∗ in [KLZ17, Def. 7.2.5]. Thus Tf is a locally free
I-module of rank 2, and letting Dp ⊂ GQ be the decomposition group at p determined by our

fixed embedding ιp : Q ↪→ Qp, it fits in an exact sequence of IJDpK-modules

(3.1) 0 −→ F+Tf −→ Tf −→ F−Tf −→ 0

with F±Tf locally free of rank 1 over I, and with the Dp-action on the quotient F−Tf given by
the unramified character sending an arithmetic Frobenius to ap ∈ I×.

Let kI := I/mI be the residue field of I, and denote by ρ̄f : GQ → GL2(κI) the semi-simple
residual representation associated with Tf , which by (3.1) is conjugate to an upper-triangular
representation upon restriction to Dp:

ρ̄f |Dp ∼
(
ε̄ ∗

δ̄

)
.

Assume that ρ̄f is absolutely irreducible and that ε̄ 6= δ̄. Then by work of Wiles [Wil88] (see also
[KLZ17, Thm. 7.2.8]), Tf is free of rank 2 over I, and each F±Tf is free of rank 1.

Recall that ΓK denotes the Galois group of the Z2
p-extension K∞/K, and consider the IJΓKK-

module
T := Tf ⊗I IJΓKK

equipped with the GK-action via ρf ⊗ ΨK, where ρf is the GQ-representation afforded by Tf ,
and ΨK is the tautological character GK � ΓK ↪→ IJΓKK×. Replacing ΓK by Γac

K (resp. Γcyc
K ), we

define the GK-module Tac (resp. Tcyc) similarly.
As in [How07], we also define the critical twist

(3.2) T †f := Tf ⊗Θ−1,

where Θ : GQ → I× is the character (2.2), and define its deformations T†,T†,ac, and T†,cyc

similarly as before.
In the definitions that follow, we let M denote either of the above Galois modules, for which

we naturally define F±M using (3.1). We also let Σ be a finite set of places of Q containing ∞
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and the primes dividing Np, and for any number field F , let GF,Σ be the Galois group of the
maximal extension of F unramified outside the places above Σ.

Consider the p-relaxed Selmer group defined by

Sel{p}(F,M) = ker

{
H1(GF,Σ,M) −→

∏
v∈Σ, v-p

H1(Fv,M)

H1
ur(Fv,M)

}
,

where H1
ur(Fv,M) = ker{H1(Fv,M)→ H1(F ur

v ,M)} is the unramified local condition.

Definition 3.1. For v|p and Lv ∈ {∅, Gr, 0}, set

H1
Lv

(Fv,M) :=


H1(Fv,M) if Lv = ∅,
ker{H1(Fv,M) −→ H1(F ur

v ,F
−M)} if Lv = Gr,

{0} if Lv = 0,

and for L = {Lv}v|p, define

SelL (F,M) := ker

{
Sel{p}(F,M) −→

∏
v|p

H1(Fv,M)

H1
Lv

(Fv,M)

}
.

Thus, for example Sel0,∅(K,M) is the subspace of Sel{p}(K,M) consisting of classes which
satisfy no condition (resp. are locally trivial) at p (resp. p). For the ease of notation, we let
SelGr(F,M) denote the Selmer group SelL (F,M) given by Lv = Gr for all v|p.

We shall also need to consider Selmer groups for the discrete module

Af := Homcts(Tf , µp∞).

To define these, we note that by Shapiro’s lemma there is a canonical isomorphism

(3.3) H1(K,T) ' lim←−
K⊂fF⊂K∞

H1(F, Tf ),

where F runs over the finite extensions of K contained in K∞ and the limit is with respect to
the corestriction maps. The isomorphism (3.3) is compatible with the local restriction maps (see
e.g. [SU14, §3.1.2]), and therefore the Selmer groups SelL (K,T) are defined by local conditions
H1

Lv
(Fv, Tf ) ⊂ H1(Fv, Tf ) for all primes v (with the unramified local condition for v - p). Thus

we may let

SelL (K∞, Af ) ⊂ lim−→
K⊂fF⊂K∞

H1(F,Af )

be the submodule cut out by the orthogonal complements of H1
Lv

(Fv, Tf ) under the perfect Tate
duality

H1(Fv, Tf )×H1(Fv, Af ) −→ Qp/Zp.

This also defines the Selmer groups SelL (F,Af ) ⊂ H1(F,Af ) for any number field F , and we
shall also consider their variants for the twisted module

A†f := HomZp(T
†
f , µp∞),

or their specializations. Finally, if W denotes any of the preceding discrete modules, we set

XL (F,W ) := HomZp(SelL (F,W ),Qp/Zp),

which we simply denote by XGr(F,W ) when Lv = Gr for all v|p.
We now record a number of lemmas for our later use.
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Lemma 3.2. Assume that ρ̄f |GF is absolutely irreducible. Then SelGr(F, T
†
f ) and XGr(F,A

†
f )

have the same I-rank.

Proof. For any height one prime P ⊂ I, let IP be the localization of I at P, and let FP = IP/P
be the residue field. It suffices to show that for all but finitely many P ∈ Xa(I), the spaces

SelGr(F, T
†
f )P/P and XGr(F,A

†
f )P/P have the same FP-dimension.

As noted in [Nek06, §12.7.5] (see also [How07, Lem. 2.1.6]), Hida’s results imply that the
localization IP of I at any P ∈ Xa(I) is a discrete valuation ring. Let π ∈ IP be a uniformizer.
From Nekovář’s theory (see [Nek06, Prop. 12.7.13.4(i)]) and the identification [How07, (21)],
multiplication by π induces natural maps

SelGr(F, T
†
f )P/π ↪−→ SelGr(F, T

†
f ,P/π),

SelGr(F,A
†
f ,P[π]) −� SelGr(F,A

†
f )P[π]

which are isomorphisms for all but finitely many P ∈ Xa(I). Since by [How04a, Lem. 1.3.3] the

spaces SelGr(F, T
†
f ,P/π) and SelGr(F,A

†
f ,P[π]) have the same FP-dimension, the result follows. �

Lemma 3.3. Assume that ρ̄f |GK is absolutely irreducible. Then H1(GK,Σ,T
†) and H1(GK,Σ,T

†,ac)
are torsion-free over IJΓKK and IJΓac

K K, respectively.

Proof. This follows from [PR00, §1.3.3], since H0(K∞, ρ̄f ) = H0(Kac
∞, ρ̄f ) = {0} by the hypothesis.

�

Lemma 3.4. We have rankIJΓac
K K(XGr,∅(Kac

∞, A
†
f )) = 1 + rankIJΓac

K K(XGr,0(Kac
∞, A

†
f )). Moreover, if

I is regular then

CharIJΓac
K K(XGr,∅(Kac

∞, A
†
f )tors) = CharIJΓac

K K(X0,Gr(Kac
∞, A

†
f )tors),

where the subscript tors denotes the IJΓac
K K-torsion submodule.

Proof. The first claim follows from an argument similar to that in Lemma 3.2 using part (2) of
[Cas17, Lem. 2.3]. For the second, note that the regularity of I implies that of IJΓac

K K. Thus by
[Fou13, Lem. 6.18] the second claim follows from part (3) of [Cas17, Lem. 2.3]. �

We conclude this section with the following useful commutative algebra lemma from [SU14],
which will be used repeatedly in the proof of our main results.

Lemma 3.5. Let R be a local ring and a ⊂ R a proper ideal such that R/a is a domain. Let
I ⊂ R be an ideal and L an element of R with I ⊂ (L). Denote by a ‘bar’ the image under the
reduction map R→ R/a. If L ∈ R/a is nonzero and L ∈ I, then I = (L).

Proof. This is a special case of [SU14, Lem. 3.2]. �

3.2. Explicit reciprocity laws. Let GQ act on the cyclotomic Iwasawa algebra ΛΓ introduced

in §2.3 via the tautological character GQ � Γ ↪→ Λ×Γ . In [KLZ17], Kings–Loeffler–Zerbes con-
structed Beilinson–Flach elements

cBFf ,gm ∈ H1(Q(µm), Tf ⊗̂ZpTg⊗̂ZpΛΓ)

attached to pairs of Hida families f , g, and related the image of cBFf ,g1 under a Perrin-Riou big
logarithm map to the p-adic L-functions Lp(f , g) and Lp(g,f) of Theorem 2.1. In this section
we describe the variant of their results that we shall need.
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Since T† = T ⊗ Θ−1 by definition, the twist map twΘ−1 : IJΓKK → IJΓKK of (2.3) induces a
I-linear isomorphism

t̃wΘ−1 : H1(K,T) −→ H1(K,T†)
satisfying t̃wΘ−1(λx) = twΘ−1(λ)t̃wΘ−1(x) for all λ ∈ IJΓKK.

Theorem 3.6 (Kings–Loeffler–Zerbes). There exists a class BF† ∈ SelGr,∅(K,T†) and IJΓKK-
linear injections with pseudo-null cokernel

Col(1),† : H1(Kp,F
−T†) −→ Jf ⊗I IJΓKK,

Col(2),† : H1(Kp,F
+T†) −→ Jg ⊗I IKΓKJ,

where g is the CM Hida family in (2.1), such that

Col(1),†(locp(BF†)) = twΘ−1(Lp(f , g))

Col(2),†(locp(BF†)) = twΘ−1(Lp(g,f)).

In particular, for every prime v of K above p, the class locv(BF†) ∈ H1(Kv,T†) is non-torsion
over IJΓKK.

Proof. This follows from the results of [KLZ17], as explained in [Cas17, Thm. 2.4], to which one
needs to add some of the analysis in [BST19] and [BDV21].

Indeed, taking m = 1 in [KLZ17, Def. 8.1.1] (and using [LLZ14, Lem. 6.8.9] to dispense with
an auxiliary c > 1 needed for the construction), one obtains a cohomology class

BFf ,g ∈ H1(Q, Tf ⊗̂ZpTg⊗̂ZpΛΓ)

attached to our fixed Hida family f and a second Hida family g. Denote by e1BFf ,g the image
of BFf ,g under the natural map

e1 : H1(Q, Tf ⊗̂ZpTg⊗̂ZpΛΓ)→ H1(Q, Tf ⊗̂ZpTg⊗̂ZpZpJΓ
cycK)

induced by the projection Γ � Γcyc. Taking g to be the canonical CM Hida family in (2.1), by
[BST19] (see also [BDV21, Prop. 4.1]) we have a GQ-module isomorphism

Tg ' IndQ
KZpJΓpK

where the GK-action on ZpJΓpK is given by the tautological character GK � Γp ↪→ ZpJΓpK×. By

Shapiro’s lemma, e1BFf ,g therefore defines a class BF ∈ H1(K,T) whose image under t̃wΘ−1

defines a class BF† with the desired properties.
More precisely, the inclusion BF† ∈ SelGr,∅(K,T†) follows from [KLZ17, Prop. 8.1.7], and by

the explicit reciprocity law of [KLZ17, Thm. 10.2.2], the maps

Col(1) := 〈L(−), ηf ⊗ ωg〉, Col(2) := 〈L(−), ηg ⊗ ωf 〉

described in the proof of [Cas17, Thm. 2.4] send the restriction at p and p of BFf ,g to the p-adic
L-functions Lp(f , g) and Lp(g,f), respectively, and are injective with pseudo-null cokernel by

[KLZ17, Thm. 8.2.3]. Thus letting Col(1),† and Col(2),† be the IJΓKK-linear maps defined by the
commutative diagrams

H1(Kp,F
−T)

Col(1)
//

t̃wΘ−1

��

Jf ⊗I IJΓKK

twΘ−1

��

H1(Kp,F+T)
Col(2)

//

t̃wΘ−1

��

Jg ⊗I IJΓKK

twΘ−1

��
H1(Kp,F

−T†)
Col(1),†

// Jf ⊗I IJΓKK H1(Kp,F+T†)
Col(2),†

// Jg ⊗I IJΓKK,
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the result follows, with the last claim being an immediate consequence of the nonvanishing of the
p-adic L-functions Lp(f , g) and Lp(g,f) (see e.g. [Cas17, Rem. 1.3]). �

We shall also need to consider anticyclotomic variants of the maps Col(i),† in Theorem 3.6.
Letting Icyc be the kernel of the natural projection IJΓKK→ IJΓac

K K, the map

Col(1),†
ac : H1(Kp,F

−T†,ac) −→ Jf ⊗I IJΓac
K K

is defined by reducing Col(1),† modulo the ideal Icyc, using the fact that by the vanishing of

H0(Kp,F
−T†,ac) the restriction map induces a natural isomorphism

H1(Kp,F
−T†)/Icyc ' H1(Kp,F

−T†,ac).

The map Col
(2),†
ac : H1(Kp,F+T†,ac)→ Jg⊗̂ZpIJΓac

K K is defined in the same manner.

Note that since the maps Col(i),† are injective with pseudo-null cokernel, the same is true for

the maps Col
(i),†
ac .

Corollary 3.7. Let BF†,ac be the image of the class BF† under the natural map H1(K,T†) →
H1(K,T†,ac), and assume that K satisfies (gen-H). Then we have the inclusion

locp(BF†,ac) ∈ ker{H1(Kp,T
†,ac) −→ H1(Kp,F

−T†,ac)};

in particular, BF†,ac ∈ SelGr(K,T†,ac). Moreover, if we assume in addition that N is squarefree
when N− > 1, then the class locp(BF†,ac) is non-torsion over IJΓac

K K.

Proof. The combination of Theorem 3.6 and Proposition 2.3 yields the vanishing of the image

of locp(BF†,ac) under the map Col
(1),†
ac , so the first claim follows from its injectivity. The second

claim follows from Theorem 3.6 together with the nonvanishing result of Corollary 2.10. �

3.3. Iwasawa main conjectures. We now use the explicit reciprocity laws of Theorem 3.6 to
relate different variants of the Iwasawa Main Conjecture for Rankin–Selberg convolutions.

Theorem 3.8. Assume that ρ̄f |GK is irreducible. Then the following are equivalent:

(i) XGr,0(K∞, A†f ) is IJΓKK-torsion, SelGr,∅(K,T†) has IJΓKK-rank one, and

CharIJΓKK(XGr,0(K∞, A†f )) = CharIJΓKK

(
SelGr,∅(K,T†)
IJΓKK · BF†

)
up to powers of p.

(ii) Both X∅,0(K∞, A†f ) and Sel0,∅(K,T†) are IJΓKK-torsion, and

CharIJΓKK(X∅,0(K∞, A†f )) · IurJΓKK = (twΘ−1(Lp(f/K)))

up to powers of p.

(iii) Both XGr(K∞, A†f ) and SelGr(K,T†) are IJΓKK-torsion, and

CharIJΓKK(XGr(K∞, A†f )) = (twΘ−1(LHi
p (f/K))).

up to powers of p.

Moreover, if in addition K satisfies (gen-H), with N being squarefree when N− > 1, then the
following are equivalent:
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(i)’ XGr,0(Kac
∞, A

†
f ) is IJΓac

K K-torsion, SelGr,∅(K,T†,ac) has IJΓac
K K-rank one, and

CharIJΓac
K K(XGr,0(Kac

∞, A
†
f )) = CharIJΓac

K K

(
SelGr,∅(K,T†,ac)

IJΓac
K K · BF†,ac

)
up to powers of p.

(ii)’ Both X∅,0(Kac
∞, A

†
f ) and Sel0,∅(K,T†,ac) are IJΓac

K K-torsion, and

CharIJΓac
K K(X∅,0(Kac

∞, A
†
f )) · IurJΓac

K K = (L BDP
p (f/K)2)

up to powers of p.

Proof. Consider the exact sequence coming form Poitou–Tate duality

0 −→ Sel0,∅(K,T†) −→ SelGr,∅(K,T†)
locp−−→H1

Gr(Kp,T
†)

−→ X∅,0(K∞, A†f ) −→ XGr,0(K∞, A†f ) −→ 0.

By Theorem 3.6, the cokernel of the map locp is IJΓKK-torsion, and so the equivalence between
the claimed ranks in (i) and (ii) follows. By Lemma 3.3, if Sel0,∅(K,T†) is IJΓKK-torsion then it
is trivial, and so the above yields

(3.4) 0 −→
SelGr,∅(K,T†)
IJΓKK · BF†

locp−−→ H1
Gr(Kp,T

†)

IJΓKK · locp(BF†)
−→ X∅,0(K∞, A†f ) −→ XGr,0(K∞, A†f ) −→ 0.

As noted in the proof of Proposition 2.7, the congruence power series H(g) of the CM Hida
family g in (2.1) is divisible by hK ·Lp(K)ac; together with [HT94, Thm. 0.2] it follows that the
congruence ideal of g is generated by hK ·Lp(K)ac after inverting p. Therefore by Theorem 3.6

and definition (2.6), the map Col(2),† multiplied by this generator yields an injection

H1
Gr(Kp,T

†) · IurJΓKK[1/p]
IurJΓKK[1/p] · locp(BF†))

↪−→ IurJΓKK[1/p]
(twΘ−1(Lp(f/K)))

with pseudo-null cokernel, which combined with (3.4) completes the proof of the equivalence
(i)⇐⇒(ii). The equivalence (i)’⇐⇒(ii)’ when K satisfies (gen-H) is shown in the same way, using
the nonvanishing of locp(BF†,ac) from Corollary 3.7.

Now consider the exact sequence

0 −→ SelGr(K,T†)→ SelGr,∅(K,T†)
locp−−→

H1(Kp,T
†)

H1
Gr(Kp,T†)

' H1(Kp,F
−T†)

−→ XGr(K∞, A†f ) −→ XGr,0(K∞, A†f ) −→ 0,

which similarly as before implies the equivalence between the claimed IJΓKK-ranks in (ii) and (iii),
and by Theorem 3.6 and Lemma 3.3 yields the exact sequence

0 −→
SelGr,∅(K,T†)
IJΓKK · BF†

locp−−→
H1(Kp,F

−T†)

IJΓKK · locp(BF†)
−→ XGr(K∞, A†f ) −→ XGr,0(K∞, A†f ) −→ 0.

Lastly, since by Theorem 3.6 and Definition 2.2 the map Col(1),† multiplied by a generator of
the congruence ideal C(f) yields an injection H1(Kp,F

−T†)→ IJΓKK with pseudo-null cokernel

sending locp(BF†) into twΘ−1(LHi
p (f/K)) up to a unit in I×, the equivalence (ii)⇐⇒(iii) follows.

�
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3.4. Rubin’s height formula. Recall the decomposition ΓK ' Γcyc
K × Γac

K . Fix a topological
generator γcyc ∈ Γcyc

K , and using the identification IJΓKK ' (IJΓac
K K)JΓcyc

K K, expand

(3.5) twΘ−1(LHi
p (f/K)) = LHi

p,0(f †/K)ac + LHi
p,1(f †/K)ac · (γcyc − 1) + · · ·

as a power series in γcyc − 1. Note that the constant term LHi
p,0(f †/K)ac in this expansion corre-

sponds to the image of twΘ−1(LHi
p (f/K)) under the natural projection IJΓKK→ IJΓac

K K.
By Shapiro’s lemma, we may consider the Beilinson–Flach class BF† ∈ SelGr,∅(K,T†) of The-

orem 3.6 as a norm-compatible system of classes BF†F ∈ SelGr,∅(F, T
†
f ) with F running over

the finite extensions of K contained in K∞. For any (possibly infinite) intermediate extension
K ⊂ L ⊂ K∞, we then put

BF†(L) := lim←−
F

BF†F

with F running over the finite extensions of K contained in L, so in particular BF†(K∞) is nothing
but BF†.

Denote by Kac
n the subextension of Kac

∞ with [Kac
n : K] = pn, define Kcyc

k similarly, and set
Ln,k = Kac

n K
cyc
k for all k 6∞.

Lemma 3.9. Assume that K satisfies (gen-H) and that ρ̄f |GK is irreducible. Then there is a
unique

β†n ∈ H1(Kac
n,p,F

−T†,cyc)

such that locp(BF†(Ln,∞)) = (γcyc − 1)β†n. Furthermore, for varying n the images β†n(1) of

β†n under the corestriction map H1(Kac
n,p,F

−T†,cyc) → H1(Kac
n,p,F

−T †f ) are norm-compatible,

defining a class

lim←−
n

β†n(1) ∈ lim←−
n

H1(Kac
n,p,F

−T †f ) ' H1(Kp,F
−T†,ac)

that is sent to the linear term LHi
p,1(f †/K)ac in the expansion (3.5) under the map Col

(1),†
ac .

Proof. After Theorem 3.6, the first claim follows from the vanishing of LHi
p,0(f †/K)ac (see Propo-

sition 2.3) and the injectivity of Col(1),†, with the uniqueness claim being an immediate conse-

quence of Lemma 3.3. The other claims are a direct consequence of the definitions of β†n and
LHi
p,1(f †/K)ac. �

Let Icyc = (γcyc − 1) be the augmentation ideal in IJΓcyc
K K, and put J cyc = Icyc/(Icyc)2. By

work of Plater [Pla97] (cf. Nekovář [Nek06, §11] more generally), for every n there is an I-adic
height pairing

(3.6) 〈−,−〉cyc
Kac
n ,I

: SelGr(Kac
n , T

†
f )× SelGr(Kac

n , T
†
f ) −→ J cyc ⊗I FI.

(Note that the local indecomposability hypothesis (H1) in [Pla97, p. 107] is only used to ensure

the existence of well-defined sub and quotients at the places above p, which for T †f is automatic,

while hypotheses (H2) and (H3) in loc. cit. follow from [How07, Lem. 2.4.4] for T †f .)

Indeed, keeping the notations introduced in §3.1, in light of [Pla97, Lem. 5.8] Plater’s definition
(which we shall briefly recall in the proof of Proposition 3.10 below) gives a J cyc ⊗I FI-valued
height pairing on the modified Selmer group

S̃el(Kac
n , T

†
f ) := ker

{
Sel{p}(Kac

n , T
†
f ) −→

∏
v|p

H1(Kac
n , T

†
f )

H1
Gr(Kac

n,v, T
†
f )sat

}
,
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where H1
Gr(Kac

n,v, T
†
f )sat is the saturation of H1

Gr(Kac
n,v, T

†
f ) in H1(Kac

n,v, T
†
f ), taking J cyc-values on

the submodule Sel(Kac
n , T

†
f ) of S̃el(Kac

n , T
†
f ) consisting of classes x with

locv(x) ∈
⋂
k

corLn,k,v/Kac
n,v

(H1
Gr(Ln,k,v, T

†
f )sat)

for all primes v above p. Since by the same argument as in [Pla97, Lem. 5.8] (using [Nek93,

Lem. 6.3]) the quotient S̃el(Kac
n , T

†
f )/Sel(Kac

n , T
†
f ) is I-torsion, killed by a nonzero element of I

independent of n, from the obvious inclusion SelGr(Kac
n , T

†
f ) ⊂ S̃el(Kac

n , T
†
f ) we get a pairing as in

(3.6) with denominators bounded independently of n.
The next result generalizes the height formula of [Rub94, Thm. 3.2(ii)] to our context.

Proposition 3.10. Assume that K satisfies (gen-H) and that ρ̄f |GK is irreducible. Then the

classes BF†Kac
n

land in SelGr(Kac
n , T

†
f ), and for every x ∈ SelGr(Kac

n , T
†
f ) we have

(3.7) 〈BF†Kac
n
, x〉cyc
Kac
n ,I

= (β†n(1), locp(x))Kac
n,p
⊗ (γcyc − 1),

where (−,−)Kac
n,p

is the local Tate pairing

H1(Kac
n,p, T

†
f )

H1
Gr(Kac

n,p, T
†
f )
×H1

Gr(Kac
n,p, T

†
f ) −→ I.

Proof. The first claim follows from the explicit reciprocity law of Theorem 3.6, the vanishing of
LHi
p,0(f †/K)ac, and the injectivity of Col(1),†. On the other hand, the proof of formula (3.7) could

be deduced from the general result [Nek06, (11.3.14)], but shall give a proof following the more
direct generalization of Rubin’s formula contained in [Arn10, §3].

We begin by recalling Plater’s definition of the I-adic height pairing (itself a generalization of
Perrin-Riou’s [PR92, §1.2] in the p-adic setting). Let λ be the isomorphism Γcyc

K ' J cyc sending
γcyc to the class of γcyc− 1. Composing with the natural isomorphism Gal(Ln,∞/Kac

n ) ' Γcyc the
map λ defines a class in H1(Kac

n ,J cyc), where we equip J cyc with the trivial Galois action, and
so taking cup product we get

ρv : H1(Kac
n,v, I(1))

∪locv(λ)−−−−−→ H2(Kac
n,v,J cyc(1)) ' J cyc

for every place v.

Denote by SelGr(Kac
n , T

†
f )univ the submodule of SelGr(Kac

n , T
†
f ) consisting of classes lying in

H1
Gr(Kac

n,v, T
†
f )univ for all primes v above p, and let x, y ∈ SelGr(Kac

n , T
†
f )univ. Then x corresponds

to an extension of Galois modules

0 −→ T †f −→ X −→ I −→ 0.

The Kummer dual of this sequence induces maps on cohomology

H1(Kac
n , X

∗(1)) −→ H1(Kac
n , T

†
f )

δ−→ H2(Kac
n , I(1))

such that δ(y) = 0 (since H2(Kac
n , I(1)) injects into

⊕
v H2(Kac

n,v, I(1)) and the v-th component of
δ(y) is given by locv(y)∪ locv(x) = 0 by the self-duality of Greenberg’s local conditions). Thus y
is the image of some yglob ∈ H1(Kac

n , X
∗(1)).
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On the other hand, if v is any place of Kac
n , for every k we can write locv(y) = corLn,k,v/Kac

n,v
(yk,v)

for some yk,v ∈ H1
Gr(Ln,k,v, T

†
f )sat, and by a similar argument as above there exists a class ỹk,v ∈

H1(Ln,k,v, X
∗(1)) lifting yk,v under the natural map πv in the exact sequence

(3.8) H1(Ln,k,v, X
∗(1))

πv−→ H1(Ln,k,v, T
†
f )

δv−→ H2(Ln,k,v, I(1)).

The difference locv(y
glob)−corLn,k,v/Kac

n,v
(ỹk,v) is then the image of some class wk,v ∈ H1(Kac

n,v, I(1)),

and we define

〈y, x〉cyc
Kac
n ,I

:= lim
k→∞

∑
v

ρv(wk,v),

a limit which is easily checked to exist and be independent of all choices. If in addition y = y0 is
the base class of a compatible system of classes

y∞ = lim←−
k

yk ∈ H1(Kac
n ,T

†,cyc) = lim←−
k

H1(Ln,k, T
†
f ),

then one easily checks (see e.g. [AH06, Lem. 3.2.2]) that there are classes yglob
k ∈ H1(Ln,k, X

∗(1))

lifting yk. Similarly as above, for every place v of Ln,k the corestriction of locv(y
glob
k ) − ỹk,v to

H1(Kac
n,v, X

∗(1)) is the image of a class w′k,v ∈ H1(Kac
n,v, I(1)), and with these choices we see that

the above expression for 〈y, x〉cyc
Kac
n ,I

reduces to

(3.9) 〈y, x〉cyc
Kac
n ,I

= lim
k→∞

∑
v|p

ρv(w
′
k,v).

As in [Arn10, §3.8], division by γcyc − 1 defines a natural derivative map

Der : H1(Kac
n,v, T

†
f ⊗I Icyc) −→ H1(Kac

n,v, T
†
f )

whose composition with the natural projection H1(Kac
n,v, T

†
f )→ H1(Kac

n,v,F
−T †f ) factors as

(3.10)

H1(Kac
n,v, T

†
f ⊗I Icyc) // //

Der
��

H1(Kac
n,v,F

−T †f ⊗I Icyc)

Der−
��

H1(Kac
n,v, T

†
f ) // // H1(Kac

n,v,F
−T †f ).

Letting pr1 be the natural projection H1(Kac
n,v, X

∗(1) ⊗I IJΓcycK) → H1(Kac
n,v, X

∗(1)), the ex-

pression (3.9) for 〈y, x〉cyc
Kac
n ,I

can be rewritten as

〈y, x〉cyc
Kac
n ,I

=
∑
v|p

pr1(locv(y
glob
∞ )− ỹ∞,v),
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where locv(y
glob
∞ )− ỹ∞,v ∈ H1(Kac

n,v, X
∗(1)⊗I IJΓcycK) is a lift of locv(y∞)− y∞,v ∈ H1(Kac

n,v, T
†
f ⊗

Icyc), and hence by [Arn10, Prop. 3.10] we obtain

(3.11)

〈y, x〉cyc
Kac
n ,I

=
∑
v|p

δv (Der(locv(y∞)− y∞,v))⊗ (γcyc − 1)

=
∑
v|p

(Der(locv(y∞)− y∞,v), locv(x))Kac
n,v
⊗ (γcyc − 1)

=
∑
v|p

(Der−(locv(y∞)), locv(x))Kac
n,v
⊗ (γcyc − 1),

where the last equality follows from the commutativity of (3.10) and the fact that y∞,v = {yk,v}k
has trivial image in H1(Kac

n,v,F
−T†,cyc).

Now taking y∞ = BF†(Ln,∞) in (3.11) we see that the contribution to 〈BF†Kac
n
, x〉cyc
Kac
n ,I

from p

is zero, since BF†(Ln,∞) ∈ SelGr,∅(Kac
n ,T

†,cyc) is finite at the places above p, while at p chasing
through the definitions we see that

Der−(locp(BF†(Ln,∞)) = β†n(1),

thus concluding the proof of the height formula (3.7). �

4. Big Heegner points

In this section, we explain the construction of big Heegner points and classes. The results in
this section are essentially a reformulation (influenced by [CH15] and [CL16]) of work of Longo–
Vigni [LV11] and Fouquet [Fou13], extending to Shimura curves Howard’s original construction
for modular curves [How07].

Fix a positive integer N and a prime p - 6N . Let K be an imaginary quadratic field with ring
of integers OK and discriminant −DK < 0 prime to Np, and write

N = N+N−

with N+ (resp. N−) divisible only by primes which are split (resp. inert) in K. Throughout, we
assume the following generalized Heegner hypothesis:

(gen-H) N− is the squarefree product of an even number of primes,

and fix an integral ideal N+ of K with OK/N+ ' Z/N+Z.

4.1. Towers of Shimura curves. Let B/Q be an indefinite quaternion algebra of discriminant
N−. We fix a Q-algebra embedding ιK : K ↪→ B, which we shall use to identify K with a
subalgebra of B. Let z 7→ z be the non-trivial automorphism of K, and choose a basis {1, j} of
B over K such that:

• j2 = β ∈ Q× with β < 0 and jt = t̄j for all t ∈ K,
• β ∈ (Z×q )2 for q | pN+, and β ∈ Z×q for q | DK.

Fix a square-root δ =
√
−DK, and define θ ∈ K by

(4.1) θ :=
D′K + δ

2
, where D′K :=

{
DK if 2 - DK,

DK/2 if 2 | DK,
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so that OK = Z + θZ. For every prime q | pN+, define the isomorphism iq : Bq := B ⊗Q Qq '
M2(Qq) by

iq(θ) =

(
Tr(θ) −Nm(θ)

1 0

)
, iq(j) =

√
β

(
−1 Tr(θ)
0 1

)
,

where Tr and Nm are the reduced trace and norm maps on B. For primes q - Np, we fix any
isomorphism iq : Bq ' M2(Qq) with iq(OK ⊗Z Zq) ⊂ M2(Zq).

Let Ẑ be the profinite completion of Z, and for any abelian group M set M̂ = M ⊗Z Ẑ. For
each r > 0, let Rr be the Eichler order of B of level N+pr with respect to the isomorphisms
{iq : Bq ' M2(Qq)}q-N− , and let Ur ⊂ R̂×r be the compact open subgroup defined by

Ur :=

{
(xq)q ∈ R̂×r : ip(xp) ≡

(
1 ∗
0 ∗

)
(mod pr)

}
.

Consider the double coset spaces

(4.2) Xr = B×\
(
HomQ(K, B)× B̂×/Ur

)
,

where b ∈ B× acts on (Ψ, g) ∈ HomQ(K, B)× B̂× by

b · (Ψ, g) = (bΨb−1, bg),

and Ur acts on B̂× by right multiplication. As is well-known (see e.g. [LV11, §§2.1-2]), Xr can
be identified with a set of algebraic points on the Shimura curve with complex uniformization

Xr(C) = B×\
(
HomQ(C, B)× B̂×/Ur

)
.

Let recK : K×\K̂× → Gal(Kab/K) be the reciprocity map of class field theory. By Shimura’s
reciprocity law, if P ∈ Xr is the class of a pair (Ψ, g), then σ ∈ Gal(Kab/K) acts on P by

P σ := [(Ψ, Ψ̂(a)g)],

where a ∈ K×\K̂× is such that recK(a) = σ, and Ψ̂ : K̂ → B̂ is the adelization of Ψ. We extend
this to an action of GK := Gal(Q/K) in the obvious manner.

The curves Xr are also equipped with natural actions of Hecke operators T` for ` - Np, U`
for `|Np, and diamond operators 〈d〉 for d ∈ (Z/prZ)×, as described in [LV11, §2.4] and [CH15,
§2.1], for example.

4.2. Compatible systems of Heegner points. For each c > 1, let Oc = Z + cOK be the
order of K of conductor c and denote by Hc the ring class field of K of that conductor, so that
Pic(Oc) ' Gal(Hc/K) by class field theory. In particular, H1 is the Hilbert class field of K.

Definition 4.1. A point P ∈ Xr is a Heegner point of conductor c if it is the class of a pair
(Ψ, g) with

Ψ(Oc) = Ψ(K) ∩ (B ∩ gR̂rg−1)

and
Ψp

(
(Oc ⊗ Zp)

× ∩ (1 + prOc ⊗ Zp)
×) = Ψp

(
(Oc ⊗ Zp)

×) ∩ gpUr,pg−1
p ,

where Ψp and Ur,p denote the p-components of Ψ and Ur, respectively.

For each prime q 6= p define

• ςq = 1, if q - N+,

• ςq = δ−1

(
θ θ
1 1

)
∈ GL2(Kq) = GL2(Qq), if q = qq splits with q | N+,

and for each s > 0, let
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• ς(s)
p =

(
θ −1
1 0

)(
ps 0
0 1

)
∈ GL2(Kp) = GL2(Qp), if p = pp splits in K,

• ς(s)
p =

(
0 1
−1 0

)(
ps 0
0 1

)
, if p is inert in K.

Remark 4.2. We shall ultimately assume that p splits in K, but it is worth-noting that, just as
in [How07, LV11], the constructions in this section also allow the case p inert in K.

Set ς(s) = ς
(s)
p
∏
q 6=p ςq, which we view as an element in B̂× via the isomorphisms {iq : Bq '

M2(Qq)}q-N− introduced in §4.1. With the Q-algebra embedding ιK : K ↪→ B fixed there, one
easily checks that for all s > r the points

Ps,r := [(ιK, ς
(s))] ∈ Xr

are Heegner points of conductor ps in the sense of Definition 4.1 with the following properties:

• Field of definition: Ps,r ∈ H0(Hps(µpr), Xr).
• Galois equivariance: For all σ ∈ Gal(Hps(µpr)/Hps),

P σs,r = 〈ϑ(σ)〉 · Ps,r,

where ϑ : Gal(Hps(µpr)/Hps)→ Z×p /{±1} is such that ϑ2 = εcyc.
• Horizontal compatibility : If s > r > 1, then∑

σ∈Gal(Hps (µpr )/Hps−1 (µpr ))

αr(P
σ
s,r) = Up · Ps,r−1,

where αr : Xr → Xr−1 is the map induced by the inclusion Ur ⊂ Ur−1.
• Vertical compatibility : If s > r > 1, then∑

σ∈Gal(Hps (µpr )/Hps−1 (µpr ))

P σs,r = Up · Ps−1,r.

(See [CL16, Thm. 1.2] and the references therein.)

4.3. Big Heegner points. Let Br the Zp-algebra generated by the Hecke operators T`, U`, and
〈a〉 acting on the Shimura curve Xr from §4.1, let hr be the Zp-algebra generated by the usual
Hecke operators T`, U`, and 〈a〉 acting on the space S2(Γ0,1(N, pr)) of classical modular form of

level Γ0,1(N, pr) := Γ0(N) ∩ Γ1(pr), and let TN−N,r be the quotient of hr acting faithfully on the

subspace of S2(Γ0,1(N, pr)) consisting of N−-new forms.
The Jacquet–Langlands correspondence yields Zp-algebra isomorphisms

(4.3) Br ' TN
−

N,r

(see [Hid06, §2.4]). In particular, letting eord = limn→∞ U
n!
p be Hida’s ordinary projector, the

Zp-module

Dord
r := eord(Div(Xr)⊗Z Zp)

is naturally endowed with an action of Tord
r := eordTN

−
N,r .

Denote by T†r be the free Tord
r -module of rank one equipped with the Galois action via the

inverse of the critical character Θ, and set D†r := Dord
r ⊗Tord

r
T†r.

Let Ps,r ∈ Xr be the Heegner point of conductor ps (s > r) constructed in §4.2, and denote by

Ps,r the image of eordPs,r in Dord
r . It follows from the Galois-equivariance property of Ps,r that

Pσs,r = Θ(σ) · Ps,r
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for all σ ∈ Gal(Hps(µpr)/Hps) (see [LV11, §7.1]), and hence Ps,r defines an element

(4.4) Ps,r ⊗ ζr ∈ H0(Hps ,D
†
r).

Let Pic(Xr) be the Picard variety of Xr, and set

Jord
r := eord(Pic(Xr)⊗Z Zp), J†r := Jord

r ⊗Tord
r

T†r.

Since the Up-operator has degree p, taking ordinary parts yields an isomorphism Dord
r ' Jord

r ,

and so we may also view (4.4) as Ps,r ⊗ ζr ∈ H0(Hps , J
†
r).

Let t > 0, and denote by GHpt
the Galois group of the maximal extension of Hpt unramified

outside the primes above pN . Consider the twisted Kummer map

Kumr : H0(Hpt , J
†
r) −→ H1(GHpt

,Tap(J
†
r))

as explicitly defined in [How07, p. 101]. This map is equivariant for the Galois- and Up-actions,
and hence by horizontal compatibility the classes

(4.5) Xpt,r := Kumr(CorHpr+t/H
pt

(Pr+t,r ⊗ ζr))

satisfy αr,∗(Xpt,r) = Up · Xpt,r−1 for all r > 1, where

αr,∗ : H1(GHpt
,Tap(J

†
r)) −→ H1(GHpt

,Tap(J
†
r−1))

is the map induced by the covering Xr → Xr−1 by Albanese functoriality.
Now let f ∈ IJqK be a Hida family of tame level N . In order to define big Heegner points

attached to f from the system of Heegner classes (4.5) for varying r, we need to recall the
following result realizing the big Galois representation Tf attached to f in the étale cohomology
of the p-tower of Shimura curves

· · · −→ Xr −→ Xr−1 −→ · · ·
(rather than classical modular curves, as implicitly taken in §3.1).

Let κI = I/mI be the residue field of I, and denote by ρ̄f : GQ → GL2(κI) the associated
semi-simple residual representation. Set

Tord
∞ := lim←−

r

Tord
r .

By (4.3) (see also the discussion in [LV11, §5.3]), there is a maximal ideal m ⊂ Tord
∞ associated

with ρ̄f , and f corresponds to a minimal prime in the localization Tord
∞,m.

Theorem 4.3. Assume that:

(i) ρ̄f is absolutely irreducible and p-distinguished,
(ii) ρ̄f is ramified at every prime `|N− with ` ≡ ±1 (mod p),

and let m ⊂ Tord
∞ be the maximal ideal associated with ρ̄f . Then the module

Taord
m :=

(
lim←−
r

Tap(J
ord
r )

)
⊗Tord
∞

Tord
∞,m

is free of rank 2 over Tord
∞,m, and if f corresponds to the minimal prime a ⊂ Tord

∞,m, then there is
an isomorphism

Tf ' Taord
m ⊗Tord

∞,m
Tord
∞,m/a

as (Tord
∞,m/a)[GQ]-modules.
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Proof. This is shown in [Fou13, Thm. 3.1] assuming the “mod p multiplicity one” hypothesis in
[op. cit., Prop. 3.7]. Since by [Hel12, Cor. 8.11] that hypothesis is ensured by our ramification
condition on ρ̄f , the result follows. �

Let m ⊂ Tord
∞ be a maximal ideal satisfying the hypotheses of Theorem 4.3, and suppose

that the Hida family f corresponds to a minimal prime of Tord
∞,m, so by Theorem 4.3 there is a

quotient map Taord
m → Tf . Note also that immediately from the definitions there are natural

maps Tap(J
†
r)→ Taord

m ⊗Θ−1 → T †f .

Definition 4.4. The big Heegner point of conductor pt is the class

Xpt ∈ H1(Hpt , T
†
f )

given by the image of lim←−r U
−r
p · Xpt,r under the composite map

lim←−
r

H1(GHpt
,Tap(J

†
r)) −→ H1(GHpt

,Taord
m ⊗Θ−1) −→ H1(Hpt , T

†
f ).

We conclude this section with the following result due to Howard, showing that the big Heegner
points are Selmer classes under mild hypotheses.

Proposition 4.5. Assume that ρ̄f is ramified at every prime `|N−. Then the classes Xpt lie in

SelGr(Hpt , T
†
f ).

Proof. The argument in [How07, Prop. 2.4.5] (see also [LV11, Prop. 10.1]) shows that for every

prime w of Hpt the localization locw(Xpt) lies in the subspace H1
Gr(Hpt,w, T

†
f ) ⊂ H1(Hpt,w, T

†
f )

defining SelGr(Hpt , T
†
f ), except when w|`|N−, in which case it is shown that

locw(Xpt) ∈ ker

{
H1(Hpt,w, T

†
f ) −→

H1(Hur
pt,w, T

†
f )

H1(Hur
pt,w, T

†
f )tors

}
,

where H1(Hur
pt,w, T

†
f )tors denotes the I-torsion submodule of H1(Hur

pt,w, T
†
f ). However, such primes

` are inert in K, so Hpt,w = K`, and since our hypothesis on ρ̄f implies that H1(Kur
` , T

†
f ) is

I-torsion free (see e.g. [Büy14, Lem. 3.12]), the result follows. �

Recall that Kac
∞ is the anticyclotomic Zp-extension of K, and Kac

n denotes the subextension of
Kac
∞ with [Kac

n : K] = pn. Similarly as in [How07, §3.3] and [LV11, §10.3], we set

Zn := CorHpt/Kac
n

(U−tp · Xpt) ∈ H1(Kac
n , T

†
f ),

where t � 0 is chosen so that Kac
n ⊂ Hpt . By horizontal compatibility, the definition of Zn is

independent of the choice of t, and for varying n they define a system

Z∞ := lim←−
n

Zn ∈ lim←−
n

H1(Kac
n , T

†
f ) ' H1(K,T†,ac).

By the work of Cornut–Vatsal [CV07] (see also [How07, Cor. 3.1.2], which naturally extends to
quaternionic setting considered here) the class Z∞ is not IJΓac

K K-torsion.
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5. Main results

In this section we conclude the proof of the main results of this paper. Fix a positive integer
N and a prime p - 6N and let

f =
∞∑
n=1

anq
n ∈ IJqK

be a primitive Hida family of tame level N . Let K be an imaginary quadratic field of discriminant
prime to Np satisfying the generalized Heegner hypothesis (gen-H) relative to N . Our results
will require some of the technical hypotheses below, which we record here for our later reference.

(h0) I is regular,
(h1) some specialization fφ is the p-stabilization of a newform f ∈ S2(Γ0(N)),
(h2) ρ̄f is irreducible,
(h3) N is squarefree,
(h4) N− 6= 1,
(h5) ρ̄f is ramified at every prime `|N−,
(h6) p splits in K.

As usual, here N− denotes the largest factor of N divisible only by primes which are inert in K.

5.1. Proof of Theorem A. The following is Theorem A in the Introduction.

Theorem 5.1. Assume hypotheses (h0)–(h6). Then XGr(K∞, Af ) is IJΓKK-torsion, and

CharIJΓKK(XGr(K∞, Af )) = (LHi
p (f/K))

as ideals in IJΓKK⊗Zp Qp.

Proof. It suffices to show that the twisted module XGr(K∞, A†f ) is IJΓKK-torsion, with charac-

teristic ideal generated by twΘ−1(LHi
p (f/K)) after inverting p (see the twisting lemma [Rub00,

Lem. 6.1.2]). In light of Theorem 3.8, this will follow from showing that X∅,0(K∞, A†f ) is IJΓKK-
torsion, with characteristic ideal generated by twΘ−1(Lp(f/K)) after extending scalars to IurJΓKK;
this is what we shall prove below.

From [Wan20, Thm. 1.1] (see also Remark 5.3 below) we obtain the divisibility

(5.1) CharIJΓKK(X∅,0(K∞, A†f )) · IurJΓKK ⊂ (twΘ−1(Lp(f/K))) in IurJΓKK,

which by descent via ΓK � Γac
K , Corollary 2.10, and [Bur17, Thm. B] yields the divisibility

(5.2) CharIJΓac
K K(X∅,0(Kac

∞, A
†
f )) · IurJΓac

K K ⊂ (L BDP
p (f/K)2) in IurJΓac

K K.

Now let φ ∈ Xa(I) be such that fφ is the ordinary p-stabilization of a newform f ∈ S2(Γ0(N))

defined over OL, and put Our
L = Ẑ⊗̂ZpOL. By the construction in Theorem 2.9, the p-adic L-

function L BDP
p (f/K) specializes at φ to the p-adic L-function L BDP

p (f/K) ∈ Our
L JΓac

K K of [Cas17,
Thm. 1.5] (see also [BCK21, §3.1]). Since by [Cas17, Thm. 3.4] the module X∅,0(Kac

∞, Af ) is
Our
L JΓac

K K-torsion, with

(5.3) CharOur
L JΓac

K K(X∅,0(Kac
∞, Af )) ·Our

L JΓac
K K = (L BDP

p (f/K)2) in Our
L JΓac

K K,

by Lemma 3.5 we deduce that X∅,0(Kac
∞, A

†,ac
f ) is IJΓac

K K-torsion and that the divisibility (5.2) is

an equality. With this equality at hand, another application of Lemma 3.5 yields inequality in
(5.1), concluding the proof of the theorem. �
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For our later reference, we record the following results shown in the course of the proof of
Theorem 5.1.

Theorem 5.2. Assume hypotheses (h0)–(h6). Then the modules X∅,0(K∞, Af ) and X∅,0(Kac
∞, A

†
f )

are torsion over IJΓKK and IJΓac
K K, respectively, and the following equalities hold:

CharIJΓKK(X∅,0(K∞, Af )) · IurJΓKK = (Lp(f/K)) in IurJΓKK,

CharIJΓac
K K(X∅,0(Kac

∞, A
†
f )) · IurJΓac

K K = (L BDP
p (f/K)2) in IurJΓac

K K.

Remark 5.3. In the proof of Theorem 5.1 we used [Wan20, Thm. 1.1], which assumes that the
underlying CM form g is residually irreducible and p-distinguished. Without these hypotheses
on g, the argument in the proof of [Wan20, Thm. 1.1] establishes the divisibility

(5.4) CharIJΓKK(X∅,0(K∞, Af )) · IurJΓKK ⊂ (Lp(f/K))

in IurJΓKK, up to certain height one primes of Iur. However, that such ambiguity can be removed
follows from the integrality of Lp(f/K) established in Proposition 2.7 together with the vanishing
of the µ-invariant of its anticyclotomic restriction [Bur17, Thm. 5.7] (see Corollary 2.10), and
hence the divisibility (5.4) also holds for our underlying CM form g in (2.1).

Remark 5.4. A key ingredient in the proof of (5.3) is the Heegner point “explicit reciprocity law”
of [CH18] (see also [BCK21, §4.2] for the additional arguments in the case N− 6= 1). Indeed,
as explained in [Cas17, Appendix], this allows one to relate the main conjecture for L BDP

p (f/K)2

to Perrin-Riou’s Heegner point main conjecture [PR87], whose “upper bound divisibilty” was
established by Howard [How04a, How04b] using the Euler system of Heegner points.

5.2. Converse to Howard’s theorem. As shown in [How07, §§2.3-4], for varying c prime to

N the big Heegner points Xc ∈ H1(Hc, T
†
f ) form an anticyclotomic Euler system for T †f . Setting

Z0 := CorH1/K(X1) ∈ H1(K, T †f ),

Kolyvagin’s methods thus yield a proof of the implication

(5.5) Z0 6∈ SelGr(K, T †f )tors =⇒ rankI SelGr(K, T †f ) = 1,

where the subscript tors denotes the I-torsion submodule (see [How07, Cor. 3.4.3]). In the spirit
of Skinner’s converse to theorem Gross–Zagier and Kolyvagin, [Ski20], in this section we prove a
result in the converse direction. Similarly as in [Wan21], our converse to (5.5) will be deduced
from progress on the “big Heegner point main conjecture” (see [How07, Conj. 3.3.1] and [LV11,
Conj. 10.8]), as recorded in the next result.

Theorem 5.5. Assume hypotheses (h0)–(h6). Then both XGr(Kac
∞, A

†
f ) and SelGr(K,T†,ac) have

IJΓac
K K-rank one, and

CharIJΓac
K K(XGr(Kac

∞, A
†
f )tors) = CharIJΓac

K K

(
SelGr(K,T†,ac)

IJΓac
K K · Z∞

)2

,

where the subscript tors denotes the IJΓac
K K-torsion submodule.

Proof. Since Z∞ is not IJΓac
K K-torsion by Cornut–Vatsal, part (iii) of [Fou13, Thm. B] implies that

XGr(Kac
∞, A

†
f ) and SelGr(K,T†,ac) have both IJΓac

K K-rank one, and that the divisibility

(5.6) CharIJΓac
K K(XGr(Kac

∞, A
†
f )tors) ⊃ CharIJΓac

K K

(
SelGr(K,T†,ac)

IJΓac
K K · Z∞

)2
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holds in IJΓac
K K. Concerning the additional hypotheses in Fouquet’s result, we note that:

• Assumption 3.4, that ρ̄f is irreducible, is our (h2),
• Assumption 3.5, that ρ̄f is p-distinguished, follows from (h1) (see [KLZ17, Rem. 7.2.7]),
• Assumption 3.10, that the tame character of f admits a square-root, is satisfied by (h1),
• Assumption 5.10, that all primes `|N for which ρ̄f is not ramified have infinite decompo-

sition group in Kac
∞/K, is a reformulation of (h5),

• Assumption 5.13, that ρ̄f |GK is irreducible, follows from (h2), (h4) and (h5) (see [Ski20,
Lem. 2.8.1]).

Let φ ∈ Xa(I) be such that fφ is the ordinary p-stabilization of a newform f ∈ S2(Γ0(N)) as in
hypothesis (h1). Letting X ⊃ Y stand for the divisibility (5.6), by [Cas17, Thm. 3.4] (or [Wan21,
Thm. 1.2]) we have the equality

X = Y (mod ker(φ)IJΓac
K K)

(note that this is the source of the additional hypotheses (h3) and (h6)), from where the result
follows by an application of Lemma 3.5. �

Theorem 5.6. Assume hypotheses (h0)–(h6). Then the following implication holds:

rankI SelGr(K, T †f ) = 1 =⇒ Z0 6∈ SelGr(K, T †f )tors

where the subscript tors denotes the I-torsion submodule.

Proof. Let γac ∈ Γac
K be a topological generator. The dual of the restriction map for the extension

Kac
∞/K induces a surjective homomorphism

XGr(Kac
∞, A

†
f )/(γac − 1)XGr(Kac

∞, A
†
f ) −� XGr(K, A†f )

with I-torsion kernel. Since XGr(K, A†f ) and SelGr(K, T †f ) have the same I-rank by Lemma 3.2,

this shows that if SelGr(K, T †f ) has I-rank one, then so do the Γac
K -coinvariants of XGr(Kac

∞, A
†
f ),

and hence by Theorem 5.5 we deduce that

(γac − 1) - CharIJΓac
K K

(
SelGr(K,T†,ac)

IJΓac
K K · Z∞

)
.

Thus the image of Z∞ in SelGr(K,T†,ac)/(γac − 1)SelGr(K,T†,ac) is not I-torsion, and since this
image is sent to Z0 under the natural injection

SelGr(K,T†,ac)/(γac − 1)SelGr(K,T†,ac) ↪−→ SelGr(K, T †f ),

the result follows. �

Remark 5.7. Replacing the appeal to [Cas17, Thm. 3.4] (or [Wan21, Thm. 1.2]) in the proof of
Theorem 5.5 by an appeal to [BCK21, Thm. 5.1] the same argument as above gives a proof of
Theorems 5.5 and 5.6 with hypotheses (h3)–(h6) replaced by “Hypothesis ♥” from [Zha14], i.e.,
letting Ram(ρ̄f ) be the set of primes `‖N such that ρ̄f is ramified at `:

• Ram(ρ̄f ) contains all primes `‖N+, and all primes `|N− such that ` ≡ ±1 (mod p),
• If N is not squarefree, then Ram(ρ̄f ) contains either a prime `|N− or at least two primes
`‖N+,
• If `2|N+, then H0(Q`, ρ̄f ) = {0},

and the assumption that ρ̄f is surjective and ap 6≡ ±1 (mod p).
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5.3. I-adic Gross–Zagier formula. In this section we prove a I-adic Gross–Zagier formula
for the big Heegner point Z0 which will be a key ingredient in our application to Greenberg’s
nonvanishing conjecture. More generally, we shall prove a Gross–Zagier type formula for the
IJΓac
K K-adic family Z∞; the result for Z0 then follows by specialization at the trivial character.

Define the cyclotomic IJΓac
K K-adic height pairing

(5.7) 〈−,−〉cyc
Kac
∞,I

: SelGr(K,T†,ac)⊗IJΓac
K K SelGr(K,T†,ac)ι −→ J cyc ⊗I IJΓac

K K⊗I FI

by

〈a∞, b∞〉cyc
Kac
∞,I

= lim←−
n

∑
σ∈Gal(Kac

n /K)

〈an, bσn〉
cyc
Kac
n ,I
· σ,

and defined the cyclotomic regulator Rcyc ⊂ IJΓac
K K ⊗I FI to be the characteristic ideal of the

cokernel of (5.7) (after dividing by the image of (γcyc − 1) in J cyc).

Since we assume that K satisfies (gen-H), the constant term LHi
p,0(f †/K)ac in the expansion

(3.5) vanishes (see Proposition 2.3). We next consider the linear term LHi
p,1(f †/K)ac.

Theorem 5.8. Assume hypotheses (h0)–(h6), and denote by Xtors the characteristic ideal of

XGr(Kac
∞, A

†
f )tors. Then

Rcyc · Xtors = (LHi
p,1(f †/K)ac)

as ideals in IJΓac
K K⊗I FI.

Proof. Since SelGr(K,T†,ac) has IJΓac
K K-rank one by Theorem 5.5, the height formula of Theo-

rem 3.10 and Lemma 3.9 immediately yield the equality

(5.8) Rcyc · CharIJΓac
K K

(
SelGr(K,T†,ac)

IJΓac
K K · BF†,ac

)
= (LHi

p,1(f †/K)ac) · ηι,

where η ⊂ IJΓac
K K is the characteristic ideal of H1

Gr(Kp,T
†,ac)/locp(SelGr(K,T†,ac)). We shall argue

below that η 6= 0. Global duality yields the exact sequence

(5.9) 0 −→ H1
Gr(Kp,T

†,ac)

locp(SelGr(K,T†,ac))
−→ X∅,Gr(Kac

∞, A
†
f ) −→ XGr(Kac

∞, A
†
f ) −→ 0.

The left term in (5.9) is IJΓac
K K-torsion, since by Corollary 3.7 the image of the map locp :

SelGr(K,T†,ac) → H1
Gr(Kp,T

†,ac) is nonzero and the target has IJΓac
K K-rank one. On the other

hand, by Theorem 5.5 the module XGr(Kac
∞, A

†
f ) has IJΓac

K K-rank one. Hence it follows that the

middle term in (5.9) has IJΓac
K K-rank one, and by the action of complex conjugation the same is

true for XGr,∅(Kac
∞, A

†
f ). Thus the nonvanishing of η follows from the analogue of (5.9) for the

prime p (see (5.12) below).

By Lemma 3.4 the above also shows that XGr,0(Kac
∞, A

†
f ) is IJΓac

K K-torsion, and counting ranks

in the exact sequence
(5.10)

0 −→ SelGr(K,T†,ac) −→ SelGr,∅(K,T†,ac) −→
H1(Kp,T

†,ac)

H1
Gr(Kp,T†,ac)

−→ XGr(Kac
∞, A

†
f ) −→ XGr,0(Kac

∞, A
†
f ) −→ 0,

we see that the first two terms in (5.10) have IJΓac
K K-rank one. Since H1(Kp,T

†,ac)/H1
Gr(Kp,T

†,ac)
has no IJΓac

K K-torsion, it follows that

(5.11) SelGr(K,T†,ac) = SelGr,∅(K,T†,ac).
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Taking IJΓac
K K-torsion in the analogue of (5.9) for p, that is

(5.12) 0 −→
H1
Gr(Kp,T

†,ac)

locp(SelGr(K,T†,ac))
−→ XGr,∅(Kac

∞, A
†
f ) −→ XGr(Kac

∞, A
†
f ) −→ 0,

and applying Lemma 3.4 and the “functional equation” X ιtors = Xtors of [How04a, p. 1464] we
obtain

ηι · Xtors = CharIJΓac
K K(XGr,0(Kac

∞, A
†
f )).(5.13)

On the other hand, by the equivalence (i)’⇐⇒(ii)’ in Theorem 3.8, the second part of Theorem 5.2
implies that

CharIJΓac
K K(XGr,0(Kac

∞, A
†
f )) = CharIJΓac

K K

(
SelGr,∅(K,T†,ac)

IJΓac
K K · BF†,ac

)
as ideals in IJΓac

K K ⊗Zp Qp, and so the result follows from the combination of (5.8), (5.11), and
(5.13). �

The aforementioned IJΓac
K K-adic Gross–Zagier formula for Z∞ is the following.

Corollary 5.9. Assume hypotheses (h0)–(h6). Then we have the equality

(LHi
p,1(f †/K)ac) = (〈Z∞,Z∞〉cyc

Kac
∞,I

)

as ideals of IJΓac
K K⊗I FI.

Proof. Since SelGr(K,T†,ac) has IJΓac
K K-rank one by Theorem 5.5 and Z∞ is not IJΓKK-torsion, the

regulator Rcyc of (5.7) satisfies

(〈Z∞,Z∞〉cyc
Kac
∞,I

) = Rcyc · CharIJΓac
K K

(
SelGr(K,T†,ac)

IJΓac
K K · Z∞

)
· CharIJΓac

K K

(
SelGr(K,T†,ac)

IJΓac
K K · Z∞

)ι
.

By the “functional equation” of [How04a, p. 1464], the result thus follows from the combination
of Theorem 5.8 and the equality of characteristic ideals in Theorem 5.5. �

5.4. Proof of Theorem B. As in the Introduction, let −w ∈ {±1} be the generic sign in the
functional equation of the p-adic L-functions LMTT

p (fφ, s) for varying φ ∈ X oa (I). For comparison,
before giving the proof of our application to Greenberg’s nonvanishing conjecture in the case of
rank one, we record a result in the rank zero case that follows immediately from [SU14].

Theorem 5.10 (Skinner–Urban). Assume that:

• ρ̄f is irreducible and p-distinguished,
• f has trivial tame character,
• there is a prime `‖N such that ρ̄f is ramified at `.

If SelGr(Q, T
†
f ) is I-torsion, then L(fφ, kφ/2) 6= 0 for all but finitely many φ ∈ X oa (I).

Proof. Since the I-modules SelGr(Q, T
†
f ) and XGr(Q, A

†
f ) have the same rank by Lemma 3.2, our

hypothesis implies that XGr(Q, A
†
f ) is I-torsion. Thus in particular SelGr(Q, Afφ(1 − kφ/2)) is

finite for all but finitely many φ ∈ X oa (I), and so the result follows from [SU14, Thm. 3.6.13]. �

The following is Theorem B in the Introduction.

Theorem 5.11. Assume that:

(i) I is regular,
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(ii) ρ̄f is irreducible,
(iii) some specialization fφ is the p-stabilization of a newform f ∈ S2(Γ0(N)),
(iv) N is squarefree,
(v) there are at least two primes `|N at which ρ̄f is ramified.

If SelGr(Q, T
†
f ) has I-rank one and the I-adic height pairing 〈−,−〉cyc

Q,I is non-degenerate, then

d

ds
LMTT
p (fφ, s)

∣∣∣∣
s=kφ/2

6= 0,

for all but finitely many φ ∈ X oa (I).

Proof. Let φ ∈ X oa (I) be such that fφ is the ordinary p-stabilization of a newform f ∈ S2(Γ0(N)).
Let `1 and `2 be two distinct primes as in hypothesis (v), and choose an imaginary quadratic field
K such that the following hold:

• `1 and `2 are inert in K,
• every prime dividing N+ := N/`1`2 splits in K,
• p splits in K,
• L(f ⊗ εK, 1) 6= 0, where εK is the quadratic character corresponding to K.

Note that the existence of K is ensured by a result of [Wal84] (see also [FH95, Thm. B.1]), and
that, so chosen, K satisfies (gen-H) with N− = `1`2. Now, the action of a complex conjugation c
combined with the restriction map induces an isomorphism

(5.14) SelGr(K, T †f ) ' SelGr(Q, T
†
f )⊕ SelGr(Q, T

†
f ⊗ εK),

where the first and second summands are identified with the + and − eigenspaces for the action of
c, respectively (see [SU14, Lem. 3.1.5]). By Kato’s work [Kat04], the nonvanishing of L(f ⊗ εK, 1)

implies that Sel(Q, Tf ⊗ εK) is finite, and so by the control theorem for SelGr(Q, T
†
f ⊗ εK) (see the

exact sequence in [How07, Cor. 3.4.3]) we conclude that SelGr(Q, T
†
f ⊗ εK) is I-torsion, and so

rankI SelGr(K, T †f ) = rankI SelGr(Q, T
†
f ) = 1

by (5.14) and our assumption. In particular, hypotheses (i)–(iv) implies hypotheses (h0)–(h3) at
the start of this section, and hypotheses (h4)–(h6) hold by our choice of K, Theorem 5.6 yields
the non-triviality of the class Z0, and so the element 〈Z0,Z0〉cyc

K,I ∈ I is non-zero by our hypothesis
of non-degeneracy.

Let LHi
p (f †/K)cyc be the image of twΘ−1(LHi

p (f/K)) under the natural projection IJΓKK �
IJΓcyc
K K. By Theorem 2.4, for every φ ∈ X oa (I) we have the factorization

(5.15) φ(LHi
p (f †/K)cyc) = twΘ−1

φ
(LMTT

p (fφ)) · twΘ−1
φ

(LMTT
p (fφ ⊗ εK))

up to a unit in φ(I)JΓcycK×. Expand

φ(LHi
p (f †/K)cyc) = LHi

p,0(f †φ/K) + LHi
p,1(f †φ/K) · (γcyc − 1) + · · · ,

twΘ−1
φ

(LMTT
p (fφ)) = LMTT

p,0 (f †φ) + LMTT
p,1 (f †φ) · (γcyc − 1) + · · · ,

twΘ−1
φ

(LMTT
p (fφ ⊗ εK)) = LMTT

p,0 (f †φ ⊗ εK) + LMTT
p,1 (f †φ ⊗ εK) · (γcyc − 1) + · · · ,

as power series in γcyc − 1, and note that by the p-adic Mellin transform we have

d

ds
LMTT
p (fφ, s)

∣∣∣∣
s=kφ/2

6= 0 ⇐⇒ LMTT
p,1 (f †φ) 6= 0
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(see [Ven16, (24)]). The constant term LHi
p,0(f †φ/K) ∈ I vanishes by Proposition 2.3, and so the

factorization (5.15) yields the following equality up to unit in O×φ :

(5.16) LHi
p,1(f †φ/K) = LMTT

p,1 (f †φ) · LMTT
p,0 (f †φ ⊗ εK).

Finally, since by definition LHi
p,1(f †/K) ∈ I agrees with the image of the linear term LHi

p,1(f †/K)ac

in (3.5) under the augmentation map IJΓac
K K → I, from Corollary 5.9 specialized at the trivial

character of Γac
K and (5.16) we see that

〈Z0,Z0〉cyc
K,I 6= 0 =⇒ LHi

p,1(f †φ/K) 6= 0, for almost all φ ∈ X oa (I)

=⇒ LMTT
p,1 (f †φ) 6= 0, for almost all φ ∈ X oa (I),

concluding the proof of Theorem 5.11. �
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